Style: Fix code formatting in GLES3 shaders
This commit is contained in:
parent
f123694b4e
commit
1b6d75a599
@ -1,6 +1,5 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
/*
|
||||
from VisualServer:
|
||||
|
||||
@ -23,56 +22,56 @@ ARRAY_INDEX=8,
|
||||
|
||||
/* INPUT ATTRIBS */
|
||||
|
||||
layout(location=0) in highp VFORMAT vertex_attrib;
|
||||
layout(location=1) in vec3 normal_attrib;
|
||||
layout(location = 0) in highp VFORMAT vertex_attrib;
|
||||
layout(location = 1) in vec3 normal_attrib;
|
||||
|
||||
#ifdef ENABLE_TANGENT
|
||||
layout(location=2) in vec4 tangent_attrib;
|
||||
layout(location = 2) in vec4 tangent_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_COLOR
|
||||
layout(location=3) in vec4 color_attrib;
|
||||
layout(location = 3) in vec4 color_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV
|
||||
layout(location=4) in vec2 uv_attrib;
|
||||
layout(location = 4) in vec2 uv_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV2
|
||||
layout(location=5) in vec2 uv2_attrib;
|
||||
layout(location = 5) in vec2 uv2_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
layout(location=6) in ivec4 bone_attrib;
|
||||
layout(location=7) in vec4 weight_attrib;
|
||||
layout(location = 6) in ivec4 bone_attrib;
|
||||
layout(location = 7) in vec4 weight_attrib;
|
||||
#endif
|
||||
|
||||
/* BLEND ATTRIBS */
|
||||
|
||||
#ifdef ENABLE_BLEND
|
||||
|
||||
layout(location=8) in highp VFORMAT vertex_attrib_blend;
|
||||
layout(location=9) in vec3 normal_attrib_blend;
|
||||
layout(location = 8) in highp VFORMAT vertex_attrib_blend;
|
||||
layout(location = 9) in vec3 normal_attrib_blend;
|
||||
|
||||
#ifdef ENABLE_TANGENT
|
||||
layout(location=10) in vec4 tangent_attrib_blend;
|
||||
layout(location = 10) in vec4 tangent_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_COLOR
|
||||
layout(location=11) in vec4 color_attrib_blend;
|
||||
layout(location = 11) in vec4 color_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV
|
||||
layout(location=12) in vec2 uv_attrib_blend;
|
||||
layout(location = 12) in vec2 uv_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV2
|
||||
layout(location=13) in vec2 uv2_attrib_blend;
|
||||
layout(location = 13) in vec2 uv2_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
layout(location=14) in ivec4 bone_attrib_blend;
|
||||
layout(location=15) in vec4 weight_attrib_blend;
|
||||
layout(location = 14) in ivec4 bone_attrib_blend;
|
||||
layout(location = 15) in vec4 weight_attrib_blend;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@ -110,7 +109,6 @@ uniform float blend_amount;
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
#ifdef ENABLE_BLEND
|
||||
|
||||
vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
|
||||
@ -140,7 +138,6 @@ void main() {
|
||||
uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
|
||||
bone_out = bone_attrib_blend;
|
||||
@ -149,7 +146,6 @@ void main() {
|
||||
|
||||
#else //ENABLE_BLEND
|
||||
|
||||
|
||||
vertex_out = vertex_attrib * blend_amount;
|
||||
|
||||
#ifdef ENABLE_NORMAL
|
||||
@ -177,7 +173,6 @@ void main() {
|
||||
uv2_out = uv2_attrib * blend_amount;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
|
||||
bone_out = bone_attrib;
|
||||
@ -190,8 +185,6 @@ void main() {
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec2 vertex;
|
||||
layout(location=3) in vec4 color_attrib;
|
||||
layout(location = 0) in highp vec2 vertex;
|
||||
layout(location = 3) in vec4 color_attrib;
|
||||
|
||||
#ifdef USE_SKELETON
|
||||
layout(location=6) in uvec4 bone_indices; // attrib:6
|
||||
layout(location=7) in vec4 bone_weights; // attrib:7
|
||||
layout(location = 6) in uvec4 bone_indices; // attrib:6
|
||||
layout(location = 7) in vec4 bone_weights; // attrib:7
|
||||
#endif
|
||||
|
||||
#ifdef USE_TEXTURE_RECT
|
||||
@ -18,25 +17,24 @@ uniform vec4 src_rect;
|
||||
|
||||
#ifdef USE_INSTANCING
|
||||
|
||||
layout(location=8) in highp vec4 instance_xform0;
|
||||
layout(location=9) in highp vec4 instance_xform1;
|
||||
layout(location=10) in highp vec4 instance_xform2;
|
||||
layout(location=11) in lowp vec4 instance_color;
|
||||
layout(location = 8) in highp vec4 instance_xform0;
|
||||
layout(location = 9) in highp vec4 instance_xform1;
|
||||
layout(location = 10) in highp vec4 instance_xform2;
|
||||
layout(location = 11) in lowp vec4 instance_color;
|
||||
|
||||
#ifdef USE_INSTANCE_CUSTOM
|
||||
layout(location=12) in highp vec4 instance_custom_data;
|
||||
layout(location = 12) in highp vec4 instance_custom_data;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
layout(location=4) in highp vec2 uv_attrib;
|
||||
layout(location = 4) in highp vec2 uv_attrib;
|
||||
|
||||
//skeletn
|
||||
// skeleton
|
||||
#endif
|
||||
|
||||
uniform highp vec2 color_texpixel_size;
|
||||
|
||||
|
||||
layout(std140) uniform CanvasItemData { //ubo:0
|
||||
|
||||
highp mat4 projection_matrix;
|
||||
@ -46,7 +44,6 @@ layout(std140) uniform CanvasItemData { //ubo:0
|
||||
uniform highp mat4 modelview_matrix;
|
||||
uniform highp mat4 extra_matrix;
|
||||
|
||||
|
||||
out highp vec2 uv_interp;
|
||||
out mediump vec4 color_interp;
|
||||
|
||||
@ -55,7 +52,6 @@ out mediump vec4 color_interp;
|
||||
out highp vec2 pixel_size_interp;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_SKELETON
|
||||
uniform mediump sampler2D skeleton_texture; // texunit:-1
|
||||
uniform highp mat4 skeleton_transform;
|
||||
@ -66,7 +62,7 @@ uniform highp mat4 skeleton_transform_inverse;
|
||||
|
||||
layout(std140) uniform LightData { //ubo:1
|
||||
|
||||
//light matrices
|
||||
// light matrices
|
||||
highp mat4 light_matrix;
|
||||
highp mat4 light_local_matrix;
|
||||
highp mat4 shadow_matrix;
|
||||
@ -80,11 +76,9 @@ layout(std140) uniform LightData { //ubo:1
|
||||
highp float shadow_distance_mult;
|
||||
};
|
||||
|
||||
|
||||
out vec4 light_uv_interp;
|
||||
out vec2 transformed_light_uv;
|
||||
|
||||
|
||||
out vec4 local_rot;
|
||||
|
||||
#ifdef USE_SHADOWS
|
||||
@ -101,7 +95,6 @@ uniform int h_frames;
|
||||
uniform int v_frames;
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(USE_MATERIAL)
|
||||
|
||||
layout(std140) uniform UniformData { //ubo:2
|
||||
@ -112,7 +105,6 @@ MATERIAL_UNIFORMS
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
VERTEX_SHADER_GLOBALS
|
||||
|
||||
void main() {
|
||||
@ -120,8 +112,8 @@ void main() {
|
||||
vec4 color = color_attrib;
|
||||
|
||||
#ifdef USE_INSTANCING
|
||||
mat4 extra_matrix2 = extra_matrix * transpose(mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0)));
|
||||
color*=instance_color;
|
||||
mat4 extra_matrix2 = extra_matrix * transpose(mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)));
|
||||
color *= instance_color;
|
||||
vec4 instance_custom = instance_custom_data;
|
||||
|
||||
#else
|
||||
@ -136,29 +128,27 @@ void main() {
|
||||
} else {
|
||||
uv_interp = src_rect.xy + abs(src_rect.zw) * vertex;
|
||||
}
|
||||
highp vec4 outvec = vec4(dst_rect.xy + abs(dst_rect.zw) * mix(vertex,vec2(1.0,1.0)-vertex,lessThan(src_rect.zw,vec2(0.0,0.0))),0.0,1.0);
|
||||
highp vec4 outvec = vec4(dst_rect.xy + abs(dst_rect.zw) * mix(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0))), 0.0, 1.0);
|
||||
|
||||
#else
|
||||
uv_interp = uv_attrib;
|
||||
highp vec4 outvec = vec4(vertex,0.0,1.0);
|
||||
highp vec4 outvec = vec4(vertex, 0.0, 1.0);
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_PARTICLES
|
||||
//scale by texture size
|
||||
outvec.xy/=color_texpixel_size;
|
||||
outvec.xy /= color_texpixel_size;
|
||||
|
||||
//compute h and v frames and adjust UV interp for animation
|
||||
int total_frames = h_frames * v_frames;
|
||||
int frame = min(int(float(total_frames) *instance_custom.z),total_frames-1);
|
||||
float frame_w = 1.0/float(h_frames);
|
||||
float frame_h = 1.0/float(v_frames);
|
||||
int frame = min(int(float(total_frames) * instance_custom.z), total_frames - 1);
|
||||
float frame_w = 1.0 / float(h_frames);
|
||||
float frame_h = 1.0 / float(v_frames);
|
||||
uv_interp.x = uv_interp.x * frame_w + frame_w * float(frame % h_frames);
|
||||
uv_interp.y = uv_interp.y * frame_h + frame_h * float(frame / h_frames);
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#define extra_matrix extra_matrix2
|
||||
|
||||
{
|
||||
@ -167,10 +157,9 @@ VERTEX_SHADER_CODE
|
||||
|
||||
}
|
||||
|
||||
|
||||
#ifdef USE_NINEPATCH
|
||||
|
||||
pixel_size_interp=abs(dst_rect.zw) * vertex;
|
||||
pixel_size_interp = abs(dst_rect.zw) * vertex;
|
||||
#endif
|
||||
|
||||
#if !defined(SKIP_TRANSFORM_USED)
|
||||
@ -184,47 +173,46 @@ VERTEX_SHADER_CODE
|
||||
|
||||
#ifdef USE_PIXEL_SNAP
|
||||
|
||||
outvec.xy=floor(outvec+0.5).xy;
|
||||
outvec.xy = floor(outvec + 0.5).xy;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_SKELETON
|
||||
|
||||
if (bone_weights!=vec4(0.0)){ //must be a valid bone
|
||||
if (bone_weights != vec4(0.0)) { //must be a valid bone
|
||||
//skeleton transform
|
||||
|
||||
ivec4 bone_indicesi = ivec4(bone_indices);
|
||||
|
||||
ivec2 tex_ofs = ivec2( bone_indicesi.x%256, (bone_indicesi.x/256)*2 );
|
||||
ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 2);
|
||||
|
||||
highp mat2x4 m = mat2x4(
|
||||
texelFetch(skeleton_texture,tex_ofs,0),
|
||||
texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
|
||||
) * bone_weights.x;
|
||||
highp mat2x4 m;
|
||||
m = mat2x4(
|
||||
texelFetch(skeleton_texture, tex_ofs, 0),
|
||||
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
|
||||
* bone_weights.x;
|
||||
|
||||
tex_ofs = ivec2( bone_indicesi.y%256, (bone_indicesi.y/256)*2 );
|
||||
tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 2);
|
||||
|
||||
m+= mat2x4(
|
||||
texelFetch(skeleton_texture,tex_ofs,0),
|
||||
texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
|
||||
) * bone_weights.y;
|
||||
m += mat2x4(
|
||||
texelFetch(skeleton_texture, tex_ofs, 0),
|
||||
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
|
||||
* bone_weights.y;
|
||||
|
||||
tex_ofs = ivec2( bone_indicesi.z%256, (bone_indicesi.z/256)*2 );
|
||||
tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 2);
|
||||
|
||||
m+= mat2x4(
|
||||
texelFetch(skeleton_texture,tex_ofs,0),
|
||||
texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
|
||||
) * bone_weights.z;
|
||||
m += mat2x4(
|
||||
texelFetch(skeleton_texture, tex_ofs, 0),
|
||||
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
|
||||
* bone_weights.z;
|
||||
|
||||
tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 2);
|
||||
|
||||
tex_ofs = ivec2( bone_indicesi.w%256, (bone_indicesi.w/256)*2 );
|
||||
m += mat2x4(
|
||||
texelFetch(skeleton_texture, tex_ofs, 0),
|
||||
texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0))
|
||||
* bone_weights.w;
|
||||
|
||||
m+= mat2x4(
|
||||
texelFetch(skeleton_texture,tex_ofs,0),
|
||||
texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0)
|
||||
) * bone_weights.w;
|
||||
|
||||
mat4 bone_matrix = skeleton_transform * transpose(mat4(m[0],m[1],vec4(0.0,0.0,1.0,0.0),vec4(0.0,0.0,0.0,1.0))) * skeleton_transform_inverse;
|
||||
mat4 bone_matrix = skeleton_transform * transpose(mat4(m[0], m[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))) * skeleton_transform_inverse;
|
||||
|
||||
outvec = bone_matrix * outvec;
|
||||
}
|
||||
@ -236,45 +224,37 @@ VERTEX_SHADER_CODE
|
||||
#ifdef USE_LIGHTING
|
||||
|
||||
light_uv_interp.xy = (light_matrix * outvec).xy;
|
||||
light_uv_interp.zw =(light_local_matrix * outvec).xy;
|
||||
light_uv_interp.zw = (light_local_matrix * outvec).xy;
|
||||
|
||||
mat3 inverse_light_matrix = mat3(inverse(light_matrix));
|
||||
inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
|
||||
inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
|
||||
inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
|
||||
transformed_light_uv = (inverse_light_matrix * vec3(light_uv_interp.zw,0.0)).xy; //for normal mapping
|
||||
transformed_light_uv = (inverse_light_matrix * vec3(light_uv_interp.zw, 0.0)).xy; //for normal mapping
|
||||
|
||||
#ifdef USE_SHADOWS
|
||||
pos=outvec.xy;
|
||||
pos = outvec.xy;
|
||||
#endif
|
||||
|
||||
|
||||
local_rot.xy=normalize( (modelview_matrix * ( extra_matrix * vec4(1.0,0.0,0.0,0.0) )).xy );
|
||||
local_rot.zw=normalize( (modelview_matrix * ( extra_matrix * vec4(0.0,1.0,0.0,0.0) )).xy );
|
||||
local_rot.xy = normalize((modelview_matrix * (extra_matrix * vec4(1.0, 0.0, 0.0, 0.0))).xy);
|
||||
local_rot.zw = normalize((modelview_matrix * (extra_matrix * vec4(0.0, 1.0, 0.0, 0.0))).xy);
|
||||
#ifdef USE_TEXTURE_RECT
|
||||
local_rot.xy*=sign(src_rect.z);
|
||||
local_rot.zw*=sign(src_rect.w);
|
||||
local_rot.xy *= sign(src_rect.z);
|
||||
local_rot.zw *= sign(src_rect.w);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
|
||||
uniform mediump sampler2D color_texture; // texunit:0
|
||||
uniform highp vec2 color_texpixel_size;
|
||||
uniform mediump sampler2D normal_texture; // texunit:1
|
||||
|
||||
|
||||
in highp vec2 uv_interp;
|
||||
in mediump vec4 color_interp;
|
||||
|
||||
|
||||
#if defined(SCREEN_TEXTURE_USED)
|
||||
|
||||
uniform sampler2D screen_texture; // texunit:-3
|
||||
@ -292,7 +272,6 @@ layout(std140) uniform CanvasItemData {
|
||||
highp float time;
|
||||
};
|
||||
|
||||
|
||||
#ifdef USE_LIGHTING
|
||||
|
||||
layout(std140) uniform LightData {
|
||||
@ -314,10 +293,8 @@ uniform lowp sampler2D light_texture; // texunit:-1
|
||||
in vec4 light_uv_interp;
|
||||
in vec2 transformed_light_uv;
|
||||
|
||||
|
||||
in vec4 local_rot;
|
||||
|
||||
|
||||
#ifdef USE_SHADOWS
|
||||
|
||||
uniform highp sampler2D shadow_texture; // texunit:-2
|
||||
@ -332,11 +309,7 @@ const bool at_light_pass = false;
|
||||
|
||||
uniform mediump vec4 final_modulate;
|
||||
|
||||
|
||||
|
||||
|
||||
layout(location=0) out mediump vec4 frag_color;
|
||||
|
||||
layout(location = 0) out mediump vec4 frag_color;
|
||||
|
||||
#if defined(USE_MATERIAL)
|
||||
|
||||
@ -351,25 +324,24 @@ MATERIAL_UNIFORMS
|
||||
FRAGMENT_SHADER_GLOBALS
|
||||
|
||||
void light_compute(
|
||||
inout vec4 light,
|
||||
inout vec2 light_vec,
|
||||
inout float light_height,
|
||||
inout vec4 light_color,
|
||||
vec2 light_uv,
|
||||
inout vec4 shadow_color,
|
||||
vec3 normal,
|
||||
vec2 uv,
|
||||
inout vec4 light,
|
||||
inout vec2 light_vec,
|
||||
inout float light_height,
|
||||
inout vec4 light_color,
|
||||
vec2 light_uv,
|
||||
inout vec4 shadow_color,
|
||||
vec3 normal,
|
||||
vec2 uv,
|
||||
#if defined(SCREEN_UV_USED)
|
||||
vec2 screen_uv,
|
||||
vec2 screen_uv,
|
||||
#endif
|
||||
vec4 color) {
|
||||
vec4 color) {
|
||||
|
||||
#if defined(USE_LIGHT_SHADER_CODE)
|
||||
|
||||
LIGHT_SHADER_CODE
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#ifdef USE_TEXTURE_RECT
|
||||
@ -385,48 +357,44 @@ in highp vec2 pixel_size_interp;
|
||||
uniform int np_repeat_v;
|
||||
uniform int np_repeat_h;
|
||||
uniform bool np_draw_center;
|
||||
//left top right bottom in pixel coordinates
|
||||
// left top right bottom in pixel coordinates
|
||||
uniform vec4 np_margins;
|
||||
|
||||
float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
|
||||
|
||||
|
||||
float map_ninepatch_axis(float pixel, float draw_size,float tex_pixel_size,float margin_begin,float margin_end,int np_repeat,inout int draw_center) {
|
||||
|
||||
|
||||
float tex_size = 1.0/tex_pixel_size;
|
||||
float tex_size = 1.0 / tex_pixel_size;
|
||||
|
||||
if (pixel < margin_begin) {
|
||||
return pixel * tex_pixel_size;
|
||||
} else if (pixel >= draw_size-margin_end) {
|
||||
return (tex_size-(draw_size-pixel)) * tex_pixel_size;
|
||||
} else if (pixel >= draw_size - margin_end) {
|
||||
return (tex_size - (draw_size - pixel)) * tex_pixel_size;
|
||||
} else {
|
||||
if (!np_draw_center){
|
||||
if (!np_draw_center) {
|
||||
draw_center--;
|
||||
}
|
||||
|
||||
if (np_repeat==0) { //stretch
|
||||
if (np_repeat == 0) { //stretch
|
||||
//convert to ratio
|
||||
float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
|
||||
//scale to source texture
|
||||
return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
|
||||
} else if (np_repeat==1) { //tile
|
||||
} else if (np_repeat == 1) { //tile
|
||||
//convert to ratio
|
||||
float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
|
||||
//scale to source texture
|
||||
return (margin_begin + ofs) * tex_pixel_size;
|
||||
} else if (np_repeat==2) { //tile fit
|
||||
} else if (np_repeat == 2) { //tile fit
|
||||
//convert to ratio
|
||||
float src_area = draw_size - margin_begin - margin_end;
|
||||
float dst_area = tex_size - margin_begin - margin_end;
|
||||
float scale = max(1.0,floor(src_area / max(dst_area,0.0000001) + 0.5));
|
||||
float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
|
||||
|
||||
//convert to ratio
|
||||
float ratio = (pixel - margin_begin) / src_area;
|
||||
ratio = mod(ratio * scale,1.0);
|
||||
ratio = mod(ratio * scale, 1.0);
|
||||
return (margin_begin + ratio * dst_area) * tex_pixel_size;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -443,42 +411,39 @@ void main() {
|
||||
|
||||
#ifdef USE_NINEPATCH
|
||||
|
||||
int draw_center=2;
|
||||
int draw_center = 2;
|
||||
uv = vec2(
|
||||
map_ninepatch_axis(pixel_size_interp.x,abs(dst_rect.z),color_texpixel_size.x,np_margins.x,np_margins.z,np_repeat_h,draw_center),
|
||||
map_ninepatch_axis(pixel_size_interp.y,abs(dst_rect.w),color_texpixel_size.y,np_margins.y,np_margins.w,np_repeat_v,draw_center)
|
||||
);
|
||||
map_ninepatch_axis(pixel_size_interp.x, abs(dst_rect.z), color_texpixel_size.x, np_margins.x, np_margins.z, np_repeat_h, draw_center),
|
||||
map_ninepatch_axis(pixel_size_interp.y, abs(dst_rect.w), color_texpixel_size.y, np_margins.y, np_margins.w, np_repeat_v, draw_center));
|
||||
|
||||
if (draw_center==0) {
|
||||
color.a=0.0;
|
||||
if (draw_center == 0) {
|
||||
color.a = 0.0;
|
||||
}
|
||||
|
||||
uv = uv*src_rect.zw+src_rect.xy; //apply region if needed
|
||||
uv = uv * src_rect.zw + src_rect.xy; //apply region if needed
|
||||
#endif
|
||||
|
||||
if (clip_rect_uv) {
|
||||
|
||||
uv = clamp(uv,src_rect.xy,src_rect.xy+abs(src_rect.zw));
|
||||
uv = clamp(uv, src_rect.xy, src_rect.xy + abs(src_rect.zw));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(COLOR_USED)
|
||||
//default behavior, texture by color
|
||||
//default behavior, texture by color
|
||||
|
||||
#ifdef USE_DISTANCE_FIELD
|
||||
const float smoothing = 1.0/32.0;
|
||||
float distance = textureLod(color_texture, uv,0.0).a;
|
||||
const float smoothing = 1.0 / 32.0;
|
||||
float distance = textureLod(color_texture, uv, 0.0).a;
|
||||
color.a = smoothstep(0.5 - smoothing, 0.5 + smoothing, distance) * color.a;
|
||||
#else
|
||||
color *= texture( color_texture, uv );
|
||||
color *= texture(color_texture, uv);
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
vec3 normal;
|
||||
|
||||
#if defined(NORMAL_USED)
|
||||
@ -489,59 +454,52 @@ void main() {
|
||||
#endif
|
||||
|
||||
if (use_default_normal) {
|
||||
normal.xy = textureLod(normal_texture, uv,0.0).xy * 2.0 - 1.0;
|
||||
normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
|
||||
normal_used=true;
|
||||
normal.xy = textureLod(normal_texture, uv, 0.0).xy * 2.0 - 1.0;
|
||||
normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
|
||||
normal_used = true;
|
||||
} else {
|
||||
normal = vec3(0.0,0.0,1.0);
|
||||
normal = vec3(0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if defined(SCREEN_UV_USED)
|
||||
vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
|
||||
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
|
||||
#endif
|
||||
|
||||
|
||||
{
|
||||
float normal_depth=1.0;
|
||||
{
|
||||
float normal_depth = 1.0;
|
||||
|
||||
#if defined(NORMALMAP_USED)
|
||||
vec3 normal_map=vec3(0.0,0.0,1.0);
|
||||
vec3 normal_map = vec3(0.0, 0.0, 1.0);
|
||||
#endif
|
||||
|
||||
FRAGMENT_SHADER_CODE
|
||||
|
||||
#if defined(NORMALMAP_USED)
|
||||
normal = mix(vec3(0.0,0.0,1.0), normal_map * vec3(2.0,-2.0,1.0) - vec3( 1.0, -1.0, 0.0 ), normal_depth );
|
||||
normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_ENCODED_32
|
||||
highp float enc32 = dot( color,highp vec4(1.0 / (256.0 * 256.0 * 256.0),1.0 / (256.0 * 256.0),1.0 / 256.0,1) );
|
||||
color = vec4(vec3(enc32),1.0);
|
||||
highp float enc32 = dot(color, highp vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1));
|
||||
color = vec4(vec3(enc32), 1.0);
|
||||
#endif
|
||||
|
||||
|
||||
color*=final_modulate;
|
||||
|
||||
|
||||
color *= final_modulate;
|
||||
|
||||
#ifdef USE_LIGHTING
|
||||
|
||||
vec2 light_vec = transformed_light_uv;
|
||||
|
||||
if (normal_used) {
|
||||
normal.xy = mat2(local_rot.xy,local_rot.zw) * normal.xy;
|
||||
normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy;
|
||||
}
|
||||
|
||||
float att=1.0;
|
||||
float att = 1.0;
|
||||
|
||||
vec2 light_uv = light_uv_interp.xy;
|
||||
vec4 light = texture(light_texture,light_uv);
|
||||
vec4 light = texture(light_texture, light_uv);
|
||||
|
||||
if (any(lessThan(light_uv_interp.xy,vec2(0.0,0.0))) || any(greaterThanEqual(light_uv_interp.xy,vec2(1.0,1.0)))) {
|
||||
color.a*=light_outside_alpha; //invisible
|
||||
if (any(lessThan(light_uv_interp.xy, vec2(0.0, 0.0))) || any(greaterThanEqual(light_uv_interp.xy, vec2(1.0, 1.0)))) {
|
||||
color.a *= light_outside_alpha; //invisible
|
||||
|
||||
} else {
|
||||
float real_light_height = light_height;
|
||||
@ -549,178 +507,176 @@ FRAGMENT_SHADER_CODE
|
||||
vec4 real_light_shadow_color = light_shadow_color;
|
||||
|
||||
#if defined(USE_LIGHT_SHADER_CODE)
|
||||
//light is written by the light shader
|
||||
//light is written by the light shader
|
||||
light_compute(
|
||||
light,
|
||||
light_vec,
|
||||
real_light_height,
|
||||
real_light_color,
|
||||
light_uv,
|
||||
real_light_shadow_color,
|
||||
normal,
|
||||
uv,
|
||||
light,
|
||||
light_vec,
|
||||
real_light_height,
|
||||
real_light_color,
|
||||
light_uv,
|
||||
real_light_shadow_color,
|
||||
normal,
|
||||
uv,
|
||||
#if defined(SCREEN_UV_USED)
|
||||
screen_uv,
|
||||
screen_uv,
|
||||
#endif
|
||||
color);
|
||||
color);
|
||||
#endif
|
||||
|
||||
light *= real_light_color;
|
||||
|
||||
if (normal_used) {
|
||||
vec3 light_normal = normalize(vec3(light_vec,-real_light_height));
|
||||
light*=max(dot(-light_normal,normal),0.0);
|
||||
vec3 light_normal = normalize(vec3(light_vec, -real_light_height));
|
||||
light *= max(dot(-light_normal, normal), 0.0);
|
||||
}
|
||||
|
||||
color*=light;
|
||||
color *= light;
|
||||
|
||||
#ifdef USE_SHADOWS
|
||||
light_vec = light_uv_interp.zw; //for shadows
|
||||
float angle_to_light = -atan(light_vec.x,light_vec.y);
|
||||
float angle_to_light = -atan(light_vec.x, light_vec.y);
|
||||
float PI = 3.14159265358979323846264;
|
||||
/*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays
|
||||
float ang*/
|
||||
|
||||
float su,sz;
|
||||
float su, sz;
|
||||
|
||||
float abs_angle = abs(angle_to_light);
|
||||
vec2 point;
|
||||
float sh;
|
||||
if (abs_angle<45.0*PI/180.0) {
|
||||
if (abs_angle < 45.0 * PI / 180.0) {
|
||||
point = light_vec;
|
||||
sh=0.0+(1.0/8.0);
|
||||
} else if (abs_angle>135.0*PI/180.0) {
|
||||
sh = 0.0 + (1.0 / 8.0);
|
||||
} else if (abs_angle > 135.0 * PI / 180.0) {
|
||||
point = -light_vec;
|
||||
sh = 0.5+(1.0/8.0);
|
||||
} else if (angle_to_light>0.0) {
|
||||
sh = 0.5 + (1.0 / 8.0);
|
||||
} else if (angle_to_light > 0.0) {
|
||||
|
||||
point = vec2(light_vec.y,-light_vec.x);
|
||||
sh = 0.25+(1.0/8.0);
|
||||
point = vec2(light_vec.y, -light_vec.x);
|
||||
sh = 0.25 + (1.0 / 8.0);
|
||||
} else {
|
||||
|
||||
point = vec2(-light_vec.y,light_vec.x);
|
||||
sh = 0.75+(1.0/8.0);
|
||||
|
||||
point = vec2(-light_vec.y, light_vec.x);
|
||||
sh = 0.75 + (1.0 / 8.0);
|
||||
}
|
||||
|
||||
|
||||
highp vec4 s = shadow_matrix * vec4(point,0.0,1.0);
|
||||
s.xyz/=s.w;
|
||||
su=s.x*0.5+0.5;
|
||||
sz=s.z*0.5+0.5;
|
||||
highp vec4 s = shadow_matrix * vec4(point, 0.0, 1.0);
|
||||
s.xyz /= s.w;
|
||||
su = s.x * 0.5 + 0.5;
|
||||
sz = s.z * 0.5 + 0.5;
|
||||
//sz=lightlength(light_vec);
|
||||
|
||||
highp float shadow_attenuation=0.0;
|
||||
highp float shadow_attenuation = 0.0;
|
||||
|
||||
#ifdef USE_RGBA_SHADOWS
|
||||
|
||||
#define SHADOW_DEPTH(m_tex,m_uv) dot(texture((m_tex),(m_uv)),vec4(1.0 / (256.0 * 256.0 * 256.0),1.0 / (256.0 * 256.0),1.0 / 256.0,1) )
|
||||
#define SHADOW_DEPTH(m_tex, m_uv) dot(texture((m_tex), (m_uv)), vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1))
|
||||
|
||||
#else
|
||||
|
||||
#define SHADOW_DEPTH(m_tex,m_uv) (texture((m_tex),(m_uv)).r)
|
||||
#define SHADOW_DEPTH(m_tex, m_uv) (texture((m_tex), (m_uv)).r)
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef SHADOW_USE_GRADIENT
|
||||
|
||||
#define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture,vec2(m_ofs,sh)); shadow_attenuation+=1.0-smoothstep(sd,sd+shadow_gradient,sz); }
|
||||
#define SHADOW_TEST(m_ofs) \
|
||||
{ \
|
||||
highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \
|
||||
shadow_attenuation += 1.0 - smoothstep(sd, sd + shadow_gradient, sz); \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture,vec2(m_ofs,sh)); shadow_attenuation+=step(sz,sd); }
|
||||
#define SHADOW_TEST(m_ofs) \
|
||||
{ \
|
||||
highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \
|
||||
shadow_attenuation += step(sz, sd); \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SHADOW_FILTER_NEAREST
|
||||
|
||||
SHADOW_TEST(su);
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SHADOW_FILTER_PCF3
|
||||
|
||||
SHADOW_TEST(su+shadowpixel_size);
|
||||
SHADOW_TEST(su + shadowpixel_size);
|
||||
SHADOW_TEST(su);
|
||||
SHADOW_TEST(su-shadowpixel_size);
|
||||
shadow_attenuation/=3.0;
|
||||
SHADOW_TEST(su - shadowpixel_size);
|
||||
shadow_attenuation /= 3.0;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SHADOW_FILTER_PCF5
|
||||
|
||||
SHADOW_TEST(su+shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su+shadowpixel_size);
|
||||
SHADOW_TEST(su + shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su + shadowpixel_size);
|
||||
SHADOW_TEST(su);
|
||||
SHADOW_TEST(su-shadowpixel_size);
|
||||
SHADOW_TEST(su-shadowpixel_size*2.0);
|
||||
shadow_attenuation/=5.0;
|
||||
SHADOW_TEST(su - shadowpixel_size);
|
||||
SHADOW_TEST(su - shadowpixel_size * 2.0);
|
||||
shadow_attenuation /= 5.0;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SHADOW_FILTER_PCF7
|
||||
|
||||
SHADOW_TEST(su+shadowpixel_size*3.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su+shadowpixel_size);
|
||||
SHADOW_TEST(su + shadowpixel_size * 3.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su + shadowpixel_size);
|
||||
SHADOW_TEST(su);
|
||||
SHADOW_TEST(su-shadowpixel_size);
|
||||
SHADOW_TEST(su-shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*3.0);
|
||||
shadow_attenuation/=7.0;
|
||||
SHADOW_TEST(su - shadowpixel_size);
|
||||
SHADOW_TEST(su - shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 3.0);
|
||||
shadow_attenuation /= 7.0;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SHADOW_FILTER_PCF9
|
||||
|
||||
SHADOW_TEST(su+shadowpixel_size*4.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*3.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su+shadowpixel_size);
|
||||
SHADOW_TEST(su + shadowpixel_size * 4.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 3.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su + shadowpixel_size);
|
||||
SHADOW_TEST(su);
|
||||
SHADOW_TEST(su-shadowpixel_size);
|
||||
SHADOW_TEST(su-shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*3.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*4.0);
|
||||
shadow_attenuation/=9.0;
|
||||
SHADOW_TEST(su - shadowpixel_size);
|
||||
SHADOW_TEST(su - shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 3.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 4.0);
|
||||
shadow_attenuation /= 9.0;
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef SHADOW_FILTER_PCF13
|
||||
|
||||
SHADOW_TEST(su+shadowpixel_size*6.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*5.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*4.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*3.0);
|
||||
SHADOW_TEST(su+shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su+shadowpixel_size);
|
||||
SHADOW_TEST(su + shadowpixel_size * 6.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 5.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 4.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 3.0);
|
||||
SHADOW_TEST(su + shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su + shadowpixel_size);
|
||||
SHADOW_TEST(su);
|
||||
SHADOW_TEST(su-shadowpixel_size);
|
||||
SHADOW_TEST(su-shadowpixel_size*2.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*3.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*4.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*5.0);
|
||||
SHADOW_TEST(su-shadowpixel_size*6.0);
|
||||
shadow_attenuation/=13.0;
|
||||
SHADOW_TEST(su - shadowpixel_size);
|
||||
SHADOW_TEST(su - shadowpixel_size * 2.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 3.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 4.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 5.0);
|
||||
SHADOW_TEST(su - shadowpixel_size * 6.0);
|
||||
shadow_attenuation /= 13.0;
|
||||
|
||||
#endif
|
||||
|
||||
//color*=shadow_attenuation;
|
||||
color=mix(real_light_shadow_color,color,shadow_attenuation);
|
||||
//color *= shadow_attenuation;
|
||||
color = mix(real_light_shadow_color, color, shadow_attenuation);
|
||||
//use shadows
|
||||
#endif
|
||||
}
|
||||
|
||||
//use lighting
|
||||
#endif
|
||||
//color.rgb*=color.a;
|
||||
//color.rgb *= color.a;
|
||||
frag_color = color;
|
||||
|
||||
}
|
||||
|
@ -1,20 +1,18 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
|
||||
uniform highp mat4 projection_matrix;
|
||||
uniform highp mat4 light_matrix;
|
||||
uniform highp mat4 world_matrix;
|
||||
uniform highp float distance_norm;
|
||||
|
||||
layout(location=0) in highp vec3 vertex;
|
||||
layout(location = 0) in highp vec3 vertex;
|
||||
|
||||
out highp vec4 position_interp;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex,1.0)));
|
||||
position_interp=gl_Position;
|
||||
gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex, 1.0)));
|
||||
position_interp = gl_Position;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -22,28 +20,22 @@ void main() {
|
||||
in highp vec4 position_interp;
|
||||
|
||||
#ifdef USE_RGBA_SHADOWS
|
||||
|
||||
layout(location=0) out lowp vec4 distance_buf;
|
||||
|
||||
layout(location = 0) out lowp vec4 distance_buf;
|
||||
#else
|
||||
|
||||
layout(location=0) out highp float distance_buf;
|
||||
|
||||
layout(location = 0) out highp float distance_buf;
|
||||
#endif
|
||||
|
||||
void main() {
|
||||
|
||||
highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0;//bias;
|
||||
highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
|
||||
|
||||
#ifdef USE_RGBA_SHADOWS
|
||||
|
||||
highp vec4 comp = fract(depth * vec4(256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0));
|
||||
comp -= comp.xxyz * vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
|
||||
distance_buf=comp;
|
||||
distance_buf = comp;
|
||||
#else
|
||||
|
||||
distance_buf=depth;
|
||||
|
||||
distance_buf = depth;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -1,13 +1,12 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
|
||||
layout(location=4) in vec3 cube_in;
|
||||
layout(location = 4) in vec3 cube_in;
|
||||
#else
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
#endif
|
||||
layout(location=5) in vec2 uv2_in;
|
||||
layout(location = 5) in vec2 uv2_in;
|
||||
|
||||
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
|
||||
out vec3 cube_interp;
|
||||
@ -32,7 +31,7 @@ void main() {
|
||||
#else
|
||||
uv_interp = uv_in;
|
||||
#ifdef V_FLIP
|
||||
uv_interp.y = 1.0-uv_interp.y;
|
||||
uv_interp.y = 1.0 - uv_interp.y;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@ -44,7 +43,6 @@ void main() {
|
||||
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
|
||||
gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -72,38 +70,33 @@ uniform samplerCube source_cube; //texunit:0
|
||||
uniform sampler2D source; //texunit:0
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_MULTIPLIER
|
||||
uniform float multiplier;
|
||||
#endif
|
||||
|
||||
#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
|
||||
|
||||
vec4 texturePanorama(vec3 normal,sampler2D pano ) {
|
||||
vec4 texturePanorama(vec3 normal, sampler2D pano) {
|
||||
|
||||
vec2 st = vec2(
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y)
|
||||
);
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y));
|
||||
|
||||
if(st.x < 0.0)
|
||||
st.x += M_PI*2.0;
|
||||
if (st.x < 0.0)
|
||||
st.x += M_PI * 2.0;
|
||||
|
||||
st/=vec2(M_PI*2.0,M_PI);
|
||||
|
||||
return textureLod(pano,st,0.0);
|
||||
st /= vec2(M_PI * 2.0, M_PI);
|
||||
|
||||
return textureLod(pano, st, 0.0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
uniform float stuff;
|
||||
uniform vec2 pixel_size;
|
||||
|
||||
in vec2 uv2_interp;
|
||||
|
||||
|
||||
#ifdef USE_BCS
|
||||
|
||||
uniform vec3 bcs;
|
||||
@ -118,20 +111,17 @@ uniform sampler2D color_correction; //texunit:1
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
//vec4 color = color_interp;
|
||||
|
||||
#ifdef USE_PANORAMA
|
||||
|
||||
vec4 color = texturePanorama( normalize(cube_interp), source );
|
||||
vec4 color = texturePanorama(normalize(cube_interp), source);
|
||||
|
||||
#elif defined(USE_ASYM_PANO)
|
||||
|
||||
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
|
||||
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
|
||||
// Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
|
||||
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
|
||||
|
||||
@ -142,72 +132,68 @@ void main() {
|
||||
cube_normal = mat3(pano_transform) * cube_normal;
|
||||
cube_normal.z = -cube_normal.z;
|
||||
|
||||
vec4 color = texturePanorama( normalize(cube_normal.xyz), source );
|
||||
vec4 color = texturePanorama(normalize(cube_normal.xyz), source);
|
||||
|
||||
#elif defined(USE_CUBEMAP)
|
||||
vec4 color = texture( source_cube, normalize(cube_interp) );
|
||||
vec4 color = texture(source_cube, normalize(cube_interp));
|
||||
|
||||
#else
|
||||
vec4 color = textureLod( source, uv_interp,0.0 );
|
||||
vec4 color = textureLod(source, uv_interp, 0.0);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef LINEAR_TO_SRGB
|
||||
//regular Linear -> SRGB conversion
|
||||
vec3 a = vec3(0.055);
|
||||
color.rgb = mix( (vec3(1.0)+a)*pow(color.rgb,vec3(1.0/2.4))-a , 12.92*color.rgb , lessThan(color.rgb,vec3(0.0031308)));
|
||||
color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
|
||||
#endif
|
||||
|
||||
#ifdef SRGB_TO_LINEAR
|
||||
|
||||
color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)),vec3(2.4)),color.rgb * (1.0 / 12.92),lessThan(color.rgb,vec3(0.04045)));
|
||||
color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG_GRADIENT
|
||||
color.rg=uv_interp;
|
||||
color.b=0.0;
|
||||
color.rg = uv_interp;
|
||||
color.b = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef DISABLE_ALPHA
|
||||
color.a=1.0;
|
||||
color.a = 1.0;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef GAUSSIAN_HORIZONTAL
|
||||
color*=0.38774;
|
||||
color+=texture( source, uv_interp+vec2( 1.0, 0.0)*pixel_size )*0.24477;
|
||||
color+=texture( source, uv_interp+vec2( 2.0, 0.0)*pixel_size )*0.06136;
|
||||
color+=texture( source, uv_interp+vec2(-1.0, 0.0)*pixel_size )*0.24477;
|
||||
color+=texture( source, uv_interp+vec2(-2.0, 0.0)*pixel_size )*0.06136;
|
||||
color *= 0.38774;
|
||||
color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
|
||||
color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
|
||||
color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
|
||||
color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
|
||||
#endif
|
||||
|
||||
#ifdef GAUSSIAN_VERTICAL
|
||||
color*=0.38774;
|
||||
color+=texture( source, uv_interp+vec2( 0.0, 1.0)*pixel_size )*0.24477;
|
||||
color+=texture( source, uv_interp+vec2( 0.0, 2.0)*pixel_size )*0.06136;
|
||||
color+=texture( source, uv_interp+vec2( 0.0,-1.0)*pixel_size )*0.24477;
|
||||
color+=texture( source, uv_interp+vec2( 0.0,-2.0)*pixel_size )*0.06136;
|
||||
color *= 0.38774;
|
||||
color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
|
||||
color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
|
||||
color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
|
||||
color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
|
||||
#endif
|
||||
|
||||
#ifdef USE_BCS
|
||||
|
||||
color.rgb = mix(vec3(0.0),color.rgb,bcs.x);
|
||||
color.rgb = mix(vec3(0.5),color.rgb,bcs.y);
|
||||
color.rgb = mix(vec3(dot(vec3(1.0),color.rgb)*0.33333),color.rgb,bcs.z);
|
||||
color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
|
||||
color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
|
||||
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_COLOR_CORRECTION
|
||||
|
||||
color.r = texture(color_correction,vec2(color.r,0.0)).r;
|
||||
color.g = texture(color_correction,vec2(color.g,0.0)).g;
|
||||
color.b = texture(color_correction,vec2(color.b,0.0)).b;
|
||||
color.r = texture(color_correction, vec2(color.r, 0.0)).r;
|
||||
color.g = texture(color_correction, vec2(color.g, 0.0)).g;
|
||||
color.b = texture(color_correction, vec2(color.b, 0.0)).b;
|
||||
#endif
|
||||
|
||||
#ifdef USE_MULTIPLIER
|
||||
color.rgb*=multiplier;
|
||||
color.rgb *= multiplier;
|
||||
#endif
|
||||
frag_color = color;
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,7 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
@ -14,7 +13,6 @@ void main() {
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
uniform highp samplerCube source_cube; //texunit:0
|
||||
in vec2 uv_interp;
|
||||
|
||||
@ -25,55 +23,53 @@ uniform highp float bias;
|
||||
|
||||
void main() {
|
||||
|
||||
highp vec3 normal = vec3( uv_interp * 2.0 - 1.0, 0.0 );
|
||||
/*
|
||||
if(z_flip) {
|
||||
normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
|
||||
highp vec3 normal = vec3(uv_interp * 2.0 - 1.0, 0.0);
|
||||
/*
|
||||
if (z_flip) {
|
||||
normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
|
||||
} else {
|
||||
normal.z = -0.5 + 0.5*((normal.x * normal.x) + (normal.y * normal.y));
|
||||
normal.z = -0.5 + 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
|
||||
}
|
||||
*/
|
||||
*/
|
||||
|
||||
//normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
|
||||
//normal.xy*=1.0+normal.z;
|
||||
//normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
|
||||
//normal.xy *= 1.0 + normal.z;
|
||||
|
||||
normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
|
||||
normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
|
||||
normal = normalize(normal);
|
||||
/*
|
||||
normal.z = 0.5;
|
||||
normal = normalize(normal);
|
||||
*/
|
||||
|
||||
/*
|
||||
normal.z=0.5;
|
||||
normal=normalize(normal);
|
||||
*/
|
||||
if (!z_flip) {
|
||||
normal.z=-normal.z;
|
||||
normal.z = -normal.z;
|
||||
}
|
||||
|
||||
//normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
|
||||
float depth = texture(source_cube,normal).r;
|
||||
//normal = normalize(vec3(uv_interp * 2.0 - 1.0, 1.0));
|
||||
float depth = texture(source_cube, normal).r;
|
||||
|
||||
// absolute values for direction cosines, bigger value equals closer to basis axis
|
||||
vec3 unorm = abs(normal);
|
||||
|
||||
if ( (unorm.x >= unorm.y) && (unorm.x >= unorm.z) ) {
|
||||
// x code
|
||||
unorm = normal.x > 0.0 ? vec3( 1.0, 0.0, 0.0 ) : vec3( -1.0, 0.0, 0.0 ) ;
|
||||
} else if ( (unorm.y > unorm.x) && (unorm.y >= unorm.z) ) {
|
||||
// y code
|
||||
unorm = normal.y > 0.0 ? vec3( 0.0, 1.0, 0.0 ) : vec3( 0.0, -1.0, 0.0 ) ;
|
||||
} else if ( (unorm.z > unorm.x) && (unorm.z > unorm.y) ) {
|
||||
// z code
|
||||
unorm = normal.z > 0.0 ? vec3( 0.0, 0.0, 1.0 ) : vec3( 0.0, 0.0, -1.0 ) ;
|
||||
if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
|
||||
// x code
|
||||
unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
|
||||
} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
|
||||
// y code
|
||||
unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
|
||||
} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
|
||||
// z code
|
||||
unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
|
||||
} else {
|
||||
// oh-no we messed up code
|
||||
// has to be
|
||||
unorm = vec3( 1.0, 0.0, 0.0 );
|
||||
// oh-no we messed up code
|
||||
// has to be
|
||||
unorm = vec3(1.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
float depth_fix = 1.0 / dot(normal,unorm);
|
||||
|
||||
float depth_fix = 1.0 / dot(normal, unorm);
|
||||
|
||||
depth = 2.0 * depth - 1.0;
|
||||
float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
|
||||
gl_FragDepth = (linear_depth*depth_fix+bias) / z_far;
|
||||
gl_FragDepth = (linear_depth * depth_fix + bias) / z_far;
|
||||
}
|
||||
|
||||
|
@ -1,21 +1,19 @@
|
||||
[vertex]
|
||||
|
||||
layout(location = 0) in highp vec2 vertex;
|
||||
|
||||
layout(location=0) in highp vec2 vertex;
|
||||
|
||||
layout(location=4) in highp vec2 uv;
|
||||
layout(location = 4) in highp vec2 uv;
|
||||
|
||||
out highp vec2 uv_interp;
|
||||
|
||||
void main() {
|
||||
|
||||
uv_interp=uv;
|
||||
gl_Position=vec4(vertex,0,1);
|
||||
uv_interp = uv;
|
||||
gl_Position = vec4(vertex, 0, 1);
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
precision highp float;
|
||||
precision highp int;
|
||||
|
||||
@ -36,90 +34,85 @@ uniform int face_id;
|
||||
uniform float roughness;
|
||||
in highp vec2 uv_interp;
|
||||
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
|
||||
#define M_PI 3.14159265359
|
||||
|
||||
vec3 texelCoordToVec(vec2 uv, int faceID) {
|
||||
mat3 faceUvVectors[6];
|
||||
/*
|
||||
// -x
|
||||
faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
|
||||
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
|
||||
|
||||
vec3 texelCoordToVec(vec2 uv, int faceID)
|
||||
{
|
||||
mat3 faceUvVectors[6];
|
||||
/*
|
||||
// -x
|
||||
faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
|
||||
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
|
||||
// +x
|
||||
faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
|
||||
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
|
||||
|
||||
// +x
|
||||
faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
|
||||
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
|
||||
// -y
|
||||
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
|
||||
faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
|
||||
|
||||
// -y
|
||||
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
|
||||
faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
|
||||
// +y
|
||||
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
|
||||
faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
|
||||
|
||||
// +y
|
||||
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
|
||||
faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
|
||||
// -z
|
||||
faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
|
||||
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
|
||||
|
||||
// -z
|
||||
faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
|
||||
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
|
||||
// +z
|
||||
faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
|
||||
*/
|
||||
|
||||
// +z
|
||||
faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
|
||||
*/
|
||||
// -x
|
||||
faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
|
||||
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
|
||||
|
||||
// -x
|
||||
faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
|
||||
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
|
||||
// +x
|
||||
faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
|
||||
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
|
||||
|
||||
// +x
|
||||
faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
|
||||
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
|
||||
// -y
|
||||
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
|
||||
faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
|
||||
|
||||
// -y
|
||||
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
|
||||
faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
|
||||
// +y
|
||||
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
|
||||
faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
|
||||
|
||||
// +y
|
||||
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
|
||||
faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
|
||||
// -z
|
||||
faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
|
||||
faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
|
||||
|
||||
// -z
|
||||
faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
|
||||
faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
|
||||
// +z
|
||||
faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
|
||||
|
||||
// +z
|
||||
faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
|
||||
|
||||
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
|
||||
vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
|
||||
return normalize(result);
|
||||
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
|
||||
vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
|
||||
return normalize(result);
|
||||
}
|
||||
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N)
|
||||
{
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
|
||||
float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
|
||||
|
||||
// Compute distribution direction
|
||||
float Phi = 2.0 * M_PI * Xi.x;
|
||||
float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
|
||||
float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
|
||||
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
|
||||
|
||||
// Convert to spherical direction
|
||||
@ -137,33 +130,29 @@ vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N)
|
||||
}
|
||||
|
||||
// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
|
||||
float GGX(float NdotV, float a)
|
||||
{
|
||||
float GGX(float NdotV, float a) {
|
||||
float k = a / 2.0;
|
||||
return NdotV / (NdotV * (1.0 - k) + k);
|
||||
}
|
||||
|
||||
// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
|
||||
float G_Smith(float a, float nDotV, float nDotL)
|
||||
{
|
||||
float G_Smith(float a, float nDotV, float nDotL) {
|
||||
return GGX(nDotL, a * a) * GGX(nDotV, a * a);
|
||||
}
|
||||
|
||||
float radicalInverse_VdC(uint bits) {
|
||||
bits = (bits << 16u) | (bits >> 16u);
|
||||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
||||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
||||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
||||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
||||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
|
||||
bits = (bits << 16u) | (bits >> 16u);
|
||||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
||||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
||||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
||||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
||||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
|
||||
}
|
||||
|
||||
vec2 Hammersley(uint i, uint N) {
|
||||
return vec2(float(i)/float(N), radicalInverse_VdC(i));
|
||||
return vec2(float(i) / float(N), radicalInverse_VdC(i));
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef LOW_QUALITY
|
||||
|
||||
#define SAMPLE_COUNT 64u
|
||||
@ -178,37 +167,33 @@ uniform bool z_flip;
|
||||
|
||||
#ifdef USE_SOURCE_PANORAMA
|
||||
|
||||
vec4 texturePanorama(vec3 normal,sampler2D pano ) {
|
||||
vec4 texturePanorama(vec3 normal, sampler2D pano) {
|
||||
|
||||
vec2 st = vec2(
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y)
|
||||
);
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y));
|
||||
|
||||
if(st.x < 0.0)
|
||||
st.x += M_PI*2.0;
|
||||
if (st.x < 0.0)
|
||||
st.x += M_PI * 2.0;
|
||||
|
||||
st/=vec2(M_PI*2.0,M_PI);
|
||||
|
||||
return textureLod(pano,st,0.0);
|
||||
st /= vec2(M_PI * 2.0, M_PI);
|
||||
|
||||
return textureLod(pano, st, 0.0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
|
||||
|
||||
|
||||
vec4 textureDualParaboloidArray(vec3 normal) {
|
||||
|
||||
vec3 norm = normalize(normal);
|
||||
norm.xy/=1.0+abs(norm.z);
|
||||
norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
|
||||
if (norm.z<0.0) {
|
||||
norm.y=0.5-norm.y+0.5;
|
||||
norm.xy /= 1.0 + abs(norm.z);
|
||||
norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
|
||||
if (norm.z < 0.0) {
|
||||
norm.y = 0.5 - norm.y + 0.5;
|
||||
}
|
||||
return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index) ), 0.0);
|
||||
|
||||
return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index)), 0.0);
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -217,19 +202,18 @@ void main() {
|
||||
|
||||
#ifdef USE_DUAL_PARABOLOID
|
||||
|
||||
vec3 N = vec3( uv_interp * 2.0 - 1.0, 0.0 );
|
||||
N.z = 0.5 - 0.5*((N.x * N.x) + (N.y * N.y));
|
||||
vec3 N = vec3(uv_interp * 2.0 - 1.0, 0.0);
|
||||
N.z = 0.5 - 0.5 * ((N.x * N.x) + (N.y * N.y));
|
||||
N = normalize(N);
|
||||
|
||||
if (z_flip) {
|
||||
N.y=-N.y; //y is flipped to improve blending between both sides
|
||||
N.z=-N.z;
|
||||
N.y = -N.y; //y is flipped to improve blending between both sides
|
||||
N.z = -N.z;
|
||||
}
|
||||
|
||||
|
||||
#else
|
||||
vec2 uv = (uv_interp * 2.0) - 1.0;
|
||||
vec3 N = texelCoordToVec(uv, face_id);
|
||||
vec2 uv = (uv_interp * 2.0) - 1.0;
|
||||
vec3 N = texelCoordToVec(uv, face_id);
|
||||
#endif
|
||||
//vec4 color = color_interp;
|
||||
|
||||
@ -237,49 +221,46 @@ void main() {
|
||||
|
||||
#ifdef USE_SOURCE_PANORAMA
|
||||
|
||||
frag_color=vec4(texturePanorama(N,source_panorama).rgb,1.0);
|
||||
frag_color = vec4(texturePanorama(N, source_panorama).rgb, 1.0);
|
||||
#endif
|
||||
|
||||
#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
|
||||
|
||||
frag_color=vec4(textureDualParaboloidArray(N).rgb,1.0);
|
||||
frag_color = vec4(textureDualParaboloidArray(N).rgb, 1.0);
|
||||
#endif
|
||||
|
||||
#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
|
||||
|
||||
N.y=-N.y;
|
||||
frag_color=vec4(texture(N,source_cube).rgb,1.0);
|
||||
N.y = -N.y;
|
||||
frag_color = vec4(texture(N, source_cube).rgb, 1.0);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
#else
|
||||
|
||||
vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||
|
||||
for(uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
|
||||
for (uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
|
||||
vec2 xi = Hammersley(sampleNum, SAMPLE_COUNT);
|
||||
|
||||
vec3 H = ImportanceSampleGGX( xi, roughness, N );
|
||||
vec3 V = N;
|
||||
vec3 L = normalize(2.0 * dot( V, H ) * H - V);
|
||||
vec3 H = ImportanceSampleGGX(xi, roughness, N);
|
||||
vec3 V = N;
|
||||
vec3 L = normalize(2.0 * dot(V, H) * H - V);
|
||||
|
||||
float ndotl = clamp(dot(N, L),0.0,1.0);
|
||||
float ndotl = clamp(dot(N, L), 0.0, 1.0);
|
||||
|
||||
if (ndotl>0.0) {
|
||||
if (ndotl > 0.0) {
|
||||
#ifdef USE_SOURCE_PANORAMA
|
||||
sum.rgb += texturePanorama(H,source_panorama).rgb *ndotl;
|
||||
sum.rgb += texturePanorama(H, source_panorama).rgb * ndotl;
|
||||
#endif
|
||||
|
||||
#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
|
||||
|
||||
sum.rgb += textureDualParaboloidArray(H).rgb *ndotl;
|
||||
sum.rgb += textureDualParaboloidArray(H).rgb * ndotl;
|
||||
#endif
|
||||
|
||||
#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
|
||||
H.y=-H.y;
|
||||
sum.rgb += textureLod(source_cube, H, 0.0).rgb *ndotl;
|
||||
H.y = -H.y;
|
||||
sum.rgb += textureLod(source_cube, H, 0.0).rgb * ndotl;
|
||||
#endif
|
||||
sum.a += ndotl;
|
||||
}
|
||||
@ -289,6 +270,4 @@ void main() {
|
||||
frag_color = vec4(sum.rgb, 1.0);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,7 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
@ -39,7 +38,6 @@ uniform sampler2D source_ssao; //texunit:1
|
||||
uniform float lod;
|
||||
uniform vec2 pixel_size;
|
||||
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef SSAO_MERGE
|
||||
@ -48,31 +46,31 @@ uniform vec4 ssao_color;
|
||||
|
||||
#endif
|
||||
|
||||
#if defined (GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
|
||||
#if defined(GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
|
||||
|
||||
uniform float glow_strength;
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(DOF_FAR_BLUR) || defined (DOF_NEAR_BLUR)
|
||||
#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
|
||||
|
||||
#ifdef DOF_QUALITY_LOW
|
||||
const int dof_kernel_size=5;
|
||||
const int dof_kernel_from=2;
|
||||
const float dof_kernel[5] = float[] (0.153388,0.221461,0.250301,0.221461,0.153388);
|
||||
const int dof_kernel_size = 5;
|
||||
const int dof_kernel_from = 2;
|
||||
const float dof_kernel[5] = float[](0.153388, 0.221461, 0.250301, 0.221461, 0.153388);
|
||||
#endif
|
||||
|
||||
#ifdef DOF_QUALITY_MEDIUM
|
||||
const int dof_kernel_size=11;
|
||||
const int dof_kernel_from=5;
|
||||
const float dof_kernel[11] = float[] (0.055037,0.072806,0.090506,0.105726,0.116061,0.119726,0.116061,0.105726,0.090506,0.072806,0.055037);
|
||||
const int dof_kernel_size = 11;
|
||||
const int dof_kernel_from = 5;
|
||||
const float dof_kernel[11] = float[](0.055037, 0.072806, 0.090506, 0.105726, 0.116061, 0.119726, 0.116061, 0.105726, 0.090506, 0.072806, 0.055037);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef DOF_QUALITY_HIGH
|
||||
const int dof_kernel_size=21;
|
||||
const int dof_kernel_from=10;
|
||||
const float dof_kernel[21] = float[] (0.028174,0.032676,0.037311,0.041944,0.046421,0.050582,0.054261,0.057307,0.059587,0.060998,0.061476,0.060998,0.059587,0.057307,0.054261,0.050582,0.046421,0.041944,0.037311,0.032676,0.028174);
|
||||
const int dof_kernel_size = 21;
|
||||
const int dof_kernel_from = 10;
|
||||
const float dof_kernel[21] = float[](0.028174, 0.032676, 0.037311, 0.041944, 0.046421, 0.050582, 0.054261, 0.057307, 0.059587, 0.060998, 0.061476, 0.060998, 0.059587, 0.057307, 0.054261, 0.050582, 0.046421, 0.041944, 0.037311, 0.032676, 0.028174);
|
||||
#endif
|
||||
|
||||
uniform sampler2D dof_source_depth; //texunit:1
|
||||
@ -88,7 +86,6 @@ uniform sampler2D source_dof_original; //texunit:2
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef GLOW_FIRST_PASS
|
||||
|
||||
uniform float exposure;
|
||||
@ -112,53 +109,51 @@ uniform float camera_z_near;
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
|
||||
#ifdef GAUSSIAN_HORIZONTAL
|
||||
vec2 pix_size = pixel_size;
|
||||
pix_size*=0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.214607;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.189879;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.157305;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.071303;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.189879;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.157305;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.071303;
|
||||
pix_size *= 0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.214607;
|
||||
color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.189879;
|
||||
color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.157305;
|
||||
color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.071303;
|
||||
color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.189879;
|
||||
color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.157305;
|
||||
color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.071303;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
#ifdef GAUSSIAN_VERTICAL
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pixel_size,lod )*0.38774;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0, 1.0)*pixel_size,lod )*0.24477;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0, 2.0)*pixel_size,lod )*0.06136;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0,-1.0)*pixel_size,lod )*0.24477;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0,-2.0)*pixel_size,lod )*0.06136;
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.38774;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.24477;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.06136;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.24477;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.06136;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
//glow uses larger sigma for a more rounded blur effect
|
||||
//glow uses larger sigma for a more rounded blur effect
|
||||
|
||||
#ifdef GLOW_GAUSSIAN_HORIZONTAL
|
||||
vec2 pix_size = pixel_size;
|
||||
pix_size*=0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.174938;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.165569;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.140367;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.106595;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.165569;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.140367;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.106595;
|
||||
color*=glow_strength;
|
||||
pix_size *= 0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.174938;
|
||||
color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.165569;
|
||||
color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.140367;
|
||||
color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.106595;
|
||||
color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.165569;
|
||||
color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.140367;
|
||||
color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.106595;
|
||||
color *= glow_strength;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
#ifdef GLOW_GAUSSIAN_VERTICAL
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2(0.0, 0.0)*pixel_size,lod )*0.288713;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0, 1.0)*pixel_size,lod )*0.233062;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0, 2.0)*pixel_size,lod )*0.122581;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0,-1.0)*pixel_size,lod )*0.233062;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0,-2.0)*pixel_size,lod )*0.122581;
|
||||
color*=glow_strength;
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.288713;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.233062;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.122581;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.233062;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.122581;
|
||||
color *= glow_strength;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
@ -166,47 +161,45 @@ void main() {
|
||||
|
||||
vec4 color_accum = vec4(0.0);
|
||||
|
||||
float depth = textureLod( dof_source_depth, uv_interp, 0.0).r;
|
||||
float depth = textureLod(dof_source_depth, uv_interp, 0.0).r;
|
||||
depth = depth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
|
||||
float amount = smoothstep(dof_begin,dof_end,depth);
|
||||
float k_accum=0.0;
|
||||
float amount = smoothstep(dof_begin, dof_end, depth);
|
||||
float k_accum = 0.0;
|
||||
|
||||
for(int i=0;i<dof_kernel_size;i++) {
|
||||
for (int i = 0; i < dof_kernel_size; i++) {
|
||||
|
||||
int int_ofs = i-dof_kernel_from;
|
||||
int int_ofs = i - dof_kernel_from;
|
||||
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
|
||||
|
||||
float tap_k = dof_kernel[i];
|
||||
|
||||
float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
|
||||
float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
|
||||
tap_depth = tap_depth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
float tap_amount = mix(smoothstep(dof_begin,dof_end,tap_depth),1.0,int_ofs==0);
|
||||
tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
|
||||
|
||||
vec4 tap_color = textureLod( source_color, tap_uv, 0.0) * tap_k;
|
||||
|
||||
k_accum+=tap_k*tap_amount;
|
||||
color_accum+=tap_color*tap_amount;
|
||||
float tap_amount = mix(smoothstep(dof_begin, dof_end, tap_depth), 1.0, int_ofs == 0);
|
||||
tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
|
||||
|
||||
vec4 tap_color = textureLod(source_color, tap_uv, 0.0) * tap_k;
|
||||
|
||||
k_accum += tap_k * tap_amount;
|
||||
color_accum += tap_color * tap_amount;
|
||||
}
|
||||
|
||||
if (k_accum>0.0) {
|
||||
color_accum/=k_accum;
|
||||
if (k_accum > 0.0) {
|
||||
color_accum /= k_accum;
|
||||
}
|
||||
|
||||
frag_color = color_accum;///k_accum;
|
||||
frag_color = color_accum; ///k_accum;
|
||||
|
||||
#endif
|
||||
|
||||
@ -214,47 +207,45 @@ void main() {
|
||||
|
||||
vec4 color_accum = vec4(0.0);
|
||||
|
||||
float max_accum=0.0;
|
||||
float max_accum = 0.0;
|
||||
|
||||
for(int i=0;i<dof_kernel_size;i++) {
|
||||
for (int i = 0; i < dof_kernel_size; i++) {
|
||||
|
||||
int int_ofs = i-dof_kernel_from;
|
||||
int int_ofs = i - dof_kernel_from;
|
||||
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
|
||||
float ofs_influence = max(0.0,1.0-float(abs(int_ofs))/float(dof_kernel_from));
|
||||
float ofs_influence = max(0.0, 1.0 - float(abs(int_ofs)) / float(dof_kernel_from));
|
||||
|
||||
float tap_k = dof_kernel[i];
|
||||
|
||||
vec4 tap_color = textureLod( source_color, tap_uv, 0.0);
|
||||
vec4 tap_color = textureLod(source_color, tap_uv, 0.0);
|
||||
|
||||
float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
|
||||
float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
|
||||
tap_depth = tap_depth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
float tap_amount = 1.0-smoothstep(dof_end,dof_begin,tap_depth);
|
||||
tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
|
||||
float tap_amount = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
|
||||
tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
|
||||
|
||||
#ifdef DOF_NEAR_FIRST_TAP
|
||||
|
||||
tap_color.a= 1.0-smoothstep(dof_end,dof_begin,tap_depth);
|
||||
tap_color.a = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
|
||||
|
||||
#endif
|
||||
|
||||
max_accum=max(max_accum,tap_amount*ofs_influence);
|
||||
|
||||
color_accum+=tap_color*tap_k;
|
||||
max_accum = max(max_accum, tap_amount * ofs_influence);
|
||||
|
||||
color_accum += tap_color * tap_k;
|
||||
}
|
||||
|
||||
color_accum.a=max(color_accum.a,sqrt(max_accum));
|
||||
|
||||
color_accum.a = max(color_accum.a, sqrt(max_accum));
|
||||
|
||||
#ifdef DOF_NEAR_BLUR_MERGE
|
||||
|
||||
vec4 original = textureLod( source_dof_original, uv_interp, 0.0);
|
||||
color_accum = mix(original,color_accum,color_accum.a);
|
||||
vec4 original = textureLod(source_dof_original, uv_interp, 0.0);
|
||||
color_accum = mix(original, color_accum, color_accum.a);
|
||||
|
||||
#endif
|
||||
|
||||
@ -265,37 +256,32 @@ void main() {
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef GLOW_FIRST_PASS
|
||||
|
||||
#ifdef GLOW_USE_AUTO_EXPOSURE
|
||||
|
||||
frag_color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
|
||||
frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
|
||||
#endif
|
||||
frag_color*=exposure;
|
||||
frag_color *= exposure;
|
||||
|
||||
float luminance = max(frag_color.r,max(frag_color.g,frag_color.b));
|
||||
float feedback = max( smoothstep(glow_hdr_threshold,glow_hdr_threshold+glow_hdr_scale,luminance), glow_bloom );
|
||||
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
|
||||
float feedback = max(smoothstep(glow_hdr_threshold, glow_hdr_threshold + glow_hdr_scale, luminance), glow_bloom);
|
||||
|
||||
frag_color *= feedback;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SIMPLE_COPY
|
||||
vec4 color =textureLod( source_color, uv_interp,0.0);
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0);
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
#ifdef SSAO_MERGE
|
||||
|
||||
vec4 color =textureLod( source_color, uv_interp,0.0);
|
||||
float ssao =textureLod( source_ssao, uv_interp,0.0).r;
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0);
|
||||
float ssao = textureLod(source_ssao, uv_interp, 0.0).r;
|
||||
|
||||
frag_color = vec4( mix(color.rgb,color.rgb*mix(ssao_color.rgb,vec3(1.0),ssao),color.a), 1.0 );
|
||||
frag_color = vec4(mix(color.rgb, color.rgb * mix(ssao_color.rgb, vec3(1.0), ssao), color.a), 1.0);
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
}
|
||||
|
@ -1,18 +1,14 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = vertex_attrib;
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
uniform highp sampler2D source_exposure; //texunit:0
|
||||
|
||||
#ifdef EXPOSURE_BEGIN
|
||||
@ -33,66 +29,56 @@ uniform highp float max_luminance;
|
||||
|
||||
layout(location = 0) out highp float exposure;
|
||||
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
|
||||
#ifdef EXPOSURE_BEGIN
|
||||
|
||||
|
||||
ivec2 src_pos = ivec2(gl_FragCoord.xy)*source_render_size/target_size;
|
||||
ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
|
||||
|
||||
#if 1
|
||||
//more precise and expensive, but less jittery
|
||||
ivec2 next_pos = ivec2(gl_FragCoord.xy+ivec2(1))*source_render_size/target_size;
|
||||
next_pos = max(next_pos,src_pos+ivec2(1)); //so it at least reads one pixel
|
||||
highp vec3 source_color=vec3(0.0);
|
||||
for(int i=src_pos.x;i<next_pos.x;i++) {
|
||||
for(int j=src_pos.y;j<next_pos.y;j++) {
|
||||
source_color += texelFetch(source_exposure,ivec2(i,j),0).rgb;
|
||||
ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
|
||||
next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
|
||||
highp vec3 source_color = vec3(0.0);
|
||||
for (int i = src_pos.x; i < next_pos.x; i++) {
|
||||
for (int j = src_pos.y; j < next_pos.y; j++) {
|
||||
source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
|
||||
}
|
||||
}
|
||||
|
||||
source_color/=float( (next_pos.x-src_pos.x)*(next_pos.y-src_pos.y) );
|
||||
source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
|
||||
#else
|
||||
highp vec3 source_color = texelFetch(source_exposure,src_pos,0).rgb;
|
||||
highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
|
||||
|
||||
#endif
|
||||
|
||||
exposure = max(source_color.r,max(source_color.g,source_color.b));
|
||||
exposure = max(source_color.r, max(source_color.g, source_color.b));
|
||||
|
||||
#else
|
||||
|
||||
ivec2 coord = ivec2(gl_FragCoord.xy);
|
||||
exposure = texelFetch(source_exposure,coord*3+ivec2(0,0),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(1,0),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(2,0),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(0,1),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(1,1),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(2,1),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(0,2),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(1,2),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(2,2),0).r;
|
||||
exposure *= (1.0/9.0);
|
||||
exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
|
||||
exposure *= (1.0 / 9.0);
|
||||
|
||||
#ifdef EXPOSURE_END
|
||||
|
||||
#ifdef EXPOSURE_FORCE_SET
|
||||
//will stay as is
|
||||
#else
|
||||
highp float prev_lum = texelFetch(prev_exposure,ivec2(0,0),0).r; //1 pixel previous exposure
|
||||
exposure = clamp( prev_lum + (exposure-prev_lum)*exposure_adjust,min_luminance,max_luminance);
|
||||
highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
|
||||
exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
|
||||
|
||||
#endif //EXPOSURE_FORCE_SET
|
||||
|
||||
|
||||
#endif //EXPOSURE_END
|
||||
|
||||
#endif //EXPOSURE_BEGIN
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,14 +1,11 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 color;
|
||||
layout(location=1) in highp vec4 velocity_active;
|
||||
layout(location=2) in highp vec4 custom;
|
||||
layout(location=3) in highp vec4 xform_1;
|
||||
layout(location=4) in highp vec4 xform_2;
|
||||
layout(location=5) in highp vec4 xform_3;
|
||||
|
||||
layout(location = 0) in highp vec4 color;
|
||||
layout(location = 1) in highp vec4 velocity_active;
|
||||
layout(location = 2) in highp vec4 custom;
|
||||
layout(location = 3) in highp vec4 xform_1;
|
||||
layout(location = 4) in highp vec4 xform_2;
|
||||
layout(location = 5) in highp vec4 xform_3;
|
||||
|
||||
struct Attractor {
|
||||
|
||||
@ -39,7 +36,6 @@ uniform float lifetime;
|
||||
uniform mat4 emission_transform;
|
||||
uniform uint random_seed;
|
||||
|
||||
|
||||
out highp vec4 out_color; //tfb:
|
||||
out highp vec4 out_velocity_active; //tfb:
|
||||
out highp vec4 out_custom; //tfb:
|
||||
@ -47,7 +43,6 @@ out highp vec4 out_xform_1; //tfb:
|
||||
out highp vec4 out_xform_2; //tfb:
|
||||
out highp vec4 out_xform_3; //tfb:
|
||||
|
||||
|
||||
#if defined(USE_MATERIAL)
|
||||
|
||||
layout(std140) uniform UniformData { //ubo:0
|
||||
@ -58,7 +53,6 @@ MATERIAL_UNIFORMS
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
VERTEX_SHADER_GLOBALS
|
||||
|
||||
uint hash(uint x) {
|
||||
@ -69,13 +63,12 @@ uint hash(uint x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
#ifdef PARTICLES_COPY
|
||||
|
||||
out_color=color;
|
||||
out_velocity_active=velocity_active;
|
||||
out_color = color;
|
||||
out_velocity_active = velocity_active;
|
||||
out_custom = custom;
|
||||
out_xform_1 = xform_1;
|
||||
out_xform_2 = xform_2;
|
||||
@ -83,47 +76,47 @@ void main() {
|
||||
|
||||
#else
|
||||
|
||||
bool apply_forces=true;
|
||||
bool apply_velocity=true;
|
||||
float local_delta=delta;
|
||||
bool apply_forces = true;
|
||||
bool apply_velocity = true;
|
||||
float local_delta = delta;
|
||||
|
||||
float mass = 1.0;
|
||||
|
||||
float restart_phase = float(gl_VertexID)/float(total_particles);
|
||||
float restart_phase = float(gl_VertexID) / float(total_particles);
|
||||
|
||||
if (randomness>0.0) {
|
||||
if (randomness > 0.0) {
|
||||
uint seed = cycle;
|
||||
if (restart_phase >= system_phase) {
|
||||
seed-=uint(1);
|
||||
seed -= uint(1);
|
||||
}
|
||||
seed*=uint(total_particles);
|
||||
seed+=uint(gl_VertexID);
|
||||
seed *= uint(total_particles);
|
||||
seed += uint(gl_VertexID);
|
||||
float random = float(hash(seed) % uint(65536)) / 65536.0;
|
||||
restart_phase+=randomness * random * 1.0 / float(total_particles);
|
||||
restart_phase += randomness * random * 1.0 / float(total_particles);
|
||||
}
|
||||
|
||||
restart_phase*= (1.0-explosiveness);
|
||||
bool restart=false;
|
||||
restart_phase *= (1.0 - explosiveness);
|
||||
bool restart = false;
|
||||
bool shader_active = velocity_active.a > 0.5;
|
||||
|
||||
if (system_phase > prev_system_phase) {
|
||||
// restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
|
||||
|
||||
if (restart_phase >= prev_system_phase && restart_phase < system_phase ) {
|
||||
restart=true;
|
||||
if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
|
||||
restart = true;
|
||||
#ifdef USE_FRACTIONAL_DELTA
|
||||
local_delta = (system_phase - restart_phase) * lifetime;
|
||||
#endif
|
||||
}
|
||||
|
||||
} else if(delta > 0.0) {
|
||||
} else if (delta > 0.0) {
|
||||
if (restart_phase >= prev_system_phase) {
|
||||
restart=true;
|
||||
restart = true;
|
||||
#ifdef USE_FRACTIONAL_DELTA
|
||||
local_delta = (1.0 - restart_phase + system_phase) * lifetime;
|
||||
#endif
|
||||
} else if (restart_phase < system_phase ) {
|
||||
restart=true;
|
||||
} else if (restart_phase < system_phase) {
|
||||
restart = true;
|
||||
#ifdef USE_FRACTIONAL_DELTA
|
||||
local_delta = (system_phase - restart_phase) * lifetime;
|
||||
#endif
|
||||
@ -133,14 +126,14 @@ void main() {
|
||||
uint current_cycle = cycle;
|
||||
|
||||
if (system_phase < restart_phase) {
|
||||
current_cycle-=uint(1);
|
||||
current_cycle -= uint(1);
|
||||
}
|
||||
|
||||
uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
|
||||
int index = int(gl_VertexID);
|
||||
|
||||
if (restart) {
|
||||
shader_active=emitting;
|
||||
shader_active = emitting;
|
||||
}
|
||||
|
||||
mat4 xform;
|
||||
@ -150,23 +143,22 @@ void main() {
|
||||
#else
|
||||
if (clear || restart) {
|
||||
#endif
|
||||
out_color=vec4(1.0);
|
||||
out_velocity_active=vec4(0.0);
|
||||
out_custom=vec4(0.0);
|
||||
out_color = vec4(1.0);
|
||||
out_velocity_active = vec4(0.0);
|
||||
out_custom = vec4(0.0);
|
||||
if (!restart)
|
||||
shader_active=false;
|
||||
shader_active = false;
|
||||
|
||||
xform = mat4(
|
||||
vec4(1.0,0.0,0.0,0.0),
|
||||
vec4(0.0,1.0,0.0,0.0),
|
||||
vec4(0.0,0.0,1.0,0.0),
|
||||
vec4(0.0,0.0,0.0,1.0)
|
||||
);
|
||||
vec4(1.0, 0.0, 0.0, 0.0),
|
||||
vec4(0.0, 1.0, 0.0, 0.0),
|
||||
vec4(0.0, 0.0, 1.0, 0.0),
|
||||
vec4(0.0, 0.0, 0.0, 1.0));
|
||||
} else {
|
||||
out_color=color;
|
||||
out_velocity_active=velocity_active;
|
||||
out_custom=custom;
|
||||
xform = transpose(mat4(xform_1,xform_2,xform_3,vec4(vec3(0.0),1.0)));
|
||||
out_color = color;
|
||||
out_velocity_active = velocity_active;
|
||||
out_custom = custom;
|
||||
xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
|
||||
}
|
||||
|
||||
if (shader_active) {
|
||||
@ -181,26 +173,25 @@ VERTEX_SHADER_CODE
|
||||
if (false) {
|
||||
|
||||
vec3 force = vec3(0.0);
|
||||
for(int i=0;i<attractor_count;i++) {
|
||||
for (int i = 0; i < attractor_count; i++) {
|
||||
|
||||
vec3 rel_vec = xform[3].xyz - attractors[i].pos;
|
||||
float dist = length(rel_vec);
|
||||
if (attractors[i].radius < dist)
|
||||
continue;
|
||||
if (attractors[i].eat_radius>0.0 && attractors[i].eat_radius > dist) {
|
||||
out_velocity_active.a=0.0;
|
||||
if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
|
||||
out_velocity_active.a = 0.0;
|
||||
}
|
||||
|
||||
rel_vec = normalize(rel_vec);
|
||||
|
||||
float attenuation = pow(dist / attractors[i].radius,attractors[i].attenuation);
|
||||
float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
|
||||
|
||||
if (attractors[i].dir==vec3(0.0)) {
|
||||
if (attractors[i].dir == vec3(0.0)) {
|
||||
//towards center
|
||||
force+=attractors[i].strength * rel_vec * attenuation * mass;
|
||||
force += attractors[i].strength * rel_vec * attenuation * mass;
|
||||
} else {
|
||||
force+=attractors[i].strength * attractors[i].dir * attenuation *mass;
|
||||
|
||||
force += attractors[i].strength * attractors[i].dir * attenuation * mass;
|
||||
}
|
||||
}
|
||||
|
||||
@ -216,25 +207,23 @@ VERTEX_SHADER_CODE
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
xform=mat4(0.0);
|
||||
xform = mat4(0.0);
|
||||
}
|
||||
|
||||
xform = transpose(xform);
|
||||
|
||||
out_velocity_active.a = mix(0.0,1.0,shader_active);
|
||||
out_velocity_active.a = mix(0.0, 1.0, shader_active);
|
||||
|
||||
out_xform_1 = xform[0];
|
||||
out_xform_2 = xform[1];
|
||||
out_xform_3 = xform[2];
|
||||
|
||||
#endif //PARTICLES_COPY
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
//any code here is never executed, stuff is filled just so it works
|
||||
|
||||
// any code here is never executed, stuff is filled just so it works
|
||||
|
||||
#if defined(USE_MATERIAL)
|
||||
|
||||
|
@ -1,12 +1,10 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
uv_interp = uv_in;
|
||||
@ -20,8 +18,8 @@ precision mediump float;
|
||||
#endif
|
||||
|
||||
in vec2 uv_interp;
|
||||
uniform sampler2D source_specular; //texunit:0
|
||||
uniform sampler2D source_ssr; //texunit:1
|
||||
uniform sampler2D source_specular; // texunit:0
|
||||
uniform sampler2D source_ssr; // texunit:1
|
||||
|
||||
uniform vec2 pixel_size;
|
||||
|
||||
@ -31,14 +29,12 @@ layout(location = 0) out vec4 frag_color;
|
||||
|
||||
void main() {
|
||||
|
||||
vec4 specular = texture( source_specular, uv_interp );
|
||||
vec4 specular = texture(source_specular, uv_interp);
|
||||
|
||||
#ifdef USE_SSR
|
||||
|
||||
vec4 ssr = textureLod(source_ssr,uv_interp,0.0);
|
||||
specular.rgb = mix(specular.rgb,ssr.rgb*specular.a,ssr.a);
|
||||
vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
|
||||
specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
|
||||
#endif
|
||||
|
||||
frag_color = vec4(specular.rgb,1.0);
|
||||
frag_color = vec4(specular.rgb, 1.0);
|
||||
}
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +1,7 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
out vec2 pos_interp;
|
||||
@ -11,12 +10,11 @@ void main() {
|
||||
|
||||
uv_interp = uv_in;
|
||||
gl_Position = vertex_attrib;
|
||||
pos_interp.xy=gl_Position.xy;
|
||||
pos_interp.xy = gl_Position.xy;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
in vec2 uv_interp;
|
||||
in vec2 pos_interp;
|
||||
|
||||
@ -40,81 +38,67 @@ uniform float depth_tolerance;
|
||||
uniform float distance_fade;
|
||||
uniform float curve_fade_in;
|
||||
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
|
||||
vec2 view_to_screen(vec3 view_pos,out float w) {
|
||||
vec4 projected = projection * vec4(view_pos, 1.0);
|
||||
projected.xyz /= projected.w;
|
||||
projected.xy = projected.xy * 0.5 + 0.5;
|
||||
w=projected.w;
|
||||
return projected.xy;
|
||||
vec2 view_to_screen(vec3 view_pos, out float w) {
|
||||
vec4 projected = projection * vec4(view_pos, 1.0);
|
||||
projected.xyz /= projected.w;
|
||||
projected.xy = projected.xy * 0.5 + 0.5;
|
||||
w = projected.w;
|
||||
return projected.xy;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#define M_PI 3.14159265359
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
////
|
||||
|
||||
vec4 diffuse = texture( source_diffuse, uv_interp );
|
||||
vec4 normal_roughness = texture( source_normal_roughness, uv_interp);
|
||||
vec4 diffuse = texture(source_diffuse, uv_interp);
|
||||
vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
|
||||
|
||||
vec3 normal;
|
||||
|
||||
normal = normal_roughness.xyz*2.0-1.0;
|
||||
normal = normal_roughness.xyz * 2.0 - 1.0;
|
||||
|
||||
float roughness = normal_roughness.w;
|
||||
|
||||
float depth_tex = texture(source_depth,uv_interp).r;
|
||||
float depth_tex = texture(source_depth, uv_interp).r;
|
||||
|
||||
vec4 world_pos = inverse_projection * vec4( uv_interp*2.0-1.0, depth_tex*2.0-1.0, 1.0 );
|
||||
vec3 vertex = world_pos.xyz/world_pos.w;
|
||||
vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
|
||||
vec3 vertex = world_pos.xyz / world_pos.w;
|
||||
|
||||
vec3 view_dir = normalize(vertex);
|
||||
vec3 ray_dir = normalize(reflect(view_dir, normal));
|
||||
|
||||
if (dot(ray_dir,normal)<0.001) {
|
||||
frag_color=vec4(0.0);
|
||||
if (dot(ray_dir, normal) < 0.001) {
|
||||
frag_color = vec4(0.0);
|
||||
return;
|
||||
}
|
||||
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
|
||||
|
||||
//ray_dir = normalize(vec3(1,1,-1));
|
||||
|
||||
//ray_dir = normalize(vec3(1, 1, -1));
|
||||
|
||||
////////////////
|
||||
|
||||
|
||||
//make ray length and clip it against the near plane (don't want to trace beyond visible)
|
||||
// make ray length and clip it against the near plane (don't want to trace beyond visible)
|
||||
float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
|
||||
vec3 ray_end = vertex + ray_dir*ray_len;
|
||||
vec3 ray_end = vertex + ray_dir * ray_len;
|
||||
|
||||
float w_begin;
|
||||
vec2 vp_line_begin = view_to_screen(vertex,w_begin);
|
||||
vec2 vp_line_begin = view_to_screen(vertex, w_begin);
|
||||
float w_end;
|
||||
vec2 vp_line_end = view_to_screen( ray_end, w_end);
|
||||
vec2 vp_line_dir = vp_line_end-vp_line_begin;
|
||||
vec2 vp_line_end = view_to_screen(ray_end, w_end);
|
||||
vec2 vp_line_dir = vp_line_end - vp_line_begin;
|
||||
|
||||
//we need to interpolate w along the ray, to generate perspective correct reflections
|
||||
// we need to interpolate w along the ray, to generate perspective correct reflections
|
||||
w_begin = 1.0 / w_begin;
|
||||
w_end = 1.0 / w_end;
|
||||
|
||||
w_begin = 1.0/w_begin;
|
||||
w_end = 1.0/w_end;
|
||||
float z_begin = vertex.z * w_begin;
|
||||
float z_end = ray_end.z * w_end;
|
||||
|
||||
|
||||
float z_begin = vertex.z*w_begin;
|
||||
float z_end = ray_end.z*w_end;
|
||||
|
||||
vec2 line_begin = vp_line_begin/pixel_size;
|
||||
vec2 line_dir = vp_line_dir/pixel_size;
|
||||
vec2 line_begin = vp_line_begin / pixel_size;
|
||||
vec2 line_dir = vp_line_dir / pixel_size;
|
||||
float z_dir = z_end - z_begin;
|
||||
float w_dir = w_end - w_begin;
|
||||
|
||||
|
||||
// clip the line to the viewport edges
|
||||
|
||||
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
|
||||
@ -124,126 +108,114 @@ void main() {
|
||||
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
|
||||
line_dir *= line_clip;
|
||||
z_dir *= line_clip;
|
||||
w_dir *=line_clip;
|
||||
w_dir *= line_clip;
|
||||
|
||||
//clip z and w advance to line advance
|
||||
vec2 line_advance = normalize(line_dir); //down to pixel
|
||||
float step_size = length(line_advance)/length(line_dir);
|
||||
float z_advance = z_dir*step_size; // adapt z advance to line advance
|
||||
float w_advance = w_dir*step_size; // adapt w advance to line advance
|
||||
// clip z and w advance to line advance
|
||||
vec2 line_advance = normalize(line_dir); // down to pixel
|
||||
float step_size = length(line_advance) / length(line_dir);
|
||||
float z_advance = z_dir * step_size; // adapt z advance to line advance
|
||||
float w_advance = w_dir * step_size; // adapt w advance to line advance
|
||||
|
||||
//make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
|
||||
float advance_angle_adj = 1.0/max(abs(line_advance.x),abs(line_advance.y));
|
||||
line_advance*=advance_angle_adj; // adapt z advance to line advance
|
||||
z_advance*=advance_angle_adj;
|
||||
w_advance*=advance_angle_adj;
|
||||
// make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
|
||||
float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
|
||||
line_advance *= advance_angle_adj; // adapt z advance to line advance
|
||||
z_advance *= advance_angle_adj;
|
||||
w_advance *= advance_angle_adj;
|
||||
|
||||
vec2 pos = line_begin;
|
||||
float z = z_begin;
|
||||
float w = w_begin;
|
||||
float z_from=z/w;
|
||||
float z_to=z_from;
|
||||
float z_from = z / w;
|
||||
float z_to = z_from;
|
||||
float depth;
|
||||
vec2 prev_pos=pos;
|
||||
vec2 prev_pos = pos;
|
||||
|
||||
bool found=false;
|
||||
bool found = false;
|
||||
|
||||
float steps_taken=0.0;
|
||||
float steps_taken = 0.0;
|
||||
|
||||
for(int i=0;i<num_steps;i++) {
|
||||
for (int i = 0; i < num_steps; i++) {
|
||||
|
||||
pos+=line_advance;
|
||||
z+=z_advance;
|
||||
w+=w_advance;
|
||||
pos += line_advance;
|
||||
z += z_advance;
|
||||
w += w_advance;
|
||||
|
||||
//convert to linear depth
|
||||
// convert to linear depth
|
||||
|
||||
depth = texture(source_depth, pos*pixel_size).r * 2.0 - 1.0;
|
||||
depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
depth=-depth;
|
||||
depth = -depth;
|
||||
|
||||
z_from = z_to;
|
||||
z_to = z/w;
|
||||
z_to = z / w;
|
||||
|
||||
if (depth>z_to) {
|
||||
//if depth was surpassed
|
||||
if (depth<=max(z_to,z_from)+depth_tolerance) {
|
||||
//check the depth tolerance
|
||||
found=true;
|
||||
if (depth > z_to) {
|
||||
// if depth was surpassed
|
||||
if (depth <= max(z_to, z_from) + depth_tolerance) {
|
||||
// check the depth tolerance
|
||||
found = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
steps_taken+=1.0;
|
||||
prev_pos=pos;
|
||||
steps_taken += 1.0;
|
||||
prev_pos = pos;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
if (found) {
|
||||
|
||||
float margin_blend=1.0;
|
||||
float margin_blend = 1.0;
|
||||
|
||||
|
||||
vec2 margin = vec2((viewport_size.x+viewport_size.y)*0.5*0.05); //make a uniform margin
|
||||
if (any(bvec4(lessThan(pos,-margin),greaterThan(pos,viewport_size+margin)))) {
|
||||
//clip outside screen + margin
|
||||
frag_color=vec4(0.0);
|
||||
vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); // make a uniform margin
|
||||
if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
|
||||
// clip outside screen + margin
|
||||
frag_color = vec4(0.0);
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
//blend fading out towards external margin
|
||||
vec2 margin_grad = mix(pos-viewport_size,-pos,lessThan(pos,vec2(0.0)));
|
||||
margin_blend = 1.0-smoothstep(0.0,margin.x,max(margin_grad.x,margin_grad.y));
|
||||
//margin_blend=1.0;
|
||||
|
||||
vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
|
||||
margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
|
||||
//margin_blend = 1.0;
|
||||
}
|
||||
|
||||
vec2 final_pos;
|
||||
float grad;
|
||||
grad=steps_taken/float(num_steps);
|
||||
float initial_fade = curve_fade_in==0.0 ? 1.0 : pow(clamp(grad,0.0,1.0),curve_fade_in);
|
||||
float fade = pow(clamp(1.0-grad,0.0,1.0),distance_fade)*initial_fade;
|
||||
final_pos=pos;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
grad = steps_taken / float(num_steps);
|
||||
float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
|
||||
float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
|
||||
final_pos = pos;
|
||||
|
||||
#ifdef REFLECT_ROUGHNESS
|
||||
|
||||
|
||||
vec4 final_color;
|
||||
//if roughness is enabled, do screen space cone tracing
|
||||
// if roughness is enabled, do screen space cone tracing
|
||||
if (roughness > 0.001) {
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
|
||||
// use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
|
||||
|
||||
float gloss = 1.0-roughness;
|
||||
float gloss = 1.0 - roughness;
|
||||
float cone_angle = roughness * M_PI * 0.5;
|
||||
vec2 cone_dir = final_pos - line_begin;
|
||||
float cone_len = length(cone_dir);
|
||||
cone_dir = normalize(cone_dir); //will be used normalized from now on
|
||||
cone_dir = normalize(cone_dir); // will be used normalized from now on
|
||||
float max_mipmap = filter_mipmap_levels - 1.0;
|
||||
float gloss_mult=gloss;
|
||||
float gloss_mult = gloss;
|
||||
|
||||
float rem_alpha=1.0;
|
||||
float rem_alpha = 1.0;
|
||||
final_color = vec4(0.0);
|
||||
|
||||
for(int i=0;i<7;i++) {
|
||||
for (int i = 0; i < 7; i++) {
|
||||
|
||||
float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
|
||||
float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
|
||||
float radius;
|
||||
{
|
||||
//fit to sphere inside cone (sphere ends at end of cone), something like this:
|
||||
// fit to sphere inside cone (sphere ends at end of cone), something like this:
|
||||
// ___
|
||||
// \O/
|
||||
// V
|
||||
@ -257,31 +229,31 @@ void main() {
|
||||
radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
|
||||
}
|
||||
|
||||
//find the place where screen must be sampled
|
||||
vec2 sample_pos = ( line_begin + cone_dir * (cone_len - radius) ) * pixel_size;
|
||||
//radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
|
||||
float mipmap = clamp( log2( radius ), 0.0, max_mipmap );
|
||||
// find the place where screen must be sampled
|
||||
vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
|
||||
// radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
|
||||
float mipmap = clamp(log2(radius), 0.0, max_mipmap);
|
||||
//mipmap = max(mipmap - 1.0, 0.0);
|
||||
|
||||
//mipmap = max(mipmap-1.0,0.0);
|
||||
//do sampling
|
||||
// do sampling
|
||||
|
||||
vec4 sample_color;
|
||||
{
|
||||
sample_color = textureLod(source_diffuse,sample_pos,mipmap);
|
||||
sample_color = textureLod(source_diffuse, sample_pos, mipmap);
|
||||
}
|
||||
|
||||
//multiply by gloss
|
||||
sample_color.rgb*=gloss_mult;
|
||||
sample_color.a=gloss_mult;
|
||||
// multiply by gloss
|
||||
sample_color.rgb *= gloss_mult;
|
||||
sample_color.a = gloss_mult;
|
||||
|
||||
rem_alpha -= sample_color.a;
|
||||
if(rem_alpha < 0.0) {
|
||||
if (rem_alpha < 0.0) {
|
||||
sample_color.rgb *= (1.0 - abs(rem_alpha));
|
||||
}
|
||||
|
||||
final_color+=sample_color;
|
||||
final_color += sample_color;
|
||||
|
||||
if (final_color.a>=0.95) {
|
||||
if (final_color.a >= 0.95) {
|
||||
// This code of accumulating gloss and aborting on near one
|
||||
// makes sense when you think of cone tracing.
|
||||
// Think of it as if roughness was 0, then we could abort on the first
|
||||
@ -290,29 +262,21 @@ void main() {
|
||||
break;
|
||||
}
|
||||
|
||||
cone_len-=radius*2.0; //go to next (smaller) circle.
|
||||
|
||||
gloss_mult*=gloss;
|
||||
|
||||
cone_len -= radius * 2.0; // go to next (smaller) circle.
|
||||
|
||||
gloss_mult *= gloss;
|
||||
}
|
||||
} else {
|
||||
final_color = textureLod(source_diffuse,final_pos*pixel_size,0.0);
|
||||
final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
|
||||
}
|
||||
|
||||
frag_color = vec4(final_color.rgb,fade*margin_blend);
|
||||
frag_color = vec4(final_color.rgb, fade * margin_blend);
|
||||
|
||||
#else
|
||||
frag_color = vec4(textureLod(source_diffuse,final_pos*pixel_size,0.0).rgb,fade*margin_blend);
|
||||
frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
} else {
|
||||
frag_color = vec4(0.0,0.0,0.0,0.0);
|
||||
frag_color = vec4(0.0, 0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = vertex_attrib;
|
||||
gl_Position.z=1.0;
|
||||
gl_Position.z = 1.0;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -14,21 +13,15 @@ void main() {
|
||||
#define TWO_PI 6.283185307179586476925286766559
|
||||
|
||||
#ifdef SSAO_QUALITY_HIGH
|
||||
|
||||
#define NUM_SAMPLES (80)
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef SSAO_QUALITY_LOW
|
||||
|
||||
#define NUM_SAMPLES (15)
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
|
||||
|
||||
#define NUM_SAMPLES (40)
|
||||
|
||||
#endif
|
||||
|
||||
// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
|
||||
@ -43,19 +36,21 @@ void main() {
|
||||
// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
|
||||
// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
|
||||
|
||||
const int ROTATIONS[] = int[]( 1, 1, 2, 3, 2, 5, 2, 3, 2,
|
||||
3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
|
||||
9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
|
||||
11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
|
||||
11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
|
||||
19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
|
||||
13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
|
||||
29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
|
||||
31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
|
||||
19, 27, 21, 25, 39, 29, 17, 21, 27 );
|
||||
const int ROTATIONS[] = int[](
|
||||
1, 1, 2, 3, 2, 5, 2, 3, 2,
|
||||
3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
|
||||
9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
|
||||
11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
|
||||
11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
|
||||
19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
|
||||
13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
|
||||
29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
|
||||
31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
|
||||
19, 27, 21, 25, 39, 29, 17, 21, 27
|
||||
);
|
||||
|
||||
//#define NUM_SPIRAL_TURNS (7)
|
||||
const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES-1];
|
||||
const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
|
||||
|
||||
uniform sampler2D source_depth; //texunit:0
|
||||
uniform highp usampler2D source_depth_mipmaps; //texunit:1
|
||||
@ -90,44 +85,41 @@ vec3 reconstructCSPosition(vec2 S, float z) {
|
||||
}
|
||||
|
||||
vec3 getPosition(ivec2 ssP) {
|
||||
vec3 P;
|
||||
P.z = texelFetch(source_depth, ssP, 0).r;
|
||||
vec3 P;
|
||||
P.z = texelFetch(source_depth, ssP, 0).r;
|
||||
|
||||
P.z = P.z * 2.0 - 1.0;
|
||||
P.z = P.z * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
||||
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
P.z = -P.z;
|
||||
P.z = -P.z;
|
||||
|
||||
// Offset to pixel center
|
||||
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
||||
return P;
|
||||
// Offset to pixel center
|
||||
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
||||
return P;
|
||||
}
|
||||
|
||||
/** Reconstructs screen-space unit normal from screen-space position */
|
||||
vec3 reconstructCSFaceNormal(vec3 C) {
|
||||
return normalize(cross(dFdy(C), dFdx(C)));
|
||||
return normalize(cross(dFdy(C), dFdx(C)));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
|
||||
vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR){
|
||||
// Radius relative to ssR
|
||||
float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
|
||||
float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
|
||||
vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
|
||||
// Radius relative to ssR
|
||||
float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
|
||||
float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
|
||||
|
||||
ssR = alpha;
|
||||
return vec2(cos(angle), sin(angle));
|
||||
ssR = alpha;
|
||||
return vec2(cos(angle), sin(angle));
|
||||
}
|
||||
|
||||
|
||||
/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
|
||||
vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
|
||||
// Derivation:
|
||||
// mipLevel = floor(log(ssR / MAX_OFFSET));
|
||||
// Derivation:
|
||||
// mipLevel = floor(log(ssR / MAX_OFFSET));
|
||||
int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
|
||||
|
||||
ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
|
||||
@ -138,98 +130,91 @@ vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
|
||||
// Manually clamp to the texture size because texelFetch bypasses the texture unit
|
||||
ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
|
||||
|
||||
|
||||
if (mipLevel < 1) {
|
||||
//read from depth buffer
|
||||
P.z = texelFetch(source_depth, mipP, 0).r;
|
||||
P.z = P.z * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
||||
|
||||
#endif
|
||||
P.z = -P.z;
|
||||
|
||||
} else {
|
||||
//read from mipmaps
|
||||
uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel-1).r;
|
||||
P.z = -(float(d)/65535.0)*camera_z_far;
|
||||
uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
|
||||
P.z = -(float(d) / 65535.0) * camera_z_far;
|
||||
}
|
||||
|
||||
|
||||
// Offset to pixel center
|
||||
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
||||
|
||||
return P;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
|
||||
to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
|
||||
to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
|
||||
|
||||
Note that units of H() in the HPG12 paper are meters, not
|
||||
unitless. The whole falloff/sampling function is therefore
|
||||
unitless. In this implementation, we factor out (9 / radius).
|
||||
Note that units of H() in the HPG12 paper are meters, not
|
||||
unitless. The whole falloff/sampling function is therefore
|
||||
unitless. In this implementation, we factor out (9 / radius).
|
||||
|
||||
Four versions of the falloff function are implemented below
|
||||
Four versions of the falloff function are implemented below
|
||||
*/
|
||||
float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius,in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
|
||||
// Offset on the unit disk, spun for this pixel
|
||||
float ssR;
|
||||
vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
|
||||
ssR *= ssDiskRadius;
|
||||
float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
|
||||
// Offset on the unit disk, spun for this pixel
|
||||
float ssR;
|
||||
vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
|
||||
ssR *= ssDiskRadius;
|
||||
|
||||
// The occluding point in camera space
|
||||
vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
|
||||
// The occluding point in camera space
|
||||
vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
|
||||
|
||||
vec3 v = Q - C;
|
||||
vec3 v = Q - C;
|
||||
|
||||
float vv = dot(v, v);
|
||||
float vn = dot(v, n_C);
|
||||
float vv = dot(v, v);
|
||||
float vn = dot(v, n_C);
|
||||
|
||||
const float epsilon = 0.01;
|
||||
float radius2 = p_radius*p_radius;
|
||||
const float epsilon = 0.01;
|
||||
float radius2 = p_radius * p_radius;
|
||||
|
||||
// A: From the HPG12 paper
|
||||
// Note large epsilon to avoid overdarkening within cracks
|
||||
//return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
|
||||
// A: From the HPG12 paper
|
||||
// Note large epsilon to avoid overdarkening within cracks
|
||||
//return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
|
||||
|
||||
// B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
|
||||
float f=max(radius2 - vv, 0.0);
|
||||
return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
|
||||
// B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
|
||||
float f = max(radius2 - vv, 0.0);
|
||||
return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
|
||||
|
||||
// C: Medium contrast (which looks better at high radii), no division. Note that the
|
||||
// contribution still falls off with radius^2, but we've adjusted the rate in a way that is
|
||||
// more computationally efficient and happens to be aesthetically pleasing.
|
||||
// return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
|
||||
// C: Medium contrast (which looks better at high radii), no division. Note that the
|
||||
// contribution still falls off with radius^2, but we've adjusted the rate in a way that is
|
||||
// more computationally efficient and happens to be aesthetically pleasing.
|
||||
// return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
|
||||
|
||||
// D: Low contrast, no division operation
|
||||
// return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
|
||||
// D: Low contrast, no division operation
|
||||
// return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
// Pixel being shaded
|
||||
ivec2 ssC = ivec2(gl_FragCoord.xy);
|
||||
|
||||
// World space point being shaded
|
||||
vec3 C = getPosition(ssC);
|
||||
|
||||
/* if (C.z <= -camera_z_far*0.999) {
|
||||
// We're on the skybox
|
||||
visibility=1.0;
|
||||
return;
|
||||
}*/
|
||||
/*
|
||||
if (C.z <= -camera_z_far * 0.999) {
|
||||
// We're on the skybox
|
||||
visibility=1.0;
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
//visibility=-C.z/camera_z_far;
|
||||
//visibility = -C.z / camera_z_far;
|
||||
//return;
|
||||
#if 0
|
||||
vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
|
||||
vec3 n_C = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
|
||||
#else
|
||||
vec3 n_C = reconstructCSFaceNormal(C);
|
||||
n_C = -n_C;
|
||||
@ -251,7 +236,7 @@ void main() {
|
||||
#endif
|
||||
float sum = 0.0;
|
||||
for (int i = 0; i < NUM_SAMPLES; ++i) {
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius,i, randomPatternRotationAngle);
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
|
||||
}
|
||||
|
||||
float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
|
||||
@ -271,10 +256,10 @@ void main() {
|
||||
|
||||
sum = 0.0;
|
||||
for (int i = 0; i < NUM_SAMPLES; ++i) {
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius,radius2, i, randomPatternRotationAngle);
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
|
||||
}
|
||||
|
||||
A= min(A,max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
|
||||
A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
|
||||
#endif
|
||||
// Bilateral box-filter over a quad for free, respecting depth edges
|
||||
// (the difference that this makes is subtle)
|
||||
@ -286,8 +271,4 @@ void main() {
|
||||
}
|
||||
|
||||
visibility = A;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -1,26 +1,21 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = vertex_attrib;
|
||||
gl_Position.z=1.0;
|
||||
gl_Position.z = 1.0;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
uniform sampler2D source_ssao; //texunit:0
|
||||
uniform sampler2D source_depth; //texunit:1
|
||||
uniform sampler2D source_normal; //texunit:3
|
||||
|
||||
|
||||
layout(location = 0) out float visibility;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Tunable Parameters:
|
||||
|
||||
@ -28,18 +23,18 @@ layout(location = 0) out float visibility;
|
||||
uniform float edge_sharpness;
|
||||
|
||||
/** Step in 2-pixel intervals since we already blurred against neighbors in the
|
||||
first AO pass. This constant can be increased while R decreases to improve
|
||||
performance at the expense of some dithering artifacts.
|
||||
first AO pass. This constant can be increased while R decreases to improve
|
||||
performance at the expense of some dithering artifacts.
|
||||
|
||||
Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
|
||||
unobjectionable after shading was applied but eliminated most temporal incoherence
|
||||
from using small numbers of sample taps.
|
||||
*/
|
||||
Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
|
||||
unobjectionable after shading was applied but eliminated most temporal incoherence
|
||||
from using small numbers of sample taps.
|
||||
*/
|
||||
|
||||
uniform int filter_scale;
|
||||
|
||||
/** Filter radius in pixels. This will be multiplied by SCALE. */
|
||||
#define R (4)
|
||||
#define R (4)
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -47,13 +42,13 @@ uniform int filter_scale;
|
||||
|
||||
// Gaussian coefficients
|
||||
const float gaussian[R + 1] =
|
||||
// float[](0.356642, 0.239400, 0.072410, 0.009869);
|
||||
// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
|
||||
float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
|
||||
// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
|
||||
// float[](0.356642, 0.239400, 0.072410, 0.009869);
|
||||
// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
|
||||
float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
|
||||
// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
|
||||
|
||||
/** (1, 0) or (0, 1)*/
|
||||
uniform ivec2 axis;
|
||||
/** (1, 0) or (0, 1) */
|
||||
uniform ivec2 axis;
|
||||
|
||||
uniform float camera_z_far;
|
||||
uniform float camera_z_near;
|
||||
@ -65,18 +60,18 @@ void main() {
|
||||
ivec2 ssC = ivec2(gl_FragCoord.xy);
|
||||
|
||||
float depth = texelFetch(source_depth, ssC, 0).r;
|
||||
//vec3 normal = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
|
||||
//vec3 normal = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
|
||||
|
||||
depth = depth * 2.0 - 1.0;
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
|
||||
float depth_divide = 1.0 / camera_z_far;
|
||||
|
||||
// depth*=depth_divide;
|
||||
//depth *= depth_divide;
|
||||
|
||||
/*
|
||||
if (depth > camera_z_far*0.999) {
|
||||
discard;//skybox
|
||||
if (depth > camera_z_far * 0.999) {
|
||||
discard; //skybox
|
||||
}
|
||||
*/
|
||||
|
||||
@ -96,23 +91,21 @@ void main() {
|
||||
if (r != 0) {
|
||||
|
||||
ivec2 ppos = ssC + axis * (r * filter_scale);
|
||||
float value = texelFetch(source_ssao, clamp(ppos,ivec2(0),clamp_limit), 0).r;
|
||||
ivec2 rpos = clamp(ppos,ivec2(0),clamp_limit);
|
||||
float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
|
||||
ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
|
||||
float temp_depth = texelFetch(source_depth, rpos, 0).r;
|
||||
//vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
|
||||
|
||||
temp_depth = temp_depth * 2.0 - 1.0;
|
||||
temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
|
||||
// temp_depth *= depth_divide;
|
||||
//temp_depth *= depth_divide;
|
||||
|
||||
// spatial domain: offset gaussian tap
|
||||
float weight = 0.3 + gaussian[abs(r)];
|
||||
//weight *= max(0.0,dot(temp_normal,normal));
|
||||
//weight *= max(0.0, dot(temp_normal, normal));
|
||||
|
||||
// range domain (the "bilateral" weight). As depth difference increases, decrease weight.
|
||||
weight *= max(0.0, 1.0
|
||||
- edge_sharpness * abs(temp_depth - depth)
|
||||
);
|
||||
weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
|
||||
|
||||
sum += value * weight;
|
||||
totalWeight += weight;
|
||||
|
@ -1,7 +1,6 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
@ -10,7 +9,6 @@ void main() {
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
#ifdef MINIFY_START
|
||||
|
||||
#define SDEPTH_TYPE highp sampler2D
|
||||
@ -32,28 +30,23 @@ layout(location = 0) out mediump uint depth;
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
ivec2 ssP = ivec2(gl_FragCoord.xy);
|
||||
|
||||
// Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
|
||||
// On DX9, the bit-and can be implemented with floating-point modulo
|
||||
// Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
|
||||
// On DX9, the bit-and can be implemented with floating-point modulo
|
||||
|
||||
#ifdef MINIFY_START
|
||||
float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
|
||||
fdepth = fdepth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
fdepth = ((fdepth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
fdepth /= camera_z_far;
|
||||
depth = uint(clamp(fdepth*65535.0,0.0,65535.0));
|
||||
depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
|
||||
|
||||
#else
|
||||
depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
|
||||
#endif
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,12 +1,10 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
uv_interp = uv_in;
|
||||
@ -19,87 +17,77 @@ void main() {
|
||||
#define QUALIFIER const
|
||||
|
||||
#ifdef USE_25_SAMPLES
|
||||
|
||||
const int kernel_size=25;
|
||||
const int kernel_size = 25;
|
||||
QUALIFIER vec2 kernel[25] = vec2[] (
|
||||
vec2(0.530605, 0.0),
|
||||
vec2(0.000973794, -3.0),
|
||||
vec2(0.00333804, -2.52083),
|
||||
vec2(0.00500364, -2.08333),
|
||||
vec2(0.00700976, -1.6875),
|
||||
vec2(0.0094389, -1.33333),
|
||||
vec2(0.0128496, -1.02083),
|
||||
vec2(0.017924, -0.75),
|
||||
vec2(0.0263642, -0.520833),
|
||||
vec2(0.0410172, -0.333333),
|
||||
vec2(0.0493588, -0.1875),
|
||||
vec2(0.0402784, -0.0833333),
|
||||
vec2(0.0211412, -0.0208333),
|
||||
vec2(0.0211412, 0.0208333),
|
||||
vec2(0.0402784, 0.0833333),
|
||||
vec2(0.0493588, 0.1875),
|
||||
vec2(0.0410172, 0.333333),
|
||||
vec2(0.0263642, 0.520833),
|
||||
vec2(0.017924, 0.75),
|
||||
vec2(0.0128496, 1.02083),
|
||||
vec2(0.0094389, 1.33333),
|
||||
vec2(0.00700976, 1.6875),
|
||||
vec2(0.00500364, 2.08333),
|
||||
vec2(0.00333804, 2.52083),
|
||||
vec2(0.000973794, 3.0)
|
||||
vec2(0.530605, 0.0),
|
||||
vec2(0.000973794, -3.0),
|
||||
vec2(0.00333804, -2.52083),
|
||||
vec2(0.00500364, -2.08333),
|
||||
vec2(0.00700976, -1.6875),
|
||||
vec2(0.0094389, -1.33333),
|
||||
vec2(0.0128496, -1.02083),
|
||||
vec2(0.017924, -0.75),
|
||||
vec2(0.0263642, -0.520833),
|
||||
vec2(0.0410172, -0.333333),
|
||||
vec2(0.0493588, -0.1875),
|
||||
vec2(0.0402784, -0.0833333),
|
||||
vec2(0.0211412, -0.0208333),
|
||||
vec2(0.0211412, 0.0208333),
|
||||
vec2(0.0402784, 0.0833333),
|
||||
vec2(0.0493588, 0.1875),
|
||||
vec2(0.0410172, 0.333333),
|
||||
vec2(0.0263642, 0.520833),
|
||||
vec2(0.017924, 0.75),
|
||||
vec2(0.0128496, 1.02083),
|
||||
vec2(0.0094389, 1.33333),
|
||||
vec2(0.00700976, 1.6875),
|
||||
vec2(0.00500364, 2.08333),
|
||||
vec2(0.00333804, 2.52083),
|
||||
vec2(0.000973794, 3.0)
|
||||
);
|
||||
|
||||
#endif //USE_25_SAMPLES
|
||||
|
||||
#ifdef USE_17_SAMPLES
|
||||
|
||||
const int kernel_size=17;
|
||||
|
||||
const int kernel_size = 17;
|
||||
QUALIFIER vec2 kernel[17] = vec2[](
|
||||
vec2(0.536343, 0.0),
|
||||
vec2(0.00317394, -2.0),
|
||||
vec2(0.0100386, -1.53125),
|
||||
vec2(0.0144609, -1.125),
|
||||
vec2(0.0216301, -0.78125),
|
||||
vec2(0.0347317, -0.5),
|
||||
vec2(0.0571056, -0.28125),
|
||||
vec2(0.0582416, -0.125),
|
||||
vec2(0.0324462, -0.03125),
|
||||
vec2(0.0324462, 0.03125),
|
||||
vec2(0.0582416, 0.125),
|
||||
vec2(0.0571056, 0.28125),
|
||||
vec2(0.0347317, 0.5),
|
||||
vec2(0.0216301, 0.78125),
|
||||
vec2(0.0144609, 1.125),
|
||||
vec2(0.0100386, 1.53125),
|
||||
vec2(0.00317394,2.0)
|
||||
vec2(0.536343, 0.0),
|
||||
vec2(0.00317394, -2.0),
|
||||
vec2(0.0100386, -1.53125),
|
||||
vec2(0.0144609, -1.125),
|
||||
vec2(0.0216301, -0.78125),
|
||||
vec2(0.0347317, -0.5),
|
||||
vec2(0.0571056, -0.28125),
|
||||
vec2(0.0582416, -0.125),
|
||||
vec2(0.0324462, -0.03125),
|
||||
vec2(0.0324462, 0.03125),
|
||||
vec2(0.0582416, 0.125),
|
||||
vec2(0.0571056, 0.28125),
|
||||
vec2(0.0347317, 0.5),
|
||||
vec2(0.0216301, 0.78125),
|
||||
vec2(0.0144609, 1.125),
|
||||
vec2(0.0100386, 1.53125),
|
||||
vec2(0.00317394, 2.0)
|
||||
);
|
||||
|
||||
#endif //USE_17_SAMPLES
|
||||
|
||||
|
||||
#ifdef USE_11_SAMPLES
|
||||
|
||||
const int kernel_size=11;
|
||||
|
||||
const int kernel_size = 11;
|
||||
QUALIFIER vec2 kernel[11] = vec2[](
|
||||
vec2(0.560479, 0.0),
|
||||
vec2(0.00471691, -2.0),
|
||||
vec2(0.0192831, -1.28),
|
||||
vec2(0.03639, -0.72),
|
||||
vec2(0.0821904, -0.32),
|
||||
vec2(0.0771802, -0.08),
|
||||
vec2(0.0771802, 0.08),
|
||||
vec2(0.0821904, 0.32),
|
||||
vec2(0.03639, 0.72),
|
||||
vec2(0.0192831, 1.28),
|
||||
vec2(0.00471691,2.0)
|
||||
vec2(0.560479, 0.0),
|
||||
vec2(0.00471691, -2.0),
|
||||
vec2(0.0192831, -1.28),
|
||||
vec2(0.03639, -0.72),
|
||||
vec2(0.0821904, -0.32),
|
||||
vec2(0.0771802, -0.08),
|
||||
vec2(0.0771802, 0.08),
|
||||
vec2(0.0821904, 0.32),
|
||||
vec2(0.03639, 0.72),
|
||||
vec2(0.0192831, 1.28),
|
||||
vec2(0.00471691, 2.0)
|
||||
);
|
||||
|
||||
#endif //USE_11_SAMPLES
|
||||
|
||||
|
||||
|
||||
uniform float max_radius;
|
||||
uniform float camera_z_far;
|
||||
uniform float camera_z_near;
|
||||
@ -115,28 +103,24 @@ layout(location = 0) out vec4 frag_color;
|
||||
|
||||
void main() {
|
||||
|
||||
float strength = texture(source_sss,uv_interp).r;
|
||||
strength*=strength; //stored as sqrt
|
||||
float strength = texture(source_sss, uv_interp).r;
|
||||
strength *= strength; //stored as sqrt
|
||||
|
||||
// Fetch color of current pixel:
|
||||
vec4 base_color = texture(source_diffuse, uv_interp);
|
||||
|
||||
|
||||
if (strength>0.0) {
|
||||
|
||||
if (strength > 0.0) {
|
||||
|
||||
// Fetch linear depth of current pixel:
|
||||
float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
float scale = unit_size; //remember depth is negative by default in OpenGL
|
||||
#else
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
float scale = unit_size / depth; //remember depth is negative by default in OpenGL
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
// Calculate the final step to fetch the surrounding pixels:
|
||||
vec2 step = max_radius * scale * dir;
|
||||
step *= strength; // Modulate it using the alpha channel.
|
||||
@ -157,35 +141,33 @@ void main() {
|
||||
|
||||
#ifdef ENABLE_FOLLOW_SURFACE
|
||||
// If the difference in depth is huge, we lerp color back to "colorM":
|
||||
float depth_cmp = texture(source_depth, offset).r *2.0 - 1.0;
|
||||
float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
|
||||
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
|
||||
float s = clamp(300.0f * scale *
|
||||
max_radius * abs(depth - depth_cmp),0.0,1.0);
|
||||
float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
|
||||
color = mix(color, base_color.rgb, s);
|
||||
#endif
|
||||
|
||||
// Accumulate:
|
||||
color*=kernel[i].x;
|
||||
color *= kernel[i].x;
|
||||
|
||||
#ifdef ENABLE_STRENGTH_WEIGHTING
|
||||
float color_s = texture(source_sss, offset).r;
|
||||
color_weight+=color_s * kernel[i].x;
|
||||
color*=color_s;
|
||||
color_weight += color_s * kernel[i].x;
|
||||
color *= color_s;
|
||||
#endif
|
||||
color_accum += color;
|
||||
|
||||
}
|
||||
|
||||
#ifdef ENABLE_STRENGTH_WEIGHTING
|
||||
color_accum/=color_weight;
|
||||
color_accum /= color_weight;
|
||||
#endif
|
||||
frag_color = vec4(color_accum,base_color.a); //keep alpha (used for SSAO)
|
||||
frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
|
||||
} else {
|
||||
frag_color = base_color;
|
||||
}
|
||||
|
@ -1,25 +1,24 @@
|
||||
[vertex]
|
||||
|
||||
layout (location = 0) in highp vec4 vertex_attrib;
|
||||
layout (location = 4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
void main()
|
||||
{
|
||||
void main() {
|
||||
gl_Position = vertex_attrib;
|
||||
|
||||
uv_interp = uv_in;
|
||||
|
||||
#ifdef V_FLIP
|
||||
uv_interp.y = 1.0f - uv_interp.y;
|
||||
#endif
|
||||
#ifdef V_FLIP
|
||||
uv_interp.y = 1.0f - uv_interp.y;
|
||||
#endif
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
#if !defined(GLES_OVER_GL)
|
||||
precision mediump float;
|
||||
precision mediump float;
|
||||
#endif
|
||||
|
||||
in vec2 uv_interp;
|
||||
@ -30,109 +29,99 @@ uniform float exposure;
|
||||
uniform float white;
|
||||
|
||||
#ifdef USE_AUTO_EXPOSURE
|
||||
uniform highp sampler2D source_auto_exposure; //texunit:1
|
||||
uniform highp float auto_exposure_grey;
|
||||
uniform highp sampler2D source_auto_exposure; //texunit:1
|
||||
uniform highp float auto_exposure_grey;
|
||||
#endif
|
||||
|
||||
#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
|
||||
#define USING_GLOW // only use glow when at least one glow level is selected
|
||||
#define USING_GLOW // only use glow when at least one glow level is selected
|
||||
|
||||
uniform highp sampler2D source_glow; //texunit:2
|
||||
uniform highp float glow_intensity;
|
||||
uniform highp sampler2D source_glow; //texunit:2
|
||||
uniform highp float glow_intensity;
|
||||
#endif
|
||||
|
||||
#ifdef USE_BCS
|
||||
uniform vec3 bcs;
|
||||
uniform vec3 bcs;
|
||||
#endif
|
||||
|
||||
#ifdef USE_COLOR_CORRECTION
|
||||
uniform sampler2D color_correction; //texunit:3
|
||||
uniform sampler2D color_correction; //texunit:3
|
||||
#endif
|
||||
|
||||
layout (location = 0) out vec4 frag_color;
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef USE_GLOW_FILTER_BICUBIC
|
||||
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
||||
float w0(float a)
|
||||
{
|
||||
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
|
||||
}
|
||||
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
||||
float w0(float a) {
|
||||
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
|
||||
}
|
||||
|
||||
float w1(float a)
|
||||
{
|
||||
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
||||
}
|
||||
float w1(float a) {
|
||||
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
||||
}
|
||||
|
||||
float w2(float a)
|
||||
{
|
||||
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
||||
}
|
||||
float w2(float a) {
|
||||
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
||||
}
|
||||
|
||||
float w3(float a)
|
||||
{
|
||||
return (1.0f / 6.0f) * (a * a * a);
|
||||
}
|
||||
float w3(float a) {
|
||||
return (1.0f / 6.0f) * (a * a * a);
|
||||
}
|
||||
|
||||
// g0 and g1 are the two amplitude functions
|
||||
float g0(float a)
|
||||
{
|
||||
return w0(a) + w1(a);
|
||||
}
|
||||
// g0 and g1 are the two amplitude functions
|
||||
float g0(float a) {
|
||||
return w0(a) + w1(a);
|
||||
}
|
||||
|
||||
float g1(float a)
|
||||
{
|
||||
return w2(a) + w3(a);
|
||||
}
|
||||
float g1(float a) {
|
||||
return w2(a) + w3(a);
|
||||
}
|
||||
|
||||
// h0 and h1 are the two offset functions
|
||||
float h0(float a)
|
||||
{
|
||||
return -1.0f + w1(a) / (w0(a) + w1(a));
|
||||
}
|
||||
// h0 and h1 are the two offset functions
|
||||
float h0(float a) {
|
||||
return -1.0f + w1(a) / (w0(a) + w1(a));
|
||||
}
|
||||
|
||||
float h1(float a)
|
||||
{
|
||||
return 1.0f + w3(a) / (w2(a) + w3(a));
|
||||
}
|
||||
float h1(float a) {
|
||||
return 1.0f + w3(a) / (w2(a) + w3(a));
|
||||
}
|
||||
|
||||
uniform ivec2 glow_texture_size;
|
||||
uniform ivec2 glow_texture_size;
|
||||
|
||||
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod)
|
||||
{
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(glow_texture_size >> p_lod);
|
||||
vec2 pixel_size = vec2(1.0f) / tex_size;
|
||||
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(glow_texture_size >> p_lod);
|
||||
vec2 pixel_size = vec2(1.0f) / tex_size;
|
||||
|
||||
uv = uv * tex_size + vec2(0.5f);
|
||||
uv = uv * tex_size + vec2(0.5f);
|
||||
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
float h0x = h0(fuv.x);
|
||||
float h1x = h1(fuv.x);
|
||||
float h0y = h0(fuv.y);
|
||||
float h1y = h1(fuv.y);
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
float h0x = h0(fuv.x);
|
||||
float h1x = h1(fuv.x);
|
||||
float h0y = h0(fuv.y);
|
||||
float h1y = h1(fuv.y);
|
||||
|
||||
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
|
||||
return g0(fuv.y) * (g0x * textureLod(tex, p0,lod) +
|
||||
g1x * textureLod(tex, p1,lod)) +
|
||||
g1(fuv.y) * (g0x * textureLod(tex, p2,lod) +
|
||||
g1x * textureLod(tex, p3,lod));
|
||||
}
|
||||
return g0(fuv.y) * (g0x * textureLod(tex, p0, lod) +
|
||||
g1x * textureLod(tex, p1, lod)) +
|
||||
g1(fuv.y) * (g0x * textureLod(tex, p2, lod) +
|
||||
g1x * textureLod(tex, p3, lod));
|
||||
}
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
#else
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
|
||||
#endif
|
||||
|
||||
vec3 tonemap_filmic(vec3 color, float white)
|
||||
{
|
||||
vec3 tonemap_filmic(vec3 color, float white) {
|
||||
const float A = 0.15f;
|
||||
const float B = 0.50f;
|
||||
const float C = 0.10f;
|
||||
@ -147,8 +136,7 @@ vec3 tonemap_filmic(vec3 color, float white)
|
||||
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
|
||||
}
|
||||
|
||||
vec3 tonemap_aces(vec3 color, float white)
|
||||
{
|
||||
vec3 tonemap_aces(vec3 color, float white) {
|
||||
const float A = 2.51f;
|
||||
const float B = 0.03f;
|
||||
const float C = 2.43f;
|
||||
@ -161,96 +149,90 @@ vec3 tonemap_aces(vec3 color, float white)
|
||||
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
|
||||
}
|
||||
|
||||
vec3 tonemap_reindhart(vec3 color, float white)
|
||||
{
|
||||
vec3 tonemap_reindhart(vec3 color, float white) {
|
||||
return clamp((color) / (1.0f + color) * (1.0f + (color / (white))), vec3(0.0f), vec3(1.0f)); // whitepoint is probably not in linear space here!
|
||||
}
|
||||
|
||||
vec3 linear_to_srgb(vec3 color) // convert linear rgb to srgb, assumes clamped input in range [0;1]
|
||||
{
|
||||
vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1]
|
||||
const vec3 a = vec3(0.055f);
|
||||
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
|
||||
}
|
||||
|
||||
vec3 apply_tonemapping(vec3 color, float white) // inputs are LINEAR, always outputs clamped [0;1] color
|
||||
{
|
||||
#ifdef USE_REINDHART_TONEMAPPER
|
||||
return tonemap_reindhart(color, white);
|
||||
#endif
|
||||
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR, always outputs clamped [0;1] color
|
||||
#ifdef USE_REINDHART_TONEMAPPER
|
||||
return tonemap_reindhart(color, white);
|
||||
#endif
|
||||
|
||||
#ifdef USE_FILMIC_TONEMAPPER
|
||||
return tonemap_filmic(color, white);
|
||||
#endif
|
||||
#ifdef USE_FILMIC_TONEMAPPER
|
||||
return tonemap_filmic(color, white);
|
||||
#endif
|
||||
|
||||
#ifdef USE_ACES_TONEMAPPER
|
||||
return tonemap_aces(color, white);
|
||||
#endif
|
||||
#ifdef USE_ACES_TONEMAPPER
|
||||
return tonemap_aces(color, white);
|
||||
#endif
|
||||
|
||||
return clamp(color, vec3(0.0f), vec3(1.0f)); // no other seleced -> linear
|
||||
}
|
||||
|
||||
vec3 gather_glow(sampler2D tex, vec2 uv) // sample all selected glow levels
|
||||
{
|
||||
vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
|
||||
vec3 glow = vec3(0.0f);
|
||||
|
||||
#ifdef USE_GLOW_LEVEL1
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL1
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL2
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL2
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL3
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL3
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL4
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL4
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL5
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL5
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL6
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL6
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL7
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
|
||||
#endif
|
||||
#ifdef USE_GLOW_LEVEL7
|
||||
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
|
||||
#endif
|
||||
|
||||
return glow;
|
||||
}
|
||||
|
||||
vec3 apply_glow(vec3 color, vec3 glow) // apply glow using the selected blending mode
|
||||
{
|
||||
#ifdef USE_GLOW_REPLACE
|
||||
color = glow;
|
||||
#endif
|
||||
vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode
|
||||
#ifdef USE_GLOW_REPLACE
|
||||
color = glow;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_SCREEN
|
||||
color = max((color + glow) - (color * glow), vec3(0.0));
|
||||
#endif
|
||||
#ifdef USE_GLOW_SCREEN
|
||||
color = max((color + glow) - (color * glow), vec3(0.0));
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_SOFTLIGHT
|
||||
glow = glow * vec3(0.5f) + vec3(0.5f);
|
||||
#ifdef USE_GLOW_SOFTLIGHT
|
||||
glow = glow * vec3(0.5f) + vec3(0.5f);
|
||||
|
||||
color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
|
||||
color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
|
||||
color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
|
||||
#endif
|
||||
color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
|
||||
color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
|
||||
color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
|
||||
#endif
|
||||
|
||||
#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
|
||||
color += glow;
|
||||
#endif
|
||||
#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
|
||||
color += glow;
|
||||
#endif
|
||||
|
||||
return color;
|
||||
}
|
||||
|
||||
vec3 apply_bcs(vec3 color, vec3 bcs)
|
||||
{
|
||||
vec3 apply_bcs(vec3 color, vec3 bcs) {
|
||||
color = mix(vec3(0.0f), color, bcs.x);
|
||||
color = mix(vec3(0.5f), color, bcs.y);
|
||||
color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z);
|
||||
@ -258,8 +240,7 @@ vec3 apply_bcs(vec3 color, vec3 bcs)
|
||||
return color;
|
||||
}
|
||||
|
||||
vec3 apply_color_correction(vec3 color, sampler2D correction_tex)
|
||||
{
|
||||
vec3 apply_color_correction(vec3 color, sampler2D correction_tex) {
|
||||
color.r = texture(correction_tex, vec2(color.r, 0.0f)).r;
|
||||
color.g = texture(correction_tex, vec2(color.g, 0.0f)).g;
|
||||
color.b = texture(correction_tex, vec2(color.b, 0.0f)).b;
|
||||
@ -267,15 +248,14 @@ vec3 apply_color_correction(vec3 color, sampler2D correction_tex)
|
||||
return color;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
void main() {
|
||||
vec3 color = textureLod(source, uv_interp, 0.0f).rgb;
|
||||
|
||||
// Exposure
|
||||
|
||||
#ifdef USE_AUTO_EXPOSURE
|
||||
color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
|
||||
#endif
|
||||
#ifdef USE_AUTO_EXPOSURE
|
||||
color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
|
||||
#endif
|
||||
|
||||
color *= exposure;
|
||||
|
||||
@ -283,33 +263,33 @@ void main()
|
||||
|
||||
color = apply_tonemapping(color, white);
|
||||
|
||||
#ifdef KEEP_3D_LINEAR
|
||||
// leave color as is (-> don't convert to SRGB)
|
||||
#else
|
||||
color = linear_to_srgb(color); // regular linear -> SRGB conversion
|
||||
#endif
|
||||
#ifdef KEEP_3D_LINEAR
|
||||
// leave color as is (-> don't convert to SRGB)
|
||||
#else
|
||||
color = linear_to_srgb(color); // regular linear -> SRGB conversion
|
||||
#endif
|
||||
|
||||
// Glow
|
||||
|
||||
#ifdef USING_GLOW
|
||||
vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
|
||||
#ifdef USING_GLOW
|
||||
vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
|
||||
|
||||
// high dynamic range -> SRGB
|
||||
glow = apply_tonemapping(glow, white);
|
||||
glow = linear_to_srgb(glow);
|
||||
// high dynamic range -> SRGB
|
||||
glow = apply_tonemapping(glow, white);
|
||||
glow = linear_to_srgb(glow);
|
||||
|
||||
color = apply_glow(color, glow);
|
||||
#endif
|
||||
color = apply_glow(color, glow);
|
||||
#endif
|
||||
|
||||
// Additional effects
|
||||
|
||||
#ifdef USE_BCS
|
||||
color = apply_bcs(color, bcs);
|
||||
#endif
|
||||
#ifdef USE_BCS
|
||||
color = apply_bcs(color, bcs);
|
||||
#endif
|
||||
|
||||
#ifdef USE_COLOR_CORRECTION
|
||||
color = apply_color_correction(color, color_correction);
|
||||
#endif
|
||||
#ifdef USE_COLOR_CORRECTION
|
||||
color = apply_color_correction(color, color_correction);
|
||||
#endif
|
||||
|
||||
frag_color = vec4(color, 1.0f);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user