GPULightmapper: better algorithm to generate rays for indirect lighting

Previous algorithm used an algorithm to generate rays that was not completely
random. This caused artifacts when large lighmap textures were used.

The new algorithm creates better rays and by that prevents artifacts.
This commit is contained in:
William Deurwaarder 2021-11-12 17:56:09 +01:00
parent 42f8bfaff0
commit 2ee77f6f05
1 changed files with 35 additions and 13 deletions

View File

@ -235,19 +235,39 @@ uint trace_ray(vec3 p_from, vec3 p_to
return RAY_MISS;
}
const float PI = 3.14159265f;
const float GOLDEN_ANGLE = PI * (3.0 - sqrt(5.0));
vec3 vogel_hemisphere(uint p_index, uint p_count, float p_offset) {
float r = sqrt(float(p_index) + 0.5f) / sqrt(float(p_count));
float theta = float(p_index) * GOLDEN_ANGLE + p_offset;
float y = cos(r * PI * 0.5);
float l = sin(r * PI * 0.5);
return vec3(l * cos(theta), l * sin(theta), y);
// https://www.reedbeta.com/blog/hash-functions-for-gpu-rendering/
uint hash(uint value) {
uint state = value * 747796405u + 2891336453u;
uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
return (word >> 22u) ^ word;
}
float quick_hash(vec2 pos) {
return fract(sin(dot(pos * 19.19, vec2(49.5791, 97.413))) * 49831.189237);
uint random_seed(ivec3 seed) {
return hash(seed.x ^ hash(seed.y ^ hash(seed.z)));
}
// generates a random value in range [0.0, 1.0)
float randomize(inout uint value) {
value = hash(value);
return float(value / 4294967296.0);
}
const float PI = 3.14159265f;
// http://www.realtimerendering.com/raytracinggems/unofficial_RayTracingGems_v1.4.pdf (chapter 15)
vec3 generate_hemisphere_uniform_direction(inout uint noise) {
float noise1 = randomize(noise);
float noise2 = randomize(noise) * 2.0 * PI;
float factor = sqrt(1 - (noise1 * noise1));
return vec3(factor * cos(noise2), factor * sin(noise2), noise1);
}
vec3 generate_hemisphere_cosine_weighted_direction(inout uint noise) {
float noise1 = randomize(noise);
float noise2 = randomize(noise) * 2.0 * PI;
return vec3(sqrt(noise1) * cos(noise2), sqrt(noise1) * sin(noise2), sqrt(1.0 - noise1));
}
float get_omni_attenuation(float distance, float inv_range, float decay) {
@ -404,8 +424,9 @@ void main() {
#endif
vec3 light_average = vec3(0.0);
float active_rays = 0.0;
uint noise = random_seed(ivec3(params.ray_from, atlas_pos));
for (uint i = params.ray_from; i < params.ray_to; i++) {
vec3 ray_dir = normal_mat * vogel_hemisphere(i, params.ray_count, quick_hash(vec2(atlas_pos)));
vec3 ray_dir = normal_mat * generate_hemisphere_cosine_weighted_direction(noise);
uint tidx;
vec3 barycentric;
@ -550,8 +571,9 @@ void main() {
vec4(0.0),
vec4(0.0));
uint noise = random_seed(ivec3(params.ray_from, probe_index, 49502741 /* some prime */));
for (uint i = params.ray_from; i < params.ray_to; i++) {
vec3 ray_dir = vogel_hemisphere(i, params.ray_count, quick_hash(vec2(float(probe_index), 0.0)));
vec3 ray_dir = generate_hemisphere_uniform_direction(noise);
if (bool(i & 1)) {
//throw to both sides, so alternate them
ray_dir.z *= -1.0;