From cc823bc5b3196004681c56176f3383219bfe31b8 Mon Sep 17 00:00:00 2001 From: Hugo Locurcio Date: Fri, 15 Oct 2021 17:39:05 +0200 Subject: [PATCH] Remove unused built-in GLES2 shaders These shaders were never compiled in the Godot binary, so the binary size remains identical. --- drivers/gles2/shaders/SCsub | 9 - drivers/gles2/shaders/blend_shape.glsl | 193 ------------ drivers/gles2/shaders/exposure.glsl | 86 ------ drivers/gles2/shaders/particles.glsl | 260 ---------------- drivers/gles2/shaders/resolve.glsl | 42 --- .../shaders/screen_space_reflection.glsl | 284 ------------------ drivers/gles2/shaders/ssao.glsl | 283 ----------------- drivers/gles2/shaders/ssao_blur.glsl | 116 ------- drivers/gles2/shaders/ssao_minify.glsl | 54 ---- drivers/gles2/shaders/subsurf_scattering.glsl | 171 ----------- 10 files changed, 1498 deletions(-) delete mode 100644 drivers/gles2/shaders/blend_shape.glsl delete mode 100644 drivers/gles2/shaders/exposure.glsl delete mode 100644 drivers/gles2/shaders/particles.glsl delete mode 100644 drivers/gles2/shaders/resolve.glsl delete mode 100644 drivers/gles2/shaders/screen_space_reflection.glsl delete mode 100644 drivers/gles2/shaders/ssao.glsl delete mode 100644 drivers/gles2/shaders/ssao_blur.glsl delete mode 100644 drivers/gles2/shaders/ssao_minify.glsl delete mode 100644 drivers/gles2/shaders/subsurf_scattering.glsl diff --git a/drivers/gles2/shaders/SCsub b/drivers/gles2/shaders/SCsub index bcd6ea79fbb..13d2c210515 100644 --- a/drivers/gles2/shaders/SCsub +++ b/drivers/gles2/shaders/SCsub @@ -4,20 +4,11 @@ Import("env") if "GLES2_GLSL" in env["BUILDERS"]: env.GLES2_GLSL("copy.glsl") - # env.GLES2_GLSL('resolve.glsl'); env.GLES2_GLSL("canvas.glsl") env.GLES2_GLSL("canvas_shadow.glsl") env.GLES2_GLSL("scene.glsl") env.GLES2_GLSL("cubemap_filter.glsl") env.GLES2_GLSL("cube_to_dp.glsl") - # env.GLES2_GLSL('blend_shape.glsl'); - # env.GLES2_GLSL('screen_space_reflection.glsl'); env.GLES2_GLSL("effect_blur.glsl") - # env.GLES2_GLSL('subsurf_scattering.glsl'); - # env.GLES2_GLSL('ssao.glsl'); - # env.GLES2_GLSL('ssao_minify.glsl'); - # env.GLES2_GLSL('ssao_blur.glsl'); - # env.GLES2_GLSL('exposure.glsl'); env.GLES2_GLSL("tonemap.glsl") - # env.GLES2_GLSL('particles.glsl'); env.GLES2_GLSL("lens_distorted.glsl") diff --git a/drivers/gles2/shaders/blend_shape.glsl b/drivers/gles2/shaders/blend_shape.glsl deleted file mode 100644 index da6dec16768..00000000000 --- a/drivers/gles2/shaders/blend_shape.glsl +++ /dev/null @@ -1,193 +0,0 @@ -/* clang-format off */ -[vertex] - -/* -from VisualServer: - -ARRAY_VERTEX=0, -ARRAY_NORMAL=1, -ARRAY_TANGENT=2, -ARRAY_COLOR=3, -ARRAY_TEX_UV=4, -ARRAY_TEX_UV2=5, -ARRAY_BONES=6, -ARRAY_WEIGHTS=7, -ARRAY_INDEX=8, -*/ - -#ifdef USE_2D_VERTEX -#define VFORMAT vec2 -#else -#define VFORMAT vec3 -#endif - -/* INPUT ATTRIBS */ - -layout(location = 0) in highp VFORMAT vertex_attrib; -/* clang-format on */ -layout(location = 1) in vec3 normal_attrib; - -#ifdef ENABLE_TANGENT -layout(location = 2) in vec4 tangent_attrib; -#endif - -#ifdef ENABLE_COLOR -layout(location = 3) in vec4 color_attrib; -#endif - -#ifdef ENABLE_UV -layout(location = 4) in vec2 uv_attrib; -#endif - -#ifdef ENABLE_UV2 -layout(location = 5) in vec2 uv2_attrib; -#endif - -#ifdef ENABLE_SKELETON -layout(location = 6) in ivec4 bone_attrib; -layout(location = 7) in vec4 weight_attrib; -#endif - -/* BLEND ATTRIBS */ - -#ifdef ENABLE_BLEND - -layout(location = 8) in highp VFORMAT vertex_attrib_blend; -layout(location = 9) in vec3 normal_attrib_blend; - -#ifdef ENABLE_TANGENT -layout(location = 10) in vec4 tangent_attrib_blend; -#endif - -#ifdef ENABLE_COLOR -layout(location = 11) in vec4 color_attrib_blend; -#endif - -#ifdef ENABLE_UV -layout(location = 12) in vec2 uv_attrib_blend; -#endif - -#ifdef ENABLE_UV2 -layout(location = 13) in vec2 uv2_attrib_blend; -#endif - -#ifdef ENABLE_SKELETON -layout(location = 14) in ivec4 bone_attrib_blend; -layout(location = 15) in vec4 weight_attrib_blend; -#endif - -#endif - -/* OUTPUTS */ - -out VFORMAT vertex_out; //tfb: - -#ifdef ENABLE_NORMAL -out vec3 normal_out; //tfb:ENABLE_NORMAL -#endif - -#ifdef ENABLE_TANGENT -out vec4 tangent_out; //tfb:ENABLE_TANGENT -#endif - -#ifdef ENABLE_COLOR -out vec4 color_out; //tfb:ENABLE_COLOR -#endif - -#ifdef ENABLE_UV -out vec2 uv_out; //tfb:ENABLE_UV -#endif - -#ifdef ENABLE_UV2 -out vec2 uv2_out; //tfb:ENABLE_UV2 -#endif - -#ifdef ENABLE_SKELETON -out ivec4 bone_out; //tfb:ENABLE_SKELETON -out vec4 weight_out; //tfb:ENABLE_SKELETON -#endif - -uniform float blend_amount; - -void main() { -#ifdef ENABLE_BLEND - - vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount; - -#ifdef ENABLE_NORMAL - normal_out = normal_attrib_blend + normal_attrib * blend_amount; -#endif - -#ifdef ENABLE_TANGENT - - tangent_out.xyz = tangent_attrib_blend.xyz + tangent_attrib.xyz * blend_amount; - tangent_out.w = tangent_attrib_blend.w; //just copy, no point in blending his -#endif - -#ifdef ENABLE_COLOR - - color_out = color_attrib_blend + color_attrib * blend_amount; -#endif - -#ifdef ENABLE_UV - - uv_out = uv_attrib_blend + uv_attrib * blend_amount; -#endif - -#ifdef ENABLE_UV2 - - uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount; -#endif - -#ifdef ENABLE_SKELETON - - bone_out = bone_attrib_blend; - weight_out = weight_attrib_blend + weight_attrib * blend_amount; -#endif - -#else //ENABLE_BLEND - - vertex_out = vertex_attrib * blend_amount; - -#ifdef ENABLE_NORMAL - normal_out = normal_attrib * blend_amount; -#endif - -#ifdef ENABLE_TANGENT - - tangent_out.xyz = tangent_attrib.xyz * blend_amount; - tangent_out.w = tangent_attrib.w; //just copy, no point in blending his -#endif - -#ifdef ENABLE_COLOR - - color_out = color_attrib * blend_amount; -#endif - -#ifdef ENABLE_UV - - uv_out = uv_attrib * blend_amount; -#endif - -#ifdef ENABLE_UV2 - - uv2_out = uv2_attrib * blend_amount; -#endif - -#ifdef ENABLE_SKELETON - - bone_out = bone_attrib; - weight_out = weight_attrib * blend_amount; -#endif - -#endif - gl_Position = vec4(0.0); -} - -/* clang-format off */ -[fragment] - -void main() { - -} -/* clang-format on */ diff --git a/drivers/gles2/shaders/exposure.glsl b/drivers/gles2/shaders/exposure.glsl deleted file mode 100644 index c20812bfa3b..00000000000 --- a/drivers/gles2/shaders/exposure.glsl +++ /dev/null @@ -1,86 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ - -void main() { - gl_Position = vertex_attrib; -} - -/* clang-format off */ -[fragment] - -uniform highp sampler2D source_exposure; //texunit:0 -/* clang-format on */ - -#ifdef EXPOSURE_BEGIN - -uniform highp ivec2 source_render_size; -uniform highp ivec2 target_size; - -#endif - -#ifdef EXPOSURE_END - -uniform highp sampler2D prev_exposure; //texunit:1 -uniform highp float exposure_adjust; -uniform highp float min_luminance; -uniform highp float max_luminance; - -#endif - -layout(location = 0) out highp float exposure; - -void main() { -#ifdef EXPOSURE_BEGIN - - ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size; - -#if 1 - //more precise and expensive, but less jittery - ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size; - next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel - highp vec3 source_color = vec3(0.0); - for (int i = src_pos.x; i < next_pos.x; i++) { - for (int j = src_pos.y; j < next_pos.y; j++) { - source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb; - } - } - - source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y)); -#else - highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb; - -#endif - - exposure = max(source_color.r, max(source_color.g, source_color.b)); - -#else - - ivec2 coord = ivec2(gl_FragCoord.xy); - exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r; - exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r; - exposure *= (1.0 / 9.0); - -#ifdef EXPOSURE_END - -#ifdef EXPOSURE_FORCE_SET - //will stay as is -#else - highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure - exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance); - -#endif //EXPOSURE_FORCE_SET - -#endif //EXPOSURE_END - -#endif //EXPOSURE_BEGIN -} diff --git a/drivers/gles2/shaders/particles.glsl b/drivers/gles2/shaders/particles.glsl deleted file mode 100644 index 1575db701f3..00000000000 --- a/drivers/gles2/shaders/particles.glsl +++ /dev/null @@ -1,260 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 color; -/* clang-format on */ -layout(location = 1) in highp vec4 velocity_active; -layout(location = 2) in highp vec4 custom; -layout(location = 3) in highp vec4 xform_1; -layout(location = 4) in highp vec4 xform_2; -layout(location = 5) in highp vec4 xform_3; - -struct Attractor { - vec3 pos; - vec3 dir; - float radius; - float eat_radius; - float strength; - float attenuation; -}; - -#define MAX_ATTRACTORS 64 - -uniform bool emitting; -uniform float system_phase; -uniform float prev_system_phase; -uniform int total_particles; -uniform float explosiveness; -uniform float randomness; -uniform float time; -uniform float delta; - -uniform int attractor_count; -uniform Attractor attractors[MAX_ATTRACTORS]; -uniform bool clear; -uniform uint cycle; -uniform float lifetime; -uniform mat4 emission_transform; -uniform uint random_seed; - -out highp vec4 out_color; //tfb: -out highp vec4 out_velocity_active; //tfb: -out highp vec4 out_custom; //tfb: -out highp vec4 out_xform_1; //tfb: -out highp vec4 out_xform_2; //tfb: -out highp vec4 out_xform_3; //tfb: - -#if defined(USE_MATERIAL) - -/* clang-format off */ -layout(std140) uniform UniformData { //ubo:0 - -MATERIAL_UNIFORMS - -}; -/* clang-format on */ - -#endif - -/* clang-format off */ - -VERTEX_SHADER_GLOBALS - -/* clang-format on */ - -uint hash(uint x) { - x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b); - x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b); - x = (x >> uint(16)) ^ x; - return x; -} - -void main() { -#ifdef PARTICLES_COPY - - out_color = color; - out_velocity_active = velocity_active; - out_custom = custom; - out_xform_1 = xform_1; - out_xform_2 = xform_2; - out_xform_3 = xform_3; - -#else - - bool apply_forces = true; - bool apply_velocity = true; - float local_delta = delta; - - float mass = 1.0; - - float restart_phase = float(gl_VertexID) / float(total_particles); - - if (randomness > 0.0) { - uint seed = cycle; - if (restart_phase >= system_phase) { - seed -= uint(1); - } - seed *= uint(total_particles); - seed += uint(gl_VertexID); - float random = float(hash(seed) % uint(65536)) / 65536.0; - restart_phase += randomness * random * 1.0 / float(total_particles); - } - - restart_phase *= (1.0 - explosiveness); - bool restart = false; - bool shader_active = velocity_active.a > 0.5; - - if (system_phase > prev_system_phase) { - // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed - - if (restart_phase >= prev_system_phase && restart_phase < system_phase) { - restart = true; -#ifdef USE_FRACTIONAL_DELTA - local_delta = (system_phase - restart_phase) * lifetime; -#endif - } - - } else { - if (restart_phase >= prev_system_phase) { - restart = true; -#ifdef USE_FRACTIONAL_DELTA - local_delta = (1.0 - restart_phase + system_phase) * lifetime; -#endif - } else if (restart_phase < system_phase) { - restart = true; -#ifdef USE_FRACTIONAL_DELTA - local_delta = (system_phase - restart_phase) * lifetime; -#endif - } - } - - uint current_cycle = cycle; - - if (system_phase < restart_phase) { - current_cycle -= uint(1); - } - - uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID); - int index = int(gl_VertexID); - - if (restart) { - shader_active = emitting; - } - - mat4 xform; - -#if defined(ENABLE_KEEP_DATA) - if (clear) { -#else - if (clear || restart) { -#endif - out_color = vec4(1.0); - out_velocity_active = vec4(0.0); - out_custom = vec4(0.0); - if (!restart) - shader_active = false; - - xform = mat4( - vec4(1.0, 0.0, 0.0, 0.0), - vec4(0.0, 1.0, 0.0, 0.0), - vec4(0.0, 0.0, 1.0, 0.0), - vec4(0.0, 0.0, 0.0, 1.0)); - } else { - out_color = color; - out_velocity_active = velocity_active; - out_custom = custom; - xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0))); - } - - if (shader_active) { - //execute shader - - { - /* clang-format off */ - -VERTEX_SHADER_CODE - - /* clang-format on */ - } - -#if !defined(DISABLE_FORCE) - - if (false) { - vec3 force = vec3(0.0); - for (int i = 0; i < attractor_count; i++) { - vec3 rel_vec = xform[3].xyz - attractors[i].pos; - float dist = length(rel_vec); - if (attractors[i].radius < dist) - continue; - if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) { - out_velocity_active.a = 0.0; - } - - rel_vec = normalize(rel_vec); - - float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation); - - if (attractors[i].dir == vec3(0.0)) { - //towards center - force += attractors[i].strength * rel_vec * attenuation * mass; - } else { - force += attractors[i].strength * attractors[i].dir * attenuation * mass; - } - } - - out_velocity_active.xyz += force * local_delta; - } -#endif - -#if !defined(DISABLE_VELOCITY) - - if (true) { - xform[3].xyz += out_velocity_active.xyz * local_delta; - } -#endif - } else { - xform = mat4(0.0); - } - - xform = transpose(xform); - - out_velocity_active.a = mix(0.0, 1.0, shader_active); - - out_xform_1 = xform[0]; - out_xform_2 = xform[1]; - out_xform_3 = xform[2]; - -#endif //PARTICLES_COPY -} - -/* clang-format off */ -[fragment] - -//any code here is never executed, stuff is filled just so it works - -#if defined(USE_MATERIAL) - -layout(std140) uniform UniformData { - -MATERIAL_UNIFORMS - -}; - -#endif - -FRAGMENT_SHADER_GLOBALS - -void main() { - { - -LIGHT_SHADER_CODE - - } - - { - -FRAGMENT_SHADER_CODE - - } -} -/* clang-format on */ diff --git a/drivers/gles2/shaders/resolve.glsl b/drivers/gles2/shaders/resolve.glsl deleted file mode 100644 index 071cb37a99d..00000000000 --- a/drivers/gles2/shaders/resolve.glsl +++ /dev/null @@ -1,42 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ -layout(location = 4) in vec2 uv_in; - -out vec2 uv_interp; - -void main() { - uv_interp = uv_in; - gl_Position = vertex_attrib; -} - -/* clang-format off */ -[fragment] - -#if !defined(GLES_OVER_GL) -precision mediump float; -#endif - -in vec2 uv_interp; -/* clang-format on */ -uniform sampler2D source_specular; //texunit:0 -uniform sampler2D source_ssr; //texunit:1 - -uniform vec2 pixel_size; - -in vec2 uv2_interp; - -layout(location = 0) out vec4 frag_color; - -void main() { - vec4 specular = texture(source_specular, uv_interp); - -#ifdef USE_SSR - vec4 ssr = textureLod(source_ssr, uv_interp, 0.0); - specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a); -#endif - - frag_color = vec4(specular.rgb, 1.0); -} diff --git a/drivers/gles2/shaders/screen_space_reflection.glsl b/drivers/gles2/shaders/screen_space_reflection.glsl deleted file mode 100644 index 6b5b7c885ca..00000000000 --- a/drivers/gles2/shaders/screen_space_reflection.glsl +++ /dev/null @@ -1,284 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ -layout(location = 4) in vec2 uv_in; - -out vec2 uv_interp; -out vec2 pos_interp; - -void main() { - uv_interp = uv_in; - gl_Position = vertex_attrib; - pos_interp.xy = gl_Position.xy; -} - -/* clang-format off */ -[fragment] - -in vec2 uv_interp; -/* clang-format on */ -in vec2 pos_interp; - -uniform sampler2D source_diffuse; //texunit:0 -uniform sampler2D source_normal_roughness; //texunit:1 -uniform sampler2D source_depth; //texunit:2 - -uniform float camera_z_near; -uniform float camera_z_far; - -uniform vec2 viewport_size; -uniform vec2 pixel_size; - -uniform float filter_mipmap_levels; - -uniform mat4 inverse_projection; -uniform mat4 projection; - -uniform int num_steps; -uniform float depth_tolerance; -uniform float distance_fade; -uniform float curve_fade_in; - -layout(location = 0) out vec4 frag_color; - -vec2 view_to_screen(vec3 view_pos, out float w) { - vec4 projected = projection * vec4(view_pos, 1.0); - projected.xyz /= projected.w; - projected.xy = projected.xy * 0.5 + 0.5; - w = projected.w; - return projected.xy; -} - -#define M_PI 3.14159265359 - -void main() { - vec4 diffuse = texture(source_diffuse, uv_interp); - vec4 normal_roughness = texture(source_normal_roughness, uv_interp); - - vec3 normal; - - normal = normal_roughness.xyz * 2.0 - 1.0; - - float roughness = normal_roughness.w; - - float depth_tex = texture(source_depth, uv_interp).r; - - vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0); - vec3 vertex = world_pos.xyz / world_pos.w; - - vec3 view_dir = normalize(vertex); - vec3 ray_dir = normalize(reflect(view_dir, normal)); - - if (dot(ray_dir, normal) < 0.001) { - frag_color = vec4(0.0); - return; - } - //ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0); - - //ray_dir = normalize(vec3(1,1,-1)); - - //////////////// - - //make ray length and clip it against the near plane (don't want to trace beyond visible) - float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far; - vec3 ray_end = vertex + ray_dir * ray_len; - - float w_begin; - vec2 vp_line_begin = view_to_screen(vertex, w_begin); - float w_end; - vec2 vp_line_end = view_to_screen(ray_end, w_end); - vec2 vp_line_dir = vp_line_end - vp_line_begin; - - //we need to interpolate w along the ray, to generate perspective correct reflections - - w_begin = 1.0 / w_begin; - w_end = 1.0 / w_end; - - float z_begin = vertex.z * w_begin; - float z_end = ray_end.z * w_end; - - vec2 line_begin = vp_line_begin / pixel_size; - vec2 line_dir = vp_line_dir / pixel_size; - float z_dir = z_end - z_begin; - float w_dir = w_end - w_begin; - - // clip the line to the viewport edges - - float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x)); - float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y)); - float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x)); - float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y)); - float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y); - line_dir *= line_clip; - z_dir *= line_clip; - w_dir *= line_clip; - - //clip z and w advance to line advance - vec2 line_advance = normalize(line_dir); //down to pixel - float step_size = length(line_advance) / length(line_dir); - float z_advance = z_dir * step_size; // adapt z advance to line advance - float w_advance = w_dir * step_size; // adapt w advance to line advance - - //make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice) - float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y)); - line_advance *= advance_angle_adj; // adapt z advance to line advance - z_advance *= advance_angle_adj; - w_advance *= advance_angle_adj; - - vec2 pos = line_begin; - float z = z_begin; - float w = w_begin; - float z_from = z / w; - float z_to = z_from; - float depth; - vec2 prev_pos = pos; - - bool found = false; - - float steps_taken = 0.0; - - for (int i = 0; i < num_steps; i++) { - pos += line_advance; - z += z_advance; - w += w_advance; - - //convert to linear depth - - depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0; -#ifdef USE_ORTHOGONAL_PROJECTION - depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; -#else - depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near)); -#endif - depth = -depth; - - z_from = z_to; - z_to = z / w; - - if (depth > z_to) { - //if depth was surpassed - if (depth <= max(z_to, z_from) + depth_tolerance) { - //check the depth tolerance - found = true; - } - break; - } - - steps_taken += 1.0; - prev_pos = pos; - } - - if (found) { - float margin_blend = 1.0; - - vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); //make a uniform margin - if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) { - //clip outside screen + margin - frag_color = vec4(0.0); - return; - } - - { - //blend fading out towards external margin - vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0))); - margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y)); - //margin_blend=1.0; - } - - vec2 final_pos; - float grad; - grad = steps_taken / float(num_steps); - float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in); - float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade; - final_pos = pos; - -#ifdef REFLECT_ROUGHNESS - - vec4 final_color; - //if roughness is enabled, do screen space cone tracing - if (roughness > 0.001) { - /////////////////////////////////////////////////////////////////////////////////////// - //use a blurred version (in consecutive mipmaps) of the screen to simulate roughness - - float gloss = 1.0 - roughness; - float cone_angle = roughness * M_PI * 0.5; - vec2 cone_dir = final_pos - line_begin; - float cone_len = length(cone_dir); - cone_dir = normalize(cone_dir); //will be used normalized from now on - float max_mipmap = filter_mipmap_levels - 1.0; - float gloss_mult = gloss; - - float rem_alpha = 1.0; - final_color = vec4(0.0); - - for (int i = 0; i < 7; i++) { - float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle - float radius; - { - //fit to sphere inside cone (sphere ends at end of cone), something like this: - // ___ - // \O/ - // V - // - // as it avoids bleeding from beyond the reflection as much as possible. As a plus - // it also makes the rough reflection more elongated. - float a = op_len; - float h = cone_len; - float a2 = a * a; - float fh2 = 4.0f * h * h; - radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h); - } - - //find the place where screen must be sampled - vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size; - //radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels - float mipmap = clamp(log2(radius), 0.0, max_mipmap); - - //mipmap = max(mipmap-1.0,0.0); - //do sampling - - vec4 sample_color; - { - sample_color = textureLod(source_diffuse, sample_pos, mipmap); - } - - //multiply by gloss - sample_color.rgb *= gloss_mult; - sample_color.a = gloss_mult; - - rem_alpha -= sample_color.a; - if (rem_alpha < 0.0) { - sample_color.rgb *= (1.0 - abs(rem_alpha)); - } - - final_color += sample_color; - - if (final_color.a >= 0.95) { - // This code of accumulating gloss and aborting on near one - // makes sense when you think of cone tracing. - // Think of it as if roughness was 0, then we could abort on the first - // iteration. For lesser roughness values, we need more iterations, but - // each needs to have less influence given the sphere is smaller - break; - } - - cone_len -= radius * 2.0; //go to next (smaller) circle. - - gloss_mult *= gloss; - } - } else { - final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0); - } - - frag_color = vec4(final_color.rgb, fade * margin_blend); - -#else - frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend); -#endif - - } else { - frag_color = vec4(0.0, 0.0, 0.0, 0.0); - } -} diff --git a/drivers/gles2/shaders/ssao.glsl b/drivers/gles2/shaders/ssao.glsl deleted file mode 100644 index 0fd29e8dcce..00000000000 --- a/drivers/gles2/shaders/ssao.glsl +++ /dev/null @@ -1,283 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ - -void main() { - gl_Position = vertex_attrib; - gl_Position.z = 1.0; -} - -/* clang-format off */ -[fragment] - -#define TWO_PI 6.283185307179586476925286766559 - -#ifdef SSAO_QUALITY_HIGH - -#define NUM_SAMPLES (80) - -#endif - -#ifdef SSAO_QUALITY_LOW - -#define NUM_SAMPLES (15) - -#endif - -#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH) - -#define NUM_SAMPLES (40) - -#endif - -// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower -// miplevel to maintain reasonable spatial locality in the cache -// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing. -// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively -#define LOG_MAX_OFFSET (3) - -// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp -#define MAX_MIP_LEVEL (4) - -// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent -// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9 - -const int ROTATIONS[] = int[]( - 1, 1, 2, 3, 2, 5, 2, 3, 2, - 3, 3, 5, 5, 3, 4, 7, 5, 5, 7, - 9, 8, 5, 5, 7, 7, 7, 8, 5, 8, - 11, 12, 7, 10, 13, 8, 11, 8, 7, 14, - 11, 11, 13, 12, 13, 19, 17, 13, 11, 18, - 19, 11, 11, 14, 17, 21, 15, 16, 17, 18, - 13, 17, 11, 17, 19, 18, 25, 18, 19, 19, - 29, 21, 19, 27, 31, 29, 21, 18, 17, 29, - 31, 31, 23, 18, 25, 26, 25, 23, 19, 34, - 19, 27, 21, 25, 39, 29, 17, 21, 27); -/* clang-format on */ - -//#define NUM_SPIRAL_TURNS (7) -const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1]; - -uniform sampler2D source_depth; //texunit:0 -uniform highp usampler2D source_depth_mipmaps; //texunit:1 -uniform sampler2D source_normal; //texunit:2 - -uniform ivec2 screen_size; -uniform float camera_z_far; -uniform float camera_z_near; - -uniform float intensity_div_r6; -uniform float radius; - -#ifdef ENABLE_RADIUS2 -uniform float intensity_div_r62; -uniform float radius2; -#endif - -uniform float bias; -uniform float proj_scale; - -layout(location = 0) out float visibility; - -uniform vec4 proj_info; - -vec3 reconstructCSPosition(vec2 S, float z) { -#ifdef USE_ORTHOGONAL_PROJECTION - return vec3((S.xy * proj_info.xy + proj_info.zw), z); -#else - return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z); - -#endif -} - -vec3 getPosition(ivec2 ssP) { - vec3 P; - P.z = texelFetch(source_depth, ssP, 0).r; - - P.z = P.z * 2.0 - 1.0; -#ifdef USE_ORTHOGONAL_PROJECTION - P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; -#else - P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near)); -#endif - P.z = -P.z; - - // Offset to pixel center - P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z); - return P; -} - -/** Reconstructs screen-space unit normal from screen-space position */ -vec3 reconstructCSFaceNormal(vec3 C) { - return normalize(cross(dFdy(C), dFdx(C))); -} - -/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */ -vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) { - // Radius relative to ssR - float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES)); - float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle; - - ssR = alpha; - return vec2(cos(angle), sin(angle)); -} - -/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */ -vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) { - // Derivation: - // mipLevel = floor(log(ssR / MAX_OFFSET)); - int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL); - - ivec2 ssP = ivec2(ssR * unitOffset) + ssC; - - vec3 P; - - // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map. - // Manually clamp to the texture size because texelFetch bypasses the texture unit - ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1)); - - if (mipLevel < 1) { - //read from depth buffer - P.z = texelFetch(source_depth, mipP, 0).r; - P.z = P.z * 2.0 - 1.0; -#ifdef USE_ORTHOGONAL_PROJECTION - P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; -#else - P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near)); - -#endif - P.z = -P.z; - - } else { - //read from mipmaps - uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r; - P.z = -(float(d) / 65535.0) * camera_z_far; - } - - // Offset to pixel center - P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z); - - return P; -} - -/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds - to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius - - Note that units of H() in the HPG12 paper are meters, not - unitless. The whole falloff/sampling function is therefore - unitless. In this implementation, we factor out (9 / radius). - - Four versions of the falloff function are implemented below -*/ -float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) { - // Offset on the unit disk, spun for this pixel - float ssR; - vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR); - ssR *= ssDiskRadius; - - // The occluding point in camera space - vec3 Q = getOffsetPosition(ssC, unitOffset, ssR); - - vec3 v = Q - C; - - float vv = dot(v, v); - float vn = dot(v, n_C); - - const float epsilon = 0.01; - float radius2 = p_radius * p_radius; - - // A: From the HPG12 paper - // Note large epsilon to avoid overdarkening within cracks - //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6; - - // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended] - float f = max(radius2 - vv, 0.0); - return f * f * f * max((vn - bias) / (epsilon + vv), 0.0); - - // C: Medium contrast (which looks better at high radii), no division. Note that the - // contribution still falls off with radius^2, but we've adjusted the rate in a way that is - // more computationally efficient and happens to be aesthetically pleasing. - // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0); - - // D: Low contrast, no division operation - // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0); -} - -void main() { - // Pixel being shaded - ivec2 ssC = ivec2(gl_FragCoord.xy); - - // World space point being shaded - vec3 C = getPosition(ssC); - - /* - if (C.z <= -camera_z_far*0.999) { - // We're on the skybox - visibility=1.0; - return; - } - */ - - //visibility=-C.z/camera_z_far; - //return; -#if 0 - vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0; -#else - vec3 n_C = reconstructCSFaceNormal(C); - n_C = -n_C; -#endif - - // Hash function used in the HPG12 AlchemyAO paper - float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI); - - // Reconstruct normals from positions. These will lead to 1-pixel black lines - // at depth discontinuities, however the blur will wipe those out so they are not visible - // in the final image. - - // Choose the screen-space sample radius - // proportional to the projected area of the sphere -#ifdef USE_ORTHOGONAL_PROJECTION - float ssDiskRadius = -proj_scale * radius; -#else - float ssDiskRadius = -proj_scale * radius / C.z; -#endif - float sum = 0.0; - for (int i = 0; i < NUM_SAMPLES; ++i) { - sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle); - } - - float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES))); - -#ifdef ENABLE_RADIUS2 - - //go again for radius2 - randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI); - - // Reconstruct normals from positions. These will lead to 1-pixel black lines - // at depth discontinuities, however the blur will wipe those out so they are not visible - // in the final image. - - // Choose the screen-space sample radius - // proportional to the projected area of the sphere - ssDiskRadius = -proj_scale * radius2 / C.z; - - sum = 0.0; - for (int i = 0; i < NUM_SAMPLES; ++i) { - sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle); - } - - A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES)))); -#endif - // Bilateral box-filter over a quad for free, respecting depth edges - // (the difference that this makes is subtle) - if (abs(dFdx(C.z)) < 0.02) { - A -= dFdx(A) * (float(ssC.x & 1) - 0.5); - } - if (abs(dFdy(C.z)) < 0.02) { - A -= dFdy(A) * (float(ssC.y & 1) - 0.5); - } - - visibility = A; -} diff --git a/drivers/gles2/shaders/ssao_blur.glsl b/drivers/gles2/shaders/ssao_blur.glsl deleted file mode 100644 index f065cd74ebf..00000000000 --- a/drivers/gles2/shaders/ssao_blur.glsl +++ /dev/null @@ -1,116 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ - -void main() { - gl_Position = vertex_attrib; - gl_Position.z = 1.0; -} - -/* clang-format off */ -[fragment] - -uniform sampler2D source_ssao; //texunit:0 -/* clang-format on */ -uniform sampler2D source_depth; //texunit:1 -uniform sampler2D source_normal; //texunit:3 - -layout(location = 0) out float visibility; - -////////////////////////////////////////////////////////////////////////////////////////////// -// Tunable Parameters: - -/** Increase to make depth edges crisper. Decrease to reduce flicker. */ -uniform float edge_sharpness; - -/** Step in 2-pixel intervals since we already blurred against neighbors in the - first AO pass. This constant can be increased while R decreases to improve - performance at the expense of some dithering artifacts. - - Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was - unobjectionable after shading was applied but eliminated most temporal incoherence - from using small numbers of sample taps. - */ - -uniform int filter_scale; - -/** Filter radius in pixels. This will be multiplied by SCALE. */ -#define R (4) - -////////////////////////////////////////////////////////////////////////////////////////////// - -// Gaussian coefficients -const float gaussian[R + 1] = - //float[](0.356642, 0.239400, 0.072410, 0.009869); - //float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0 - float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0 -//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0 - -/** (1, 0) or (0, 1)*/ -uniform ivec2 axis; - -uniform float camera_z_far; -uniform float camera_z_near; - -uniform ivec2 screen_size; - -void main() { - ivec2 ssC = ivec2(gl_FragCoord.xy); - - float depth = texelFetch(source_depth, ssC, 0).r; - //vec3 normal = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0; - - depth = depth * 2.0 - 1.0; - depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near)); - - float depth_divide = 1.0 / camera_z_far; - - //depth *= depth_divide; - - /* - if (depth > camera_z_far * 0.999) { - discard; //skybox - } - */ - - float sum = texelFetch(source_ssao, ssC, 0).r; - - // Base weight for depth falloff. Increase this for more blurriness, - // decrease it for better edge discrimination - float BASE = gaussian[0]; - float totalWeight = BASE; - sum *= totalWeight; - - ivec2 clamp_limit = screen_size - ivec2(1); - - for (int r = -R; r <= R; ++r) { - // We already handled the zero case above. This loop should be unrolled and the static branch optimized out, - // so the IF statement has no runtime cost - if (r != 0) { - ivec2 ppos = ssC + axis * (r * filter_scale); - float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r; - ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit); - float temp_depth = texelFetch(source_depth, rpos, 0).r; - //vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0; - - temp_depth = temp_depth * 2.0 - 1.0; - temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near)); - // temp_depth *= depth_divide; - - // spatial domain: offset gaussian tap - float weight = 0.3 + gaussian[abs(r)]; - //weight *= max(0.0,dot(temp_normal,normal)); - - // range domain (the "bilateral" weight). As depth difference increases, decrease weight. - weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth)); - - sum += value * weight; - totalWeight += weight; - } - } - - const float epsilon = 0.0001; - visibility = sum / (totalWeight + epsilon); -} diff --git a/drivers/gles2/shaders/ssao_minify.glsl b/drivers/gles2/shaders/ssao_minify.glsl deleted file mode 100644 index f654e00a4fa..00000000000 --- a/drivers/gles2/shaders/ssao_minify.glsl +++ /dev/null @@ -1,54 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ - -void main() { - gl_Position = vertex_attrib; -} - -/* clang-format off */ -[fragment] - -#ifdef MINIFY_START - -#define SDEPTH_TYPE highp sampler2D -uniform float camera_z_far; -uniform float camera_z_near; -/* clang-format on */ - -#else - -#define SDEPTH_TYPE mediump usampler2D - -#endif - -uniform SDEPTH_TYPE source_depth; //texunit:0 - -uniform ivec2 from_size; -uniform int source_mipmap; - -layout(location = 0) out mediump uint depth; - -void main() { - ivec2 ssP = ivec2(gl_FragCoord.xy); - - // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling. - // On DX9, the bit-and can be implemented with floating-point modulo - -#ifdef MINIFY_START - float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r; - fdepth = fdepth * 2.0 - 1.0; -#ifdef USE_ORTHOGONAL_PROJECTION - fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; -#else - fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near)); -#endif - fdepth /= camera_z_far; - depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0)); - -#else - depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r; -#endif -} diff --git a/drivers/gles2/shaders/subsurf_scattering.glsl b/drivers/gles2/shaders/subsurf_scattering.glsl deleted file mode 100644 index d0c34cf1b00..00000000000 --- a/drivers/gles2/shaders/subsurf_scattering.glsl +++ /dev/null @@ -1,171 +0,0 @@ -/* clang-format off */ -[vertex] - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ -layout(location = 4) in vec2 uv_in; - -out vec2 uv_interp; - -void main() { - uv_interp = uv_in; - gl_Position = vertex_attrib; -} - -/* clang-format off */ -[fragment] - -//#define QUALIFIER uniform // some guy on the interweb says it may be faster with this -#define QUALIFIER const - -#ifdef USE_25_SAMPLES -const int kernel_size = 25; -/* clang-format on */ -QUALIFIER vec2 kernel[25] = vec2[]( - vec2(0.530605, 0.0), - vec2(0.000973794, -3.0), - vec2(0.00333804, -2.52083), - vec2(0.00500364, -2.08333), - vec2(0.00700976, -1.6875), - vec2(0.0094389, -1.33333), - vec2(0.0128496, -1.02083), - vec2(0.017924, -0.75), - vec2(0.0263642, -0.520833), - vec2(0.0410172, -0.333333), - vec2(0.0493588, -0.1875), - vec2(0.0402784, -0.0833333), - vec2(0.0211412, -0.0208333), - vec2(0.0211412, 0.0208333), - vec2(0.0402784, 0.0833333), - vec2(0.0493588, 0.1875), - vec2(0.0410172, 0.333333), - vec2(0.0263642, 0.520833), - vec2(0.017924, 0.75), - vec2(0.0128496, 1.02083), - vec2(0.0094389, 1.33333), - vec2(0.00700976, 1.6875), - vec2(0.00500364, 2.08333), - vec2(0.00333804, 2.52083), - vec2(0.000973794, 3.0)); -#endif //USE_25_SAMPLES - -#ifdef USE_17_SAMPLES -const int kernel_size = 17; -QUALIFIER vec2 kernel[17] = vec2[]( - vec2(0.536343, 0.0), - vec2(0.00317394, -2.0), - vec2(0.0100386, -1.53125), - vec2(0.0144609, -1.125), - vec2(0.0216301, -0.78125), - vec2(0.0347317, -0.5), - vec2(0.0571056, -0.28125), - vec2(0.0582416, -0.125), - vec2(0.0324462, -0.03125), - vec2(0.0324462, 0.03125), - vec2(0.0582416, 0.125), - vec2(0.0571056, 0.28125), - vec2(0.0347317, 0.5), - vec2(0.0216301, 0.78125), - vec2(0.0144609, 1.125), - vec2(0.0100386, 1.53125), - vec2(0.00317394, 2.0)); -#endif //USE_17_SAMPLES - -#ifdef USE_11_SAMPLES -const int kernel_size = 11; -QUALIFIER vec2 kernel[11] = vec2[]( - vec2(0.560479, 0.0), - vec2(0.00471691, -2.0), - vec2(0.0192831, -1.28), - vec2(0.03639, -0.72), - vec2(0.0821904, -0.32), - vec2(0.0771802, -0.08), - vec2(0.0771802, 0.08), - vec2(0.0821904, 0.32), - vec2(0.03639, 0.72), - vec2(0.0192831, 1.28), - vec2(0.00471691, 2.0)); -#endif //USE_11_SAMPLES - -uniform float max_radius; -uniform float camera_z_far; -uniform float camera_z_near; -uniform float unit_size; -uniform vec2 dir; -in vec2 uv_interp; - -uniform sampler2D source_diffuse; //texunit:0 -uniform sampler2D source_sss; //texunit:1 -uniform sampler2D source_depth; //texunit:2 - -layout(location = 0) out vec4 frag_color; - -void main() { - float strength = texture(source_sss, uv_interp).r; - strength *= strength; //stored as sqrt - - // Fetch color of current pixel: - vec4 base_color = texture(source_diffuse, uv_interp); - - if (strength > 0.0) { - // Fetch linear depth of current pixel: - float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0; -#ifdef USE_ORTHOGONAL_PROJECTION - depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; - float scale = unit_size; //remember depth is negative by default in OpenGL -#else - depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near)); - float scale = unit_size / depth; //remember depth is negative by default in OpenGL -#endif - - // Calculate the final step to fetch the surrounding pixels: - vec2 step = max_radius * scale * dir; - step *= strength; // Modulate it using the alpha channel. - step *= 1.0 / 3.0; // Divide by 3 as the kernels range from -3 to 3. - - // Accumulate the center sample: - vec3 color_accum = base_color.rgb; - color_accum *= kernel[0].x; -#ifdef ENABLE_STRENGTH_WEIGHTING - float color_weight = kernel[0].x; -#endif - - // Accumulate the other samples: - for (int i = 1; i < kernel_size; i++) { - // Fetch color and depth for current sample: - vec2 offset = uv_interp + kernel[i].y * step; - vec3 color = texture(source_diffuse, offset).rgb; - -#ifdef ENABLE_FOLLOW_SURFACE - // If the difference in depth is huge, we lerp color back to "colorM": - float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0; - -#ifdef USE_ORTHOGONAL_PROJECTION - depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; -#else - depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near)); -#endif - - float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0); - color = mix(color, base_color.rgb, s); -#endif - - // Accumulate: - color *= kernel[i].x; - -#ifdef ENABLE_STRENGTH_WEIGHTING - float color_s = texture(source_sss, offset).r; - color_weight += color_s * kernel[i].x; - color *= color_s; -#endif - color_accum += color; - } - -#ifdef ENABLE_STRENGTH_WEIGHTING - color_accum /= color_weight; -#endif - frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO) - } else { - frag_color = base_color; - } -}