diff --git a/core/math/color.cpp b/core/math/color.cpp index 0d9325f2362..d36306d9687 100644 --- a/core/math/color.cpp +++ b/core/math/color.cpp @@ -247,8 +247,7 @@ void Color::set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha) { hsl.h = p_h; hsl.s = p_s; hsl.l = p_l; - ok_color new_ok_color; - ok_color::RGB rgb = new_ok_color.okhsl_to_srgb(hsl); + ok_color::RGB rgb = ok_color::okhsl_to_srgb(hsl); Color c = Color(rgb.r, rgb.g, rgb.b, p_alpha).clamp(); r = c.r; g = c.g; @@ -595,8 +594,7 @@ float Color::get_ok_hsl_h() const { rgb.r = r; rgb.g = g; rgb.b = b; - ok_color new_ok_color; - ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb); + ok_color::HSL ok_hsl = ok_color::srgb_to_okhsl(rgb); if (Math::is_nan(ok_hsl.h)) { return 0.0f; } @@ -608,8 +606,7 @@ float Color::get_ok_hsl_s() const { rgb.r = r; rgb.g = g; rgb.b = b; - ok_color new_ok_color; - ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb); + ok_color::HSL ok_hsl = ok_color::srgb_to_okhsl(rgb); if (Math::is_nan(ok_hsl.s)) { return 0.0f; } @@ -621,8 +618,7 @@ float Color::get_ok_hsl_l() const { rgb.r = r; rgb.g = g; rgb.b = b; - ok_color new_ok_color; - ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb); + ok_color::HSL ok_hsl = ok_color::srgb_to_okhsl(rgb); if (Math::is_nan(ok_hsl.l)) { return 0.0f; } diff --git a/thirdparty/misc/ok_color.h b/thirdparty/misc/ok_color.h index dbc7dafc367..4d0f0049bdf 100644 --- a/thirdparty/misc/ok_color.h +++ b/thirdparty/misc/ok_color.h @@ -33,13 +33,13 @@ struct HSL { float h; float s; float l; }; struct LC { float L; float C; }; // Alternative representation of (L_cusp, C_cusp) -// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp) +// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp) // The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L struct ST { float S; float T; }; static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f; -float clamp(float x, float min, float max) +static float clamp(float x, float min, float max) { if (x < min) return min; @@ -49,22 +49,22 @@ float clamp(float x, float min, float max) return x; } -float sgn(float x) +static float sgn(float x) { return (float)(0.f < x) - (float)(x < 0.f); } -float srgb_transfer_function(float a) +static float srgb_transfer_function(float a) { return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f; } -float srgb_transfer_function_inv(float a) +static float srgb_transfer_function_inv(float a) { return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f; } -Lab linear_srgb_to_oklab(RGB c) +static Lab linear_srgb_to_oklab(RGB c) { float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b; float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b; @@ -81,7 +81,7 @@ Lab linear_srgb_to_oklab(RGB c) }; } -RGB oklab_to_linear_srgb(Lab c) +static RGB oklab_to_linear_srgb(Lab c) { float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b; float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b; @@ -101,7 +101,7 @@ RGB oklab_to_linear_srgb(Lab c) // Finds the maximum saturation possible for a given hue that fits in sRGB // Saturation here is defined as S = C/L // a and b must be normalized so a^2 + b^2 == 1 -float compute_max_saturation(float a, float b) +static float compute_max_saturation(float a, float b) { // Max saturation will be when one of r, g or b goes below zero. @@ -132,7 +132,7 @@ float compute_max_saturation(float a, float b) // Do one step Halley's method to get closer // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite - // this should be sufficient for most applications, otherwise do two/three steps + // this should be sufficient for most applications, otherwise do two/three steps float k_l = +0.3963377774f * a + 0.2158037573f * b; float k_m = -0.1055613458f * a - 0.0638541728f * b; @@ -167,7 +167,7 @@ float compute_max_saturation(float a, float b) // finds L_cusp and C_cusp for a given hue // a and b must be normalized so a^2 + b^2 == 1 -LC find_cusp(float a, float b) +static LC find_cusp(float a, float b) { // First, find the maximum saturation (saturation S = C/L) float S_cusp = compute_max_saturation(a, b); @@ -180,11 +180,11 @@ LC find_cusp(float a, float b) return { L_cusp , C_cusp }; } -// Finds intersection of the line defined by +// Finds intersection of the line defined by // L = L0 * (1 - t) + t * L1; // C = t * C1; // a and b must be normalized so a^2 + b^2 == 1 -float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp) +static float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp) { // Find the intersection for upper and lower half seprately float t; @@ -269,7 +269,7 @@ float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC return t; } -float find_gamut_intersection(float a, float b, float L1, float C1, float L0) +static float find_gamut_intersection(float a, float b, float L1, float C1, float L0) { // Find the cusp of the gamut triangle LC cusp = find_cusp(a, b); @@ -277,7 +277,7 @@ float find_gamut_intersection(float a, float b, float L1, float C1, float L0) return find_gamut_intersection(a, b, L1, C1, L0, cusp); } -RGB gamut_clip_preserve_chroma(RGB rgb) +static RGB gamut_clip_preserve_chroma(RGB rgb) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) return rgb; @@ -299,7 +299,7 @@ RGB gamut_clip_preserve_chroma(RGB rgb) return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } -RGB gamut_clip_project_to_0_5(RGB rgb) +static RGB gamut_clip_project_to_0_5(RGB rgb) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) return rgb; @@ -321,7 +321,7 @@ RGB gamut_clip_project_to_0_5(RGB rgb) return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } -RGB gamut_clip_project_to_L_cusp(RGB rgb) +static RGB gamut_clip_project_to_L_cusp(RGB rgb) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) return rgb; @@ -347,7 +347,7 @@ RGB gamut_clip_project_to_L_cusp(RGB rgb) return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } -RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f) +static RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) return rgb; @@ -371,7 +371,7 @@ RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f) return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } -RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f) +static RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) return rgb; @@ -400,7 +400,7 @@ RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f) return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } -float toe(float x) +static float toe(float x) { constexpr float k_1 = 0.206f; constexpr float k_2 = 0.03f; @@ -408,7 +408,7 @@ float toe(float x) return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x)); } -float toe_inv(float x) +static float toe_inv(float x) { constexpr float k_1 = 0.206f; constexpr float k_2 = 0.03f; @@ -416,7 +416,7 @@ float toe_inv(float x) return (x * x + k_1 * x) / (k_3 * (x + k_2)); } -ST to_ST(LC cusp) +static ST to_ST(LC cusp) { float L = cusp.L; float C = cusp.C; @@ -426,7 +426,7 @@ ST to_ST(LC cusp) // Returns a smooth approximation of the location of the cusp // This polynomial was created by an optimization process // It has been designed so that S_mid < S_max and T_mid < T_max -ST get_ST_mid(float a_, float b_) +static ST get_ST_mid(float a_, float b_) { float S = 0.11516993f + 1.f / ( +7.44778970f + 4.15901240f * b_ @@ -448,13 +448,13 @@ ST get_ST_mid(float a_, float b_) } struct Cs { float C_0; float C_mid; float C_max; }; -Cs get_Cs(float L, float a_, float b_) +static Cs get_Cs(float L, float a_, float b_) { LC cusp = find_cusp(a_, b_); float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp); ST ST_max = to_ST(cusp); - + // Scale factor to compensate for the curved part of gamut shape: float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T); @@ -481,7 +481,7 @@ Cs get_Cs(float L, float a_, float b_) return { C_0, C_mid, C_max }; } -RGB okhsl_to_srgb(HSL hsl) +static RGB okhsl_to_srgb(HSL hsl) { float h = hsl.h; float s = hsl.s; @@ -539,7 +539,7 @@ RGB okhsl_to_srgb(HSL hsl) }; } -HSL srgb_to_okhsl(RGB rgb) +static HSL srgb_to_okhsl(RGB rgb) { Lab lab = linear_srgb_to_oklab({ srgb_transfer_function_inv(rgb.r), @@ -588,7 +588,7 @@ HSL srgb_to_okhsl(RGB rgb) } -RGB okhsv_to_srgb(HSV hsv) +static RGB okhsv_to_srgb(HSV hsv) { float h = hsv.h; float s = hsv.s; @@ -596,7 +596,7 @@ RGB okhsv_to_srgb(HSV hsv) float a_ = cosf(2.f * pi * h); float b_ = sinf(2.f * pi * h); - + LC cusp = find_cusp(a_, b_); ST ST_max = to_ST(cusp); float S_max = ST_max.S; @@ -635,7 +635,7 @@ RGB okhsv_to_srgb(HSV hsv) }; } -HSV srgb_to_okhsv(RGB rgb) +static HSV srgb_to_okhsv(RGB rgb) { Lab lab = linear_srgb_to_oklab({ srgb_transfer_function_inv(rgb.r),