Core: Remove unused PoolAllocator
This commit is contained in:
parent
e343dbbcc1
commit
13edeb3ee4
|
@ -1,588 +0,0 @@
|
|||
/**************************************************************************/
|
||||
/* pool_allocator.cpp */
|
||||
/**************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* https://godotengine.org */
|
||||
/**************************************************************************/
|
||||
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
||||
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/**************************************************************************/
|
||||
|
||||
#include "pool_allocator.h"
|
||||
|
||||
#include "core/error/error_macros.h"
|
||||
#include "core/os/memory.h"
|
||||
#include "core/os/os.h"
|
||||
#include "core/string/print_string.h"
|
||||
|
||||
#define COMPACT_CHUNK(m_entry, m_to_pos) \
|
||||
if constexpr (true) { \
|
||||
void *_dst = &((unsigned char *)pool)[m_to_pos]; \
|
||||
void *_src = &((unsigned char *)pool)[(m_entry).pos]; \
|
||||
memmove(_dst, _src, aligned((m_entry).len)); \
|
||||
(m_entry).pos = m_to_pos; \
|
||||
} else \
|
||||
((void)0)
|
||||
|
||||
void PoolAllocator::mt_lock() const {
|
||||
}
|
||||
|
||||
void PoolAllocator::mt_unlock() const {
|
||||
}
|
||||
|
||||
bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) {
|
||||
if (entry_count == entry_max) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = 0; i < entry_max; i++) {
|
||||
if (entry_array[i].len == 0) {
|
||||
*p_pos = i;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
ERR_PRINT("Out of memory Chunks!");
|
||||
|
||||
return false; //
|
||||
}
|
||||
|
||||
/**
|
||||
* Find a hole
|
||||
* @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end
|
||||
* @param p_for_size hole size
|
||||
* @return false if hole found, true if no hole found
|
||||
*/
|
||||
bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) {
|
||||
/* position where previous entry ends. Defaults to zero (begin of pool) */
|
||||
|
||||
int prev_entry_end_pos = 0;
|
||||
|
||||
for (int i = 0; i < entry_count; i++) {
|
||||
Entry &entry = entry_array[entry_indices[i]];
|
||||
|
||||
/* determine hole size to previous entry */
|
||||
|
||||
int hole_size = entry.pos - prev_entry_end_pos;
|
||||
|
||||
/* determine if what we want fits in that hole */
|
||||
if (hole_size >= p_for_size) {
|
||||
*p_pos = i;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* prepare for next one */
|
||||
prev_entry_end_pos = entry_end(entry);
|
||||
}
|
||||
|
||||
/* No holes between entries, check at the end..*/
|
||||
|
||||
if ((pool_size - prev_entry_end_pos) >= p_for_size) {
|
||||
*p_pos = entry_count;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void PoolAllocator::compact(int p_up_to) {
|
||||
uint32_t prev_entry_end_pos = 0;
|
||||
|
||||
if (p_up_to < 0) {
|
||||
p_up_to = entry_count;
|
||||
}
|
||||
for (int i = 0; i < p_up_to; i++) {
|
||||
Entry &entry = entry_array[entry_indices[i]];
|
||||
|
||||
/* determine hole size to previous entry */
|
||||
|
||||
int hole_size = entry.pos - prev_entry_end_pos;
|
||||
|
||||
/* if we can compact, do it */
|
||||
if (hole_size > 0 && !entry.lock) {
|
||||
COMPACT_CHUNK(entry, prev_entry_end_pos);
|
||||
}
|
||||
|
||||
/* prepare for next one */
|
||||
prev_entry_end_pos = entry_end(entry);
|
||||
}
|
||||
}
|
||||
|
||||
void PoolAllocator::compact_up(int p_from) {
|
||||
uint32_t next_entry_end_pos = pool_size; // - static_area_size;
|
||||
|
||||
for (int i = entry_count - 1; i >= p_from; i--) {
|
||||
Entry &entry = entry_array[entry_indices[i]];
|
||||
|
||||
/* determine hole size for next entry */
|
||||
|
||||
int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len));
|
||||
|
||||
/* if we can compact, do it */
|
||||
if (hole_size > 0 && !entry.lock) {
|
||||
COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len)));
|
||||
}
|
||||
|
||||
/* prepare for next one */
|
||||
next_entry_end_pos = entry.pos;
|
||||
}
|
||||
}
|
||||
|
||||
bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, const Entry *p_entry) {
|
||||
EntryArrayPos entry_pos = entry_max;
|
||||
|
||||
for (int i = 0; i < entry_count; i++) {
|
||||
if (&entry_array[entry_indices[i]] == p_entry) {
|
||||
entry_pos = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (entry_pos == entry_max) {
|
||||
return false;
|
||||
}
|
||||
|
||||
*p_map_pos = entry_pos;
|
||||
return true;
|
||||
}
|
||||
|
||||
PoolAllocator::ID PoolAllocator::alloc(int p_size) {
|
||||
ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID);
|
||||
ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID);
|
||||
|
||||
mt_lock();
|
||||
|
||||
if (entry_count == entry_max) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("entry_count==entry_max");
|
||||
return POOL_ALLOCATOR_INVALID_ID;
|
||||
}
|
||||
|
||||
int size_to_alloc = aligned(p_size);
|
||||
|
||||
EntryIndicesPos new_entry_indices_pos;
|
||||
|
||||
if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
|
||||
/* No hole could be found, try compacting mem */
|
||||
compact();
|
||||
/* Then search again */
|
||||
|
||||
if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "Memory can't be compacted further.");
|
||||
}
|
||||
}
|
||||
|
||||
EntryArrayPos new_entry_array_pos;
|
||||
|
||||
bool found_free_entry = get_free_entry(&new_entry_array_pos);
|
||||
|
||||
if (!found_free_entry) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "No free entry found in PoolAllocator.");
|
||||
}
|
||||
|
||||
/* move all entry indices up, make room for this one */
|
||||
for (int i = entry_count; i > new_entry_indices_pos; i--) {
|
||||
entry_indices[i] = entry_indices[i - 1];
|
||||
}
|
||||
|
||||
entry_indices[new_entry_indices_pos] = new_entry_array_pos;
|
||||
|
||||
entry_count++;
|
||||
|
||||
Entry &entry = entry_array[entry_indices[new_entry_indices_pos]];
|
||||
|
||||
entry.len = p_size;
|
||||
entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous
|
||||
entry.lock = 0;
|
||||
entry.check = (check_count++) & CHECK_MASK;
|
||||
free_mem -= size_to_alloc;
|
||||
if (free_mem < free_mem_peak) {
|
||||
free_mem_peak = free_mem;
|
||||
}
|
||||
|
||||
ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check;
|
||||
mt_unlock();
|
||||
|
||||
//ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval );
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) {
|
||||
unsigned int check = p_mem & CHECK_MASK;
|
||||
int entry = p_mem >> CHECK_BITS;
|
||||
ERR_FAIL_INDEX_V(entry, entry_max, nullptr);
|
||||
ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr);
|
||||
ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr);
|
||||
|
||||
return &entry_array[entry];
|
||||
}
|
||||
|
||||
const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const {
|
||||
unsigned int check = p_mem & CHECK_MASK;
|
||||
int entry = p_mem >> CHECK_BITS;
|
||||
ERR_FAIL_INDEX_V(entry, entry_max, nullptr);
|
||||
ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr);
|
||||
ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr);
|
||||
|
||||
return &entry_array[entry];
|
||||
}
|
||||
|
||||
void PoolAllocator::free(ID p_mem) {
|
||||
mt_lock();
|
||||
Entry *e = get_entry(p_mem);
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("!e");
|
||||
return;
|
||||
}
|
||||
if (e->lock) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("e->lock");
|
||||
return;
|
||||
}
|
||||
|
||||
EntryIndicesPos entry_indices_pos;
|
||||
|
||||
bool index_found = find_entry_index(&entry_indices_pos, e);
|
||||
if (!index_found) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_COND(!index_found);
|
||||
}
|
||||
|
||||
for (int i = entry_indices_pos; i < (entry_count - 1); i++) {
|
||||
entry_indices[i] = entry_indices[i + 1];
|
||||
}
|
||||
|
||||
entry_count--;
|
||||
free_mem += aligned(e->len);
|
||||
e->clear();
|
||||
mt_unlock();
|
||||
}
|
||||
|
||||
int PoolAllocator::get_size(ID p_mem) const {
|
||||
int size;
|
||||
mt_lock();
|
||||
|
||||
const Entry *e = get_entry(p_mem);
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("!e");
|
||||
return 0;
|
||||
}
|
||||
|
||||
size = e->len;
|
||||
|
||||
mt_unlock();
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
Error PoolAllocator::resize(ID p_mem, int p_new_size) {
|
||||
mt_lock();
|
||||
Entry *e = get_entry(p_mem);
|
||||
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_NULL_V(e, ERR_INVALID_PARAMETER);
|
||||
}
|
||||
|
||||
if (needs_locking && e->lock) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE);
|
||||
}
|
||||
|
||||
uint32_t alloc_size = aligned(p_new_size);
|
||||
|
||||
if ((uint32_t)aligned(e->len) == alloc_size) {
|
||||
e->len = p_new_size;
|
||||
mt_unlock();
|
||||
return OK;
|
||||
} else if (e->len > (uint32_t)p_new_size) {
|
||||
free_mem += aligned(e->len);
|
||||
free_mem -= alloc_size;
|
||||
e->len = p_new_size;
|
||||
mt_unlock();
|
||||
return OK;
|
||||
}
|
||||
|
||||
//p_new_size = align(p_new_size)
|
||||
int _free = free_mem; // - static_area_size;
|
||||
|
||||
if (uint32_t(_free + aligned(e->len)) < alloc_size) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_V(ERR_OUT_OF_MEMORY);
|
||||
}
|
||||
|
||||
EntryIndicesPos entry_indices_pos;
|
||||
|
||||
bool index_found = find_entry_index(&entry_indices_pos, e);
|
||||
|
||||
if (!index_found) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_COND_V(!index_found, ERR_BUG);
|
||||
}
|
||||
|
||||
//no need to move stuff around, it fits before the next block
|
||||
uint32_t next_pos;
|
||||
if (entry_indices_pos + 1 == entry_count) {
|
||||
next_pos = pool_size; // - static_area_size;
|
||||
} else {
|
||||
next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos;
|
||||
}
|
||||
|
||||
if ((next_pos - e->pos) > alloc_size) {
|
||||
free_mem += aligned(e->len);
|
||||
e->len = p_new_size;
|
||||
free_mem -= alloc_size;
|
||||
mt_unlock();
|
||||
return OK;
|
||||
}
|
||||
//it doesn't fit, compact around BEFORE current index (make room behind)
|
||||
|
||||
compact(entry_indices_pos + 1);
|
||||
|
||||
if ((next_pos - e->pos) > alloc_size) {
|
||||
//now fits! hooray!
|
||||
free_mem += aligned(e->len);
|
||||
e->len = p_new_size;
|
||||
free_mem -= alloc_size;
|
||||
mt_unlock();
|
||||
if (free_mem < free_mem_peak) {
|
||||
free_mem_peak = free_mem;
|
||||
}
|
||||
return OK;
|
||||
}
|
||||
|
||||
//STILL doesn't fit, compact around AFTER current index (make room after)
|
||||
|
||||
compact_up(entry_indices_pos + 1);
|
||||
|
||||
if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) {
|
||||
//now fits! hooray!
|
||||
free_mem += aligned(e->len);
|
||||
e->len = p_new_size;
|
||||
free_mem -= alloc_size;
|
||||
mt_unlock();
|
||||
if (free_mem < free_mem_peak) {
|
||||
free_mem_peak = free_mem;
|
||||
}
|
||||
return OK;
|
||||
}
|
||||
|
||||
mt_unlock();
|
||||
ERR_FAIL_V(ERR_OUT_OF_MEMORY);
|
||||
}
|
||||
|
||||
Error PoolAllocator::lock(ID p_mem) {
|
||||
if (!needs_locking) {
|
||||
return OK;
|
||||
}
|
||||
mt_lock();
|
||||
Entry *e = get_entry(p_mem);
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("!e");
|
||||
return ERR_INVALID_PARAMETER;
|
||||
}
|
||||
e->lock++;
|
||||
mt_unlock();
|
||||
return OK;
|
||||
}
|
||||
|
||||
bool PoolAllocator::is_locked(ID p_mem) const {
|
||||
if (!needs_locking) {
|
||||
return false;
|
||||
}
|
||||
|
||||
mt_lock();
|
||||
const Entry *e = const_cast<PoolAllocator *>(this)->get_entry(p_mem);
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("!e");
|
||||
return false;
|
||||
}
|
||||
bool locked = e->lock;
|
||||
mt_unlock();
|
||||
return locked;
|
||||
}
|
||||
|
||||
const void *PoolAllocator::get(ID p_mem) const {
|
||||
if (!needs_locking) {
|
||||
const Entry *e = get_entry(p_mem);
|
||||
ERR_FAIL_NULL_V(e, nullptr);
|
||||
return &pool[e->pos];
|
||||
}
|
||||
|
||||
mt_lock();
|
||||
const Entry *e = get_entry(p_mem);
|
||||
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_NULL_V(e, nullptr);
|
||||
}
|
||||
if (e->lock == 0) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("e->lock == 0");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if ((int)e->pos >= pool_size) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("e->pos<0 || e->pos>=pool_size");
|
||||
return nullptr;
|
||||
}
|
||||
const void *ptr = &pool[e->pos];
|
||||
|
||||
mt_unlock();
|
||||
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void *PoolAllocator::get(ID p_mem) {
|
||||
if (!needs_locking) {
|
||||
Entry *e = get_entry(p_mem);
|
||||
ERR_FAIL_NULL_V(e, nullptr);
|
||||
return &pool[e->pos];
|
||||
}
|
||||
|
||||
mt_lock();
|
||||
Entry *e = get_entry(p_mem);
|
||||
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_NULL_V(e, nullptr);
|
||||
}
|
||||
if (e->lock == 0) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("e->lock == 0");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if ((int)e->pos >= pool_size) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("e->pos<0 || e->pos>=pool_size");
|
||||
return nullptr;
|
||||
}
|
||||
void *ptr = &pool[e->pos];
|
||||
|
||||
mt_unlock();
|
||||
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void PoolAllocator::unlock(ID p_mem) {
|
||||
if (!needs_locking) {
|
||||
return;
|
||||
}
|
||||
mt_lock();
|
||||
Entry *e = get_entry(p_mem);
|
||||
if (!e) {
|
||||
mt_unlock();
|
||||
ERR_FAIL_NULL(e);
|
||||
}
|
||||
if (e->lock == 0) {
|
||||
mt_unlock();
|
||||
ERR_PRINT("e->lock == 0");
|
||||
return;
|
||||
}
|
||||
e->lock--;
|
||||
mt_unlock();
|
||||
}
|
||||
|
||||
int PoolAllocator::get_used_mem() const {
|
||||
return pool_size - free_mem;
|
||||
}
|
||||
|
||||
int PoolAllocator::get_free_peak() {
|
||||
return free_mem_peak;
|
||||
}
|
||||
|
||||
int PoolAllocator::get_free_mem() {
|
||||
return free_mem;
|
||||
}
|
||||
|
||||
void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) {
|
||||
pool = (uint8_t *)p_mem;
|
||||
pool_size = p_size;
|
||||
|
||||
entry_array = memnew_arr(Entry, p_max_entries);
|
||||
entry_indices = memnew_arr(int, p_max_entries);
|
||||
entry_max = p_max_entries;
|
||||
entry_count = 0;
|
||||
|
||||
free_mem = p_size;
|
||||
free_mem_peak = p_size;
|
||||
|
||||
check_count = 0;
|
||||
}
|
||||
|
||||
PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) {
|
||||
mem_ptr = memalloc(p_size);
|
||||
ERR_FAIL_NULL(mem_ptr);
|
||||
align = 1;
|
||||
create_pool(mem_ptr, p_size, p_max_entries);
|
||||
needs_locking = p_needs_locking;
|
||||
}
|
||||
|
||||
PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) {
|
||||
if (p_align > 1) {
|
||||
uint8_t *mem8 = (uint8_t *)p_mem;
|
||||
uint64_t ofs = (uint64_t)mem8;
|
||||
if (ofs % p_align) {
|
||||
int dif = p_align - (ofs % p_align);
|
||||
mem8 += p_align - (ofs % p_align);
|
||||
p_size -= dif;
|
||||
p_mem = (void *)mem8;
|
||||
}
|
||||
}
|
||||
|
||||
create_pool(p_mem, p_size, p_max_entries);
|
||||
needs_locking = p_needs_locking;
|
||||
align = p_align;
|
||||
mem_ptr = nullptr;
|
||||
}
|
||||
|
||||
PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) {
|
||||
ERR_FAIL_COND(p_align < 1);
|
||||
mem_ptr = Memory::alloc_static(p_size + p_align, true);
|
||||
uint8_t *mem8 = (uint8_t *)mem_ptr;
|
||||
uint64_t ofs = (uint64_t)mem8;
|
||||
if (ofs % p_align) {
|
||||
mem8 += p_align - (ofs % p_align);
|
||||
}
|
||||
create_pool(mem8, p_size, p_max_entries);
|
||||
needs_locking = p_needs_locking;
|
||||
align = p_align;
|
||||
}
|
||||
|
||||
PoolAllocator::~PoolAllocator() {
|
||||
if (mem_ptr) {
|
||||
memfree(mem_ptr);
|
||||
}
|
||||
|
||||
memdelete_arr(entry_array);
|
||||
memdelete_arr(entry_indices);
|
||||
}
|
|
@ -1,148 +0,0 @@
|
|||
/**************************************************************************/
|
||||
/* pool_allocator.h */
|
||||
/**************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* https://godotengine.org */
|
||||
/**************************************************************************/
|
||||
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
||||
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/**************************************************************************/
|
||||
|
||||
#ifndef POOL_ALLOCATOR_H
|
||||
#define POOL_ALLOCATOR_H
|
||||
|
||||
#include "core/typedefs.h"
|
||||
|
||||
/**
|
||||
* Generic Pool Allocator.
|
||||
* This is a generic memory pool allocator, with locking, compacting and alignment. (@TODO alignment)
|
||||
* It used as a standard way to manage allocation in a specific region of memory, such as texture memory,
|
||||
* audio sample memory, or just any kind of memory overall.
|
||||
* (@TODO) abstraction should be greater, because in many platforms, you need to manage a nonreachable memory.
|
||||
*/
|
||||
|
||||
enum {
|
||||
POOL_ALLOCATOR_INVALID_ID = -1 ///< default invalid value. use INVALID_ID( id ) to test
|
||||
};
|
||||
|
||||
class PoolAllocator {
|
||||
public:
|
||||
typedef int ID;
|
||||
|
||||
private:
|
||||
enum {
|
||||
CHECK_BITS = 8,
|
||||
CHECK_LEN = (1 << CHECK_BITS),
|
||||
CHECK_MASK = CHECK_LEN - 1
|
||||
|
||||
};
|
||||
|
||||
struct Entry {
|
||||
unsigned int pos = 0;
|
||||
unsigned int len = 0;
|
||||
unsigned int lock = 0;
|
||||
unsigned int check = 0;
|
||||
|
||||
inline void clear() {
|
||||
pos = 0;
|
||||
len = 0;
|
||||
lock = 0;
|
||||
check = 0;
|
||||
}
|
||||
Entry() {}
|
||||
};
|
||||
|
||||
typedef int EntryArrayPos;
|
||||
typedef int EntryIndicesPos;
|
||||
|
||||
Entry *entry_array = nullptr;
|
||||
int *entry_indices = nullptr;
|
||||
int entry_max = 0;
|
||||
int entry_count = 0;
|
||||
|
||||
uint8_t *pool = nullptr;
|
||||
void *mem_ptr = nullptr;
|
||||
int pool_size = 0;
|
||||
|
||||
int free_mem = 0;
|
||||
int free_mem_peak = 0;
|
||||
|
||||
unsigned int check_count = 0;
|
||||
int align = 1;
|
||||
|
||||
bool needs_locking = false;
|
||||
|
||||
inline int entry_end(const Entry &p_entry) const {
|
||||
return p_entry.pos + aligned(p_entry.len);
|
||||
}
|
||||
inline int aligned(int p_size) const {
|
||||
int rem = p_size % align;
|
||||
if (rem) {
|
||||
p_size += align - rem;
|
||||
}
|
||||
|
||||
return p_size;
|
||||
}
|
||||
|
||||
void compact(int p_up_to = -1);
|
||||
void compact_up(int p_from = 0);
|
||||
bool get_free_entry(EntryArrayPos *p_pos);
|
||||
bool find_hole(EntryArrayPos *p_pos, int p_for_size);
|
||||
bool find_entry_index(EntryIndicesPos *p_map_pos, const Entry *p_entry);
|
||||
Entry *get_entry(ID p_mem);
|
||||
const Entry *get_entry(ID p_mem) const;
|
||||
|
||||
void create_pool(void *p_mem, int p_size, int p_max_entries);
|
||||
|
||||
protected:
|
||||
virtual void mt_lock() const; ///< Reimplement for custom mt locking
|
||||
virtual void mt_unlock() const; ///< Reimplement for custom mt locking
|
||||
|
||||
public:
|
||||
enum {
|
||||
DEFAULT_MAX_ALLOCS = 4096,
|
||||
};
|
||||
|
||||
ID alloc(int p_size); ///< Alloc memory, get an ID on success, POOL_ALOCATOR_INVALID_ID on failure
|
||||
void free(ID p_mem); ///< Free allocated memory
|
||||
Error resize(ID p_mem, int p_new_size); ///< resize a memory chunk
|
||||
int get_size(ID p_mem) const;
|
||||
|
||||
int get_free_mem(); ///< get free memory
|
||||
int get_used_mem() const;
|
||||
int get_free_peak(); ///< get free memory
|
||||
|
||||
Error lock(ID p_mem); //@todo move this out
|
||||
void *get(ID p_mem);
|
||||
const void *get(ID p_mem) const;
|
||||
void unlock(ID p_mem);
|
||||
bool is_locked(ID p_mem) const;
|
||||
|
||||
PoolAllocator(int p_size, bool p_needs_locking = false, int p_max_entries = DEFAULT_MAX_ALLOCS);
|
||||
PoolAllocator(void *p_mem, int p_size, int p_align = 1, bool p_needs_locking = false, int p_max_entries = DEFAULT_MAX_ALLOCS);
|
||||
PoolAllocator(int p_align, int p_size, bool p_needs_locking = false, int p_max_entries = DEFAULT_MAX_ALLOCS);
|
||||
|
||||
virtual ~PoolAllocator();
|
||||
};
|
||||
|
||||
#endif // POOL_ALLOCATOR_H
|
Loading…
Reference in New Issue