Fixed inertia tensor computation and center of mass
This commit is contained in:
parent
f2e99826c0
commit
2e38b32e0f
|
@ -100,6 +100,80 @@ Matrix3 Matrix3::orthonormalized() const {
|
|||
}
|
||||
|
||||
|
||||
bool Matrix3::is_symmetric() const {
|
||||
|
||||
if (Math::abs(elements[0][1] - elements[1][0]) > CMP_EPSILON)
|
||||
return false;
|
||||
if (Math::abs(elements[0][2] - elements[2][0]) > CMP_EPSILON)
|
||||
return false;
|
||||
if (Math::abs(elements[1][2] - elements[2][1]) > CMP_EPSILON)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
Matrix3 Matrix3::diagonalize() {
|
||||
|
||||
//NOTE: only implemented for symmetric matrices
|
||||
//with the Jacobi iterative method method
|
||||
|
||||
ERR_FAIL_COND_V(!is_symmetric(), Matrix3());
|
||||
|
||||
const int ite_max = 1024;
|
||||
|
||||
real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
|
||||
|
||||
int ite = 0;
|
||||
Matrix3 acc_rot;
|
||||
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) {
|
||||
real_t el01_2 = elements[0][1] * elements[0][1];
|
||||
real_t el02_2 = elements[0][2] * elements[0][2];
|
||||
real_t el12_2 = elements[1][2] * elements[1][2];
|
||||
// Find the pivot element
|
||||
int i, j;
|
||||
if (el01_2 > el02_2) {
|
||||
if (el12_2 > el01_2) {
|
||||
i = 1;
|
||||
j = 2;
|
||||
} else {
|
||||
i = 0;
|
||||
j = 1;
|
||||
}
|
||||
} else {
|
||||
if (el12_2 > el02_2) {
|
||||
i = 1;
|
||||
j = 2;
|
||||
} else {
|
||||
i = 0;
|
||||
j = 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the rotation angle
|
||||
real_t angle;
|
||||
if (Math::abs(elements[j][j] - elements[i][i]) < CMP_EPSILON) {
|
||||
angle = Math_PI / 4;
|
||||
} else {
|
||||
angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
|
||||
}
|
||||
|
||||
// Compute the rotation matrix
|
||||
Matrix3 rot;
|
||||
rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
|
||||
rot.elements[i][j] = - (rot.elements[j][i] = Math::sin(angle));
|
||||
|
||||
// Update the off matrix norm
|
||||
off_matrix_norm_2 -= elements[i][j] * elements[i][j];
|
||||
|
||||
// Apply the rotation
|
||||
*this = rot * *this * rot.transposed();
|
||||
acc_rot = rot * acc_rot;
|
||||
}
|
||||
|
||||
return acc_rot;
|
||||
}
|
||||
|
||||
Matrix3 Matrix3::inverse() const {
|
||||
|
||||
Matrix3 inv=*this;
|
||||
|
|
|
@ -26,10 +26,12 @@
|
|||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "vector3.h"
|
||||
|
||||
#ifndef MATRIX3_H
|
||||
#define MATRIX3_H
|
||||
|
||||
#include "vector3.h"
|
||||
#include "quat.h"
|
||||
|
||||
/**
|
||||
|
@ -98,6 +100,12 @@ public:
|
|||
_FORCE_INLINE_ Vector3 xform_inv(const Vector3& p_vector) const;
|
||||
_FORCE_INLINE_ void operator*=(const Matrix3& p_matrix);
|
||||
_FORCE_INLINE_ Matrix3 operator*(const Matrix3& p_matrix) const;
|
||||
_FORCE_INLINE_ void operator+=(const Matrix3& p_matrix);
|
||||
_FORCE_INLINE_ Matrix3 operator+(const Matrix3& p_matrix) const;
|
||||
_FORCE_INLINE_ void operator-=(const Matrix3& p_matrix);
|
||||
_FORCE_INLINE_ Matrix3 operator-(const Matrix3& p_matrix) const;
|
||||
_FORCE_INLINE_ void operator*=(real_t p_val);
|
||||
_FORCE_INLINE_ Matrix3 operator*(real_t p_val) const;
|
||||
|
||||
int get_orthogonal_index() const;
|
||||
void set_orthogonal_index(int p_index);
|
||||
|
@ -130,6 +138,10 @@ public:
|
|||
|
||||
return Vector3(elements[i][0],elements[i][1],elements[i][2]);
|
||||
}
|
||||
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
|
||||
return Vector3(elements[0][0],elements[1][1],elements[2][2]);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_row(int i, const Vector3& p_row) {
|
||||
elements[i][0]=p_row.x;
|
||||
elements[i][1]=p_row.y;
|
||||
|
@ -163,12 +175,22 @@ public:
|
|||
void orthonormalize();
|
||||
Matrix3 orthonormalized() const;
|
||||
|
||||
bool is_symmetric() const;
|
||||
Matrix3 diagonalize();
|
||||
|
||||
operator Quat() const;
|
||||
|
||||
Matrix3(const Quat& p_quat); // euler
|
||||
Matrix3(const Vector3& p_euler); // euler
|
||||
Matrix3(const Vector3& p_axis, real_t p_phi);
|
||||
|
||||
_FORCE_INLINE_ Matrix3(const Vector3& row0, const Vector3& row1, const Vector3& row2)
|
||||
{
|
||||
elements[0]=row0;
|
||||
elements[1]=row1;
|
||||
elements[2]=row2;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Matrix3() {
|
||||
|
||||
elements[0][0]=1;
|
||||
|
@ -203,6 +225,49 @@ _FORCE_INLINE_ Matrix3 Matrix3::operator*(const Matrix3& p_matrix) const {
|
|||
|
||||
}
|
||||
|
||||
|
||||
_FORCE_INLINE_ void Matrix3::operator+=(const Matrix3& p_matrix) {
|
||||
|
||||
elements[0] += p_matrix.elements[0];
|
||||
elements[1] += p_matrix.elements[1];
|
||||
elements[2] += p_matrix.elements[2];
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Matrix3 Matrix3::operator+(const Matrix3& p_matrix) const {
|
||||
|
||||
Matrix3 ret(*this);
|
||||
ret += p_matrix;
|
||||
return ret;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void Matrix3::operator-=(const Matrix3& p_matrix) {
|
||||
|
||||
elements[0] -= p_matrix.elements[0];
|
||||
elements[1] -= p_matrix.elements[1];
|
||||
elements[2] -= p_matrix.elements[2];
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Matrix3 Matrix3::operator-(const Matrix3& p_matrix) const {
|
||||
|
||||
Matrix3 ret(*this);
|
||||
ret -= p_matrix;
|
||||
return ret;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void Matrix3::operator*=(real_t p_val) {
|
||||
|
||||
elements[0]*=p_val;
|
||||
elements[1]*=p_val;
|
||||
elements[2]*=p_val;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Matrix3 Matrix3::operator*(real_t p_val) const {
|
||||
|
||||
Matrix3 ret(*this);
|
||||
ret *= p_val;
|
||||
return ret;
|
||||
}
|
||||
|
||||
Vector3 Matrix3::xform(const Vector3& p_vector) const {
|
||||
|
||||
return Vector3(
|
||||
|
|
|
@ -26,13 +26,15 @@
|
|||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "vector3.h"
|
||||
|
||||
#ifndef QUAT_H
|
||||
#define QUAT_H
|
||||
|
||||
#include "math_defs.h"
|
||||
#include "math_funcs.h"
|
||||
#include "ustring.h"
|
||||
#include "vector3.h"
|
||||
|
||||
/**
|
||||
@author Juan Linietsky <reduzio@gmail.com>
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
#include "math_funcs.h"
|
||||
#include "ustring.h"
|
||||
|
||||
class Matrix3;
|
||||
|
||||
struct Vector3 {
|
||||
|
||||
|
@ -92,6 +93,8 @@ struct Vector3 {
|
|||
|
||||
_FORCE_INLINE_ Vector3 cross(const Vector3& p_b) const;
|
||||
_FORCE_INLINE_ real_t dot(const Vector3& p_b) const;
|
||||
_FORCE_INLINE_ Matrix3 outer(const Vector3& p_b) const;
|
||||
_FORCE_INLINE_ Matrix3 to_diagonal_matrix() const;
|
||||
|
||||
_FORCE_INLINE_ Vector3 abs() const;
|
||||
_FORCE_INLINE_ Vector3 floor() const;
|
||||
|
@ -144,6 +147,8 @@ struct Vector3 {
|
|||
|
||||
#else
|
||||
|
||||
#include "matrix3.h"
|
||||
|
||||
Vector3 Vector3::cross(const Vector3& p_b) const {
|
||||
|
||||
Vector3 ret (
|
||||
|
@ -160,6 +165,21 @@ real_t Vector3::dot(const Vector3& p_b) const {
|
|||
return x*p_b.x + y*p_b.y + z*p_b.z;
|
||||
}
|
||||
|
||||
Matrix3 Vector3::outer(const Vector3& p_b) const {
|
||||
|
||||
Vector3 row0(x*p_b.x, x*p_b.y, x*p_b.z);
|
||||
Vector3 row1(y*p_b.x, y*p_b.y, y*p_b.z);
|
||||
Vector3 row2(z*p_b.x, z*p_b.y, z*p_b.z);
|
||||
|
||||
return Matrix3(row0, row1, row2);
|
||||
}
|
||||
|
||||
Matrix3 Vector3::to_diagonal_matrix() const {
|
||||
return Matrix3(x, 0, 0,
|
||||
0, y, 0,
|
||||
0, 0, z);
|
||||
}
|
||||
|
||||
Vector3 Vector3::abs() const {
|
||||
|
||||
return Vector3( Math::abs(x), Math::abs(y), Math::abs(z) );
|
||||
|
|
|
@ -370,6 +370,8 @@ static void _call_##m_type##_##m_method(Variant& r_ret,Variant& p_self,const Var
|
|||
VCALL_LOCALMEM4R(Vector3, cubic_interpolate);
|
||||
VCALL_LOCALMEM1R(Vector3, dot);
|
||||
VCALL_LOCALMEM1R(Vector3, cross);
|
||||
VCALL_LOCALMEM1R(Vector3, outer);
|
||||
VCALL_LOCALMEM0R(Vector3, to_diagonal_matrix);
|
||||
VCALL_LOCALMEM0R(Vector3, abs);
|
||||
VCALL_LOCALMEM0R(Vector3, floor);
|
||||
VCALL_LOCALMEM0R(Vector3, ceil);
|
||||
|
@ -1481,6 +1483,9 @@ _VariantCall::addfunc(Variant::m_vtype,Variant::m_ret,_SCS(#m_method),VCALL(m_cl
|
|||
ADDFUNC4(VECTOR3,VECTOR3,Vector3,cubic_interpolate,VECTOR3,"b",VECTOR3,"pre_a",VECTOR3,"post_b",REAL,"t",varray());
|
||||
ADDFUNC1(VECTOR3,REAL,Vector3,dot,VECTOR3,"b",varray());
|
||||
ADDFUNC1(VECTOR3,VECTOR3,Vector3,cross,VECTOR3,"b",varray());
|
||||
ADDFUNC1(VECTOR3,MATRIX3,Vector3,outer,VECTOR3,"b",varray());
|
||||
ADDFUNC0(VECTOR3,MATRIX3,Vector3,to_diagonal_matrix,varray());
|
||||
ADDFUNC0(VECTOR3,VECTOR3,Vector3,abs,varray());
|
||||
ADDFUNC0(VECTOR3,VECTOR3,Vector3,abs,varray());
|
||||
ADDFUNC0(VECTOR3,VECTOR3,Vector3,floor,varray());
|
||||
ADDFUNC0(VECTOR3,VECTOR3,Vector3,ceil,varray());
|
||||
|
|
|
@ -28723,12 +28723,24 @@
|
|||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="apply_torque_impulse">
|
||||
<argument index="0" name="j" type="Vector3">
|
||||
</argument>
|
||||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="get_angular_velocity" qualifiers="const">
|
||||
<return type="Vector3">
|
||||
</return>
|
||||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="get_center_of_mass" qualifiers="const">
|
||||
<return type="Vector3"/>
|
||||
</return>
|
||||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="get_contact_collider" qualifiers="const">
|
||||
<return type="RID">
|
||||
</return>
|
||||
|
@ -28807,7 +28819,7 @@
|
|||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="get_inverse_inertia" qualifiers="const">
|
||||
<method name="get_inverse_inertia_tensor" qualifiers="const">
|
||||
<return type="Vector3">
|
||||
</return>
|
||||
<description>
|
||||
|
@ -28825,6 +28837,12 @@
|
|||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="get_principal_inertia_axes">
|
||||
<return type="Matrix3">
|
||||
</return>
|
||||
<description>
|
||||
</description>
|
||||
</method>
|
||||
<method name="get_space_state">
|
||||
<return type="PhysicsDirectSpaceState">
|
||||
</return>
|
||||
|
@ -45318,6 +45336,15 @@ do_property].
|
|||
Return a copy of the normalized vector to unit length. This is the same as v / v.length().
|
||||
</description>
|
||||
</method>
|
||||
<method name="outer">
|
||||
<return type="Matrix3">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Vector3">
|
||||
</argument>
|
||||
<description>
|
||||
Return the outer product with b.
|
||||
</description>
|
||||
</method>
|
||||
<method name="reflect">
|
||||
<return type="Vector3">
|
||||
</return>
|
||||
|
@ -45356,6 +45383,13 @@ do_property].
|
|||
Return a copy of the vector, snapped to the lowest neared multiple.
|
||||
</description>
|
||||
</method>
|
||||
<method name="to_diagonal_matrix">
|
||||
<return type="Matrix3">
|
||||
</return>
|
||||
<description>
|
||||
Return a diagonal matrix with the vector as main diagonal.
|
||||
</description>
|
||||
</method>
|
||||
</methods>
|
||||
<members>
|
||||
<member name="x" type="float">
|
||||
|
|
|
@ -590,7 +590,7 @@ void VehicleBody::_resolve_single_bilateral(PhysicsDirectBodyState *s, const Vec
|
|||
rel_pos1,
|
||||
rel_pos2,
|
||||
normal,
|
||||
s->get_inverse_inertia(),
|
||||
s->get_inverse_inertia_tensor().get_main_diagonal(),
|
||||
1.0/mass,
|
||||
b2invinertia,
|
||||
b2invmass);
|
||||
|
|
|
@ -307,8 +307,8 @@ bool BodyPairSW::setup(float p_step) {
|
|||
}
|
||||
#endif
|
||||
|
||||
c.rA = global_A;
|
||||
c.rB = global_B-offset_B;
|
||||
c.rA = global_A-A->get_center_of_mass();
|
||||
c.rB = global_B-B->get_center_of_mass()-offset_B;
|
||||
|
||||
// contact query reporting...
|
||||
#if 0
|
||||
|
@ -364,12 +364,12 @@ bool BodyPairSW::setup(float p_step) {
|
|||
c.depth=depth;
|
||||
|
||||
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
|
||||
A->apply_impulse( c.rA, -j_vec );
|
||||
B->apply_impulse( c.rB, j_vec );
|
||||
A->apply_impulse( c.rA+A->get_center_of_mass(), -j_vec );
|
||||
B->apply_impulse( c.rB+B->get_center_of_mass(), j_vec );
|
||||
c.acc_bias_impulse=0;
|
||||
Vector3 jb_vec = c.normal * c.acc_bias_impulse;
|
||||
A->apply_bias_impulse( c.rA, -jb_vec );
|
||||
B->apply_bias_impulse( c.rB, jb_vec );
|
||||
A->apply_bias_impulse( c.rA+A->get_center_of_mass(), -jb_vec );
|
||||
B->apply_bias_impulse( c.rB+B->get_center_of_mass(), jb_vec );
|
||||
|
||||
c.bounce = MAX(A->get_bounce(),B->get_bounce());
|
||||
if (c.bounce) {
|
||||
|
@ -418,8 +418,8 @@ void BodyPairSW::solve(float p_step) {
|
|||
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
|
||||
|
||||
|
||||
A->apply_bias_impulse(c.rA,-jb);
|
||||
B->apply_bias_impulse(c.rB, jb);
|
||||
A->apply_bias_impulse(c.rA+A->get_center_of_mass(),-jb);
|
||||
B->apply_bias_impulse(c.rB+B->get_center_of_mass(), jb);
|
||||
|
||||
c.active=true;
|
||||
}
|
||||
|
@ -442,8 +442,8 @@ void BodyPairSW::solve(float p_step) {
|
|||
Vector3 j =c.normal * (c.acc_normal_impulse - jnOld);
|
||||
|
||||
|
||||
A->apply_impulse(c.rA,-j);
|
||||
B->apply_impulse(c.rB, j);
|
||||
A->apply_impulse(c.rA+A->get_center_of_mass(),-j);
|
||||
B->apply_impulse(c.rB+B->get_center_of_mass(), j);
|
||||
|
||||
c.active=true;
|
||||
}
|
||||
|
@ -489,8 +489,8 @@ void BodyPairSW::solve(float p_step) {
|
|||
jt = c.acc_tangent_impulse - jtOld;
|
||||
|
||||
|
||||
A->apply_impulse( c.rA, -jt );
|
||||
B->apply_impulse( c.rB, jt );
|
||||
A->apply_impulse( c.rA+A->get_center_of_mass(), -jt );
|
||||
B->apply_impulse( c.rB+B->get_center_of_mass(), jt );
|
||||
|
||||
c.active=true;
|
||||
|
||||
|
|
|
@ -65,7 +65,7 @@ class BodyPairSW : public ConstraintSW {
|
|||
|
||||
real_t depth;
|
||||
bool active;
|
||||
Vector3 rA,rB;
|
||||
Vector3 rA,rB; // Offset in world orientation with respect to center of mass
|
||||
};
|
||||
|
||||
Vector3 offset_B; //use local A coordinates to avoid numerical issues on collision detection
|
||||
|
|
|
@ -37,12 +37,16 @@ void BodySW::_update_inertia() {
|
|||
|
||||
}
|
||||
|
||||
void BodySW::_update_transform_dependant() {
|
||||
|
||||
center_of_mass = get_transform().basis.xform(center_of_mass_local);
|
||||
principal_inertia_axes = get_transform().basis * principal_inertia_axes_local;
|
||||
|
||||
void BodySW::_update_inertia_tensor() {
|
||||
|
||||
Matrix3 tb = get_transform().basis;
|
||||
// update inertia tensor
|
||||
Matrix3 tb = principal_inertia_axes;
|
||||
Matrix3 tbt = tb.transposed();
|
||||
tb.scale(_inv_inertia);
|
||||
_inv_inertia_tensor = tb * get_transform().basis.transposed();
|
||||
_inv_inertia_tensor = tb * tbt;
|
||||
|
||||
}
|
||||
|
||||
|
@ -54,33 +58,56 @@ void BodySW::update_inertias() {
|
|||
|
||||
case PhysicsServer::BODY_MODE_RIGID: {
|
||||
|
||||
//update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet)
|
||||
//update tensor for all shapes, not the best way but should be somehow OK. (inspired from bullet)
|
||||
float total_area=0;
|
||||
|
||||
for (int i=0;i<get_shape_count();i++) {
|
||||
|
||||
total_area+=get_shape_aabb(i).get_area();
|
||||
total_area+=get_shape_area(i);
|
||||
}
|
||||
|
||||
Vector3 _inertia;
|
||||
// We have to recompute the center of mass
|
||||
center_of_mass_local.zero();
|
||||
|
||||
for (int i=0; i<get_shape_count(); i++) {
|
||||
float area=get_shape_area(i);
|
||||
|
||||
float mass = area * this->mass / total_area;
|
||||
|
||||
// NOTE: we assume that the shape origin is also its center of mass
|
||||
center_of_mass_local += mass * get_shape_transform(i).origin;
|
||||
}
|
||||
|
||||
center_of_mass_local /= mass;
|
||||
|
||||
// Recompute the inertia tensor
|
||||
Matrix3 inertia_tensor;
|
||||
inertia_tensor.set_zero();
|
||||
|
||||
for (int i=0;i<get_shape_count();i++) {
|
||||
|
||||
const ShapeSW* shape=get_shape(i);
|
||||
|
||||
float area=get_shape_aabb(i).get_area();
|
||||
float area=get_shape_area(i);
|
||||
|
||||
float mass = area * this->mass / total_area;
|
||||
|
||||
_inertia += shape->get_moment_of_inertia(mass) + mass * get_shape_transform(i).get_origin();
|
||||
Matrix3 shape_inertia_tensor=shape->get_moment_of_inertia(mass).to_diagonal_matrix();
|
||||
Transform shape_transform=get_shape_transform(i);
|
||||
Matrix3 shape_basis = shape_transform.basis.orthonormalized();
|
||||
|
||||
// NOTE: we don't take the scale of collision shapes into account when computing the inertia tensor!
|
||||
shape_inertia_tensor = shape_basis * shape_inertia_tensor * shape_basis.transposed();
|
||||
|
||||
Vector3 shape_origin = shape_transform.origin - center_of_mass_local;
|
||||
inertia_tensor += shape_inertia_tensor + (Matrix3()*shape_origin.dot(shape_origin)-shape_origin.outer(shape_origin))*mass;
|
||||
|
||||
|
||||
}
|
||||
|
||||
if (_inertia!=Vector3())
|
||||
_inv_inertia=_inertia.inverse();
|
||||
else
|
||||
_inv_inertia=Vector3();
|
||||
// Compute the principal axes of inertia
|
||||
principal_inertia_axes_local = inertia_tensor.diagonalize().transposed();
|
||||
_inv_inertia = inertia_tensor.get_main_diagonal().inverse();
|
||||
|
||||
if (mass)
|
||||
_inv_mass=1.0/mass;
|
||||
|
@ -92,20 +119,21 @@ void BodySW::update_inertias() {
|
|||
case PhysicsServer::BODY_MODE_KINEMATIC:
|
||||
case PhysicsServer::BODY_MODE_STATIC: {
|
||||
|
||||
_inv_inertia=Vector3();
|
||||
_inv_inertia_tensor.set_zero();
|
||||
_inv_mass=0;
|
||||
} break;
|
||||
case PhysicsServer::BODY_MODE_CHARACTER: {
|
||||
|
||||
_inv_inertia=Vector3();
|
||||
_inv_inertia_tensor.set_zero();
|
||||
_inv_mass=1.0/mass;
|
||||
|
||||
} break;
|
||||
}
|
||||
_update_inertia_tensor();
|
||||
|
||||
|
||||
//_update_shapes();
|
||||
|
||||
_update_transform_dependant();
|
||||
}
|
||||
|
||||
|
||||
|
@ -582,6 +610,8 @@ void BodySW::integrate_velocities(real_t p_step) {
|
|||
if (ang_vel!=0.0) {
|
||||
Vector3 ang_vel_axis = total_angular_velocity / ang_vel;
|
||||
Matrix3 rot( ang_vel_axis, -ang_vel*p_step );
|
||||
Matrix3 identity3(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
||||
transform.origin += ((identity3 - rot) * transform.basis).xform(center_of_mass_local);
|
||||
transform.basis = rot * transform.basis;
|
||||
transform.orthonormalize();
|
||||
}
|
||||
|
@ -598,7 +628,7 @@ void BodySW::integrate_velocities(real_t p_step) {
|
|||
_set_transform(transform);
|
||||
_set_inv_transform(get_transform().inverse());
|
||||
|
||||
_update_inertia_tensor();
|
||||
_update_transform_dependant();
|
||||
|
||||
//if (fi_callback) {
|
||||
|
||||
|
|
|
@ -57,8 +57,16 @@ class BodySW : public CollisionObjectSW {
|
|||
PhysicsServer::BodyAxisLock axis_lock;
|
||||
|
||||
real_t _inv_mass;
|
||||
Vector3 _inv_inertia;
|
||||
Vector3 _inv_inertia; // Relative to the principal axes of inertia
|
||||
|
||||
// Relative to the local frame of reference
|
||||
Matrix3 principal_inertia_axes_local;
|
||||
Vector3 center_of_mass_local;
|
||||
|
||||
// In world orientation with local origin
|
||||
Matrix3 _inv_inertia_tensor;
|
||||
Matrix3 principal_inertia_axes;
|
||||
Vector3 center_of_mass;
|
||||
|
||||
Vector3 gravity;
|
||||
|
||||
|
@ -135,7 +143,7 @@ class BodySW : public CollisionObjectSW {
|
|||
|
||||
_FORCE_INLINE_ void _compute_area_gravity_and_dampenings(const AreaSW *p_area);
|
||||
|
||||
_FORCE_INLINE_ void _update_inertia_tensor();
|
||||
_FORCE_INLINE_ void _update_transform_dependant();
|
||||
|
||||
friend class PhysicsDirectBodyStateSW; // i give up, too many functions to expose
|
||||
|
||||
|
@ -190,6 +198,10 @@ public:
|
|||
_FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration=p_omit_force_integration; }
|
||||
_FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; }
|
||||
|
||||
_FORCE_INLINE_ Matrix3 get_principal_inertia_axes() const { return principal_inertia_axes; }
|
||||
_FORCE_INLINE_ Vector3 get_center_of_mass() const { return center_of_mass; }
|
||||
_FORCE_INLINE_ Vector3 xform_local_to_principal(const Vector3& p_pos) const { return principal_inertia_axes_local.xform(p_pos - center_of_mass_local); }
|
||||
|
||||
_FORCE_INLINE_ void set_linear_velocity(const Vector3& p_velocity) {linear_velocity=p_velocity; }
|
||||
_FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; }
|
||||
|
||||
|
@ -202,13 +214,7 @@ public:
|
|||
_FORCE_INLINE_ void apply_impulse(const Vector3& p_pos, const Vector3& p_j) {
|
||||
|
||||
linear_velocity += p_j * _inv_mass;
|
||||
angular_velocity += _inv_inertia_tensor.xform( p_pos.cross(p_j) );
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void apply_bias_impulse(const Vector3& p_pos, const Vector3& p_j) {
|
||||
|
||||
biased_linear_velocity += p_j * _inv_mass;
|
||||
biased_angular_velocity += _inv_inertia_tensor.xform( p_pos.cross(p_j) );
|
||||
angular_velocity += _inv_inertia_tensor.xform( (p_pos-center_of_mass).cross(p_j) );
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void apply_torque_impulse(const Vector3& p_j) {
|
||||
|
@ -216,6 +222,17 @@ public:
|
|||
angular_velocity += _inv_inertia_tensor.xform(p_j);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void apply_bias_impulse(const Vector3& p_pos, const Vector3& p_j) {
|
||||
|
||||
biased_linear_velocity += p_j * _inv_mass;
|
||||
biased_angular_velocity += _inv_inertia_tensor.xform( (p_pos-center_of_mass).cross(p_j) );
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void apply_bias_torque_impulse(const Vector3& p_j) {
|
||||
|
||||
biased_angular_velocity += _inv_inertia_tensor.xform(p_j);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void add_force(const Vector3& p_force, const Vector3& p_pos) {
|
||||
|
||||
applied_force += p_force;
|
||||
|
@ -268,12 +285,12 @@ public:
|
|||
|
||||
_FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3& rel_pos) const {
|
||||
|
||||
return linear_velocity + angular_velocity.cross(rel_pos);
|
||||
return linear_velocity + angular_velocity.cross(rel_pos-center_of_mass);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3& p_pos, const Vector3& p_normal) const {
|
||||
|
||||
Vector3 r0 = p_pos - get_transform().origin;
|
||||
Vector3 r0 = p_pos - get_transform().origin - center_of_mass;
|
||||
|
||||
Vector3 c0 = (r0).cross(p_normal);
|
||||
|
||||
|
@ -363,6 +380,9 @@ public:
|
|||
virtual float get_total_angular_damp() const { return body->area_angular_damp; } // get density of this body space/area
|
||||
virtual float get_total_linear_damp() const { return body->area_linear_damp; } // get density of this body space/area
|
||||
|
||||
virtual Vector3 get_center_of_mass() const { return body->get_center_of_mass(); }
|
||||
virtual Matrix3 get_principal_inertia_axes() const { return body->get_principal_inertia_axes(); }
|
||||
|
||||
virtual float get_inverse_mass() const { return body->get_inv_mass(); } // get the mass
|
||||
virtual Vector3 get_inverse_inertia() const { return body->get_inv_inertia(); } // get density of this body space
|
||||
virtual Matrix3 get_inverse_inertia_tensor() const { return body->get_inv_inertia_tensor(); } // get density of this body space
|
||||
|
@ -378,6 +398,7 @@ public:
|
|||
|
||||
virtual void add_force(const Vector3& p_force, const Vector3& p_pos) { body->add_force(p_force,p_pos); }
|
||||
virtual void apply_impulse(const Vector3& p_pos, const Vector3& p_j) { body->apply_impulse(p_pos,p_j); }
|
||||
virtual void apply_torque_impulse(const Vector3& p_j) { body->apply_torque_impulse(p_j); }
|
||||
|
||||
virtual void set_sleep_state(bool p_enable) { body->set_active(!p_enable); }
|
||||
virtual bool is_sleeping() const { return !body->is_active(); }
|
||||
|
|
|
@ -144,6 +144,8 @@ void CollisionObjectSW::_update_shapes() {
|
|||
s.aabb_cache=shape_aabb;
|
||||
s.aabb_cache=s.aabb_cache.grow( (s.aabb_cache.size.x + s.aabb_cache.size.y)*0.5*0.05 );
|
||||
|
||||
Vector3 scale = xform.get_basis().get_scale();
|
||||
s.area_cache=s.shape->get_area()*scale.x*scale.y*scale.z;
|
||||
|
||||
space->get_broadphase()->move(s.bpid,s.aabb_cache);
|
||||
}
|
||||
|
|
|
@ -61,6 +61,7 @@ private:
|
|||
Transform xform_inv;
|
||||
BroadPhaseSW::ID bpid;
|
||||
AABB aabb_cache; //for rayqueries
|
||||
real_t area_cache;
|
||||
ShapeSW *shape;
|
||||
bool trigger;
|
||||
|
||||
|
@ -123,6 +124,7 @@ public:
|
|||
_FORCE_INLINE_ const Transform& get_shape_transform(int p_index) const { return shapes[p_index].xform; }
|
||||
_FORCE_INLINE_ const Transform& get_shape_inv_transform(int p_index) const { return shapes[p_index].xform_inv; }
|
||||
_FORCE_INLINE_ const AABB& get_shape_aabb(int p_index) const { return shapes[p_index].aabb_cache; }
|
||||
_FORCE_INLINE_ const real_t get_shape_area(int p_index) const { return shapes[p_index].area_cache; }
|
||||
|
||||
_FORCE_INLINE_ Transform get_transform() const { return transform; }
|
||||
_FORCE_INLINE_ Transform get_inv_transform() const { return inv_transform; }
|
||||
|
|
|
@ -128,10 +128,10 @@ bool ConeTwistJointSW::setup(float p_step) {
|
|||
for (int i=0;i<3;i++)
|
||||
{
|
||||
memnew_placement(&m_jac[i], JacobianEntrySW(
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
pivotAInW - A->get_transform().origin,
|
||||
pivotBInW - B->get_transform().origin,
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
|
||||
pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
|
||||
normal[i],
|
||||
A->get_inv_inertia(),
|
||||
A->get_inv_mass(),
|
||||
|
|
|
@ -352,10 +352,10 @@ void Generic6DOFJointSW::buildLinearJacobian(
|
|||
const Vector3 & pivotAInW,const Vector3 & pivotBInW)
|
||||
{
|
||||
memnew_placement(&jacLinear, JacobianEntrySW(
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
pivotAInW - A->get_transform().origin,
|
||||
pivotBInW - B->get_transform().origin,
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
|
||||
pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
|
||||
normalWorld,
|
||||
A->get_inv_inertia(),
|
||||
A->get_inv_mass(),
|
||||
|
@ -368,8 +368,8 @@ void Generic6DOFJointSW::buildAngularJacobian(
|
|||
JacobianEntrySW & jacAngular,const Vector3 & jointAxisW)
|
||||
{
|
||||
memnew_placement(&jacAngular, JacobianEntrySW(jointAxisW,
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
A->get_inv_inertia(),
|
||||
B->get_inv_inertia()));
|
||||
|
||||
|
@ -440,7 +440,7 @@ bool Generic6DOFJointSW::setup(float p_step) {
|
|||
}
|
||||
|
||||
|
||||
void Generic6DOFJointSW::solve(real_t timeStep)
|
||||
void Generic6DOFJointSW::solve(real_t timeStep)
|
||||
{
|
||||
m_timeStep = timeStep;
|
||||
|
||||
|
|
|
@ -173,10 +173,10 @@ bool HingeJointSW::setup(float p_step) {
|
|||
for (int i=0;i<3;i++)
|
||||
{
|
||||
memnew_placement(&m_jac[i], JacobianEntrySW(
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
pivotAInW - A->get_transform().origin,
|
||||
pivotBInW - B->get_transform().origin,
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
|
||||
pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
|
||||
normal[i],
|
||||
A->get_inv_inertia(),
|
||||
A->get_inv_mass(),
|
||||
|
@ -200,20 +200,20 @@ bool HingeJointSW::setup(float p_step) {
|
|||
Vector3 hingeAxisWorld = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
|
||||
|
||||
memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0,
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
A->get_inv_inertia(),
|
||||
B->get_inv_inertia()));
|
||||
|
||||
memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1,
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
A->get_inv_inertia(),
|
||||
B->get_inv_inertia()));
|
||||
|
||||
memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld,
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
A->get_inv_inertia(),
|
||||
B->get_inv_inertia()));
|
||||
|
||||
|
|
|
@ -44,10 +44,10 @@ bool PinJointSW::setup(float p_step) {
|
|||
{
|
||||
normal[i] = 1;
|
||||
memnew_placement(&m_jac[i],JacobianEntrySW(
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
A->get_transform().xform(m_pivotInA) - A->get_transform().origin,
|
||||
B->get_transform().xform(m_pivotInB) - B->get_transform().origin,
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
A->get_transform().xform(m_pivotInA) - A->get_transform().origin - A->get_center_of_mass(),
|
||||
B->get_transform().xform(m_pivotInB) - B->get_transform().origin - B->get_center_of_mass(),
|
||||
normal,
|
||||
A->get_inv_inertia(),
|
||||
A->get_inv_mass(),
|
||||
|
|
|
@ -132,10 +132,10 @@ bool SliderJointSW::setup(float p_step)
|
|||
{
|
||||
normalWorld = m_calculatedTransformA.basis.get_axis(i);
|
||||
memnew_placement(&m_jacLin[i], JacobianEntrySW(
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
m_relPosA,
|
||||
m_relPosB,
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
m_relPosA - A->get_center_of_mass(),
|
||||
m_relPosB - B->get_center_of_mass(),
|
||||
normalWorld,
|
||||
A->get_inv_inertia(),
|
||||
A->get_inv_mass(),
|
||||
|
@ -152,8 +152,8 @@ bool SliderJointSW::setup(float p_step)
|
|||
normalWorld = m_calculatedTransformA.basis.get_axis(i);
|
||||
memnew_placement(&m_jacAng[i], JacobianEntrySW(
|
||||
normalWorld,
|
||||
A->get_transform().basis.transposed(),
|
||||
B->get_transform().basis.transposed(),
|
||||
A->get_principal_inertia_axes().transposed(),
|
||||
B->get_principal_inertia_axes().transposed(),
|
||||
A->get_inv_inertia(),
|
||||
B->get_inv_inertia()
|
||||
));
|
||||
|
|
|
@ -805,6 +805,15 @@ void PhysicsServerSW::body_apply_impulse(RID p_body, const Vector3& p_pos, const
|
|||
body->wakeup();
|
||||
};
|
||||
|
||||
void PhysicsServerSW::body_apply_torque_impulse(RID p_body, const Vector3& p_impulse) {
|
||||
|
||||
BodySW *body = body_owner.get(p_body);
|
||||
ERR_FAIL_COND(!body);
|
||||
|
||||
body->apply_torque_impulse(p_impulse);
|
||||
body->wakeup();
|
||||
};
|
||||
|
||||
void PhysicsServerSW::body_set_axis_velocity(RID p_body, const Vector3& p_axis_velocity) {
|
||||
|
||||
BodySW *body = body_owner.get(p_body);
|
||||
|
|
|
@ -193,6 +193,7 @@ public:
|
|||
virtual Vector3 body_get_applied_torque(RID p_body) const;
|
||||
|
||||
virtual void body_apply_impulse(RID p_body, const Vector3& p_pos, const Vector3& p_impulse);
|
||||
virtual void body_apply_torque_impulse(RID p_body, const Vector3& p_impulse);
|
||||
virtual void body_set_axis_velocity(RID p_body, const Vector3& p_axis_velocity);
|
||||
|
||||
virtual void body_set_axis_lock(RID p_body,BodyAxisLock p_lock);
|
||||
|
|
|
@ -73,6 +73,8 @@ public:
|
|||
MAX_SUPPORTS=8
|
||||
};
|
||||
|
||||
virtual real_t get_area() const { return aabb.get_area();}
|
||||
|
||||
_FORCE_INLINE_ void set_self(const RID& p_self) { self=p_self; }
|
||||
_FORCE_INLINE_ RID get_self() const {return self; }
|
||||
|
||||
|
@ -128,6 +130,7 @@ public:
|
|||
|
||||
Plane get_plane() const;
|
||||
|
||||
virtual real_t get_area() const { return INFINITY; }
|
||||
virtual PhysicsServer::ShapeType get_type() const { return PhysicsServer::SHAPE_PLANE; }
|
||||
virtual void project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const;
|
||||
virtual Vector3 get_support(const Vector3& p_normal) const;
|
||||
|
@ -152,6 +155,7 @@ public:
|
|||
|
||||
float get_length() const;
|
||||
|
||||
virtual real_t get_area() const { return 0.0; }
|
||||
virtual PhysicsServer::ShapeType get_type() const { return PhysicsServer::SHAPE_RAY; }
|
||||
virtual void project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const;
|
||||
virtual Vector3 get_support(const Vector3& p_normal) const;
|
||||
|
@ -176,6 +180,8 @@ public:
|
|||
|
||||
real_t get_radius() const;
|
||||
|
||||
virtual real_t get_area() const { return 4.0/3.0 * Math_PI * radius * radius * radius; }
|
||||
|
||||
virtual PhysicsServer::ShapeType get_type() const { return PhysicsServer::SHAPE_SPHERE; }
|
||||
|
||||
virtual void project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const;
|
||||
|
@ -198,6 +204,7 @@ class BoxShapeSW : public ShapeSW {
|
|||
public:
|
||||
|
||||
_FORCE_INLINE_ Vector3 get_half_extents() const { return half_extents; }
|
||||
virtual real_t get_area() const { return 8 * half_extents.x * half_extents.y * half_extents.z; }
|
||||
|
||||
virtual PhysicsServer::ShapeType get_type() const { return PhysicsServer::SHAPE_BOX; }
|
||||
|
||||
|
@ -226,6 +233,8 @@ public:
|
|||
_FORCE_INLINE_ real_t get_height() const { return height; }
|
||||
_FORCE_INLINE_ real_t get_radius() const { return radius; }
|
||||
|
||||
virtual real_t get_area() { return 4.0/3.0 * Math_PI * radius * radius * radius + height * Math_PI * radius * radius; }
|
||||
|
||||
virtual PhysicsServer::ShapeType get_type() const { return PhysicsServer::SHAPE_CAPSULE; }
|
||||
|
||||
virtual void project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const;
|
||||
|
|
|
@ -78,6 +78,9 @@ void PhysicsDirectBodyState::_bind_methods() {
|
|||
ClassDB::bind_method(_MD("get_total_linear_damp"),&PhysicsDirectBodyState::get_total_linear_damp);
|
||||
ClassDB::bind_method(_MD("get_total_angular_damp"),&PhysicsDirectBodyState::get_total_angular_damp);
|
||||
|
||||
ClassDB::bind_method(_MD("get_center_of_mass"),&PhysicsDirectBodyState::get_center_of_mass);
|
||||
ClassDB::bind_method(_MD("get_principal_inetria_axes"),&PhysicsDirectBodyState::get_principal_inertia_axes);
|
||||
|
||||
ClassDB::bind_method(_MD("get_inverse_mass"),&PhysicsDirectBodyState::get_inverse_mass);
|
||||
ClassDB::bind_method(_MD("get_inverse_inertia"),&PhysicsDirectBodyState::get_inverse_inertia);
|
||||
|
||||
|
@ -92,6 +95,7 @@ void PhysicsDirectBodyState::_bind_methods() {
|
|||
|
||||
ClassDB::bind_method(_MD("add_force","force","pos"),&PhysicsDirectBodyState::add_force);
|
||||
ClassDB::bind_method(_MD("apply_impulse","pos","j"),&PhysicsDirectBodyState::apply_impulse);
|
||||
ClassDB::bind_method(_MD("apply_torqe_impulse","j"),&PhysicsDirectBodyState::apply_torque_impulse);
|
||||
|
||||
ClassDB::bind_method(_MD("set_sleep_state","enabled"),&PhysicsDirectBodyState::set_sleep_state);
|
||||
ClassDB::bind_method(_MD("is_sleeping"),&PhysicsDirectBodyState::is_sleeping);
|
||||
|
@ -517,6 +521,7 @@ void PhysicsServer::_bind_methods() {
|
|||
ClassDB::bind_method(_MD("body_get_state","body","state"),&PhysicsServer::body_get_state);
|
||||
|
||||
ClassDB::bind_method(_MD("body_apply_impulse","body","pos","impulse"),&PhysicsServer::body_apply_impulse);
|
||||
ClassDB::bind_method(_MD("body_apply_torque_impulse","body","impulse"),&PhysicsServer::body_apply_torque_impulse);
|
||||
ClassDB::bind_method(_MD("body_set_axis_velocity","body","axis_velocity"),&PhysicsServer::body_set_axis_velocity);
|
||||
|
||||
ClassDB::bind_method(_MD("body_set_axis_lock","body","axis"),&PhysicsServer::body_set_axis_lock);
|
||||
|
|
|
@ -45,6 +45,8 @@ public:
|
|||
virtual float get_total_angular_damp() const=0;
|
||||
virtual float get_total_linear_damp() const=0;
|
||||
|
||||
virtual Vector3 get_center_of_mass() const=0;
|
||||
virtual Matrix3 get_principal_inertia_axes() const=0;
|
||||
virtual float get_inverse_mass() const=0; // get the mass
|
||||
virtual Vector3 get_inverse_inertia() const=0; // get density of this body space
|
||||
virtual Matrix3 get_inverse_inertia_tensor() const=0; // get density of this body space
|
||||
|
@ -60,6 +62,7 @@ public:
|
|||
|
||||
virtual void add_force(const Vector3& p_force, const Vector3& p_pos)=0;
|
||||
virtual void apply_impulse(const Vector3& p_pos, const Vector3& p_j)=0;
|
||||
virtual void apply_torque_impulse(const Vector3& p_j)=0;
|
||||
|
||||
virtual void set_sleep_state(bool p_enable)=0;
|
||||
virtual bool is_sleeping() const=0;
|
||||
|
@ -441,6 +444,7 @@ public:
|
|||
virtual Vector3 body_get_applied_torque(RID p_body) const=0;
|
||||
|
||||
virtual void body_apply_impulse(RID p_body, const Vector3& p_pos, const Vector3& p_impulse)=0;
|
||||
virtual void body_apply_torque_impulse(RID p_body, const Vector3& p_impulse)=0;
|
||||
virtual void body_set_axis_velocity(RID p_body, const Vector3& p_axis_velocity)=0;
|
||||
|
||||
enum BodyAxisLock {
|
||||
|
|
Loading…
Reference in New Issue