CSGPolygon fixes and features: Angle simplification, UV tiling distance, interval type.

This commit is contained in:
jitspoe 2021-09-09 08:19:46 -04:00
parent 8abd46096a
commit 1da948a688
3 changed files with 308 additions and 189 deletions

View File

@ -1732,6 +1732,7 @@ CSGBrush *CSGPolygon3D::_build_brush() {
int extrusion_face_count = shape_sides * 2;
int end_count = 0;
int shape_face_count = shape_faces.size() / 3;
real_t curve_length = 1.0;
switch (mode) {
case MODE_DEPTH:
extrusions = 1;
@ -1744,7 +1745,12 @@ CSGBrush *CSGPolygon3D::_build_brush() {
}
break;
case MODE_PATH: {
extrusions = Math::ceil(1.0 * curve->get_point_count() / path_interval);
curve_length = curve->get_baked_length();
if (path_interval_type == PATH_INTERVAL_DISTANCE) {
extrusions = MAX(1, Math::ceil(curve_length / path_interval)) + 1;
} else {
extrusions = Math::ceil(1.0 * curve->get_point_count() / path_interval);
}
if (!path_joined) {
end_count = 2;
extrusions -= 1;
@ -1767,212 +1773,245 @@ CSGBrush *CSGPolygon3D::_build_brush() {
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
int faces_removed = 0;
Vector3 *facesw = faces.ptrw();
Vector2 *uvsw = uvs.ptrw();
bool *smoothw = smooth.ptrw();
Ref<Material> *materialsw = materials.ptrw();
bool *invertw = invert.ptrw();
{
Vector3 *facesw = faces.ptrw();
Vector2 *uvsw = uvs.ptrw();
bool *smoothw = smooth.ptrw();
Ref<Material> *materialsw = materials.ptrw();
bool *invertw = invert.ptrw();
int face = 0;
Transform3D base_xform;
Transform3D current_xform;
Transform3D previous_xform;
double u_step = 1.0 / extrusions;
double v_step = 1.0 / shape_sides;
double spin_step = Math::deg2rad(spin_degrees / spin_sides);
double extrusion_step = 1.0 / extrusions;
if (mode == MODE_PATH) {
if (path_joined) {
extrusion_step = 1.0 / (extrusions - 1);
int face = 0;
Transform3D base_xform;
Transform3D current_xform;
Transform3D previous_xform;
Transform3D previous_previous_xform;
double u_step = 1.0 / extrusions;
if (path_u_distance > 0.0) {
u_step *= curve_length / path_u_distance;
}
extrusion_step *= curve->get_baked_length();
}
if (mode == MODE_PATH) {
if (!path_local) {
base_xform = path->get_global_transform();
double v_step = 1.0 / shape_sides;
double spin_step = Math::deg2rad(spin_degrees / spin_sides);
double extrusion_step = 1.0 / extrusions;
if (mode == MODE_PATH) {
if (path_joined) {
extrusion_step = 1.0 / (extrusions - 1);
}
extrusion_step *= curve_length;
}
Vector3 current_point = curve->interpolate_baked(0);
Vector3 next_point = curve->interpolate_baked(extrusion_step);
Vector3 current_up = Vector3(0, 1, 0);
Vector3 direction = next_point - current_point;
if (path_joined) {
Vector3 last_point = curve->interpolate_baked(curve->get_baked_length());
direction = next_point - last_point;
}
switch (path_rotation) {
case PATH_ROTATION_POLYGON:
direction = Vector3(0, 0, -1);
break;
case PATH_ROTATION_PATH:
break;
case PATH_ROTATION_PATH_FOLLOW:
current_up = curve->interpolate_baked_up_vector(0);
break;
}
Transform3D facing = Transform3D().looking_at(direction, current_up);
current_xform = base_xform.translated(current_point) * facing;
}
// Create the mesh.
if (end_count > 0) {
// Add front end face.
for (int face_idx = 0; face_idx < shape_face_count; face_idx++) {
for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) {
// We need to reverse the rotation of the shape face vertices.
int index = shape_faces[face_idx * 3 + 2 - face_vertex_idx];
Point2 p = shape_polygon[index];
Point2 uv = (p - shape_rect.position) / shape_rect.size;
// Use the left side of the bottom half of the y-inverted texture.
uv.x = uv.x / 2;
uv.y = 1 - (uv.y / 2);
facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0));
uvsw[face * 3 + face_vertex_idx] = uv;
if (mode == MODE_PATH) {
if (!path_local) {
base_xform = path->get_global_transform();
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_faces;
face++;
Vector3 current_point = curve->interpolate_baked(0);
Vector3 next_point = curve->interpolate_baked(extrusion_step);
Vector3 current_up = Vector3(0, 1, 0);
Vector3 direction = next_point - current_point;
if (path_joined) {
Vector3 last_point = curve->interpolate_baked(curve->get_baked_length());
direction = next_point - last_point;
}
switch (path_rotation) {
case PATH_ROTATION_POLYGON:
direction = Vector3(0, 0, -1);
break;
case PATH_ROTATION_PATH:
break;
case PATH_ROTATION_PATH_FOLLOW:
current_up = curve->interpolate_baked_up_vector(0);
break;
}
Transform3D facing = Transform3D().looking_at(direction, current_up);
current_xform = base_xform.translated(current_point) * facing;
}
}
// Add extrusion faces.
for (int x0 = 0; x0 < extrusions; x0++) {
previous_xform = current_xform;
// Create the mesh.
if (end_count > 0) {
// Add front end face.
for (int face_idx = 0; face_idx < shape_face_count; face_idx++) {
for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) {
// We need to reverse the rotation of the shape face vertices.
int index = shape_faces[face_idx * 3 + 2 - face_vertex_idx];
Point2 p = shape_polygon[index];
Point2 uv = (p - shape_rect.position) / shape_rect.size;
switch (mode) {
case MODE_DEPTH: {
current_xform.translate(Vector3(0, 0, -depth));
} break;
case MODE_SPIN: {
current_xform.rotate(Vector3(0, 1, 0), spin_step);
} break;
case MODE_PATH: {
double previous_offset = x0 * extrusion_step;
double current_offset = (x0 + 1) * extrusion_step;
double next_offset = (x0 + 2) * extrusion_step;
if (x0 == extrusions - 1) {
if (path_joined) {
current_offset = 0;
next_offset = extrusion_step;
} else {
next_offset = current_offset;
// Use the left side of the bottom half of the y-inverted texture.
uv.x = uv.x / 2;
uv.y = 1 - (uv.y / 2);
facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0));
uvsw[face * 3 + face_vertex_idx] = uv;
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_faces;
face++;
}
}
real_t angle_simplify_dot = Math::cos(Math::deg2rad(path_simplify_angle));
Vector3 previous_simplify_dir = Vector3(0, 0, 0);
int faces_combined = 0;
// Add extrusion faces.
for (int x0 = 0; x0 < extrusions; x0++) {
previous_previous_xform = previous_xform;
previous_xform = current_xform;
switch (mode) {
case MODE_DEPTH: {
current_xform.translate(Vector3(0, 0, -depth));
} break;
case MODE_SPIN: {
current_xform.rotate(Vector3(0, 1, 0), spin_step);
} break;
case MODE_PATH: {
double previous_offset = x0 * extrusion_step;
double current_offset = (x0 + 1) * extrusion_step;
double next_offset = (x0 + 2) * extrusion_step;
if (x0 == extrusions - 1) {
if (path_joined) {
current_offset = 0;
next_offset = extrusion_step;
} else {
next_offset = current_offset;
}
}
}
Vector3 previous_point = curve->interpolate_baked(previous_offset);
Vector3 current_point = curve->interpolate_baked(current_offset);
Vector3 next_point = curve->interpolate_baked(next_offset);
Vector3 current_up = Vector3(0, 1, 0);
Vector3 direction = next_point - previous_point;
Vector3 previous_point = curve->interpolate_baked(previous_offset);
Vector3 current_point = curve->interpolate_baked(current_offset);
Vector3 next_point = curve->interpolate_baked(next_offset);
Vector3 current_up = Vector3(0, 1, 0);
Vector3 direction = next_point - previous_point;
Vector3 current_dir = (current_point - previous_point).normalized();
switch (path_rotation) {
case PATH_ROTATION_POLYGON:
direction = Vector3(0, 0, -1);
break;
case PATH_ROTATION_PATH:
break;
case PATH_ROTATION_PATH_FOLLOW:
current_up = curve->interpolate_baked_up_vector(current_offset);
break;
}
// If the angles are similar, remove the previous face and replace it with this one.
if (path_simplify_angle > 0.0 && x0 > 0 && previous_simplify_dir.dot(current_dir) > angle_simplify_dot) {
faces_combined += 1;
previous_xform = previous_previous_xform;
face -= extrusion_face_count;
faces_removed += extrusion_face_count;
} else {
faces_combined = 0;
previous_simplify_dir = current_dir;
}
Transform3D facing = Transform3D().looking_at(direction, current_up);
current_xform = base_xform.translated(current_point) * facing;
} break;
}
switch (path_rotation) {
case PATH_ROTATION_POLYGON:
direction = Vector3(0, 0, -1);
break;
case PATH_ROTATION_PATH:
break;
case PATH_ROTATION_PATH_FOLLOW:
current_up = curve->interpolate_baked_up_vector(current_offset);
break;
}
double u0 = x0 * u_step;
double u1 = ((x0 + 1) * u_step);
if (mode == MODE_PATH && !path_continuous_u) {
u0 = 0.0;
u1 = 1.0;
}
for (int y0 = 0; y0 < shape_sides; y0++) {
int y1 = (y0 + 1) % shape_sides;
// Use the top half of the texture.
double v0 = (y0 * v_step) / 2;
double v1 = ((y0 + 1) * v_step) / 2;
Vector3 v[4] = {
previous_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)),
current_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)),
current_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)),
previous_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)),
};
Vector2 u[4] = {
Vector2(u0, v0),
Vector2(u1, v0),
Vector2(u1, v1),
Vector2(u0, v1),
};
// Face 1
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_faces;
materialsw[face] = material;
face++;
// Face 2
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_faces;
materialsw[face] = material;
face++;
}
}
if (end_count > 1) {
// Add back end face.
for (int face_idx = 0; face_idx < shape_face_count; face_idx++) {
for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) {
int index = shape_faces[face_idx * 3 + face_vertex_idx];
Point2 p = shape_polygon[index];
Point2 uv = (p - shape_rect.position) / shape_rect.size;
// Use the x-inverted ride side of the bottom half of the y-inverted texture.
uv.x = 1 - uv.x / 2;
uv.y = 1 - (uv.y / 2);
facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0));
uvsw[face * 3 + face_vertex_idx] = uv;
Transform3D facing = Transform3D().looking_at(direction, current_up);
current_xform = base_xform.translated(current_point) * facing;
} break;
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_faces;
face++;
double u0 = (x0 - faces_combined) * u_step;
double u1 = ((x0 + 1) * u_step);
if (mode == MODE_PATH && !path_continuous_u) {
u0 = 0.0;
u1 = 1.0;
}
for (int y0 = 0; y0 < shape_sides; y0++) {
int y1 = (y0 + 1) % shape_sides;
// Use the top half of the texture.
double v0 = (y0 * v_step) / 2;
double v1 = ((y0 + 1) * v_step) / 2;
Vector3 v[4] = {
previous_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)),
current_xform.xform(Vector3(shape_polygon[y0].x, shape_polygon[y0].y, 0)),
current_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)),
previous_xform.xform(Vector3(shape_polygon[y1].x, shape_polygon[y1].y, 0)),
};
Vector2 u[4] = {
Vector2(u0, v0),
Vector2(u1, v0),
Vector2(u1, v1),
Vector2(u0, v1),
};
// Face 1
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_faces;
materialsw[face] = material;
face++;
// Face 2
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_faces;
materialsw[face] = material;
face++;
}
}
if (end_count > 1) {
// Add back end face.
for (int face_idx = 0; face_idx < shape_face_count; face_idx++) {
for (int face_vertex_idx = 0; face_vertex_idx < 3; face_vertex_idx++) {
int index = shape_faces[face_idx * 3 + face_vertex_idx];
Point2 p = shape_polygon[index];
Point2 uv = (p - shape_rect.position) / shape_rect.size;
// Use the x-inverted ride side of the bottom half of the y-inverted texture.
uv.x = 1 - uv.x / 2;
uv.y = 1 - (uv.y / 2);
facesw[face * 3 + face_vertex_idx] = current_xform.xform(Vector3(p.x, p.y, 0));
uvsw[face * 3 + face_vertex_idx] = uv;
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_faces;
face++;
}
}
face_count -= faces_removed;
ERR_FAIL_COND_V_MSG(face != face_count, brush, "Bug: Failed to create the CSGPolygon mesh correctly.");
}
ERR_FAIL_COND_V_MSG(face != face_count, brush, "Bug: Failed to create the CSGPolygon mesh correctly.");
if (faces_removed > 0) {
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
@ -2031,9 +2070,15 @@ void CSGPolygon3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_path_node", "path"), &CSGPolygon3D::set_path_node);
ClassDB::bind_method(D_METHOD("get_path_node"), &CSGPolygon3D::get_path_node);
ClassDB::bind_method(D_METHOD("set_path_interval_type", "interval_type"), &CSGPolygon3D::set_path_interval_type);
ClassDB::bind_method(D_METHOD("get_path_interval_type"), &CSGPolygon3D::get_path_interval_type);
ClassDB::bind_method(D_METHOD("set_path_interval", "interval"), &CSGPolygon3D::set_path_interval);
ClassDB::bind_method(D_METHOD("get_path_interval"), &CSGPolygon3D::get_path_interval);
ClassDB::bind_method(D_METHOD("set_path_simplify_angle", "degrees"), &CSGPolygon3D::set_path_simplify_angle);
ClassDB::bind_method(D_METHOD("get_path_simplify_angle"), &CSGPolygon3D::get_path_simplify_angle);
ClassDB::bind_method(D_METHOD("set_path_rotation", "path_rotation"), &CSGPolygon3D::set_path_rotation);
ClassDB::bind_method(D_METHOD("get_path_rotation"), &CSGPolygon3D::get_path_rotation);
@ -2043,6 +2088,9 @@ void CSGPolygon3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_path_continuous_u", "enable"), &CSGPolygon3D::set_path_continuous_u);
ClassDB::bind_method(D_METHOD("is_path_continuous_u"), &CSGPolygon3D::is_path_continuous_u);
ClassDB::bind_method(D_METHOD("set_path_u_distance", "distance"), &CSGPolygon3D::set_path_u_distance);
ClassDB::bind_method(D_METHOD("get_path_u_distance"), &CSGPolygon3D::get_path_u_distance);
ClassDB::bind_method(D_METHOD("set_path_joined", "enable"), &CSGPolygon3D::set_path_joined);
ClassDB::bind_method(D_METHOD("is_path_joined"), &CSGPolygon3D::is_path_joined);
@ -2061,10 +2109,13 @@ void CSGPolygon3D::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "spin_degrees", PROPERTY_HINT_RANGE, "1,360,0.1"), "set_spin_degrees", "get_spin_degrees");
ADD_PROPERTY(PropertyInfo(Variant::INT, "spin_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_spin_sides", "get_spin_sides");
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "path_node", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Path3D"), "set_path_node", "get_path_node");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "path_interval", PROPERTY_HINT_RANGE, "0.1,1.0,0.05,exp"), "set_path_interval", "get_path_interval");
ADD_PROPERTY(PropertyInfo(Variant::INT, "path_interval_type", PROPERTY_HINT_ENUM, "Distance,Subdivide"), "set_path_interval_type", "get_path_interval_type");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "path_interval", PROPERTY_HINT_RANGE, "0.01,1.0,0.01,exp,or_greater"), "set_path_interval", "get_path_interval");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "path_simplify_angle", PROPERTY_HINT_RANGE, "0.0,180.0,0.1,exp"), "set_path_simplify_angle", "get_path_simplify_angle");
ADD_PROPERTY(PropertyInfo(Variant::INT, "path_rotation", PROPERTY_HINT_ENUM, "Polygon,Path,PathFollow"), "set_path_rotation", "get_path_rotation");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_local"), "set_path_local", "is_path_local");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_continuous_u"), "set_path_continuous_u", "is_path_continuous_u");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "path_u_distance", PROPERTY_HINT_RANGE, "0.0,10.0,0.01,or_greater"), "set_path_u_distance", "get_path_u_distance");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_joined"), "set_path_joined", "is_path_joined");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial"), "set_material", "get_material");
@ -2076,6 +2127,9 @@ void CSGPolygon3D::_bind_methods() {
BIND_ENUM_CONSTANT(PATH_ROTATION_POLYGON);
BIND_ENUM_CONSTANT(PATH_ROTATION_PATH);
BIND_ENUM_CONSTANT(PATH_ROTATION_PATH_FOLLOW);
BIND_ENUM_CONSTANT(PATH_INTERVAL_DISTANCE);
BIND_ENUM_CONSTANT(PATH_INTERVAL_SUBDIVIDE);
}
void CSGPolygon3D::set_polygon(const Vector<Vector2> &p_polygon) {
@ -2119,6 +2173,16 @@ bool CSGPolygon3D::is_path_continuous_u() const {
return path_continuous_u;
}
void CSGPolygon3D::set_path_u_distance(real_t p_path_u_distance) {
path_u_distance = p_path_u_distance;
_make_dirty();
update_gizmos();
}
real_t CSGPolygon3D::get_path_u_distance() const {
return path_u_distance;
}
void CSGPolygon3D::set_spin_degrees(const float p_spin_degrees) {
ERR_FAIL_COND(p_spin_degrees < 0.01 || p_spin_degrees > 360);
spin_degrees = p_spin_degrees;
@ -2151,8 +2215,17 @@ NodePath CSGPolygon3D::get_path_node() const {
return path_node;
}
void CSGPolygon3D::set_path_interval_type(PathIntervalType p_interval_type) {
path_interval_type = p_interval_type;
_make_dirty();
update_gizmos();
}
CSGPolygon3D::PathIntervalType CSGPolygon3D::get_path_interval_type() const {
return path_interval_type;
}
void CSGPolygon3D::set_path_interval(float p_interval) {
ERR_FAIL_COND_MSG(p_interval <= 0 || p_interval > 1, "Path interval must be greater than 0 and less than or equal to 1.0.");
path_interval = p_interval;
_make_dirty();
update_gizmos();
@ -2162,6 +2235,16 @@ float CSGPolygon3D::get_path_interval() const {
return path_interval;
}
void CSGPolygon3D::set_path_simplify_angle(float p_angle) {
path_simplify_angle = p_angle;
_make_dirty();
update_gizmos();
}
float CSGPolygon3D::get_path_simplify_angle() const {
return path_simplify_angle;
}
void CSGPolygon3D::set_path_rotation(PathRotation p_rotation) {
path_rotation = p_rotation;
_make_dirty();
@ -2229,10 +2312,13 @@ CSGPolygon3D::CSGPolygon3D() {
spin_degrees = 360;
spin_sides = 8;
smooth_faces = false;
path_interval_type = PATH_INTERVAL_DISTANCE;
path_interval = 1.0;
path_simplify_angle = 0.0;
path_rotation = PATH_ROTATION_PATH_FOLLOW;
path_local = false;
path_continuous_u = true;
path_u_distance = 1.0;
path_joined = false;
path = nullptr;
}

View File

@ -336,6 +336,11 @@ public:
MODE_PATH
};
enum PathIntervalType {
PATH_INTERVAL_DISTANCE,
PATH_INTERVAL_SUBDIVIDE
};
enum PathRotation {
PATH_ROTATION_POLYGON,
PATH_ROTATION_PATH,
@ -356,7 +361,9 @@ private:
int spin_sides;
NodePath path_node;
PathIntervalType path_interval_type;
float path_interval;
float path_simplify_angle;
PathRotation path_rotation;
bool path_local;
@ -364,6 +371,7 @@ private:
bool smooth_faces;
bool path_continuous_u;
real_t path_u_distance;
bool path_joined;
bool _is_editable_3d_polygon() const;
@ -396,9 +404,15 @@ public:
void set_path_node(const NodePath &p_path);
NodePath get_path_node() const;
void set_path_interval_type(PathIntervalType p_interval_type);
PathIntervalType get_path_interval_type() const;
void set_path_interval(float p_interval);
float get_path_interval() const;
void set_path_simplify_angle(float p_angle);
float get_path_simplify_angle() const;
void set_path_rotation(PathRotation p_rotation);
PathRotation get_path_rotation() const;
@ -408,6 +422,9 @@ public:
void set_path_continuous_u(bool p_enable);
bool is_path_continuous_u() const;
void set_path_u_distance(real_t p_path_u_distance);
real_t get_path_u_distance() const;
void set_path_joined(bool p_enable);
bool is_path_joined() const;
@ -422,5 +439,6 @@ public:
VARIANT_ENUM_CAST(CSGPolygon3D::Mode)
VARIANT_ENUM_CAST(CSGPolygon3D::PathRotation)
VARIANT_ENUM_CAST(CSGPolygon3D::PathIntervalType)
#endif // CSG_SHAPE_H

View File

@ -24,6 +24,9 @@
<member name="path_interval" type="float" setter="set_path_interval" getter="get_path_interval">
When [member mode] is [constant MODE_PATH], the path interval or ratio of path points to extrusions.
</member>
<member name="path_interval_type" type="int" setter="set_path_interval_type" getter="get_path_interval_type" enum="CSGPolygon3D.PathIntervalType">
When [member mode] is [constant MODE_PATH], this will determine if the interval should be by distance ([constant PATH_INTERVAL_DISTANCE]) or subdivision fractions ([constant PATH_INTERVAL_SUBDIVIDE]).
</member>
<member name="path_joined" type="bool" setter="set_path_joined" getter="is_path_joined">
When [member mode] is [constant MODE_PATH], if [code]true[/code] the ends of the path are joined, by adding an extrusion between the last and first points of the path.
</member>
@ -36,6 +39,12 @@
<member name="path_rotation" type="int" setter="set_path_rotation" getter="get_path_rotation" enum="CSGPolygon3D.PathRotation">
When [member mode] is [constant MODE_PATH], the [enum PathRotation] method used to rotate the [member polygon] as it is extruded.
</member>
<member name="path_simplify_angle" type="float" setter="set_path_simplify_angle" getter="get_path_simplify_angle">
When [member mode] is [constant MODE_PATH], extrusions that are less than this angle, will be merged together to reduce polygon count.
</member>
<member name="path_u_distance" type="float" setter="set_path_u_distance" getter="get_path_u_distance">
When [member mode] is [constant MODE_PATH], this is the distance along the path, in meters, the texture coordinates will tile. When set to 0, texture coordinates will match geometry exactly with no tiling.
</member>
<member name="polygon" type="PackedVector2Array" setter="set_polygon" getter="get_polygon" default="PackedVector2Array(0, 0, 0, 1, 1, 1, 1, 0)">
The point array that defines the 2D polygon that is extruded.
</member>
@ -70,5 +79,11 @@
<constant name="PATH_ROTATION_PATH_FOLLOW" value="2" enum="PathRotation">
The [member polygon] shape follows the path and its rotations around the path axis.
</constant>
<constant name="PATH_INTERVAL_DISTANCE" value="0" enum="PathIntervalType">
When [member mode] is set to [constant MODE_PATH], [member path_interval] will determine the distance, in meters, each interval of the path will extrude.
</constant>
<constant name="PATH_INTERVAL_SUBDIVIDE" value="1" enum="PathIntervalType">
When [member mode] is set to [constant MODE_PATH], [member path_interval] will subdivide the polygons along the path.
</constant>
</constants>
</class>