zstd: Update to upstream version 1.5.2

Release notes:
- https://github.com/facebook/zstd/releases/tag/v1.5.1
- https://github.com/facebook/zstd/releases/tag/v1.5.2
This commit is contained in:
Rémi Verschelde 2022-01-24 11:04:45 +01:00
parent 5ab59ee7df
commit 39ed39900e
43 changed files with 11166 additions and 3382 deletions

View File

@ -129,6 +129,10 @@ if env["builtin_zstd"]:
"decompress/zstd_decompress_block.c", "decompress/zstd_decompress_block.c",
"decompress/zstd_decompress.c", "decompress/zstd_decompress.c",
] ]
if env["platform"] in ["android", "linuxbsd", "osx"]:
# Match platforms with ZSTD_ASM_SUPPORTED in common/portability_macros.h
# iOS x86_64 should be supported in theory, but it fails arm64 build, seems to use host S_compiler.
thirdparty_zstd_sources.append("decompress/huf_decompress_amd64.S")
thirdparty_zstd_sources = [thirdparty_zstd_dir + file for file in thirdparty_zstd_sources] thirdparty_zstd_sources = [thirdparty_zstd_dir + file for file in thirdparty_zstd_sources]
env_thirdparty.Prepend(CPPPATH=[thirdparty_zstd_dir, thirdparty_zstd_dir + "common"]) env_thirdparty.Prepend(CPPPATH=[thirdparty_zstd_dir, thirdparty_zstd_dir + "common"])

View File

@ -759,7 +759,7 @@ Files extracted from upstream source:
## zstd ## zstd
- Upstream: https://github.com/facebook/zstd - Upstream: https://github.com/facebook/zstd
- Version: 1.5.0 (a488ba114ec17ea1054b9057c26a046fc122b3b6, 2021) - Version: 1.5.2 (e47e674cd09583ff0503f0f6defd6d23d8b718d3, 2022)
- License: BSD-3-Clause - License: BSD-3-Clause
Files extracted from upstream source: Files extracted from upstream source:

View File

@ -145,8 +145,14 @@ MEM_STATIC unsigned BIT_highbit32 (U32 val)
# if STATIC_BMI2 == 1 # if STATIC_BMI2 == 1
return _lzcnt_u32(val) ^ 31; return _lzcnt_u32(val) ^ 31;
# else # else
unsigned long r = 0; if (val != 0) {
return _BitScanReverse(&r, val) ? (unsigned)r : 0; unsigned long r;
_BitScanReverse(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif # endif
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return __builtin_clz (val) ^ 31; return __builtin_clz (val) ^ 31;
@ -293,22 +299,22 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
switch(srcSize) switch(srcSize)
{ {
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16); case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
/* fall-through */ ZSTD_FALLTHROUGH;
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24); case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
/* fall-through */ ZSTD_FALLTHROUGH;
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32); case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
/* fall-through */ ZSTD_FALLTHROUGH;
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
/* fall-through */ ZSTD_FALLTHROUGH;
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
/* fall-through */ ZSTD_FALLTHROUGH;
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
/* fall-through */ ZSTD_FALLTHROUGH;
default: break; default: break;
} }
@ -332,7 +338,16 @@ MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 c
U32 const regMask = sizeof(bitContainer)*8 - 1; U32 const regMask = sizeof(bitContainer)*8 - 1;
/* if start > regMask, bitstream is corrupted, and result is undefined */ /* if start > regMask, bitstream is corrupted, and result is undefined */
assert(nbBits < BIT_MASK_SIZE); assert(nbBits < BIT_MASK_SIZE);
/* x86 transform & ((1 << nbBits) - 1) to bzhi instruction, it is better
* than accessing memory. When bmi2 instruction is not present, we consider
* such cpus old (pre-Haswell, 2013) and their performance is not of that
* importance.
*/
#if defined(__x86_64__) || defined(_M_X86)
return (bitContainer >> (start & regMask)) & ((((U64)1) << nbBits) - 1);
#else
return (bitContainer >> (start & regMask)) & BIT_mask[nbBits]; return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
#endif
} }
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits) MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)

View File

@ -11,6 +11,8 @@
#ifndef ZSTD_COMPILER_H #ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H #define ZSTD_COMPILER_H
#include "portability_macros.h"
/*-******************************************************* /*-*******************************************************
* Compiler specifics * Compiler specifics
*********************************************************/ *********************************************************/
@ -40,7 +42,7 @@
/** /**
On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC). On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC).
This explictly marks such functions as __cdecl so that the code will still compile This explicitly marks such functions as __cdecl so that the code will still compile
if a CC other than __cdecl has been made the default. if a CC other than __cdecl has been made the default.
*/ */
#if defined(_MSC_VER) #if defined(_MSC_VER)
@ -92,29 +94,17 @@
/* target attribute */ /* target attribute */
#ifndef __has_attribute
#define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
#endif
#if defined(__GNUC__) || defined(__ICCARM__) #if defined(__GNUC__) || defined(__ICCARM__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target))) # define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else #else
# define TARGET_ATTRIBUTE(target) # define TARGET_ATTRIBUTE(target)
#endif #endif
/* Enable runtime BMI2 dispatch based on the CPU. /* Target attribute for BMI2 dynamic dispatch.
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default. * Enable lzcnt, bmi, and bmi2.
* We test for bmi1 & bmi2. lzcnt is included in bmi1.
*/ */
#ifndef DYNAMIC_BMI2 #define BMI2_TARGET_ATTRIBUTE TARGET_ATTRIBUTE("lzcnt,bmi,bmi2")
#if ((defined(__clang__) && __has_attribute(__target__)) \
|| (defined(__GNUC__) \
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
&& (defined(__x86_64__) || defined(_M_X86)) \
&& !defined(__BMI2__)
# define DYNAMIC_BMI2 1
#else
# define DYNAMIC_BMI2 0
#endif
#endif
/* prefetch /* prefetch
* can be disabled, by declaring NO_PREFETCH build macro */ * can be disabled, by declaring NO_PREFETCH build macro */
@ -150,8 +140,9 @@
} }
/* vectorization /* vectorization
* older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax */ * older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax,
#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) * and some compilers, like Intel ICC and MCST LCC, do not support it at all. */
#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) && !defined(__LCC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5) # if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5)
# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize"))) # define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
# else # else
@ -197,25 +188,91 @@
#define STATIC_BMI2 0 #define STATIC_BMI2 0
#endif #endif
/* compat. with non-clang compilers */ /* compile time determination of SIMD support */
#ifndef __has_builtin #if !defined(ZSTD_NO_INTRINSICS)
# define __has_builtin(x) 0 # if defined(__SSE2__) || defined(_M_AMD64) || (defined (_M_IX86) && defined(_M_IX86_FP) && (_M_IX86_FP >= 2))
#endif # define ZSTD_ARCH_X86_SSE2
# endif
/* compat. with non-clang compilers */ # if defined(__ARM_NEON) || defined(_M_ARM64)
#ifndef __has_feature # define ZSTD_ARCH_ARM_NEON
# define __has_feature(x) 0 # endif
#endif #
# if defined(ZSTD_ARCH_X86_SSE2)
/* detects whether we are being compiled under msan */ # include <emmintrin.h>
#ifndef ZSTD_MEMORY_SANITIZER # elif defined(ZSTD_ARCH_ARM_NEON)
# if __has_feature(memory_sanitizer) # include <arm_neon.h>
# define ZSTD_MEMORY_SANITIZER 1
# else
# define ZSTD_MEMORY_SANITIZER 0
# endif # endif
#endif #endif
/* C-language Attributes are added in C23. */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
# define ZSTD_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define ZSTD_HAS_C_ATTRIBUTE(x) 0
#endif
/* Only use C++ attributes in C++. Some compilers report support for C++
* attributes when compiling with C.
*/
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define ZSTD_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define ZSTD_HAS_CPP_ATTRIBUTE(x) 0
#endif
/* Define ZSTD_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute.
* - C23: https://en.cppreference.com/w/c/language/attributes/fallthrough
* - CPP17: https://en.cppreference.com/w/cpp/language/attributes/fallthrough
* - Else: __attribute__((__fallthrough__))
*/
#ifndef ZSTD_FALLTHROUGH
# if ZSTD_HAS_C_ATTRIBUTE(fallthrough)
# define ZSTD_FALLTHROUGH [[fallthrough]]
# elif ZSTD_HAS_CPP_ATTRIBUTE(fallthrough)
# define ZSTD_FALLTHROUGH [[fallthrough]]
# elif __has_attribute(__fallthrough__)
/* Leading semicolon is to satisfy gcc-11 with -pedantic. Without the semicolon
* gcc complains about: a label can only be part of a statement and a declaration is not a statement.
*/
# define ZSTD_FALLTHROUGH ; __attribute__((__fallthrough__))
# else
# define ZSTD_FALLTHROUGH
# endif
#endif
/*-**************************************************************
* Alignment check
*****************************************************************/
/* this test was initially positioned in mem.h,
* but this file is removed (or replaced) for linux kernel
* so it's now hosted in compiler.h,
* which remains valid for both user & kernel spaces.
*/
#ifndef ZSTD_ALIGNOF
# if defined(__GNUC__) || defined(_MSC_VER)
/* covers gcc, clang & MSVC */
/* note : this section must come first, before C11,
* due to a limitation in the kernel source generator */
# define ZSTD_ALIGNOF(T) __alignof(T)
# elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
/* C11 support */
# include <stdalign.h>
# define ZSTD_ALIGNOF(T) alignof(T)
# else
/* No known support for alignof() - imperfect backup */
# define ZSTD_ALIGNOF(T) (sizeof(void*) < sizeof(T) ? sizeof(void*) : sizeof(T))
# endif
#endif /* ZSTD_ALIGNOF */
/*-**************************************************************
* Sanitizer
*****************************************************************/
#if ZSTD_MEMORY_SANITIZER #if ZSTD_MEMORY_SANITIZER
/* Not all platforms that support msan provide sanitizers/msan_interface.h. /* Not all platforms that support msan provide sanitizers/msan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to * We therefore declare the functions we need ourselves, rather than trying to
@ -237,17 +294,6 @@ void __msan_poison(const volatile void *a, size_t size);
intptr_t __msan_test_shadow(const volatile void *x, size_t size); intptr_t __msan_test_shadow(const volatile void *x, size_t size);
#endif #endif
/* detects whether we are being compiled under asan */
#ifndef ZSTD_ADDRESS_SANITIZER
# if __has_feature(address_sanitizer)
# define ZSTD_ADDRESS_SANITIZER 1
# elif defined(__SANITIZE_ADDRESS__)
# define ZSTD_ADDRESS_SANITIZER 1
# else
# define ZSTD_ADDRESS_SANITIZER 0
# endif
#endif
#if ZSTD_ADDRESS_SANITIZER #if ZSTD_ADDRESS_SANITIZER
/* Not all platforms that support asan provide sanitizers/asan_interface.h. /* Not all platforms that support asan provide sanitizers/asan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to * We therefore declare the functions we need ourselves, rather than trying to

View File

@ -43,8 +43,14 @@ static U32 FSE_ctz(U32 val)
assert(val != 0); assert(val != 0);
{ {
# if defined(_MSC_VER) /* Visual */ # if defined(_MSC_VER) /* Visual */
unsigned long r=0; if (val != 0) {
return _BitScanForward(&r, val) ? (unsigned)r : 0; unsigned long r;
_BitScanForward(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */ # elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return __builtin_ctz(val); return __builtin_ctz(val);
# elif defined(__ICCARM__) /* IAR Intrinsic */ # elif defined(__ICCARM__) /* IAR Intrinsic */
@ -217,7 +223,7 @@ static size_t FSE_readNCount_body_default(
} }
#if DYNAMIC_BMI2 #if DYNAMIC_BMI2
TARGET_ATTRIBUTE("bmi2") static size_t FSE_readNCount_body_bmi2( BMI2_TARGET_ATTRIBUTE static size_t FSE_readNCount_body_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize) const void* headerBuffer, size_t hbSize)
{ {
@ -299,7 +305,7 @@ HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats,
ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32)); ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0; weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) { { U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected); if (huffWeight[n] > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++; rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1; weightTotal += (1 << huffWeight[n]) >> 1;
} } } }
@ -337,7 +343,7 @@ static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* r
} }
#if DYNAMIC_BMI2 #if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats, static BMI2_TARGET_ATTRIBUTE size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize, const void* src, size_t srcSize,
void* workSpace, size_t wkspSize) void* workSpace, size_t wkspSize)

View File

@ -22,6 +22,8 @@ extern "C" {
* Dependencies * Dependencies
******************************************/ ******************************************/
#include "../zstd_errors.h" /* enum list */ #include "../zstd_errors.h" /* enum list */
#include "compiler.h"
#include "debug.h"
#include "zstd_deps.h" /* size_t */ #include "zstd_deps.h" /* size_t */
@ -73,6 +75,83 @@ ERR_STATIC const char* ERR_getErrorName(size_t code)
return ERR_getErrorString(ERR_getErrorCode(code)); return ERR_getErrorString(ERR_getErrorCode(code));
} }
/**
* Ignore: this is an internal helper.
*
* This is a helper function to help force C99-correctness during compilation.
* Under strict compilation modes, variadic macro arguments can't be empty.
* However, variadic function arguments can be. Using a function therefore lets
* us statically check that at least one (string) argument was passed,
* independent of the compilation flags.
*/
static INLINE_KEYWORD UNUSED_ATTR
void _force_has_format_string(const char *format, ...) {
(void)format;
}
/**
* Ignore: this is an internal helper.
*
* We want to force this function invocation to be syntactically correct, but
* we don't want to force runtime evaluation of its arguments.
*/
#define _FORCE_HAS_FORMAT_STRING(...) \
if (0) { \
_force_has_format_string(__VA_ARGS__); \
}
#define ERR_QUOTE(str) #str
/**
* Return the specified error if the condition evaluates to true.
*
* In debug modes, prints additional information.
* In order to do that (particularly, printing the conditional that failed),
* this can't just wrap RETURN_ERROR().
*/
#define RETURN_ERROR_IF(cond, err, ...) \
if (cond) { \
RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
__FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
}
/**
* Unconditionally return the specified error.
*
* In debug modes, prints additional information.
*/
#define RETURN_ERROR(err, ...) \
do { \
RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
__FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
} while(0);
/**
* If the provided expression evaluates to an error code, returns that error code.
*
* In debug modes, prints additional information.
*/
#define FORWARD_IF_ERROR(err, ...) \
do { \
size_t const err_code = (err); \
if (ERR_isError(err_code)) { \
RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
__FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return err_code; \
} \
} while(0);
#if defined (__cplusplus) #if defined (__cplusplus)
} }
#endif #endif

View File

@ -336,8 +336,9 @@ size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
/* FSE_buildCTable_wksp() : /* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
* See FSE_buildCTable_wksp() for breakdown of workspace usage.
*/ */
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2))) #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);

View File

@ -365,7 +365,7 @@ static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, co
} }
#if DYNAMIC_BMI2 #if DYNAMIC_BMI2
TARGET_ATTRIBUTE("bmi2") static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize) BMI2_TARGET_ATTRIBUTE static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{ {
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1); return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1);
} }

View File

@ -89,9 +89,9 @@ HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
/** HUF_compress4X_wksp() : /** HUF_compress4X_wksp() :
* Same as HUF_compress2(), but uses externally allocated `workSpace`. * Same as HUF_compress2(), but uses externally allocated `workSpace`.
* `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */ * `workspace` must be at least as large as HUF_WORKSPACE_SIZE */
#define HUF_WORKSPACE_SIZE ((6 << 10) + 256) #define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */)
#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32)) #define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64))
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog, unsigned maxSymbolValue, unsigned tableLog,
@ -116,11 +116,11 @@ HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
/* *** Constants *** */ /* *** Constants *** */
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ #define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_TABLELOG_ABSOLUTEMAX */
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */ #define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
#define HUF_SYMBOLVALUE_MAX 255 #define HUF_SYMBOLVALUE_MAX 255
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ #define HUF_TABLELOG_ABSOLUTEMAX 12 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX) #if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !" # error "HUF_TABLELOG_MAX is too large !"
#endif #endif
@ -136,15 +136,11 @@ HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
/* static allocation of HUF's Compression Table */ /* static allocation of HUF's Compression Table */
/* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */ /* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */
struct HUF_CElt_s { typedef size_t HUF_CElt; /* consider it an incomplete type */
U16 val; #define HUF_CTABLE_SIZE_ST(maxSymbolValue) ((maxSymbolValue)+2) /* Use tables of size_t, for proper alignment */
BYTE nbBits; #define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_ST(maxSymbolValue) * sizeof(size_t))
}; /* typedef'd to HUF_CElt */
typedef struct HUF_CElt_s HUF_CElt; /* consider it an incomplete type */
#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */
#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32))
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \ #define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
HUF_CElt name[HUF_CTABLE_SIZE_U32(maxSymbolValue)] /* no final ; */ HUF_CElt name[HUF_CTABLE_SIZE_ST(maxSymbolValue)] /* no final ; */
/* static allocation of HUF's DTable */ /* static allocation of HUF's DTable */
typedef U32 HUF_DTable; typedef U32 HUF_DTable;
@ -194,6 +190,7 @@ size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSym
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog); size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize); size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable); size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2);
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue); size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue); int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
@ -206,12 +203,13 @@ typedef enum {
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. * Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat. * If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */ * If preferRepeat then the old table will always be used if valid.
* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize, size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog, unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2); HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible);
/** HUF_buildCTable_wksp() : /** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer. * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
@ -249,11 +247,10 @@ size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize,
* Loading a CTable saved with HUF_writeCTable() */ * Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights); size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights);
/** HUF_getNbBits() : /** HUF_getNbBitsFromCTable() :
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX * Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
* Note 1 : is not inlined, as HUF_CElt definition is private * Note 1 : is not inlined, as HUF_CElt definition is private */
* Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */ U32 HUF_getNbBitsFromCTable(const HUF_CElt* symbolTable, U32 symbolValue);
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue);
/* /*
* HUF_decompress() does the following: * HUF_decompress() does the following:
@ -305,18 +302,20 @@ size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* c
/* ====================== */ /* ====================== */
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */ size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U64 U64 */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable); size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2);
/** HUF_compress1X_repeat() : /** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. * Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat. * If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */ * If preferRepeat then the old table will always be used if valid.
* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize, size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog, unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2); HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible);
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */ size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
#ifndef HUF_FORCE_DECOMPRESS_X1 #ifndef HUF_FORCE_DECOMPRESS_X1
@ -354,6 +353,9 @@ size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t ds
#ifndef HUF_FORCE_DECOMPRESS_X2 #ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2); size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
#endif #endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
#endif
#endif /* HUF_STATIC_LINKING_ONLY */ #endif /* HUF_STATIC_LINKING_ONLY */

View File

@ -51,6 +51,8 @@ extern "C" {
# include <stdint.h> /* intptr_t */ # include <stdint.h> /* intptr_t */
# endif # endif
typedef uint8_t BYTE; typedef uint8_t BYTE;
typedef uint8_t U8;
typedef int8_t S8;
typedef uint16_t U16; typedef uint16_t U16;
typedef int16_t S16; typedef int16_t S16;
typedef uint32_t U32; typedef uint32_t U32;
@ -63,6 +65,8 @@ extern "C" {
# error "this implementation requires char to be exactly 8-bit type" # error "this implementation requires char to be exactly 8-bit type"
#endif #endif
typedef unsigned char BYTE; typedef unsigned char BYTE;
typedef unsigned char U8;
typedef signed char S8;
#if USHRT_MAX != 65535 #if USHRT_MAX != 65535
# error "this implementation requires short to be exactly 16-bit type" # error "this implementation requires short to be exactly 16-bit type"
#endif #endif
@ -153,8 +157,22 @@ MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void) MEM_STATIC unsigned MEM_isLittleEndian(void)
{ {
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
return 1;
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
return 0;
#elif defined(__clang__) && __LITTLE_ENDIAN__
return 1;
#elif defined(__clang__) && __BIG_ENDIAN__
return 0;
#elif defined(_MSC_VER) && (_M_AMD64 || _M_IX86)
return 1;
#elif defined(__DMC__) && defined(_M_IX86)
return 1;
#else
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0]; return one.c[0];
#endif
} }
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)

View File

@ -86,7 +86,7 @@ static void* POOL_thread(void* opaque) {
{ POOL_job const job = ctx->queue[ctx->queueHead]; { POOL_job const job = ctx->queue[ctx->queueHead];
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
ctx->numThreadsBusy++; ctx->numThreadsBusy++;
ctx->queueEmpty = ctx->queueHead == ctx->queueTail; ctx->queueEmpty = (ctx->queueHead == ctx->queueTail);
/* Unlock the mutex, signal a pusher, and run the job */ /* Unlock the mutex, signal a pusher, and run the job */
ZSTD_pthread_cond_signal(&ctx->queuePushCond); ZSTD_pthread_cond_signal(&ctx->queuePushCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex); ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
@ -105,6 +105,7 @@ static void* POOL_thread(void* opaque) {
assert(0); /* Unreachable */ assert(0); /* Unreachable */
} }
/* ZSTD_createThreadPool() : public access point */
POOL_ctx* ZSTD_createThreadPool(size_t numThreads) { POOL_ctx* ZSTD_createThreadPool(size_t numThreads) {
return POOL_create (numThreads, 0); return POOL_create (numThreads, 0);
} }
@ -114,7 +115,8 @@ POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
} }
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem) { ZSTD_customMem customMem)
{
POOL_ctx* ctx; POOL_ctx* ctx;
/* Check parameters */ /* Check parameters */
if (!numThreads) { return NULL; } if (!numThreads) { return NULL; }
@ -192,7 +194,7 @@ void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
POOL_free (pool); POOL_free (pool);
} }
size_t POOL_sizeof(POOL_ctx *ctx) { size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */ if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx) return sizeof(*ctx)
+ ctx->queueSize * sizeof(POOL_job) + ctx->queueSize * sizeof(POOL_job)
@ -257,7 +259,8 @@ static int isQueueFull(POOL_ctx const* ctx) {
} }
static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) static void
POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
{ {
POOL_job const job = {function, opaque}; POOL_job const job = {function, opaque};
assert(ctx != NULL); assert(ctx != NULL);
@ -313,7 +316,9 @@ POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
} }
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) { POOL_ctx*
POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem)
{
(void)numThreads; (void)numThreads;
(void)queueSize; (void)queueSize;
(void)customMem; (void)customMem;
@ -341,7 +346,7 @@ int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
return 1; return 1;
} }
size_t POOL_sizeof(POOL_ctx* ctx) { size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */ if (ctx==NULL) return 0; /* supports sizeof NULL */
assert(ctx == &g_poolCtx); assert(ctx == &g_poolCtx);
return sizeof(*ctx); return sizeof(*ctx);

View File

@ -53,7 +53,7 @@ int POOL_resize(POOL_ctx* ctx, size_t numThreads);
* @return threadpool memory usage * @return threadpool memory usage
* note : compatible with NULL (returns 0 in this case) * note : compatible with NULL (returns 0 in this case)
*/ */
size_t POOL_sizeof(POOL_ctx* ctx); size_t POOL_sizeof(const POOL_ctx* ctx);
/*! POOL_function : /*! POOL_function :
* The function type that can be added to a thread pool. * The function type that can be added to a thread pool.
@ -70,7 +70,7 @@ void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() : /*! POOL_tryAdd() :
* Add the job `function(opaque)` to thread pool _if_ a worker is available. * Add the job `function(opaque)` to thread pool _if_ a queue slot is available.
* Returns immediately even if not (does not block). * Returns immediately even if not (does not block).
* @return : 1 if successful, 0 if not. * @return : 1 if successful, 0 if not.
*/ */

View File

@ -0,0 +1,137 @@
/*
* Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_PORTABILITY_MACROS_H
#define ZSTD_PORTABILITY_MACROS_H
/**
* This header file contains macro defintions to support portability.
* This header is shared between C and ASM code, so it MUST only
* contain macro definitions. It MUST not contain any C code.
*
* This header ONLY defines macros to detect platforms/feature support.
*
*/
/* compat. with non-clang compilers */
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
/* compat. with non-clang compilers */
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
/* compat. with non-clang compilers */
#ifndef __has_feature
# define __has_feature(x) 0
#endif
/* detects whether we are being compiled under msan */
#ifndef ZSTD_MEMORY_SANITIZER
# if __has_feature(memory_sanitizer)
# define ZSTD_MEMORY_SANITIZER 1
# else
# define ZSTD_MEMORY_SANITIZER 0
# endif
#endif
/* detects whether we are being compiled under asan */
#ifndef ZSTD_ADDRESS_SANITIZER
# if __has_feature(address_sanitizer)
# define ZSTD_ADDRESS_SANITIZER 1
# elif defined(__SANITIZE_ADDRESS__)
# define ZSTD_ADDRESS_SANITIZER 1
# else
# define ZSTD_ADDRESS_SANITIZER 0
# endif
#endif
/* detects whether we are being compiled under dfsan */
#ifndef ZSTD_DATAFLOW_SANITIZER
# if __has_feature(dataflow_sanitizer)
# define ZSTD_DATAFLOW_SANITIZER 1
# else
# define ZSTD_DATAFLOW_SANITIZER 0
# endif
#endif
/* Mark the internal assembly functions as hidden */
#ifdef __ELF__
# define ZSTD_HIDE_ASM_FUNCTION(func) .hidden func
#else
# define ZSTD_HIDE_ASM_FUNCTION(func)
#endif
/* Enable runtime BMI2 dispatch based on the CPU.
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
*/
#ifndef DYNAMIC_BMI2
#if ((defined(__clang__) && __has_attribute(__target__)) \
|| (defined(__GNUC__) \
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
&& (defined(__x86_64__) || defined(_M_X64)) \
&& !defined(__BMI2__)
# define DYNAMIC_BMI2 1
#else
# define DYNAMIC_BMI2 0
#endif
#endif
/**
* Only enable assembly for GNUC comptabile compilers,
* because other platforms may not support GAS assembly syntax.
*
* Only enable assembly for Linux / MacOS, other platforms may
* work, but they haven't been tested. This could likely be
* extended to BSD systems.
*
* Disable assembly when MSAN is enabled, because MSAN requires
* 100% of code to be instrumented to work.
*/
#if defined(__GNUC__)
# if defined(__linux__) || defined(__linux) || defined(__APPLE__)
# if ZSTD_MEMORY_SANITIZER
# define ZSTD_ASM_SUPPORTED 0
# elif ZSTD_DATAFLOW_SANITIZER
# define ZSTD_ASM_SUPPORTED 0
# else
# define ZSTD_ASM_SUPPORTED 1
# endif
# else
# define ZSTD_ASM_SUPPORTED 0
# endif
#else
# define ZSTD_ASM_SUPPORTED 0
#endif
/**
* Determines whether we should enable assembly for x86-64
* with BMI2.
*
* Enable if all of the following conditions hold:
* - ASM hasn't been explicitly disabled by defining ZSTD_DISABLE_ASM
* - Assembly is supported
* - We are compiling for x86-64 and either:
* - DYNAMIC_BMI2 is enabled
* - BMI2 is supported at compile time
*/
#if !defined(ZSTD_DISABLE_ASM) && \
ZSTD_ASM_SUPPORTED && \
defined(__x86_64__) && \
(DYNAMIC_BMI2 || defined(__BMI2__))
# define ZSTD_ENABLE_ASM_X86_64_BMI2 1
#else
# define ZSTD_ENABLE_ASM_X86_64_BMI2 0
#endif
#endif /* ZSTD_PORTABILITY_MACROS_H */

View File

@ -13,812 +13,12 @@
*/ */
/* *************************************
* Tuning parameters /*
***************************************/ * xxhash.c instantiates functions defined in xxhash.h
/*!XXH_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
* It can generate buggy code on targets which do not support unaligned memory accesses.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://stackoverflow.com/a/32095106/646947 for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/ */
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
defined(__ICCARM__)
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
/*!XXH_ACCEPT_NULL_INPUT_POINTER : #define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. #define XXH_IMPLEMENTATION /* access definitions */
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
* By default, this option is disabled. To enable it, uncomment below define :
*/
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
/*!XXH_FORCE_NATIVE_FORMAT :
* By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
* Results are therefore identical for little-endian and big-endian CPU.
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
* Should endian-independence be of no importance for your application, you may set the #define below to 1,
* to improve speed for Big-endian CPU.
* This option has no impact on Little_Endian CPU.
*/
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
# define XXH_FORCE_NATIVE_FORMAT 0
#endif
/*!XXH_FORCE_ALIGN_CHECK :
* This is a minor performance trick, only useful with lots of very small keys.
* It means : check for aligned/unaligned input.
* The check costs one initial branch per hash; set to 0 when the input data
* is guaranteed to be aligned.
*/
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
/* *************************************
* Includes & Memory related functions
***************************************/
/* Modify the local functions below should you wish to use some other memory routines */
/* for ZSTD_malloc(), ZSTD_free() */
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
static void XXH_free (void* p) { ZSTD_free(p); }
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
#endif
#include "xxhash.h" #include "xxhash.h"
/* *************************************
* Compiler Specific Options
***************************************/
#include "compiler.h"
/* *************************************
* Basic Types
***************************************/
#include "mem.h" /* BYTE, U32, U64, size_t */
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
#else
/* portable and safe solution. Generally efficient.
* see : http://stackoverflow.com/a/32095106/646947
*/
static U32 XXH_read32(const void* memPtr)
{
U32 val;
ZSTD_memcpy(&val, memPtr, sizeof(val));
return val;
}
static U64 XXH_read64(const void* memPtr)
{
U64 val;
ZSTD_memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
/* ****************************************
* Compiler-specific Functions and Macros
******************************************/
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
#if defined(__ICCARM__)
# include <intrinsics.h>
# define XXH_rotl32(x,r) __ROR(x,(32 - r))
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
#endif
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static U32 XXH_swap32 (U32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
static U64 XXH_swap64 (U64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
/* *************************************
* Architecture Macros
***************************************/
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
#ifndef XXH_CPU_LITTLE_ENDIAN
static const int g_one = 1;
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
#endif
/* ***************************
* Memory reads
*****************************/
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
else
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
}
FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
{
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
}
static U32 XXH_readBE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
else
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
{
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
}
static U64 XXH_readBE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
/* *************************************
* Macros
***************************************/
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* *************************************
* Constants
***************************************/
static const U32 PRIME32_1 = 2654435761U;
static const U32 PRIME32_2 = 2246822519U;
static const U32 PRIME32_3 = 3266489917U;
static const U32 PRIME32_4 = 668265263U;
static const U32 PRIME32_5 = 374761393U;
static const U64 PRIME64_1 = 11400714785074694791ULL;
static const U64 PRIME64_2 = 14029467366897019727ULL;
static const U64 PRIME64_3 = 1609587929392839161ULL;
static const U64 PRIME64_4 = 9650029242287828579ULL;
static const U64 PRIME64_5 = 2870177450012600261ULL;
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* **************************
* Utils
****************************/
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
{
ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
}
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
{
ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
}
/* ***************************
* Simple Hash Functions
*****************************/
static U32 XXH32_round(U32 seed, U32 input)
{
seed += input * PRIME32_2;
seed = XXH_rotl32(seed, 13);
seed *= PRIME32_1;
return seed;
}
FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)16;
}
#endif
if (len>=16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = seed + PRIME32_1 + PRIME32_2;
U32 v2 = seed + PRIME32_2;
U32 v3 = seed + 0;
U32 v4 = seed - PRIME32_1;
do {
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
} while (p<=limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
} else {
h32 = seed + PRIME32_5;
}
h32 += (U32) len;
while (p+4<=bEnd) {
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_CREATESTATE_STATIC(state);
XXH32_reset(state, seed);
XXH32_update(state, input, len);
return XXH32_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
static U64 XXH64_round(U64 acc, U64 input)
{
acc += input * PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= PRIME64_1;
return acc;
}
static U64 XXH64_mergeRound(U64 acc, U64 val)
{
val = XXH64_round(0, val);
acc ^= val;
acc = acc * PRIME64_1 + PRIME64_4;
return acc;
}
FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)32;
}
#endif
if (len>=32) {
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;
do {
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
} while (p<=limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = seed + PRIME64_5;
}
h64 += (U64) len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_get64bits(p));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_CREATESTATE_STATIC(state);
XXH64_reset(state, seed);
XXH64_update(state, input, len);
return XXH64_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
/* **************************************************
* Advanced Hash Functions
****************************************************/
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*** Hash feed ***/
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
{
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
ZSTD_memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME32_1 + PRIME32_2;
state.v2 = seed + PRIME32_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME32_1;
ZSTD_memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
{
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
ZSTD_memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME64_1 + PRIME64_2;
state.v2 = seed + PRIME64_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME64_1;
ZSTD_memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len_32 += (unsigned)len;
state->large_len |= (len>=16) | (state->total_len_32>=16);
if (state->memsize + len < 16) { /* fill in tmp buffer */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
state->memsize += (unsigned)len;
return XXH_OK;
}
if (state->memsize) { /* some data left from previous update */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
{ const U32* p32 = state->mem32;
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
}
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= bEnd-16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = state->v1;
U32 v2 = state->v2;
U32 v3 = state->v3;
U32 v4 = state->v4;
do {
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem32;
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
U32 h32;
if (state->large_len) {
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
} else {
h32 = state->v3 /* == seed */ + PRIME32_5;
}
h32 += state->total_len_32;
while (p+4<=bEnd) {
h32 += XXH_readLE32(p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_digest_endian(state_in, XXH_littleEndian);
else
return XXH32_digest_endian(state_in, XXH_bigEndian);
}
/* **** XXH64 **** */
FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 32) { /* fill in tmp buffer */
if (input != NULL) {
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
}
state->memsize += (U32)len;
return XXH_OK;
}
if (state->memsize) { /* tmp buffer is full */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
p += 32-state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd) {
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
do {
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem64;
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
U64 h64;
if (state->total_len >= 32) {
U64 const v1 = state->v1;
U64 const v2 = state->v2;
U64 const v3 = state->v3;
U64 const v4 = state->v4;
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = state->v3 + PRIME64_5;
}
h64 += (U64) state->total_len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_digest_endian(state_in, XXH_littleEndian);
else
return XXH64_digest_endian(state_in, XXH_bigEndian);
}
/* **************************
* Canonical representation
****************************/
/*! Default XXH result types are basic unsigned 32 and 64 bits.
* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
ZSTD_memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
ZSTD_memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
}
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}

File diff suppressed because it is too large Load Diff

View File

@ -19,10 +19,8 @@
/*-************************************* /*-*************************************
* Dependencies * Dependencies
***************************************/ ***************************************/
#if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON)
#include <arm_neon.h>
#endif
#include "compiler.h" #include "compiler.h"
#include "cpu.h"
#include "mem.h" #include "mem.h"
#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */ #include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
#include "error_private.h" #include "error_private.h"
@ -60,81 +58,7 @@ extern "C" {
#undef MAX #undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b)) #define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b)) #define MAX(a,b) ((a)>(b) ? (a) : (b))
#define BOUNDED(min,val,max) (MAX(min,MIN(val,max)))
/**
* Ignore: this is an internal helper.
*
* This is a helper function to help force C99-correctness during compilation.
* Under strict compilation modes, variadic macro arguments can't be empty.
* However, variadic function arguments can be. Using a function therefore lets
* us statically check that at least one (string) argument was passed,
* independent of the compilation flags.
*/
static INLINE_KEYWORD UNUSED_ATTR
void _force_has_format_string(const char *format, ...) {
(void)format;
}
/**
* Ignore: this is an internal helper.
*
* We want to force this function invocation to be syntactically correct, but
* we don't want to force runtime evaluation of its arguments.
*/
#define _FORCE_HAS_FORMAT_STRING(...) \
if (0) { \
_force_has_format_string(__VA_ARGS__); \
}
/**
* Return the specified error if the condition evaluates to true.
*
* In debug modes, prints additional information.
* In order to do that (particularly, printing the conditional that failed),
* this can't just wrap RETURN_ERROR().
*/
#define RETURN_ERROR_IF(cond, err, ...) \
if (cond) { \
RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
__FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
}
/**
* Unconditionally return the specified error.
*
* In debug modes, prints additional information.
*/
#define RETURN_ERROR(err, ...) \
do { \
RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
__FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
} while(0);
/**
* If the provided expression evaluates to an error code, returns that error code.
*
* In debug modes, prints additional information.
*/
#define FORWARD_IF_ERROR(err, ...) \
do { \
size_t const err_code = (err); \
if (ERR_isError(err_code)) { \
RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
__FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return err_code; \
} \
} while(0);
/*-************************************* /*-*************************************
@ -143,7 +67,6 @@ void _force_has_format_string(const char *format, ...) {
#define ZSTD_OPT_NUM (1<<12) #define ZSTD_OPT_NUM (1<<12)
#define ZSTD_REP_NUM 3 /* number of repcodes */ #define ZSTD_REP_NUM 3 /* number of repcodes */
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 }; static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10) #define KB *(1 <<10)
@ -195,7 +118,7 @@ typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingTy
/* Each table cannot take more than #symbols * FSELog bits */ /* Each table cannot take more than #symbols * FSELog bits */
#define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8) #define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8)
static UNUSED_ATTR const U32 LL_bits[MaxLL+1] = { static UNUSED_ATTR const U8 LL_bits[MaxLL+1] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 3,
@ -212,7 +135,7 @@ static UNUSED_ATTR const S16 LL_defaultNorm[MaxLL+1] = {
#define LL_DEFAULTNORMLOG 6 /* for static allocation */ #define LL_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG; static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
static UNUSED_ATTR const U32 ML_bits[MaxML+1] = { static UNUSED_ATTR const U8 ML_bits[MaxML+1] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@ -247,19 +170,30 @@ static UNUSED_ATTR const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
* Shared functions to include for inlining * Shared functions to include for inlining
*********************************************/ *********************************************/
static void ZSTD_copy8(void* dst, const void* src) { static void ZSTD_copy8(void* dst, const void* src) {
#if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON) #if defined(ZSTD_ARCH_ARM_NEON)
vst1_u8((uint8_t*)dst, vld1_u8((const uint8_t*)src)); vst1_u8((uint8_t*)dst, vld1_u8((const uint8_t*)src));
#else #else
ZSTD_memcpy(dst, src, 8); ZSTD_memcpy(dst, src, 8);
#endif #endif
} }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; } #define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/* Need to use memmove here since the literal buffer can now be located within
the dst buffer. In circumstances where the op "catches up" to where the
literal buffer is, there can be partial overlaps in this call on the final
copy if the literal is being shifted by less than 16 bytes. */
static void ZSTD_copy16(void* dst, const void* src) { static void ZSTD_copy16(void* dst, const void* src) {
#if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON) #if defined(ZSTD_ARCH_ARM_NEON)
vst1q_u8((uint8_t*)dst, vld1q_u8((const uint8_t*)src)); vst1q_u8((uint8_t*)dst, vld1q_u8((const uint8_t*)src));
#elif defined(ZSTD_ARCH_X86_SSE2)
_mm_storeu_si128((__m128i*)dst, _mm_loadu_si128((const __m128i*)src));
#elif defined(__clang__)
ZSTD_memmove(dst, src, 16);
#else #else
ZSTD_memcpy(dst, src, 16); /* ZSTD_memmove is not inlined properly by gcc */
BYTE copy16_buf[16];
ZSTD_memcpy(copy16_buf, src, 16);
ZSTD_memcpy(dst, copy16_buf, 16);
#endif #endif
} }
#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; } #define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
@ -288,8 +222,6 @@ void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e
BYTE* op = (BYTE*)dst; BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length; BYTE* const oend = op + length;
assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff <= -WILDCOPY_VECLEN));
if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) { if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
/* Handle short offset copies. */ /* Handle short offset copies. */
do { do {
@ -352,9 +284,9 @@ typedef enum {
* Private declarations * Private declarations
*********************************************/ *********************************************/
typedef struct seqDef_s { typedef struct seqDef_s {
U32 offset; /* offset == rawOffset + ZSTD_REP_NUM, or equivalently, offCode + 1 */ U32 offBase; /* offBase == Offset + ZSTD_REP_NUM, or repcode 1,2,3 */
U16 litLength; U16 litLength;
U16 matchLength; U16 mlBase; /* mlBase == matchLength - MINMATCH */
} seqDef; } seqDef;
/* Controls whether seqStore has a single "long" litLength or matchLength. See seqStore_t. */ /* Controls whether seqStore has a single "long" litLength or matchLength. See seqStore_t. */
@ -396,7 +328,7 @@ MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore
{ {
ZSTD_sequenceLength seqLen; ZSTD_sequenceLength seqLen;
seqLen.litLength = seq->litLength; seqLen.litLength = seq->litLength;
seqLen.matchLength = seq->matchLength + MINMATCH; seqLen.matchLength = seq->mlBase + MINMATCH;
if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) { if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) {
if (seqStore->longLengthType == ZSTD_llt_literalLength) { if (seqStore->longLengthType == ZSTD_llt_literalLength) {
seqLen.litLength += 0xFFFF; seqLen.litLength += 0xFFFF;
@ -436,8 +368,14 @@ MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus
# if STATIC_BMI2 == 1 # if STATIC_BMI2 == 1
return _lzcnt_u32(val)^31; return _lzcnt_u32(val)^31;
# else # else
unsigned long r=0; if (val != 0) {
return _BitScanReverse(&r, val) ? (unsigned)r : 0; unsigned long r;
_BitScanReverse(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif # endif
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */ # elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return __builtin_clz (val) ^ 31; return __builtin_clz (val) ^ 31;
@ -456,6 +394,63 @@ MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus
} }
} }
/**
* Counts the number of trailing zeros of a `size_t`.
* Most compilers should support CTZ as a builtin. A backup
* implementation is provided if the builtin isn't supported, but
* it may not be terribly efficient.
*/
MEM_STATIC unsigned ZSTD_countTrailingZeros(size_t val)
{
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2
return _tzcnt_u64(val);
# else
if (val != 0) {
unsigned long r;
_BitScanForward64(&r, (U64)val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return __builtin_ctzll((U64)val);
# else
static const int DeBruijnBytePos[64] = { 0, 1, 2, 7, 3, 13, 8, 19,
4, 25, 14, 28, 9, 34, 20, 56,
5, 17, 26, 54, 15, 41, 29, 43,
10, 31, 38, 35, 21, 45, 49, 57,
63, 6, 12, 18, 24, 27, 33, 55,
16, 53, 40, 42, 30, 37, 44, 48,
62, 11, 23, 32, 52, 39, 36, 47,
61, 22, 51, 46, 60, 50, 59, 58 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
if (val != 0) {
unsigned long r;
_BitScanForward(&r, (U32)val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return __builtin_ctz((U32)val);
# else
static const int DeBruijnBytePos[32] = { 0, 1, 28, 2, 29, 14, 24, 3,
30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7,
26, 12, 18, 6, 11, 5, 10, 9 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
}
/* ZSTD_invalidateRepCodes() : /* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block. * ensures next compression will not use repcodes from previous block.
@ -482,6 +477,14 @@ size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize); const void* src, size_t srcSize);
/**
* @returns true iff the CPU supports dynamic BMI2 dispatch.
*/
MEM_STATIC int ZSTD_cpuSupportsBmi2(void)
{
ZSTD_cpuid_t cpuid = ZSTD_cpuid();
return ZSTD_cpuid_bmi1(cpuid) && ZSTD_cpuid_bmi2(cpuid);
}
#if defined (__cplusplus) #if defined (__cplusplus)
} }

View File

@ -17,10 +17,19 @@ extern "C" {
#include <stddef.h> #include <stddef.h>
/* weak symbol support */ /* weak symbol support
#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && defined(__GNUC__) && \ * For now, enable conservatively:
* - Only GNUC
* - Only ELF
* - Only x86-64 and i386
* Also, explicitly disable on platforms known not to work so they aren't
* forgotten in the future.
*/
#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && \
defined(__GNUC__) && defined(__ELF__) && \
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86)) && \
!defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \ !defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \
!defined(__CYGWIN__) !defined(__CYGWIN__) && !defined(_AIX)
# define ZSTD_HAVE_WEAK_SYMBOLS 1 # define ZSTD_HAVE_WEAK_SYMBOLS 1
#else #else
# define ZSTD_HAVE_WEAK_SYMBOLS 0 # define ZSTD_HAVE_WEAK_SYMBOLS 0

134
thirdparty/zstd/compress/clevels.h vendored Normal file
View File

@ -0,0 +1,134 @@
/*
* Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CLEVELS_H
#define ZSTD_CLEVELS_H
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */
#include "../zstd.h"
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_MAX_CLEVEL 22
#ifdef __GNUC__
__attribute__((__unused__))
#endif
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
{ /* "default" - for any srcSize > 256 KB */
/* W, C, H, S, L, TL, strat */
{ 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
{ 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
{ 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
{ 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
{ 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
{ 21, 18, 19, 3, 5, 2, ZSTD_greedy }, /* level 5 */
{ 21, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6 */
{ 21, 19, 20, 4, 5, 8, ZSTD_lazy }, /* level 7 */
{ 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 8 */
{ 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
{ 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 10 */
{ 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 11 */
{ 22, 22, 23, 6, 5, 32, ZSTD_lazy2 }, /* level 12 */
{ 22, 22, 22, 4, 5, 32, ZSTD_btlazy2 }, /* level 13 */
{ 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
{ 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
{ 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
{ 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
{ 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
{ 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
{ 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
{ 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
{ 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
},
{ /* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{ 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
{ 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
{ 18, 16, 17, 3, 5, 2, ZSTD_greedy }, /* level 4.*/
{ 18, 17, 18, 5, 5, 2, ZSTD_greedy }, /* level 5.*/
{ 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
{ 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
{ 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
{ 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
{ 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
{ 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{ 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
{ 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
{ 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
{ 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
{ 17, 16, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
{ 17, 16, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 17, 16, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 17, 16, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 17, 16, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
{ 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
{ 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
{ 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
{ 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
{ 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{ 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
{ 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
{ 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
{ 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
{ 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
{ 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
{ 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
{ 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
{ 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
{ 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
{ 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
{ 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
{ 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
{ 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
{ 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
{ 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
},
};
#endif /* ZSTD_CLEVELS_H */

View File

@ -75,13 +75,14 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ; void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT); FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
U32 const step = FSE_TABLESTEP(tableSize); U32 const step = FSE_TABLESTEP(tableSize);
U32 const maxSV1 = maxSymbolValue+1;
U32* cumul = (U32*)workSpace; U16* cumul = (U16*)workSpace; /* size = maxSV1 */
FSE_FUNCTION_TYPE* tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSymbolValue + 2)); FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSV1+1)); /* size = tableSize */
U32 highThreshold = tableSize-1; U32 highThreshold = tableSize-1;
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* Must be 4 byte aligned */ assert(((size_t)workSpace & 1) == 0); /* Must be 2 bytes-aligned */
if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge); if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge);
/* CTable header */ /* CTable header */
tableU16[-2] = (U16) tableLog; tableU16[-2] = (U16) tableLog;
@ -98,20 +99,61 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
/* symbol start positions */ /* symbol start positions */
{ U32 u; { U32 u;
cumul[0] = 0; cumul[0] = 0;
for (u=1; u <= maxSymbolValue+1; u++) { for (u=1; u <= maxSV1; u++) {
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */ if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
cumul[u] = cumul[u-1] + 1; cumul[u] = cumul[u-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1); tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
} else { } else {
cumul[u] = cumul[u-1] + normalizedCounter[u-1]; assert(normalizedCounter[u-1] >= 0);
cumul[u] = cumul[u-1] + (U16)normalizedCounter[u-1];
assert(cumul[u] >= cumul[u-1]); /* no overflow */
} } } }
cumul[maxSymbolValue+1] = tableSize+1; cumul[maxSV1] = (U16)(tableSize+1);
} }
/* Spread symbols */ /* Spread symbols */
{ U32 position = 0; if (highThreshold == tableSize - 1) {
/* Case for no low prob count symbols. Lay down 8 bytes at a time
* to reduce branch misses since we are operating on a small block
*/
BYTE* const spread = tableSymbol + tableSize; /* size = tableSize + 8 (may write beyond tableSize) */
{ U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
assert(n>=0);
pos += (size_t)n;
}
}
/* Spread symbols across the table. Lack of lowprob symbols means that
* we don't need variable sized inner loop, so we can unroll the loop and
* reduce branch misses.
*/
{ size_t position = 0;
size_t s;
size_t const unroll = 2; /* Experimentally determined optimal unroll */
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableSymbol[uPosition] = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0); /* Must have initialized all positions */
}
} else {
U32 position = 0;
U32 symbol; U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) { for (symbol=0; symbol<maxSV1; symbol++) {
int nbOccurrences; int nbOccurrences;
int const freq = normalizedCounter[symbol]; int const freq = normalizedCounter[symbol];
for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) { for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
@ -120,7 +162,6 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
while (position > highThreshold) while (position > highThreshold)
position = (position + step) & tableMask; /* Low proba area */ position = (position + step) & tableMask; /* Low proba area */
} } } }
assert(position==0); /* Must have initialized all positions */ assert(position==0); /* Must have initialized all positions */
} }
@ -144,16 +185,17 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
case -1: case -1:
case 1: case 1:
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog); symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
symbolTT[s].deltaFindState = total - 1; assert(total <= INT_MAX);
symbolTT[s].deltaFindState = (int)(total - 1);
total ++; total ++;
break; break;
default : default :
{ assert(normalizedCounter[s] > 1);
U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1); { U32 const maxBitsOut = tableLog - BIT_highbit32 ((U32)normalizedCounter[s]-1);
U32 const minStatePlus = normalizedCounter[s] << maxBitsOut; U32 const minStatePlus = (U32)normalizedCounter[s] << maxBitsOut;
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus; symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
symbolTT[s].deltaFindState = total - normalizedCounter[s]; symbolTT[s].deltaFindState = (int)(total - (unsigned)normalizedCounter[s]);
total += normalizedCounter[s]; total += (unsigned)normalizedCounter[s];
} } } } } } } }
#if 0 /* debug : symbol costs */ #if 0 /* debug : symbol costs */
@ -164,32 +206,26 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
symbol, normalizedCounter[symbol], symbol, normalizedCounter[symbol],
FSE_getMaxNbBits(symbolTT, symbol), FSE_getMaxNbBits(symbolTT, symbol),
(double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256); (double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
} } }
}
#endif #endif
return 0; return 0;
} }
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
return FSE_buildCTable_wksp(ct, normalizedCounter, maxSymbolValue, tableLog, tableSymbol, sizeof(tableSymbol));
}
#endif
#ifndef FSE_COMMONDEFS_ONLY #ifndef FSE_COMMONDEFS_ONLY
/*-************************************************************** /*-**************************************************************
* FSE NCount encoding * FSE NCount encoding
****************************************************************/ ****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog) size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{ {
size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3; size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog
+ 4 /* bitCount initialized at 4 */
+ 2 /* first two symbols may use one additional bit each */) / 8)
+ 1 /* round up to whole nb bytes */
+ 2 /* additional two bytes for bitstream flush */;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */ return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
} }

View File

@ -53,6 +53,28 @@ unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxS
/* ******************************************************* /* *******************************************************
* HUF : Huffman block compression * HUF : Huffman block compression
*********************************************************/ *********************************************************/
#define HUF_WORKSPACE_MAX_ALIGNMENT 8
static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
{
size_t const mask = align - 1;
size_t const rem = (size_t)workspace & mask;
size_t const add = (align - rem) & mask;
BYTE* const aligned = (BYTE*)workspace + add;
assert((align & (align - 1)) == 0); /* pow 2 */
assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
if (*workspaceSizePtr >= add) {
assert(add < align);
assert(((size_t)aligned & mask) == 0);
*workspaceSizePtr -= add;
return aligned;
} else {
*workspaceSizePtr = 0;
return NULL;
}
}
/* HUF_compressWeights() : /* HUF_compressWeights() :
* Same as FSE_compress(), but dedicated to huff0's weights compression. * Same as FSE_compress(), but dedicated to huff0's weights compression.
* The use case needs much less stack memory. * The use case needs much less stack memory.
@ -75,7 +97,7 @@ static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightT
unsigned maxSymbolValue = HUF_TABLELOG_MAX; unsigned maxSymbolValue = HUF_TABLELOG_MAX;
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)workspace; HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC); if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
@ -106,6 +128,40 @@ static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightT
return (size_t)(op-ostart); return (size_t)(op-ostart);
} }
static size_t HUF_getNbBits(HUF_CElt elt)
{
return elt & 0xFF;
}
static size_t HUF_getNbBitsFast(HUF_CElt elt)
{
return elt;
}
static size_t HUF_getValue(HUF_CElt elt)
{
return elt & ~0xFF;
}
static size_t HUF_getValueFast(HUF_CElt elt)
{
return elt;
}
static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
{
assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
*elt = nbBits;
}
static void HUF_setValue(HUF_CElt* elt, size_t value)
{
size_t const nbBits = HUF_getNbBits(*elt);
if (nbBits > 0) {
assert((value >> nbBits) == 0);
*elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
}
}
typedef struct { typedef struct {
HUF_CompressWeightsWksp wksp; HUF_CompressWeightsWksp wksp;
@ -117,9 +173,10 @@ size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
void* workspace, size_t workspaceSize) void* workspace, size_t workspaceSize)
{ {
HUF_CElt const* const ct = CTable + 1;
BYTE* op = (BYTE*)dst; BYTE* op = (BYTE*)dst;
U32 n; U32 n;
HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)workspace; HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
/* check conditions */ /* check conditions */
if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC); if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
@ -130,9 +187,10 @@ size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
for (n=1; n<huffLog+1; n++) for (n=1; n<huffLog+1; n++)
wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n); wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
for (n=0; n<maxSymbolValue; n++) for (n=0; n<maxSymbolValue; n++)
wksp->huffWeight[n] = wksp->bitsToWeight[CTable[n].nbBits]; wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
/* attempt weights compression by FSE */ /* attempt weights compression by FSE */
if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) ); { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */ if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
op[0] = (BYTE)hSize; op[0] = (BYTE)hSize;
@ -166,6 +224,7 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0; U32 tableLog = 0;
U32 nbSymbols = 0; U32 nbSymbols = 0;
HUF_CElt* const ct = CTable + 1;
/* get symbol weights */ /* get symbol weights */
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize)); CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
@ -175,6 +234,8 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
CTable[0] = tableLog;
/* Prepare base value per rank */ /* Prepare base value per rank */
{ U32 n, nextRankStart = 0; { U32 n, nextRankStart = 0;
for (n=1; n<=tableLog; n++) { for (n=1; n<=tableLog; n++) {
@ -186,13 +247,13 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
/* fill nbBits */ /* fill nbBits */
{ U32 n; for (n=0; n<nbSymbols; n++) { { U32 n; for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n]; const U32 w = huffWeight[n];
CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0); HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
} } } }
/* fill val */ /* fill val */
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */ { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; } { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
/* determine stating value per rank */ /* determine stating value per rank */
valPerRank[tableLog+1] = 0; /* for w==0 */ valPerRank[tableLog+1] = 0; /* for w==0 */
{ U16 min = 0; { U16 min = 0;
@ -202,18 +263,18 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
min >>= 1; min >>= 1;
} } } }
/* assign value within rank, symbol order */ /* assign value within rank, symbol order */
{ U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; } { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
} }
*maxSymbolValuePtr = nbSymbols - 1; *maxSymbolValuePtr = nbSymbols - 1;
return readSize; return readSize;
} }
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue) U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
{ {
const HUF_CElt* table = (const HUF_CElt*)symbolTable; const HUF_CElt* ct = CTable + 1;
assert(symbolValue <= HUF_SYMBOLVALUE_MAX); assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
return table[symbolValue].nbBits; return (U32)HUF_getNbBits(ct[symbolValue]);
} }
@ -367,22 +428,118 @@ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
} }
typedef struct { typedef struct {
U32 base; U16 base;
U32 curr; U16 curr;
} rankPos; } rankPos;
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32]; typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
#define RANK_POSITION_TABLE_SIZE 32 /* Number of buckets available for HUF_sort() */
#define RANK_POSITION_TABLE_SIZE 192
typedef struct { typedef struct {
huffNodeTable huffNodeTbl; huffNodeTable huffNodeTbl;
rankPos rankPosition[RANK_POSITION_TABLE_SIZE]; rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
} HUF_buildCTable_wksp_tables; } HUF_buildCTable_wksp_tables;
/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
* Strategy is to use as many buckets as possible for representing distinct
* counts while using the remainder to represent all "large" counts.
*
* To satisfy this requirement for 192 buckets, we can do the following:
* Let buckets 0-166 represent distinct counts of [0, 166]
* Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
*/
#define RANK_POSITION_MAX_COUNT_LOG 32
#define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
/* Return the appropriate bucket index for a given count. See definition of
* RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
*/
static U32 HUF_getIndex(U32 const count) {
return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
? count
: BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
}
/* Helper swap function for HUF_quickSortPartition() */
static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
nodeElt tmp = *a;
*a = *b;
*b = tmp;
}
/* Returns 0 if the huffNode array is not sorted by descending count */
MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
U32 i;
for (i = 1; i < maxSymbolValue1; ++i) {
if (huffNode[i].count > huffNode[i-1].count) {
return 0;
}
}
return 1;
}
/* Insertion sort by descending order */
HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
int i;
int const size = high-low+1;
huffNode += low;
for (i = 1; i < size; ++i) {
nodeElt const key = huffNode[i];
int j = i - 1;
while (j >= 0 && huffNode[j].count < key.count) {
huffNode[j + 1] = huffNode[j];
j--;
}
huffNode[j + 1] = key;
}
}
/* Pivot helper function for quicksort. */
static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
/* Simply select rightmost element as pivot. "Better" selectors like
* median-of-three don't experimentally appear to have any benefit.
*/
U32 const pivot = arr[high].count;
int i = low - 1;
int j = low;
for ( ; j < high; j++) {
if (arr[j].count > pivot) {
i++;
HUF_swapNodes(&arr[i], &arr[j]);
}
}
HUF_swapNodes(&arr[i + 1], &arr[high]);
return i + 1;
}
/* Classic quicksort by descending with partially iterative calls
* to reduce worst case callstack size.
*/
static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
int const kInsertionSortThreshold = 8;
if (high - low < kInsertionSortThreshold) {
HUF_insertionSort(arr, low, high);
return;
}
while (low < high) {
int const idx = HUF_quickSortPartition(arr, low, high);
if (idx - low < high - idx) {
HUF_simpleQuickSort(arr, low, idx - 1);
low = idx + 1;
} else {
HUF_simpleQuickSort(arr, idx + 1, high);
high = idx - 1;
}
}
}
/** /**
* HUF_sort(): * HUF_sort():
* Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order. * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
* This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
* *
* @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled. * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
* Must have (maxSymbolValue + 1) entries. * Must have (maxSymbolValue + 1) entries.
@ -390,44 +547,52 @@ typedef struct {
* @param[in] maxSymbolValue Maximum symbol value. * @param[in] maxSymbolValue Maximum symbol value.
* @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries. * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
*/ */
static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition) static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
{ U32 n;
int n; U32 const maxSymbolValue1 = maxSymbolValue+1;
int const maxSymbolValue1 = (int)maxSymbolValue + 1;
/* Compute base and set curr to base. /* Compute base and set curr to base.
* For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1. * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
* Then 2^lowerRank <= count[n]+1 <= 2^rank. * See HUF_getIndex to see bucketing strategy.
* We attribute each symbol to lowerRank's base value, because we want to know where * We attribute each symbol to lowerRank's base value, because we want to know where
* each rank begins in the output, so for rank R we want to count ranks R+1 and above. * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
*/ */
ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE); ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
for (n = 0; n < maxSymbolValue1; ++n) { for (n = 0; n < maxSymbolValue1; ++n) {
U32 lowerRank = BIT_highbit32(count[n] + 1); U32 lowerRank = HUF_getIndex(count[n]);
assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
rankPosition[lowerRank].base++; rankPosition[lowerRank].base++;
} }
assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0); assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
/* Set up the rankPosition table */
for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) { for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
rankPosition[n-1].base += rankPosition[n].base; rankPosition[n-1].base += rankPosition[n].base;
rankPosition[n-1].curr = rankPosition[n-1].base; rankPosition[n-1].curr = rankPosition[n-1].base;
} }
/* Sort */
/* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
for (n = 0; n < maxSymbolValue1; ++n) { for (n = 0; n < maxSymbolValue1; ++n) {
U32 const c = count[n]; U32 const c = count[n];
U32 const r = BIT_highbit32(c+1) + 1; U32 const r = HUF_getIndex(c) + 1;
U32 pos = rankPosition[r].curr++; U32 const pos = rankPosition[r].curr++;
/* Insert into the correct position in the rank. assert(pos < maxSymbolValue1);
* We have at most 256 symbols, so this insertion should be fine.
*/
while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
huffNode[pos] = huffNode[pos-1];
pos--;
}
huffNode[pos].count = c; huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n; huffNode[pos].byte = (BYTE)n;
} }
}
/* Sort each bucket. */
for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
U32 const bucketStartIdx = rankPosition[n].base;
if (bucketSize > 1) {
assert(bucketStartIdx < maxSymbolValue1);
HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
}
}
assert(HUF_isSorted(huffNode, maxSymbolValue1));
}
/** HUF_buildCTable_wksp() : /** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer. * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
@ -490,6 +655,7 @@ static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
*/ */
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits) static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
{ {
HUF_CElt* const ct = CTable + 1;
/* fill result into ctable (val, nbBits) */ /* fill result into ctable (val, nbBits) */
int n; int n;
U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
@ -505,20 +671,20 @@ static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, i
min >>= 1; min >>= 1;
} } } }
for (n=0; n<alphabetSize; n++) for (n=0; n<alphabetSize; n++)
CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */ HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
for (n=0; n<alphabetSize; n++) for (n=0; n<alphabetSize; n++)
CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */ HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
CTable[0] = maxNbBits;
} }
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize) size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{ {
HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace; HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl; nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
nodeElt* const huffNode = huffNode0+1; nodeElt* const huffNode = huffNode0+1;
int nonNullRank; int nonNullRank;
/* safety checks */ /* safety checks */
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables)) if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
return ERROR(workSpace_tooSmall); return ERROR(workSpace_tooSmall);
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
@ -536,96 +702,334 @@ size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbo
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits); maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */ if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits); HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
return maxNbBits; return maxNbBits;
} }
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{ {
HUF_CElt const* ct = CTable + 1;
size_t nbBits = 0; size_t nbBits = 0;
int s; int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) { for (s = 0; s <= (int)maxSymbolValue; ++s) {
nbBits += CTable[s].nbBits * count[s]; nbBits += HUF_getNbBits(ct[s]) * count[s];
} }
return nbBits >> 3; return nbBits >> 3;
} }
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
HUF_CElt const* ct = CTable + 1;
int bad = 0; int bad = 0;
int s; int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) { for (s = 0; s <= (int)maxSymbolValue; ++s) {
bad |= (count[s] != 0) & (CTable[s].nbBits == 0); bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
} }
return !bad; return !bad;
} }
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
FORCE_INLINE_TEMPLATE void /** HUF_CStream_t:
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable) * Huffman uses its own BIT_CStream_t implementation.
* There are three major differences from BIT_CStream_t:
* 1. HUF_addBits() takes a HUF_CElt (size_t) which is
* the pair (nbBits, value) in the format:
* format:
* - Bits [0, 4) = nbBits
* - Bits [4, 64 - nbBits) = 0
* - Bits [64 - nbBits, 64) = value
* 2. The bitContainer is built from the upper bits and
* right shifted. E.g. to add a new value of N bits
* you right shift the bitContainer by N, then or in
* the new value into the N upper bits.
* 3. The bitstream has two bit containers. You can add
* bits to the second container and merge them into
* the first container.
*/
#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
typedef struct {
size_t bitContainer[2];
size_t bitPos[2];
BYTE* startPtr;
BYTE* ptr;
BYTE* endPtr;
} HUF_CStream_t;
/**! HUF_initCStream():
* Initializes the bitstream.
* @returns 0 or an error code.
*/
static size_t HUF_initCStream(HUF_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{ {
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits); ZSTD_memset(bitC, 0, sizeof(*bitC));
bitC->startPtr = (BYTE*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
return 0;
} }
#define HUF_FLUSHBITS(s) BIT_flushBits(s) /*! HUF_addBits():
* Adds the symbol stored in HUF_CElt elt to the bitstream.
*
* @param elt The element we're adding. This is a (nbBits, value) pair.
* See the HUF_CStream_t docs for the format.
* @param idx Insert into the bitstream at this idx.
* @param kFast This is a template parameter. If the bitstream is guaranteed
* to have at least 4 unused bits after this call it may be 1,
* otherwise it must be 0. HUF_addBits() is faster when fast is set.
*/
FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
{
assert(idx <= 1);
assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
/* This is efficient on x86-64 with BMI2 because shrx
* only reads the low 6 bits of the register. The compiler
* knows this and elides the mask. When fast is set,
* every operation can use the same value loaded from elt.
*/
bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
/* We only read the low 8 bits of bitC->bitPos[idx] so it
* doesn't matter that the high bits have noise from the value.
*/
bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
/* The last 4-bits of elt are dirty if fast is set,
* so we must not be overwriting bits that have already been
* inserted into the bit container.
*/
#if DEBUGLEVEL >= 1
{
size_t const nbBits = HUF_getNbBits(elt);
size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
(void)dirtyBits;
/* Middle bits are 0. */
assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
/* We didn't overwrite any bits in the bit container. */
assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
(void)dirtyBits;
}
#endif
}
#define HUF_FLUSHBITS_1(stream) \ FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream) {
bitC->bitContainer[1] = 0;
bitC->bitPos[1] = 0;
}
/*! HUF_mergeIndex1() :
* Merges the bit container @ index 1 into the bit container @ index 0
* and zeros the bit container @ index 1.
*/
FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
{
assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
bitC->bitContainer[0] |= bitC->bitContainer[1];
bitC->bitPos[0] += bitC->bitPos[1];
assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
}
/*! HUF_flushBits() :
* Flushes the bits in the bit container @ index 0.
*
* @post bitPos will be < 8.
* @param kFast If kFast is set then we must know a-priori that
* the bit container will not overflow.
*/
FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
{
/* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
size_t const nbBits = bitC->bitPos[0] & 0xFF;
size_t const nbBytes = nbBits >> 3;
/* The top nbBits bits of bitContainer are the ones we need. */
size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
/* Mask bitPos to account for the bytes we consumed. */
bitC->bitPos[0] &= 7;
assert(nbBits > 0);
assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitContainer);
bitC->ptr += nbBytes;
assert(!kFast || bitC->ptr <= bitC->endPtr);
if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
/* bitContainer doesn't need to be modified because the leftover
* bits are already the top bitPos bits. And we don't care about
* noise in the lower values.
*/
}
/*! HUF_endMark()
* @returns The Huffman stream end mark: A 1-bit value = 1.
*/
static HUF_CElt HUF_endMark(void)
{
HUF_CElt endMark;
HUF_setNbBits(&endMark, 1);
HUF_setValue(&endMark, 1);
return endMark;
}
/*! HUF_closeCStream() :
* @return Size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
static size_t HUF_closeCStream(HUF_CStream_t* bitC)
{
HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
HUF_flushBits(bitC, /* kFast */ 0);
{
size_t const nbBits = bitC->bitPos[0] & 0xFF;
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
}
}
FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
{
HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
}
FORCE_INLINE_TEMPLATE void
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
const BYTE* ip, size_t srcSize,
const HUF_CElt* ct,
int kUnroll, int kFastFlush, int kLastFast)
{
/* Join to kUnroll */
int n = (int)srcSize;
int rem = n % kUnroll;
if (rem > 0) {
for (; rem > 0; --rem) {
HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
}
HUF_flushBits(bitC, kFastFlush);
}
assert(n % kUnroll == 0);
/* Join to 2 * kUnroll */
if (n % (2 * kUnroll)) {
int u;
for (u = 1; u < kUnroll; ++u) {
HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
}
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
HUF_flushBits(bitC, kFastFlush);
n -= kUnroll;
}
assert(n % (2 * kUnroll) == 0);
for (; n>0; n-= 2 * kUnroll) {
/* Encode kUnroll symbols into the bitstream @ index 0. */
int u;
for (u = 1; u < kUnroll; ++u) {
HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
}
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
HUF_flushBits(bitC, kFastFlush);
/* Encode kUnroll symbols into the bitstream @ index 1.
* This allows us to start filling the bit container
* without any data dependencies.
*/
HUF_zeroIndex1(bitC);
for (u = 1; u < kUnroll; ++u) {
HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
}
HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
/* Merge bitstream @ index 1 into the bitstream @ index 0 */
HUF_mergeIndex1(bitC);
HUF_flushBits(bitC, kFastFlush);
}
assert(n == 0);
}
/**
* Returns a tight upper bound on the output space needed by Huffman
* with 8 bytes buffer to handle over-writes. If the output is at least
* this large we don't need to do bounds checks during Huffman encoding.
*/
static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
{
return ((srcSize * tableLog) >> 3) + 8;
}
#define HUF_FLUSHBITS_2(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
FORCE_INLINE_TEMPLATE size_t FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
const HUF_CElt* CTable) const HUF_CElt* CTable)
{ {
U32 const tableLog = (U32)CTable[0];
HUF_CElt const* ct = CTable + 1;
const BYTE* ip = (const BYTE*) src; const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst; BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize; BYTE* const oend = ostart + dstSize;
BYTE* op = ostart; BYTE* op = ostart;
size_t n; HUF_CStream_t bitC;
BIT_CStream_t bitC;
/* init */ /* init */
if (dstSize < 8) return 0; /* not enough space to compress */ if (dstSize < 8) return 0; /* not enough space to compress */
{ size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op)); { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
if (HUF_isError(initErr)) return 0; } if (HUF_isError(initErr)) return 0; }
n = srcSize & ~3; /* join to mod 4 */ if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
switch (srcSize & 3) HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
{ else {
case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable); if (MEM_32bits()) {
HUF_FLUSHBITS_2(&bitC); switch (tableLog) {
/* fall-through */ case 11:
case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable); HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
HUF_FLUSHBITS_1(&bitC); break;
/* fall-through */ case 10: ZSTD_FALLTHROUGH;
case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable); case 9: ZSTD_FALLTHROUGH;
HUF_FLUSHBITS(&bitC); case 8:
/* fall-through */ HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
case 0 : /* fall-through */ break;
default: break; case 7: ZSTD_FALLTHROUGH;
default:
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
break;
} }
} else {
for (; n>0; n-=4) { /* note : n&3==0 at this stage */ switch (tableLog) {
HUF_encodeSymbol(&bitC, ip[n- 1], CTable); case 11:
HUF_FLUSHBITS_1(&bitC); HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
HUF_encodeSymbol(&bitC, ip[n- 2], CTable); break;
HUF_FLUSHBITS_2(&bitC); case 10:
HUF_encodeSymbol(&bitC, ip[n- 3], CTable); HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
HUF_FLUSHBITS_1(&bitC); break;
HUF_encodeSymbol(&bitC, ip[n- 4], CTable); case 9:
HUF_FLUSHBITS(&bitC); HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
break;
case 8:
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
break;
case 7:
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
break;
case 6: ZSTD_FALLTHROUGH;
default:
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
break;
} }
}
}
assert(bitC.ptr <= bitC.endPtr);
return BIT_closeCStream(&bitC); return HUF_closeCStream(&bitC);
} }
#if DYNAMIC_BMI2 #if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t static BMI2_TARGET_ATTRIBUTE size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
const HUF_CElt* CTable) const HUF_CElt* CTable)
@ -667,9 +1071,13 @@ HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{ {
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
} }
size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
{
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
}
static size_t static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
@ -689,8 +1097,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
assert(op <= oend); assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0; if (cSize == 0 || cSize > 65535) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart, (U16)cSize); MEM_writeLE16(ostart, (U16)cSize);
op += cSize; op += cSize;
} }
@ -698,8 +1105,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
ip += segmentSize; ip += segmentSize;
assert(op <= oend); assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0; if (cSize == 0 || cSize > 65535) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart+2, (U16)cSize); MEM_writeLE16(ostart+2, (U16)cSize);
op += cSize; op += cSize;
} }
@ -707,8 +1113,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
ip += segmentSize; ip += segmentSize;
assert(op <= oend); assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0; if (cSize == 0 || cSize > 65535) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart+4, (U16)cSize); MEM_writeLE16(ostart+4, (U16)cSize);
op += cSize; op += cSize;
} }
@ -717,7 +1122,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
assert(op <= oend); assert(op <= oend);
assert(ip <= iend); assert(ip <= iend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) ); { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
if (cSize==0) return 0; if (cSize == 0 || cSize > 65535) return 0;
op += cSize; op += cSize;
} }
@ -726,7 +1131,12 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{ {
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
{
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
} }
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
@ -750,35 +1160,38 @@ static size_t HUF_compressCTable_internal(
typedef struct { typedef struct {
unsigned count[HUF_SYMBOLVALUE_MAX + 1]; unsigned count[HUF_SYMBOLVALUE_MAX + 1];
HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1]; HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
union { union {
HUF_buildCTable_wksp_tables buildCTable_wksp; HUF_buildCTable_wksp_tables buildCTable_wksp;
HUF_WriteCTableWksp writeCTable_wksp; HUF_WriteCTableWksp writeCTable_wksp;
U32 hist_wksp[HIST_WKSP_SIZE_U32];
} wksps; } wksps;
} HUF_compress_tables_t; } HUF_compress_tables_t;
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */
/* HUF_compress_internal() : /* HUF_compress_internal() :
* `workSpace_align4` must be aligned on 4-bytes boundaries, * `workSpace_align4` must be aligned on 4-bytes boundaries,
* and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */ * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
static size_t static size_t
HUF_compress_internal (void* dst, size_t dstSize, HUF_compress_internal (void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog, unsigned maxSymbolValue, unsigned huffLog,
HUF_nbStreams_e nbStreams, HUF_nbStreams_e nbStreams,
void* workSpace_align4, size_t wkspSize, void* workSpace, size_t wkspSize,
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat, HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
const int bmi2) const int bmi2, unsigned suspectUncompressible)
{ {
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4; HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
BYTE* const ostart = (BYTE*)dst; BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize; BYTE* const oend = ostart + dstSize;
BYTE* op = ostart; BYTE* op = ostart;
HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE); HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
assert(((size_t)workSpace_align4 & 3) == 0); /* must be aligned on 4-bytes boundaries */
/* checks & inits */ /* checks & inits */
if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall); if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
if (!srcSize) return 0; /* Uncompressed */ if (!srcSize) return 0; /* Uncompressed */
if (!dstSize) return 0; /* cannot fit anything within dst budget */ if (!dstSize) return 0; /* cannot fit anything within dst budget */
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */ if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
@ -794,8 +1207,23 @@ HUF_compress_internal (void* dst, size_t dstSize,
nbStreams, oldHufTable, bmi2); nbStreams, oldHufTable, bmi2);
} }
/* If uncompressible data is suspected, do a smaller sampling first */
DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
size_t largestTotal = 0;
{ unsigned maxSymbolValueBegin = maxSymbolValue;
CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
largestTotal += largestBegin;
}
{ unsigned maxSymbolValueEnd = maxSymbolValue;
CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
largestTotal += largestEnd;
}
if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */
}
/* Scan input and build symbol stats */ /* Scan input and build symbol stats */
{ CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) ); { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */ if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */ if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
} }
@ -820,9 +1248,12 @@ HUF_compress_internal (void* dst, size_t dstSize,
&table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp)); &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
CHECK_F(maxBits); CHECK_F(maxBits);
huffLog = (U32)maxBits; huffLog = (U32)maxBits;
}
/* Zero unused symbols in CTable, so we can check it for validity */ /* Zero unused symbols in CTable, so we can check it for validity */
ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0, {
sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt))); size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
} }
/* Write table description header */ /* Write table description header */
@ -859,19 +1290,20 @@ size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
return HUF_compress_internal(dst, dstSize, src, srcSize, return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_singleStream, maxSymbolValue, huffLog, HUF_singleStream,
workSpace, wkspSize, workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/); NULL, NULL, 0, 0 /*bmi2*/, 0);
} }
size_t HUF_compress1X_repeat (void* dst, size_t dstSize, size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog, unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize, void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
int bmi2, unsigned suspectUncompressible)
{ {
return HUF_compress_internal(dst, dstSize, src, srcSize, return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_singleStream, maxSymbolValue, huffLog, HUF_singleStream,
workSpace, wkspSize, hufTable, workSpace, wkspSize, hufTable,
repeat, preferRepeat, bmi2); repeat, preferRepeat, bmi2, suspectUncompressible);
} }
/* HUF_compress4X_repeat(): /* HUF_compress4X_repeat():
@ -885,22 +1317,23 @@ size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
return HUF_compress_internal(dst, dstSize, src, srcSize, return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_fourStreams, maxSymbolValue, huffLog, HUF_fourStreams,
workSpace, wkspSize, workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/); NULL, NULL, 0, 0 /*bmi2*/, 0);
} }
/* HUF_compress4X_repeat(): /* HUF_compress4X_repeat():
* compress input using 4 streams. * compress input using 4 streams.
* consider skipping quickly
* re-use an existing huffman compression table */ * re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize, size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog, unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize, void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
{ {
return HUF_compress_internal(dst, dstSize, src, srcSize, return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, HUF_fourStreams, maxSymbolValue, huffLog, HUF_fourStreams,
workSpace, wkspSize, workSpace, wkspSize,
hufTable, repeat, preferRepeat, bmi2); hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
} }
#ifndef ZSTD_NO_UNUSED_FUNCTIONS #ifndef ZSTD_NO_UNUSED_FUNCTIONS
@ -918,7 +1351,7 @@ size_t HUF_compress1X (void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog) unsigned maxSymbolValue, unsigned huffLog)
{ {
unsigned workSpace[HUF_WORKSPACE_SIZE_U32]; U64 workSpace[HUF_WORKSPACE_SIZE_U64];
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
} }
@ -926,7 +1359,7 @@ size_t HUF_compress2 (void* dst, size_t dstSize,
const void* src, size_t srcSize, const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog) unsigned maxSymbolValue, unsigned huffLog)
{ {
unsigned workSpace[HUF_WORKSPACE_SIZE_U32]; U64 workSpace[HUF_WORKSPACE_SIZE_U64];
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
} }

File diff suppressed because it is too large Load Diff

View File

@ -63,7 +63,7 @@ typedef struct {
} ZSTD_localDict; } ZSTD_localDict;
typedef struct { typedef struct {
HUF_CElt CTable[HUF_CTABLE_SIZE_U32(255)]; HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)];
HUF_repeat repeatMode; HUF_repeat repeatMode;
} ZSTD_hufCTables_t; } ZSTD_hufCTables_t;
@ -129,7 +129,7 @@ size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
*********************************/ *********************************/
typedef struct { typedef struct {
U32 off; /* Offset code (offset + ZSTD_REP_MOVE) for the match */ U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */
U32 len; /* Raw length of match */ U32 len; /* Raw length of match */
} ZSTD_match_t; } ZSTD_match_t;
@ -179,7 +179,7 @@ typedef struct {
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */ U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */ ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */ const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
ZSTD_literalCompressionMode_e literalCompressionMode; ZSTD_paramSwitch_e literalCompressionMode;
} optState_t; } optState_t;
typedef struct { typedef struct {
@ -199,6 +199,8 @@ typedef struct {
*/ */
} ZSTD_window_t; } ZSTD_window_t;
#define ZSTD_WINDOW_START_INDEX 2
typedef struct ZSTD_matchState_t ZSTD_matchState_t; typedef struct ZSTD_matchState_t ZSTD_matchState_t;
#define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */ #define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */
@ -264,7 +266,7 @@ typedef struct {
} ldmState_t; } ldmState_t;
typedef struct { typedef struct {
U32 enableLdm; /* 1 if enable long distance matching */ ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */
U32 hashLog; /* Log size of hashTable */ U32 hashLog; /* Log size of hashTable */
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */ U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */ U32 minMatchLength; /* Minimum match length */
@ -295,7 +297,7 @@ struct ZSTD_CCtx_params_s {
* There is no guarantee that hint is close to actual source size */ * There is no guarantee that hint is close to actual source size */
ZSTD_dictAttachPref_e attachDictPref; ZSTD_dictAttachPref_e attachDictPref;
ZSTD_literalCompressionMode_e literalCompressionMode; ZSTD_paramSwitch_e literalCompressionMode;
/* Multithreading: used to pass parameters to mtctx */ /* Multithreading: used to pass parameters to mtctx */
int nbWorkers; int nbWorkers;
@ -318,10 +320,10 @@ struct ZSTD_CCtx_params_s {
int validateSequences; int validateSequences;
/* Block splitting */ /* Block splitting */
int splitBlocks; ZSTD_paramSwitch_e useBlockSplitter;
/* Param for deciding whether to use row-based matchfinder */ /* Param for deciding whether to use row-based matchfinder */
ZSTD_useRowMatchFinderMode_e useRowMatchFinder; ZSTD_paramSwitch_e useRowMatchFinder;
/* Always load a dictionary in ext-dict mode (not prefix mode)? */ /* Always load a dictionary in ext-dict mode (not prefix mode)? */
int deterministicRefPrefix; int deterministicRefPrefix;
@ -343,6 +345,22 @@ typedef enum {
ZSTDb_buffered ZSTDb_buffered
} ZSTD_buffered_policy_e; } ZSTD_buffered_policy_e;
/**
* Struct that contains all elements of block splitter that should be allocated
* in a wksp.
*/
#define ZSTD_MAX_NB_BLOCK_SPLITS 196
typedef struct {
seqStore_t fullSeqStoreChunk;
seqStore_t firstHalfSeqStore;
seqStore_t secondHalfSeqStore;
seqStore_t currSeqStore;
seqStore_t nextSeqStore;
U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS];
ZSTD_entropyCTablesMetadata_t entropyMetadata;
} ZSTD_blockSplitCtx;
struct ZSTD_CCtx_s { struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage; ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */ int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
@ -374,7 +392,7 @@ struct ZSTD_CCtx_s {
ZSTD_blockState_t blockState; ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */ U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
/* Wether we are streaming or not */ /* Whether we are streaming or not */
ZSTD_buffered_policy_e bufferedPolicy; ZSTD_buffered_policy_e bufferedPolicy;
/* streaming */ /* streaming */
@ -408,6 +426,9 @@ struct ZSTD_CCtx_s {
#if ZSTD_TRACE #if ZSTD_TRACE
ZSTD_TraceCtx traceCtx; ZSTD_TraceCtx traceCtx;
#endif #endif
/* Workspace for block splitter */
ZSTD_blockSplitCtx blockSplitCtx;
}; };
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e; typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
@ -442,7 +463,7 @@ typedef enum {
typedef size_t (*ZSTD_blockCompressor) ( typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize); void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_useRowMatchFinderMode_e rowMatchfinderMode, ZSTD_dictMode_e dictMode); ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength) MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
@ -476,31 +497,6 @@ MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase]; return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
} }
typedef struct repcodes_s {
U32 rep[3];
} repcodes_t;
MEM_STATIC repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0)
{
repcodes_t newReps;
if (offset >= ZSTD_REP_NUM) { /* full offset */
newReps.rep[2] = rep[1];
newReps.rep[1] = rep[0];
newReps.rep[0] = offset - ZSTD_REP_MOVE;
} else { /* repcode */
U32 const repCode = offset + ll0;
if (repCode > 0) { /* note : if repCode==0, no change */
U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
newReps.rep[1] = rep[0];
newReps.rep[0] = currentOffset;
} else { /* repCode == 0 */
ZSTD_memcpy(&newReps, rep, sizeof(newReps));
}
}
return newReps;
}
/* ZSTD_cParam_withinBounds: /* ZSTD_cParam_withinBounds:
* @return 1 if value is within cParam bounds, * @return 1 if value is within cParam bounds,
* 0 otherwise */ * 0 otherwise */
@ -549,17 +545,17 @@ MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
return (srcSize >> minlog) + 2; return (srcSize >> minlog) + 2;
} }
MEM_STATIC int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams) MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams)
{ {
switch (cctxParams->literalCompressionMode) { switch (cctxParams->literalCompressionMode) {
case ZSTD_lcm_huffman: case ZSTD_ps_enable:
return 0; return 0;
case ZSTD_lcm_uncompressed: case ZSTD_ps_disable:
return 1; return 1;
default: default:
assert(0 /* impossible: pre-validated */); assert(0 /* impossible: pre-validated */);
/* fall-through */ ZSTD_FALLTHROUGH;
case ZSTD_lcm_auto: case ZSTD_ps_auto:
return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0); return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
} }
} }
@ -569,7 +565,9 @@ MEM_STATIC int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParam
* Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single * Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
* large copies. * large copies.
*/ */
static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) { static void
ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w)
{
assert(iend > ilimit_w); assert(iend > ilimit_w);
if (ip <= ilimit_w) { if (ip <= ilimit_w) {
ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap); ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
@ -579,14 +577,30 @@ static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const ie
while (ip < iend) *op++ = *ip++; while (ip < iend) *op++ = *ip++;
} }
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
#define STORE_REPCODE_1 STORE_REPCODE(1)
#define STORE_REPCODE_2 STORE_REPCODE(2)
#define STORE_REPCODE_3 STORE_REPCODE(3)
#define STORE_REPCODE(r) (assert((r)>=1), assert((r)<=3), (r)-1)
#define STORE_OFFSET(o) (assert((o)>0), o + ZSTD_REP_MOVE)
#define STORED_IS_OFFSET(o) ((o) > ZSTD_REP_MOVE)
#define STORED_IS_REPCODE(o) ((o) <= ZSTD_REP_MOVE)
#define STORED_OFFSET(o) (assert(STORED_IS_OFFSET(o)), (o)-ZSTD_REP_MOVE)
#define STORED_REPCODE(o) (assert(STORED_IS_REPCODE(o)), (o)+1) /* returns ID 1,2,3 */
#define STORED_TO_OFFBASE(o) ((o)+1)
#define OFFBASE_TO_STORED(o) ((o)-1)
/*! ZSTD_storeSeq() : /*! ZSTD_storeSeq() :
* Store a sequence (litlen, litPtr, offCode and mlBase) into seqStore_t. * Store a sequence (litlen, litPtr, offCode and matchLength) into seqStore_t.
* `offCode` : distance to match + ZSTD_REP_MOVE (values <= ZSTD_REP_MOVE are repCodes). * @offBase_minus1 : Users should use employ macros STORE_REPCODE_X and STORE_OFFSET().
* `mlBase` : matchLength - MINMATCH * @matchLength : must be >= MINMATCH
* Allowed to overread literals up to litLimit. * Allowed to overread literals up to litLimit.
*/ */
HINT_INLINE UNUSED_ATTR HINT_INLINE UNUSED_ATTR void
void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* literals, const BYTE* litLimit, U32 offCode, size_t mlBase) ZSTD_storeSeq(seqStore_t* seqStorePtr,
size_t litLength, const BYTE* literals, const BYTE* litLimit,
U32 offBase_minus1,
size_t matchLength)
{ {
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH; BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
BYTE const* const litEnd = literals + litLength; BYTE const* const litEnd = literals + litLength;
@ -595,7 +609,7 @@ void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* litera
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */ if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start); { U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u", DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offCode); pos, (U32)litLength, (U32)matchLength, (U32)offBase_minus1);
} }
#endif #endif
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq); assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
@ -626,19 +640,59 @@ void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* litera
seqStorePtr->sequences[0].litLength = (U16)litLength; seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */ /* match offset */
seqStorePtr->sequences[0].offset = offCode + 1; seqStorePtr->sequences[0].offBase = STORED_TO_OFFBASE(offBase_minus1);
/* match Length */ /* match Length */
assert(matchLength >= MINMATCH);
{ size_t const mlBase = matchLength - MINMATCH;
if (mlBase>0xFFFF) { if (mlBase>0xFFFF) {
assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
seqStorePtr->longLengthType = ZSTD_llt_matchLength; seqStorePtr->longLengthType = ZSTD_llt_matchLength;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
} }
seqStorePtr->sequences[0].matchLength = (U16)mlBase; seqStorePtr->sequences[0].mlBase = (U16)mlBase;
}
seqStorePtr->sequences++; seqStorePtr->sequences++;
} }
/* ZSTD_updateRep() :
* updates in-place @rep (array of repeat offsets)
* @offBase_minus1 : sum-type, with same numeric representation as ZSTD_storeSeq()
*/
MEM_STATIC void
ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
{
if (STORED_IS_OFFSET(offBase_minus1)) { /* full offset */
rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = STORED_OFFSET(offBase_minus1);
} else { /* repcode */
U32 const repCode = STORED_REPCODE(offBase_minus1) - 1 + ll0;
if (repCode > 0) { /* note : if repCode==0, no change */
U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
rep[2] = (repCode >= 2) ? rep[1] : rep[2];
rep[1] = rep[0];
rep[0] = currentOffset;
} else { /* repCode == 0 */
/* nothing to do */
}
}
}
typedef struct repcodes_s {
U32 rep[3];
} repcodes_t;
MEM_STATIC repcodes_t
ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
{
repcodes_t newReps;
ZSTD_memcpy(&newReps, rep, sizeof(newReps));
ZSTD_updateRep(newReps.rep, offBase_minus1, ll0);
return newReps;
}
/*-************************************* /*-*************************************
* Match length counter * Match length counter
@ -651,8 +705,14 @@ static unsigned ZSTD_NbCommonBytes (size_t val)
# if STATIC_BMI2 # if STATIC_BMI2
return _tzcnt_u64(val) >> 3; return _tzcnt_u64(val) >> 3;
# else # else
unsigned long r = 0; if (val != 0) {
return _BitScanForward64( &r, (U64)val ) ? (unsigned)(r >> 3) : 0; unsigned long r;
_BitScanForward64(&r, (U64)val);
return (unsigned)(r >> 3);
} else {
/* Should not reach this code path */
__assume(0);
}
# endif # endif
# elif defined(__GNUC__) && (__GNUC__ >= 4) # elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_ctzll((U64)val) >> 3); return (__builtin_ctzll((U64)val) >> 3);
@ -669,8 +729,14 @@ static unsigned ZSTD_NbCommonBytes (size_t val)
# endif # endif
} else { /* 32 bits */ } else { /* 32 bits */
# if defined(_MSC_VER) # if defined(_MSC_VER)
unsigned long r=0; if (val != 0) {
return _BitScanForward( &r, (U32)val ) ? (unsigned)(r >> 3) : 0; unsigned long r;
_BitScanForward(&r, (U32)val);
return (unsigned)(r >> 3);
} else {
/* Should not reach this code path */
__assume(0);
}
# elif defined(__GNUC__) && (__GNUC__ >= 3) # elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3); return (__builtin_ctz((U32)val) >> 3);
# else # else
@ -687,8 +753,14 @@ static unsigned ZSTD_NbCommonBytes (size_t val)
# if STATIC_BMI2 # if STATIC_BMI2
return _lzcnt_u64(val) >> 3; return _lzcnt_u64(val) >> 3;
# else # else
unsigned long r = 0; if (val != 0) {
return _BitScanReverse64(&r, (U64)val) ? (unsigned)(r >> 3) : 0; unsigned long r;
_BitScanReverse64(&r, (U64)val);
return (unsigned)(r >> 3);
} else {
/* Should not reach this code path */
__assume(0);
}
# endif # endif
# elif defined(__GNUC__) && (__GNUC__ >= 4) # elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_clzll(val) >> 3); return (__builtin_clzll(val) >> 3);
@ -702,8 +774,14 @@ static unsigned ZSTD_NbCommonBytes (size_t val)
# endif # endif
} else { /* 32 bits */ } else { /* 32 bits */
# if defined(_MSC_VER) # if defined(_MSC_VER)
unsigned long r = 0; if (val != 0) {
return _BitScanReverse( &r, (unsigned long)val ) ? (unsigned)(r >> 3) : 0; unsigned long r;
_BitScanReverse(&r, (unsigned long)val);
return (unsigned)(r >> 3);
} else {
/* Should not reach this code path */
__assume(0);
}
# elif defined(__GNUC__) && (__GNUC__ >= 3) # elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3); return (__builtin_clz((U32)val) >> 3);
# else # else
@ -884,9 +962,9 @@ MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window) MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window)
{ {
return window.dictLimit == 1 && return window.dictLimit == ZSTD_WINDOW_START_INDEX &&
window.lowLimit == 1 && window.lowLimit == ZSTD_WINDOW_START_INDEX &&
(window.nextSrc - window.base) == 1; (window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX;
} }
/** /**
@ -937,7 +1015,9 @@ MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,
{ {
U32 const cycleSize = 1u << cycleLog; U32 const cycleSize = 1u << cycleLog;
U32 const curr = (U32)((BYTE const*)src - window.base); U32 const curr = (U32)((BYTE const*)src - window.base);
U32 const minIndexToOverflowCorrect = cycleSize + MAX(maxDist, cycleSize); U32 const minIndexToOverflowCorrect = cycleSize
+ MAX(maxDist, cycleSize)
+ ZSTD_WINDOW_START_INDEX;
/* Adjust the min index to backoff the overflow correction frequency, /* Adjust the min index to backoff the overflow correction frequency,
* so we don't waste too much CPU in overflow correction. If this * so we don't waste too much CPU in overflow correction. If this
@ -1012,10 +1092,14 @@ MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 const cycleSize = 1u << cycleLog; U32 const cycleSize = 1u << cycleLog;
U32 const cycleMask = cycleSize - 1; U32 const cycleMask = cycleSize - 1;
U32 const curr = (U32)((BYTE const*)src - window->base); U32 const curr = (U32)((BYTE const*)src - window->base);
U32 const currentCycle0 = curr & cycleMask; U32 const currentCycle = curr & cycleMask;
/* Exclude zero so that newCurrent - maxDist >= 1. */ /* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */
U32 const currentCycle1 = currentCycle0 == 0 ? cycleSize : currentCycle0; U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX
U32 const newCurrent = currentCycle1 + MAX(maxDist, cycleSize); ? MAX(cycleSize, ZSTD_WINDOW_START_INDEX)
: 0;
U32 const newCurrent = currentCycle
+ currentCycleCorrection
+ MAX(maxDist, cycleSize);
U32 const correction = curr - newCurrent; U32 const correction = curr - newCurrent;
/* maxDist must be a power of two so that: /* maxDist must be a power of two so that:
* (newCurrent & cycleMask) == (curr & cycleMask) * (newCurrent & cycleMask) == (curr & cycleMask)
@ -1031,14 +1115,20 @@ MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
window->base += correction; window->base += correction;
window->dictBase += correction; window->dictBase += correction;
if (window->lowLimit <= correction) window->lowLimit = 1; if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) {
else window->lowLimit -= correction; window->lowLimit = ZSTD_WINDOW_START_INDEX;
if (window->dictLimit <= correction) window->dictLimit = 1; } else {
else window->dictLimit -= correction; window->lowLimit -= correction;
}
if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) {
window->dictLimit = ZSTD_WINDOW_START_INDEX;
} else {
window->dictLimit -= correction;
}
/* Ensure we can still reference the full window. */ /* Ensure we can still reference the full window. */
assert(newCurrent >= maxDist); assert(newCurrent >= maxDist);
assert(newCurrent - maxDist >= 1); assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX);
/* Ensure that lowLimit and dictLimit didn't underflow. */ /* Ensure that lowLimit and dictLimit didn't underflow. */
assert(window->lowLimit <= newCurrent); assert(window->lowLimit <= newCurrent);
assert(window->dictLimit <= newCurrent); assert(window->dictLimit <= newCurrent);
@ -1149,11 +1239,12 @@ ZSTD_checkDictValidity(const ZSTD_window_t* window,
MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) { MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
ZSTD_memset(window, 0, sizeof(*window)); ZSTD_memset(window, 0, sizeof(*window));
window->base = (BYTE const*)""; window->base = (BYTE const*)" ";
window->dictBase = (BYTE const*)""; window->dictBase = (BYTE const*)" ";
window->dictLimit = 1; /* start from 1, so that 1st position is valid */ ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */
window->lowLimit = 1; /* it ensures first and later CCtx usages compress the same */ window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */
window->nextSrc = window->base + 1; /* see issue #1241 */ window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */
window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */
window->nbOverflowCorrections = 0; window->nbOverflowCorrections = 0;
} }

View File

@ -73,7 +73,8 @@ size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
void* dst, size_t dstCapacity, void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize, void* entropyWorkspace, size_t entropyWorkspaceSize,
const int bmi2) const int bmi2,
unsigned suspectUncompressible)
{ {
size_t const minGain = ZSTD_minGain(srcSize, strategy); size_t const minGain = ZSTD_minGain(srcSize, strategy);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB); size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
@ -105,11 +106,11 @@ size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
HUF_compress1X_repeat( HUF_compress1X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize, ostart+lhSize, dstCapacity-lhSize, src, srcSize,
HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize, HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) : (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2, suspectUncompressible) :
HUF_compress4X_repeat( HUF_compress4X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize, ostart+lhSize, dstCapacity-lhSize, src, srcSize,
HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize, HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2); (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2, suspectUncompressible);
if (repeat != HUF_repeat_none) { if (repeat != HUF_repeat_none) {
/* reused the existing table */ /* reused the existing table */
DEBUGLOG(5, "Reusing previous huffman table"); DEBUGLOG(5, "Reusing previous huffman table");

View File

@ -18,12 +18,14 @@ size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src,
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize); size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf, size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
ZSTD_hufCTables_t* nextHuf, ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression, ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity, void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize, void* entropyWorkspace, size_t entropyWorkspaceSize,
const int bmi2); const int bmi2,
unsigned suspectUncompressible);
#endif /* ZSTD_COMPRESS_LITERALS_H */ #endif /* ZSTD_COMPRESS_LITERALS_H */

View File

@ -275,10 +275,11 @@ ZSTD_buildCTable(void* dst, size_t dstCapacity,
assert(nbSeq_1 > 1); assert(nbSeq_1 > 1);
assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp)); assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
(void)entropyWorkspaceSize; (void)entropyWorkspaceSize;
FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), ""); FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, wksp->norm, max, tableLog); /* overflow protected */ assert(oend >= op);
{ size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */
FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed"); FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), ""); FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
return NCountSize; return NCountSize;
} }
} }
@ -312,19 +313,19 @@ ZSTD_encodeSequences_body(
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream); if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream); if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) { if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1]; U32 const ofBits = ofCodeTable[nbSeq-1];
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) { if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits); BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
BIT_flushBits(&blockStream); BIT_flushBits(&blockStream);
} }
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits, BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
ofBits - extraBits); ofBits - extraBits);
} else { } else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
} }
BIT_flushBits(&blockStream); BIT_flushBits(&blockStream);
@ -338,8 +339,8 @@ ZSTD_encodeSequences_body(
U32 const mlBits = ML_bits[mlCode]; U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u", DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
(unsigned)sequences[n].litLength, (unsigned)sequences[n].litLength,
(unsigned)sequences[n].matchLength + MINMATCH, (unsigned)sequences[n].mlBase + MINMATCH,
(unsigned)sequences[n].offset); (unsigned)sequences[n].offBase);
/* 32b*/ /* 64b*/ /* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/ /* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */ FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
@ -350,18 +351,18 @@ ZSTD_encodeSequences_body(
BIT_flushBits(&blockStream); /* (7)*/ BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits); BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) { if (longOffsets) {
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) { if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offset, extraBits); BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
BIT_flushBits(&blockStream); /* (7)*/ BIT_flushBits(&blockStream); /* (7)*/
} }
BIT_addBits(&blockStream, sequences[n].offset >> extraBits, BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
ofBits - extraBits); /* 31 */ ofBits - extraBits); /* 31 */
} else { } else {
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */
} }
BIT_flushBits(&blockStream); /* (7)*/ BIT_flushBits(&blockStream); /* (7)*/
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr)); DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
@ -398,7 +399,7 @@ ZSTD_encodeSequences_default(
#if DYNAMIC_BMI2 #if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2( ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity, void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,

View File

@ -132,6 +132,7 @@ static size_t ZSTD_seqDecompressedSize(seqStore_t const* seqStore, const seqDef*
const seqDef* sp = sstart; const seqDef* sp = sstart;
size_t matchLengthSum = 0; size_t matchLengthSum = 0;
size_t litLengthSum = 0; size_t litLengthSum = 0;
(void)(litLengthSum); /* suppress unused variable warning on some environments */
while (send-sp > 0) { while (send-sp > 0) {
ZSTD_sequenceLength const seqLen = ZSTD_getSequenceLength(seqStore, sp); ZSTD_sequenceLength const seqLen = ZSTD_getSequenceLength(seqStore, sp);
litLengthSum += seqLen.litLength; litLengthSum += seqLen.litLength;
@ -324,7 +325,7 @@ static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t lit
static size_t ZSTD_estimateSubBlockSize_symbolType(symbolEncodingType_e type, static size_t ZSTD_estimateSubBlockSize_symbolType(symbolEncodingType_e type,
const BYTE* codeTable, unsigned maxCode, const BYTE* codeTable, unsigned maxCode,
size_t nbSeq, const FSE_CTable* fseCTable, size_t nbSeq, const FSE_CTable* fseCTable,
const U32* additionalBits, const U8* additionalBits,
short const* defaultNorm, U32 defaultNormLog, U32 defaultMax, short const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
void* workspace, size_t wkspSize) void* workspace, size_t wkspSize)
{ {
@ -474,7 +475,7 @@ static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
/* I think there is an optimization opportunity here. /* I think there is an optimization opportunity here.
* Calling ZSTD_estimateSubBlockSize for every sequence can be wasteful * Calling ZSTD_estimateSubBlockSize for every sequence can be wasteful
* since it recalculates estimate from scratch. * since it recalculates estimate from scratch.
* For example, it would recount literal distribution and symbol codes everytime. * For example, it would recount literal distribution and symbol codes every time.
*/ */
cBlockSizeEstimate = ZSTD_estimateSubBlockSize(lp, litSize, ofCodePtr, llCodePtr, mlCodePtr, seqCount, cBlockSizeEstimate = ZSTD_estimateSubBlockSize(lp, litSize, ofCodePtr, llCodePtr, mlCodePtr, seqCount,
&nextCBlock->entropy, entropyMetadata, &nextCBlock->entropy, entropyMetadata,
@ -538,7 +539,7 @@ static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
repcodes_t rep; repcodes_t rep;
ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep)); ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
for (seq = sstart; seq < sp; ++seq) { for (seq = sstart; seq < sp; ++seq) {
rep = ZSTD_updateRep(rep.rep, seq->offset - 1, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0); ZSTD_updateRep(rep.rep, seq->offBase - 1, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
} }
ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep)); ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
} }

View File

@ -219,7 +219,7 @@ MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) { MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
/* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes /* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
* to align the beginning of tables section, as well as another n_2=[0, 63] bytes * to align the beginning of tables section, as well as another n_2=[0, 63] bytes
* to align the beginning of the aligned secion. * to align the beginning of the aligned section.
* *
* n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and * n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
* aligneds being sized in multiples of 64 bytes. * aligneds being sized in multiples of 64 bytes.
@ -243,12 +243,14 @@ MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignByt
/** /**
* Internal function. Do not use directly. * Internal function. Do not use directly.
* Reserves the given number of bytes within the aligned/buffer segment of the wksp, which * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
* counts from the end of the wksp. (as opposed to the object/table segment) * which counts from the end of the wksp (as opposed to the object/table segment).
* *
* Returns a pointer to the beginning of that space. * Returns a pointer to the beginning of that space.
*/ */
MEM_STATIC void* ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes) { MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
{
void* const alloc = (BYTE*)ws->allocStart - bytes; void* const alloc = (BYTE*)ws->allocStart - bytes;
void* const bottom = ws->tableEnd; void* const bottom = ws->tableEnd;
DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining", DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
@ -260,6 +262,8 @@ MEM_STATIC void* ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t
ws->allocFailed = 1; ws->allocFailed = 1;
return NULL; return NULL;
} }
/* the area is reserved from the end of wksp.
* If it overlaps with tableValidEnd, it voids guarantees on values' range */
if (alloc < ws->tableValidEnd) { if (alloc < ws->tableValidEnd) {
ws->tableValidEnd = alloc; ws->tableValidEnd = alloc;
} }
@ -269,10 +273,12 @@ MEM_STATIC void* ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t
/** /**
* Moves the cwksp to the next phase, and does any necessary allocations. * Moves the cwksp to the next phase, and does any necessary allocations.
* cwksp initialization must necessarily go through each phase in order.
* Returns a 0 on success, or zstd error * Returns a 0 on success, or zstd error
*/ */
MEM_STATIC size_t ZSTD_cwksp_internal_advance_phase( MEM_STATIC size_t
ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) { ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
{
assert(phase >= ws->phase); assert(phase >= ws->phase);
if (phase > ws->phase) { if (phase > ws->phase) {
/* Going from allocating objects to allocating buffers */ /* Going from allocating objects to allocating buffers */
@ -295,15 +301,15 @@ MEM_STATIC size_t ZSTD_cwksp_internal_advance_phase(
{ /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */ { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
void* const alloc = ws->objectEnd; void* const alloc = ws->objectEnd;
size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES); size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
void* const end = (BYTE*)alloc + bytesToAlign; void* const objectEnd = (BYTE*)alloc + bytesToAlign;
DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign); DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
RETURN_ERROR_IF(end > ws->workspaceEnd, memory_allocation, RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
"table phase - alignment initial allocation failed!"); "table phase - alignment initial allocation failed!");
ws->objectEnd = end; ws->objectEnd = objectEnd;
ws->tableEnd = end; ws->tableEnd = objectEnd; /* table area starts being empty */
ws->tableValidEnd = end; if (ws->tableValidEnd < ws->tableEnd) {
} ws->tableValidEnd = ws->tableEnd;
} } } }
ws->phase = phase; ws->phase = phase;
ZSTD_cwksp_assert_internal_consistency(ws); ZSTD_cwksp_assert_internal_consistency(ws);
} }
@ -313,15 +319,17 @@ MEM_STATIC size_t ZSTD_cwksp_internal_advance_phase(
/** /**
* Returns whether this object/buffer/etc was allocated in this workspace. * Returns whether this object/buffer/etc was allocated in this workspace.
*/ */
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) { MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
{
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd); return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
} }
/** /**
* Internal function. Do not use directly. * Internal function. Do not use directly.
*/ */
MEM_STATIC void* ZSTD_cwksp_reserve_internal( MEM_STATIC void*
ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) { ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
{
void* alloc; void* alloc;
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) { if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
return NULL; return NULL;
@ -351,14 +359,16 @@ MEM_STATIC void* ZSTD_cwksp_reserve_internal(
/** /**
* Reserves and returns unaligned memory. * Reserves and returns unaligned memory.
*/ */
MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) { MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
{
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers); return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
} }
/** /**
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
*/ */
MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) { MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
{
void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES), void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
ZSTD_cwksp_alloc_aligned); ZSTD_cwksp_alloc_aligned);
assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0); assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
@ -370,7 +380,8 @@ MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) {
* their values remain constrained, allowing us to re-use them without * their values remain constrained, allowing us to re-use them without
* memset()-ing them. * memset()-ing them.
*/ */
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) { MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
{
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned; const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
void* alloc; void* alloc;
void* end; void* end;
@ -408,9 +419,11 @@ MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) {
/** /**
* Aligned on sizeof(void*). * Aligned on sizeof(void*).
* Note : should happen only once, at workspace first initialization
*/ */
MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) { MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
size_t roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*)); {
size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
void* alloc = ws->objectEnd; void* alloc = ws->objectEnd;
void* end = (BYTE*)alloc + roundedBytes; void* end = (BYTE*)alloc + roundedBytes;
@ -419,15 +432,15 @@ MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif #endif
DEBUGLOG(5, DEBUGLOG(4,
"cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining", "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes); alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
assert(((size_t)alloc & (sizeof(void*)-1)) == 0); assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
assert((bytes & (sizeof(void*)-1)) == 0); assert(bytes % ZSTD_ALIGNOF(void*) == 0);
ZSTD_cwksp_assert_internal_consistency(ws); ZSTD_cwksp_assert_internal_consistency(ws);
/* we must be in the first phase, no advance is possible */ /* we must be in the first phase, no advance is possible */
if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) { if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
DEBUGLOG(4, "cwksp: object alloc failed!"); DEBUGLOG(3, "cwksp: object alloc failed!");
ws->allocFailed = 1; ws->allocFailed = 1;
return NULL; return NULL;
} }
@ -438,7 +451,7 @@ MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */ * either size. */
alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes); __asan_unpoison_memory_region(alloc, bytes);
} }
@ -447,7 +460,8 @@ MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
return alloc; return alloc;
} }
MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) { MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
{
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty"); DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)

View File

@ -48,10 +48,216 @@ void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
FORCE_INLINE_TEMPLATE FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_generic( size_t ZSTD_compressBlock_doubleFast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
size_t mLength;
U32 offset;
U32 curr;
/* how many positions to search before increasing step size */
const size_t kStepIncr = 1 << kSearchStrength;
/* the position at which to increment the step size if no match is found */
const BYTE* nextStep;
size_t step; /* the current step size */
size_t hl0; /* the long hash at ip */
size_t hl1; /* the long hash at ip1 */
U32 idxl0; /* the long match index for ip */
U32 idxl1; /* the long match index for ip1 */
const BYTE* matchl0; /* the long match for ip */
const BYTE* matchs0; /* the short match for ip */
const BYTE* matchl1; /* the long match for ip1 */
const BYTE* ip = istart; /* the current position */
const BYTE* ip1; /* the next position */
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_noDict_generic");
/* init */
ip += ((ip - prefixLowest) == 0);
{
U32 const current = (U32)(ip - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog);
U32 const maxRep = current - windowLow;
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
}
/* Outer Loop: one iteration per match found and stored */
while (1) {
step = 1;
nextStep = ip + kStepIncr;
ip1 = ip + step;
if (ip1 > ilimit) {
goto _cleanup;
}
hl0 = ZSTD_hashPtr(ip, hBitsL, 8);
idxl0 = hashLong[hl0];
matchl0 = base + idxl0;
/* Inner Loop: one iteration per search / position */
do {
const size_t hs0 = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 idxs0 = hashSmall[hs0];
curr = (U32)(ip-base);
matchs0 = base + idxs0;
hashLong[hl0] = hashSmall[hs0] = curr; /* update hash tables */
/* check noDict repcode */
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
goto _match_stored;
}
hl1 = ZSTD_hashPtr(ip1, hBitsL, 8);
if (idxl0 > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchl0) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchl0+8, iend) + 8;
offset = (U32)(ip-matchl0);
while (((ip>anchor) & (matchl0>prefixLowest)) && (ip[-1] == matchl0[-1])) { ip--; matchl0--; mLength++; } /* catch up */
goto _match_found;
}
}
idxl1 = hashLong[hl1];
matchl1 = base + idxl1;
if (idxs0 > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(matchs0) == MEM_read32(ip)) {
goto _search_next_long;
}
}
if (ip1 >= nextStep) {
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
step++;
nextStep += kStepIncr;
}
ip = ip1;
ip1 += step;
hl0 = hl1;
idxl0 = idxl1;
matchl0 = matchl1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
} while (ip1 <= ilimit);
_cleanup:
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
_search_next_long:
/* check prefix long +1 match */
if (idxl1 > prefixLowestIndex) {
if (MEM_read64(matchl1) == MEM_read64(ip1)) {
ip = ip1;
mLength = ZSTD_count(ip+8, matchl1+8, iend) + 8;
offset = (U32)(ip-matchl1);
while (((ip>anchor) & (matchl1>prefixLowest)) && (ip[-1] == matchl1[-1])) { ip--; matchl1--; mLength++; } /* catch up */
goto _match_found;
}
}
/* if no long +1 match, explore the short match we found */
mLength = ZSTD_count(ip+4, matchs0+4, iend) + 4;
offset = (U32)(ip - matchs0);
while (((ip>anchor) & (matchs0>prefixLowest)) && (ip[-1] == matchs0[-1])) { ip--; matchs0--; mLength++; } /* catch up */
/* fall-through */
_match_found: /* requires ip, offset, mLength */
offset_2 = offset_1;
offset_1 = offset;
if (step < 4) {
/* It is unsafe to write this value back to the hashtable when ip1 is
* greater than or equal to the new ip we will have after we're done
* processing this match. Rather than perform that test directly
* (ip1 >= ip + mLength), which costs speed in practice, we do a simpler
* more predictable test. The minmatch even if we take a short match is
* 4 bytes, so as long as step, the distance between ip and ip1
* (initially) is less than 4, we know ip1 < new ip. */
hashLong[hl1] = (U32)(ip1 - base);
}
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, rLength);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, void const* src, size_t srcSize,
U32 const mls /* template */, ZSTD_dictMode_e const dictMode) U32 const mls /* template */)
{ {
ZSTD_compressionParameters const* cParams = &ms->cParams; ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable; U32* const hashLong = ms->hashTable;
@ -72,54 +278,30 @@ size_t ZSTD_compressBlock_doubleFast_generic(
U32 offsetSaved = 0; U32 offsetSaved = 0;
const ZSTD_matchState_t* const dms = ms->dictMatchState; const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = const ZSTD_compressionParameters* const dictCParams = &dms->cParams;
dictMode == ZSTD_dictMatchState ? const U32* const dictHashLong = dms->hashTable;
&dms->cParams : NULL; const U32* const dictHashSmall = dms->chainTable;
const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ? const U32 dictStartIndex = dms->window.dictLimit;
dms->hashTable : NULL; const BYTE* const dictBase = dms->window.base;
const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ? const BYTE* const dictStart = dictBase + dictStartIndex;
dms->chainTable : NULL; const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ? const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase);
dms->window.dictLimit : 0; const U32 dictHBitsL = dictCParams->hashLog;
const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ? const U32 dictHBitsS = dictCParams->chainLog;
dms->window.base : NULL;
const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
dictBase + dictStartIndex : NULL;
const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
dms->window.nextSrc : NULL;
const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
prefixLowestIndex - (U32)(dictEnd - dictBase) :
0;
const U32 dictHBitsL = dictMode == ZSTD_dictMatchState ?
dictCParams->hashLog : hBitsL;
const U32 dictHBitsS = dictMode == ZSTD_dictMatchState ?
dictCParams->chainLog : hBitsS;
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart)); const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_generic"); DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic");
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
/* if a dictionary is attached, it must be within window range */ /* if a dictionary is attached, it must be within window range */
if (dictMode == ZSTD_dictMatchState) {
assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex); assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
}
/* init */ /* init */
ip += (dictAndPrefixLength == 0); ip += (dictAndPrefixLength == 0);
if (dictMode == ZSTD_noDict) {
U32 const curr = (U32)(ip - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
U32 const maxRep = curr - windowLow;
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
}
if (dictMode == ZSTD_dictMatchState) {
/* dictMatchState repCode checks don't currently handle repCode == 0 /* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */ * disabling. */
assert(offset_1 <= dictAndPrefixLength); assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength); assert(offset_2 <= dictAndPrefixLength);
}
/* Main Search Loop */ /* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
@ -135,29 +317,18 @@ size_t ZSTD_compressBlock_doubleFast_generic(
const BYTE* matchLong = base + matchIndexL; const BYTE* matchLong = base + matchIndexL;
const BYTE* match = base + matchIndexS; const BYTE* match = base + matchIndexS;
const U32 repIndex = curr + 1 - offset_1; const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (dictMode == ZSTD_dictMatchState const BYTE* repMatch = (repIndex < prefixLowestIndex) ?
&& repIndex < prefixLowestIndex) ?
dictBase + (repIndex - dictIndexDelta) : dictBase + (repIndex - dictIndexDelta) :
base + repIndex; base + repIndex;
hashLong[h2] = hashSmall[h] = curr; /* update hash tables */ hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
/* check dictMatchState repcode */ /* check repcode */
if (dictMode == ZSTD_dictMatchState if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++; ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
goto _match_stored;
}
/* check noDict repcode */
if ( dictMode == ZSTD_noDict
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
goto _match_stored; goto _match_stored;
} }
@ -169,7 +340,7 @@ size_t ZSTD_compressBlock_doubleFast_generic(
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
goto _match_found; goto _match_found;
} }
} else if (dictMode == ZSTD_dictMatchState) { } else {
/* check dictMatchState long match */ /* check dictMatchState long match */
U32 const dictMatchIndexL = dictHashLong[dictHL]; U32 const dictMatchIndexL = dictHashLong[dictHL];
const BYTE* dictMatchL = dictBase + dictMatchIndexL; const BYTE* dictMatchL = dictBase + dictMatchIndexL;
@ -187,7 +358,7 @@ size_t ZSTD_compressBlock_doubleFast_generic(
if (MEM_read32(match) == MEM_read32(ip)) { if (MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long; goto _search_next_long;
} }
} else if (dictMode == ZSTD_dictMatchState) { } else {
/* check dictMatchState short match */ /* check dictMatchState short match */
U32 const dictMatchIndexS = dictHashSmall[dictHS]; U32 const dictMatchIndexS = dictHashSmall[dictHS];
match = dictBase + dictMatchIndexS; match = dictBase + dictMatchIndexS;
@ -220,7 +391,7 @@ _search_next_long:
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */ while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
goto _match_found; goto _match_found;
} }
} else if (dictMode == ZSTD_dictMatchState) { } else {
/* check dict long +1 match */ /* check dict long +1 match */
U32 const dictMatchIndexL3 = dictHashLong[dictHLNext]; U32 const dictMatchIndexL3 = dictHashLong[dictHLNext];
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3; const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
@ -234,7 +405,7 @@ _search_next_long:
} } } } } }
/* if no long +1 match, explore the short match we found */ /* if no long +1 match, explore the short match we found */
if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) { if (matchIndexS < prefixLowestIndex) {
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4; mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
offset = (U32)(curr - matchIndexS); offset = (U32)(curr - matchIndexS);
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
@ -244,13 +415,11 @@ _search_next_long:
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
} }
/* fall-through */
_match_found: _match_found:
offset_2 = offset_1; offset_2 = offset_1;
offset_1 = offset; offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
_match_stored: _match_stored:
/* match found */ /* match found */
@ -268,12 +437,10 @@ _match_stored:
} }
/* check immediate repcode */ /* check immediate repcode */
if (dictMode == ZSTD_dictMatchState) {
while (ip <= ilimit) { while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base); U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2; U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState const BYTE* repMatch2 = repIndex2 < prefixLowestIndex ?
&& repIndex2 < prefixLowestIndex ?
dictBase + repIndex2 - dictIndexDelta : dictBase + repIndex2 - dictIndexDelta :
base + repIndex2; base + repIndex2;
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */) if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
@ -281,7 +448,7 @@ _match_stored:
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend; const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4; size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH); ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2; ip += repLength2;
@ -289,22 +456,8 @@ _match_stored:
continue; continue;
} }
break; break;
} } }
}
if (dictMode == ZSTD_noDict) {
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } }
} /* while (ip < ilimit) */ } /* while (ip < ilimit) */
/* save reps for next block */ /* save reps for next block */
@ -315,6 +468,24 @@ _match_stored:
return (size_t)(iend - anchor); return (size_t)(iend - anchor);
} }
#define ZSTD_GEN_DFAST_FN(dictMode, mls) \
static size_t ZSTD_compressBlock_doubleFast_##dictMode##_##mls( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_doubleFast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls); \
}
ZSTD_GEN_DFAST_FN(noDict, 4)
ZSTD_GEN_DFAST_FN(noDict, 5)
ZSTD_GEN_DFAST_FN(noDict, 6)
ZSTD_GEN_DFAST_FN(noDict, 7)
ZSTD_GEN_DFAST_FN(dictMatchState, 4)
ZSTD_GEN_DFAST_FN(dictMatchState, 5)
ZSTD_GEN_DFAST_FN(dictMatchState, 6)
ZSTD_GEN_DFAST_FN(dictMatchState, 7)
size_t ZSTD_compressBlock_doubleFast( size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
@ -325,13 +496,13 @@ size_t ZSTD_compressBlock_doubleFast(
{ {
default: /* includes case 3 */ default: /* includes case 3 */
case 4 : case 4 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict); return ZSTD_compressBlock_doubleFast_noDict_4(ms, seqStore, rep, src, srcSize);
case 5 : case 5 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict); return ZSTD_compressBlock_doubleFast_noDict_5(ms, seqStore, rep, src, srcSize);
case 6 : case 6 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict); return ZSTD_compressBlock_doubleFast_noDict_6(ms, seqStore, rep, src, srcSize);
case 7 : case 7 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict); return ZSTD_compressBlock_doubleFast_noDict_7(ms, seqStore, rep, src, srcSize);
} }
} }
@ -345,13 +516,13 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState(
{ {
default: /* includes case 3 */ default: /* includes case 3 */
case 4 : case 4 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState); return ZSTD_compressBlock_doubleFast_dictMatchState_4(ms, seqStore, rep, src, srcSize);
case 5 : case 5 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState); return ZSTD_compressBlock_doubleFast_dictMatchState_5(ms, seqStore, rep, src, srcSize);
case 6 : case 6 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState); return ZSTD_compressBlock_doubleFast_dictMatchState_6(ms, seqStore, rep, src, srcSize);
case 7 : case 7 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState); return ZSTD_compressBlock_doubleFast_dictMatchState_7(ms, seqStore, rep, src, srcSize);
} }
} }
@ -387,7 +558,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
/* if extDict is invalidated due to maxDistance, switch to "regular" variant */ /* if extDict is invalidated due to maxDistance, switch to "regular" variant */
if (prefixStartIndex == dictStartIndex) if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, mls, ZSTD_noDict); return ZSTD_compressBlock_doubleFast(ms, seqStore, rep, src, srcSize);
/* Search Loop */ /* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
@ -409,12 +580,12 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */ hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */ if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
& (offset_1 < curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */ & (offset_1 <= curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4; mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++; ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
} else { } else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) { if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend; const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
@ -425,7 +596,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1; offset_2 = offset_1;
offset_1 = offset; offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) { } else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8); size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
@ -450,7 +621,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
} }
offset_2 = offset_1; offset_2 = offset_1;
offset_1 = offset; offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
} else { } else {
ip += ((ip-anchor) >> kSearchStrength) + 1; ip += ((ip-anchor) >> kSearchStrength) + 1;
@ -477,12 +648,12 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
U32 const repIndex2 = current2 - offset_2; U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
& (offset_2 < current2 - dictStartIndex)) & (offset_2 <= current2 - dictStartIndex))
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) { && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH); ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2; ip += repLength2;
@ -500,6 +671,10 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
return (size_t)(iend - anchor); return (size_t)(iend - anchor);
} }
ZSTD_GEN_DFAST_FN(extDict, 4)
ZSTD_GEN_DFAST_FN(extDict, 5)
ZSTD_GEN_DFAST_FN(extDict, 6)
ZSTD_GEN_DFAST_FN(extDict, 7)
size_t ZSTD_compressBlock_doubleFast_extDict( size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
@ -510,12 +685,12 @@ size_t ZSTD_compressBlock_doubleFast_extDict(
{ {
default: /* includes case 3 */ default: /* includes case 3 */
case 4 : case 4 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 4); return ZSTD_compressBlock_doubleFast_extDict_4(ms, seqStore, rep, src, srcSize);
case 5 : case 5 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 5); return ZSTD_compressBlock_doubleFast_extDict_5(ms, seqStore, rep, src, srcSize);
case 6 : case 6 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 6); return ZSTD_compressBlock_doubleFast_extDict_6(ms, seqStore, rep, src, srcSize);
case 7 : case 7 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 7); return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize);
} }
} }

View File

@ -43,145 +43,294 @@ void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
} }
/**
* If you squint hard enough (and ignore repcodes), the search operation at any
* given position is broken into 4 stages:
*
* 1. Hash (map position to hash value via input read)
* 2. Lookup (map hash val to index via hashtable read)
* 3. Load (map index to value at that position via input read)
* 4. Compare
*
* Each of these steps involves a memory read at an address which is computed
* from the previous step. This means these steps must be sequenced and their
* latencies are cumulative.
*
* Rather than do 1->2->3->4 sequentially for a single position before moving
* onto the next, this implementation interleaves these operations across the
* next few positions:
*
* R = Repcode Read & Compare
* H = Hash
* T = Table Lookup
* M = Match Read & Compare
*
* Pos | Time -->
* ----+-------------------
* N | ... M
* N+1 | ... TM
* N+2 | R H T M
* N+3 | H TM
* N+4 | R H T M
* N+5 | H ...
* N+6 | R ...
*
* This is very much analogous to the pipelining of execution in a CPU. And just
* like a CPU, we have to dump the pipeline when we find a match (i.e., take a
* branch).
*
* When this happens, we throw away our current state, and do the following prep
* to re-enter the loop:
*
* Pos | Time -->
* ----+-------------------
* N | H T
* N+1 | H
*
* This is also the work we do at the beginning to enter the loop initially.
*/
FORCE_INLINE_TEMPLATE size_t FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_fast_generic( ZSTD_compressBlock_fast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, void const* src, size_t srcSize,
U32 const mls) U32 const mls, U32 const hasStep)
{ {
const ZSTD_compressionParameters* const cParams = &ms->cParams; const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable; U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog; U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */ /* support stepSize of 0 */
size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2;
const BYTE* const base = ms->window.base; const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src; const BYTE* const istart = (const BYTE*)src;
/* We check ip0 (ip + 0) and ip1 (ip + 1) each loop */
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixStart = base + prefixStartIndex; const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize; const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE; const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
const BYTE* anchor = istart;
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* ip2;
const BYTE* ip3;
U32 current0;
U32 rep_offset1 = rep[0];
U32 rep_offset2 = rep[1];
U32 offsetSaved = 0; U32 offsetSaved = 0;
/* init */ size_t hash0; /* hash for ip0 */
size_t hash1; /* hash for ip1 */
U32 idx; /* match idx for ip0 */
U32 mval; /* src value at match idx */
U32 offcode;
const BYTE* match0;
size_t mLength;
/* ip0 and ip1 are always adjacent. The targetLength skipping and
* uncompressibility acceleration is applied to every other position,
* matching the behavior of #1562. step therefore represents the gap
* between pairs of positions, from ip0 to ip2 or ip1 to ip3. */
size_t step;
const BYTE* nextStep;
const size_t kStepIncr = (1 << (kSearchStrength - 1));
DEBUGLOG(5, "ZSTD_compressBlock_fast_generic"); DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
ip0 += (ip0 == prefixStart); ip0 += (ip0 == prefixStart);
ip1 = ip0 + 1;
{ U32 const curr = (U32)(ip0 - base); { U32 const curr = (U32)(ip0 - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog); U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
U32 const maxRep = curr - windowLow; U32 const maxRep = curr - windowLow;
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0; if (rep_offset2 > maxRep) offsetSaved = rep_offset2, rep_offset2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0; if (rep_offset1 > maxRep) offsetSaved = rep_offset1, rep_offset1 = 0;
} }
/* Main Search Loop */ /* start each op */
#ifdef __INTEL_COMPILER _start: /* Requires: ip0 */
/* From intel 'The vector pragma indicates that the loop should be
* vectorized if it is legal to do so'. Can be used together with
* #pragma ivdep (but have opted to exclude that because intel
* warns against using it).*/
#pragma vector always
#endif
while (ip1 < ilimit) { /* < instead of <=, because check at ip0+2 */
size_t mLength;
BYTE const* ip2 = ip0 + 2;
size_t const h0 = ZSTD_hashPtr(ip0, hlog, mls);
U32 const val0 = MEM_read32(ip0);
size_t const h1 = ZSTD_hashPtr(ip1, hlog, mls);
U32 const val1 = MEM_read32(ip1);
U32 const current0 = (U32)(ip0-base);
U32 const current1 = (U32)(ip1-base);
U32 const matchIndex0 = hashTable[h0];
U32 const matchIndex1 = hashTable[h1];
BYTE const* repMatch = ip2 - offset_1;
const BYTE* match0 = base + matchIndex0;
const BYTE* match1 = base + matchIndex1;
U32 offcode;
#if defined(__aarch64__) step = stepSize;
PREFETCH_L1(ip0+256); nextStep = ip0 + kStepIncr;
#endif
hashTable[h0] = current0; /* update hash table */ /* calculate positions, ip0 - anchor == 0, so we skip step calc */
hashTable[h1] = current1; /* update hash table */ ip1 = ip0 + 1;
ip2 = ip0 + step;
ip3 = ip2 + 1;
assert(ip0 + 1 == ip1); if (ip3 >= ilimit) {
goto _cleanup;
}
if ((offset_1 > 0) & (MEM_read32(repMatch) == MEM_read32(ip2))) { hash0 = ZSTD_hashPtr(ip0, hlog, mls);
mLength = (ip2[-1] == repMatch[-1]) ? 1 : 0; hash1 = ZSTD_hashPtr(ip1, hlog, mls);
ip0 = ip2 - mLength;
match0 = repMatch - mLength; idx = hashTable[hash0];
do {
/* load repcode match for ip[2]*/
const U32 rval = MEM_read32(ip2 - rep_offset1);
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* check repcode at ip[2] */
if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) {
ip0 = ip2;
match0 = ip0 - rep_offset1;
mLength = ip0[-1] == match0[-1];
ip0 -= mLength;
match0 -= mLength;
offcode = STORE_REPCODE_1;
mLength += 4; mLength += 4;
offcode = 0;
goto _match; goto _match;
} }
if ((matchIndex0 > prefixStartIndex) && MEM_read32(match0) == val0) {
/* found a regular match */ /* load match for ip[0] */
if (idx >= prefixStartIndex) {
mval = MEM_read32(base + idx);
} else {
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
goto _offset; goto _offset;
} }
if ((matchIndex1 > prefixStartIndex) && MEM_read32(match1) == val1) {
/* found a regular match after one literal */ /* lookup ip[1] */
idx = hashTable[hash1];
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1; ip0 = ip1;
match0 = match1; ip1 = ip2;
ip2 = ip3;
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* load match for ip[0] */
if (idx >= prefixStartIndex) {
mval = MEM_read32(base + idx);
} else {
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
goto _offset; goto _offset;
} }
{ size_t const step = ((size_t)(ip0-anchor) >> (kSearchStrength - 1)) + stepSize;
assert(step >= 2); /* lookup ip[1] */
ip0 += step; idx = hashTable[hash1];
ip1 += step;
continue; /* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip0 + step;
ip3 = ip1 + step;
/* calculate step */
if (ip2 >= nextStep) {
step++;
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
nextStep += kStepIncr;
} }
_offset: /* Requires: ip0, match0 */ } while (ip3 < ilimit);
/* Compute the offset code */
offset_2 = offset_1; _cleanup:
offset_1 = (U32)(ip0-match0); /* Note that there are probably still a couple positions we could search.
offcode = offset_1 + ZSTD_REP_MOVE; * However, it seems to be a meaningful performance hit to try to search
* them. So let's not. */
/* save reps for next block */
rep[0] = rep_offset1 ? rep_offset1 : offsetSaved;
rep[1] = rep_offset2 ? rep_offset2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
_offset: /* Requires: ip0, idx */
/* Compute the offset code. */
match0 = base + idx;
rep_offset2 = rep_offset1;
rep_offset1 = (U32)(ip0-match0);
offcode = STORE_OFFSET(rep_offset1);
mLength = 4; mLength = 4;
/* Count the backwards match length */
while (((ip0>anchor) & (match0>prefixStart)) /* Count the backwards match length. */
&& (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } /* catch up */ while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) {
ip0--;
match0--;
mLength++;
}
_match: /* Requires: ip0, match0, offcode */ _match: /* Requires: ip0, match0, offcode */
/* Count the forward length */
mLength += ZSTD_count(ip0+mLength, match0+mLength, iend); /* Count the forward length. */
ZSTD_storeSeq(seqStore, (size_t)(ip0-anchor), anchor, iend, offcode, mLength-MINMATCH); mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend);
/* match found */
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
ip0 += mLength; ip0 += mLength;
anchor = ip0; anchor = ip0;
/* write next hash table entry */
if (ip1 < ip0) {
hashTable[hash1] = (U32)(ip1 - base);
}
/* Fill table and check for immediate repcode. */
if (ip0 <= ilimit) { if (ip0 <= ilimit) {
/* Fill Table */ /* Fill Table */
assert(base+current0+2 > istart); /* check base overflow */ assert(base+current0+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
if (offset_2 > 0) { /* offset_2==0 means offset_2 is invalidated */ if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */
while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - offset_2)) ) { while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) {
/* store sequence */ /* store sequence */
size_t const rLength = ZSTD_count(ip0+4, ip0+4-offset_2, iend) + 4; size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4;
{ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */ { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
ip0 += rLength; ip0 += rLength;
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, 0 /*offCode*/, rLength-MINMATCH); ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, STORE_REPCODE_1, rLength);
anchor = ip0; anchor = ip0;
continue; /* faster when present (confirmed on gcc-8) ... (?) */ continue; /* faster when present (confirmed on gcc-8) ... (?) */
} } } } } }
ip1 = ip0 + 1;
}
/* save reps for next block */ goto _start;
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
} }
#define ZSTD_GEN_FAST_FN(dictMode, mls, step) \
static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \
}
ZSTD_GEN_FAST_FN(noDict, 4, 1)
ZSTD_GEN_FAST_FN(noDict, 5, 1)
ZSTD_GEN_FAST_FN(noDict, 6, 1)
ZSTD_GEN_FAST_FN(noDict, 7, 1)
ZSTD_GEN_FAST_FN(noDict, 4, 0)
ZSTD_GEN_FAST_FN(noDict, 5, 0)
ZSTD_GEN_FAST_FN(noDict, 6, 0)
ZSTD_GEN_FAST_FN(noDict, 7, 0)
size_t ZSTD_compressBlock_fast( size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
@ -189,24 +338,40 @@ size_t ZSTD_compressBlock_fast(
{ {
U32 const mls = ms->cParams.minMatch; U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL); assert(ms->dictMatchState == NULL);
if (ms->cParams.targetLength > 1) {
switch(mls) switch(mls)
{ {
default: /* includes case 3 */ default: /* includes case 3 */
case 4 : case 4 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4); return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize);
case 5 : case 5 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5); return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize);
case 6 : case 6 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6); return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize);
case 7 : case 7 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7); return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize);
}
} else {
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize);
}
} }
} }
FORCE_INLINE_TEMPLATE FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_dictMatchState_generic( size_t ZSTD_compressBlock_fast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls) void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{ {
const ZSTD_compressionParameters* const cParams = &ms->cParams; const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable; U32* const hashTable = ms->hashTable;
@ -242,6 +407,8 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
assert(endIndex - prefixStartIndex <= maxDistance); assert(endIndex - prefixStartIndex <= maxDistance);
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */ (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
(void)hasStep; /* not currently specialized on whether it's accelerated */
/* ensure there will be no underflow /* ensure there will be no underflow
* when translating a dict index into a local index */ * when translating a dict index into a local index */
assert(prefixStartIndex >= (U32)(dictEnd - dictBase)); assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
@ -272,7 +439,7 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4; mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++; ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
} else if ( (matchIndex <= prefixStartIndex) ) { } else if ( (matchIndex <= prefixStartIndex) ) {
size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls); size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
U32 const dictMatchIndex = dictHashTable[dictHash]; U32 const dictMatchIndex = dictHashTable[dictHash];
@ -292,7 +459,7 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
} /* catch up */ } /* catch up */
offset_2 = offset_1; offset_2 = offset_1;
offset_1 = offset; offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
} }
} else if (MEM_read32(match) != MEM_read32(ip)) { } else if (MEM_read32(match) != MEM_read32(ip)) {
/* it's not a match, and we're not going to check the dictionary */ /* it's not a match, and we're not going to check the dictionary */
@ -307,7 +474,7 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
&& (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1; offset_2 = offset_1;
offset_1 = offset; offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
} }
/* match found */ /* match found */
@ -332,7 +499,7 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH); ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2; hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2; ip += repLength2;
anchor = ip; anchor = ip;
@ -351,6 +518,12 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
return (size_t)(iend - anchor); return (size_t)(iend - anchor);
} }
ZSTD_GEN_FAST_FN(dictMatchState, 4, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 5, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 6, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 7, 0)
size_t ZSTD_compressBlock_fast_dictMatchState( size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize) void const* src, size_t srcSize)
@ -361,20 +534,20 @@ size_t ZSTD_compressBlock_fast_dictMatchState(
{ {
default: /* includes case 3 */ default: /* includes case 3 */
case 4 : case 4 :
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 4); return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize);
case 5 : case 5 :
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 5); return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize);
case 6 : case 6 :
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 6); return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize);
case 7 : case 7 :
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 7); return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize);
} }
} }
static size_t ZSTD_compressBlock_fast_extDict_generic( static size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls) void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{ {
const ZSTD_compressionParameters* const cParams = &ms->cParams; const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable; U32* const hashTable = ms->hashTable;
@ -398,11 +571,13 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
const BYTE* const ilimit = iend - 8; const BYTE* const ilimit = iend - 8;
U32 offset_1=rep[0], offset_2=rep[1]; U32 offset_1=rep[0], offset_2=rep[1];
(void)hasStep; /* not currently specialized on whether it's accelerated */
DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1); DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
/* switch to "regular" variant if extDict is invalidated due to maxDistance */ /* switch to "regular" variant if extDict is invalidated due to maxDistance */
if (prefixStartIndex == dictStartIndex) if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, mls); return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
/* Search Loop */ /* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
@ -418,12 +593,12 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
DEBUGLOG(7, "offset_1 = %u , curr = %u", offset_1, curr); DEBUGLOG(7, "offset_1 = %u , curr = %u", offset_1, curr);
if ( ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ if ( ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */
& (offset_1 < curr+1 - dictStartIndex) ) /* note: we are searching at curr+1 */ & (offset_1 <= curr+1 - dictStartIndex) ) /* note: we are searching at curr+1 */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
size_t const rLength = ZSTD_count_2segments(ip+1 +4, repMatch +4, iend, repMatchEnd, prefixStart) + 4; size_t const rLength = ZSTD_count_2segments(ip+1 +4, repMatch +4, iend, repMatchEnd, prefixStart) + 4;
ip++; ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, rLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, rLength);
ip += rLength; ip += rLength;
anchor = ip; anchor = ip;
} else { } else {
@ -439,7 +614,7 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
size_t mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4; size_t mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1; offset_1 = offset; /* update offset history */ offset_2 = offset_1; offset_1 = offset; /* update offset history */
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH); ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
ip += mLength; ip += mLength;
anchor = ip; anchor = ip;
} } } }
@ -453,12 +628,12 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
U32 const current2 = (U32)(ip-base); U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2; U32 const repIndex2 = current2 - offset_2;
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 < curr - dictStartIndex)) /* intentional overflow */ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 <= curr - dictStartIndex)) /* intentional overflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) { && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */ { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, 0 /*offcode*/, repLength2-MINMATCH); ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, STORE_REPCODE_1, repLength2);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2; hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2; ip += repLength2;
anchor = ip; anchor = ip;
@ -475,6 +650,10 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
return (size_t)(iend - anchor); return (size_t)(iend - anchor);
} }
ZSTD_GEN_FAST_FN(extDict, 4, 0)
ZSTD_GEN_FAST_FN(extDict, 5, 0)
ZSTD_GEN_FAST_FN(extDict, 6, 0)
ZSTD_GEN_FAST_FN(extDict, 7, 0)
size_t ZSTD_compressBlock_fast_extDict( size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
@ -485,12 +664,12 @@ size_t ZSTD_compressBlock_fast_extDict(
{ {
default: /* includes case 3 */ default: /* includes case 3 */
case 4 : case 4 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 4); return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 : case 5 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 5); return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 : case 6 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 6); return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 : case 7 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 7); return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize);
} }
} }

File diff suppressed because it is too large Load Diff

View File

@ -159,12 +159,12 @@ size_t ZSTD_ldm_getTableSize(ldmParams_t params)
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog); size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize) size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t)); + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
return params.enableLdm ? totalSize : 0; return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
} }
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{ {
return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0; return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
} }
/** ZSTD_ldm_getBucket() : /** ZSTD_ldm_getBucket() :
@ -478,7 +478,7 @@ static size_t ZSTD_ldm_generateSequences_internal(
*/ */
if (anchor > ip + hashed) { if (anchor > ip + hashed) {
ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength); ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
/* Continue the outter loop at anchor (ip + hashed == anchor). */ /* Continue the outer loop at anchor (ip + hashed == anchor). */
ip = anchor - hashed; ip = anchor - hashed;
break; break;
} }
@ -579,7 +579,9 @@ size_t ZSTD_ldm_generateSequences(
return 0; return 0;
} }
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) { void
ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
{
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) { if (srcSize <= seq->litLength) {
@ -657,7 +659,7 @@ void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_useRowMatchFinderMode_e useRowMatchFinder, ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize) void const* src, size_t srcSize)
{ {
const ZSTD_compressionParameters* const cParams = &ms->cParams; const ZSTD_compressionParameters* const cParams = &ms->cParams;
@ -709,8 +711,8 @@ size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
rep[0] = sequence.offset; rep[0] = sequence.offset;
/* Store the sequence */ /* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend, ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
sequence.offset + ZSTD_REP_MOVE, STORE_OFFSET(sequence.offset),
sequence.matchLength - MINMATCH); sequence.matchLength);
ip += sequence.matchLength; ip += sequence.matchLength;
} }
} }

View File

@ -66,7 +66,7 @@ size_t ZSTD_ldm_generateSequences(
*/ */
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_useRowMatchFinderMode_e useRowMatchFinder, ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize); void const* src, size_t srcSize);
/** /**

View File

@ -11,7 +11,10 @@
#ifndef ZSTD_LDM_GEARTAB_H #ifndef ZSTD_LDM_GEARTAB_H
#define ZSTD_LDM_GEARTAB_H #define ZSTD_LDM_GEARTAB_H
static U64 ZSTD_ldm_gearTab[256] = { #include "../common/compiler.h" /* UNUSED_ATTR */
#include "../common/mem.h" /* U64 */
static UNUSED_ATTR const U64 ZSTD_ldm_gearTab[256] = {
0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc, 0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc,
0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05, 0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05,
0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e, 0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e,

View File

@ -14,7 +14,6 @@
#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */ #define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
#define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */
#define ZSTD_MAX_PRICE (1<<30) #define ZSTD_MAX_PRICE (1<<30)
#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */ #define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
@ -24,11 +23,11 @@
* Price functions for optimal parser * Price functions for optimal parser
***************************************/ ***************************************/
#if 0 /* approximation at bit level */ #if 0 /* approximation at bit level (for tests) */
# define BITCOST_ACCURACY 0 # define BITCOST_ACCURACY 0
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) # define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat)) # define WEIGHT(stat, opt) ((void)opt, ZSTD_bitWeight(stat))
#elif 0 /* fractional bit accuracy */ #elif 0 /* fractional bit accuracy (for tests) */
# define BITCOST_ACCURACY 8 # define BITCOST_ACCURACY 8
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) # define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat)) # define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
@ -66,7 +65,7 @@ MEM_STATIC double ZSTD_fCost(U32 price)
static int ZSTD_compressedLiterals(optState_t const* const optPtr) static int ZSTD_compressedLiterals(optState_t const* const optPtr)
{ {
return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed; return optPtr->literalCompressionMode != ZSTD_ps_disable;
} }
static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel) static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
@ -79,25 +78,46 @@ static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
} }
/* ZSTD_downscaleStat() : static U32 sum_u32(const unsigned table[], size_t nbElts)
* reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus) {
* return the resulting sum of elements */ size_t n;
static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus) U32 total = 0;
for (n=0; n<nbElts; n++) {
total += table[n];
}
return total;
}
static U32 ZSTD_downscaleStats(unsigned* table, U32 lastEltIndex, U32 shift)
{ {
U32 s, sum=0; U32 s, sum=0;
DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1); DEBUGLOG(5, "ZSTD_downscaleStats (nbElts=%u, shift=%u)", (unsigned)lastEltIndex+1, (unsigned)shift);
assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31); assert(shift < 30);
for (s=0; s<lastEltIndex+1; s++) { for (s=0; s<lastEltIndex+1; s++) {
table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus)); table[s] = 1 + (table[s] >> shift);
sum += table[s]; sum += table[s];
} }
return sum; return sum;
} }
/* ZSTD_scaleStats() :
* reduce all elements in table is sum too large
* return the resulting sum of elements */
static U32 ZSTD_scaleStats(unsigned* table, U32 lastEltIndex, U32 logTarget)
{
U32 const prevsum = sum_u32(table, lastEltIndex+1);
U32 const factor = prevsum >> logTarget;
DEBUGLOG(5, "ZSTD_scaleStats (nbElts=%u, target=%u)", (unsigned)lastEltIndex+1, (unsigned)logTarget);
assert(logTarget < 30);
if (factor <= 1) return prevsum;
return ZSTD_downscaleStats(table, lastEltIndex, ZSTD_highbit32(factor));
}
/* ZSTD_rescaleFreqs() : /* ZSTD_rescaleFreqs() :
* if first block (detected by optPtr->litLengthSum == 0) : init statistics * if first block (detected by optPtr->litLengthSum == 0) : init statistics
* take hints from dictionary if there is one * take hints from dictionary if there is one
* or init from zero, using src for literals stats, or flat 1 for match symbols * and init from zero if there is none,
* using src for literals stats, and baseline stats for sequence symbols
* otherwise downscale existing stats, to be used as seed for next block. * otherwise downscale existing stats, to be used as seed for next block.
*/ */
static void static void
@ -126,7 +146,7 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
optPtr->litSum = 0; optPtr->litSum = 0;
for (lit=0; lit<=MaxLit; lit++) { for (lit=0; lit<=MaxLit; lit++) {
U32 const scaleLog = 11; /* scale to 2K */ U32 const scaleLog = 11; /* scale to 2K */
U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit); U32 const bitCost = HUF_getNbBitsFromCTable(optPtr->symbolCosts->huf.CTable, lit);
assert(bitCost <= scaleLog); assert(bitCost <= scaleLog);
optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
optPtr->litSum += optPtr->litFreq[lit]; optPtr->litSum += optPtr->litFreq[lit];
@ -174,14 +194,19 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
if (compressedLiterals) { if (compressedLiterals) {
unsigned lit = MaxLit; unsigned lit = MaxLit;
HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */ HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1); optPtr->litSum = ZSTD_downscaleStats(optPtr->litFreq, MaxLit, 8);
} }
{ unsigned ll; { unsigned const baseLLfreqs[MaxLL+1] = {
for (ll=0; ll<=MaxLL; ll++) 4, 2, 1, 1, 1, 1, 1, 1,
optPtr->litLengthFreq[ll] = 1; 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1
};
ZSTD_memcpy(optPtr->litLengthFreq, baseLLfreqs, sizeof(baseLLfreqs));
optPtr->litLengthSum = sum_u32(baseLLfreqs, MaxLL+1);
} }
optPtr->litLengthSum = MaxLL+1;
{ unsigned ml; { unsigned ml;
for (ml=0; ml<=MaxML; ml++) for (ml=0; ml<=MaxML; ml++)
@ -189,21 +214,26 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
} }
optPtr->matchLengthSum = MaxML+1; optPtr->matchLengthSum = MaxML+1;
{ unsigned of; { unsigned const baseOFCfreqs[MaxOff+1] = {
for (of=0; of<=MaxOff; of++) 6, 2, 1, 1, 2, 3, 4, 4,
optPtr->offCodeFreq[of] = 1; 4, 3, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1
};
ZSTD_memcpy(optPtr->offCodeFreq, baseOFCfreqs, sizeof(baseOFCfreqs));
optPtr->offCodeSum = sum_u32(baseOFCfreqs, MaxOff+1);
} }
optPtr->offCodeSum = MaxOff+1;
} }
} else { /* new block : re-use previous statistics, scaled down */ } else { /* new block : re-use previous statistics, scaled down */
if (compressedLiterals) if (compressedLiterals)
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1); optPtr->litSum = ZSTD_scaleStats(optPtr->litFreq, MaxLit, 12);
optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0); optPtr->litLengthSum = ZSTD_scaleStats(optPtr->litLengthFreq, MaxLL, 11);
optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0); optPtr->matchLengthSum = ZSTD_scaleStats(optPtr->matchLengthFreq, MaxML, 11);
optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0); optPtr->offCodeSum = ZSTD_scaleStats(optPtr->offCodeFreq, MaxOff, 11);
} }
ZSTD_setBasePrices(optPtr, optLevel); ZSTD_setBasePrices(optPtr, optLevel);
@ -239,7 +269,16 @@ static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
* cost of literalLength symbol */ * cost of literalLength symbol */
static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel) static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel)
{ {
if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel); assert(litLength <= ZSTD_BLOCKSIZE_MAX);
if (optPtr->priceType == zop_predef)
return WEIGHT(litLength, optLevel);
/* We can't compute the litLength price for sizes >= ZSTD_BLOCKSIZE_MAX
* because it isn't representable in the zstd format. So instead just
* call it 1 bit more than ZSTD_BLOCKSIZE_MAX - 1. In this case the block
* would be all literals.
*/
if (litLength == ZSTD_BLOCKSIZE_MAX)
return BITCOST_MULTIPLIER + ZSTD_litLengthPrice(ZSTD_BLOCKSIZE_MAX - 1, optPtr, optLevel);
/* dynamic statistics */ /* dynamic statistics */
{ U32 const llCode = ZSTD_LLcode(litLength); { U32 const llCode = ZSTD_LLcode(litLength);
@ -252,15 +291,17 @@ static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optP
/* ZSTD_getMatchPrice() : /* ZSTD_getMatchPrice() :
* Provides the cost of the match part (offset + matchLength) of a sequence * Provides the cost of the match part (offset + matchLength) of a sequence
* Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence. * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
* optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */ * @offcode : expects a scale where 0,1,2 are repcodes 1-3, and 3+ are real_offsets+2
* @optLevel: when <2, favors small offset for decompression speed (improved cache efficiency)
*/
FORCE_INLINE_TEMPLATE U32 FORCE_INLINE_TEMPLATE U32
ZSTD_getMatchPrice(U32 const offset, ZSTD_getMatchPrice(U32 const offcode,
U32 const matchLength, U32 const matchLength,
const optState_t* const optPtr, const optState_t* const optPtr,
int const optLevel) int const optLevel)
{ {
U32 price; U32 price;
U32 const offCode = ZSTD_highbit32(offset+1); U32 const offCode = ZSTD_highbit32(STORED_TO_OFFBASE(offcode));
U32 const mlBase = matchLength - MINMATCH; U32 const mlBase = matchLength - MINMATCH;
assert(matchLength >= MINMATCH); assert(matchLength >= MINMATCH);
@ -303,8 +344,8 @@ static void ZSTD_updateStats(optState_t* const optPtr,
optPtr->litLengthSum++; optPtr->litLengthSum++;
} }
/* match offset code (0-2=>repCode; 3+=>offset+2) */ /* offset code : expected to follow storeSeq() numeric representation */
{ U32 const offCode = ZSTD_highbit32(offsetCode+1); { U32 const offCode = ZSTD_highbit32(STORED_TO_OFFBASE(offsetCode));
assert(offCode <= MaxOff); assert(offCode <= MaxOff);
optPtr->offCodeFreq[offCode]++; optPtr->offCodeFreq[offCode]++;
optPtr->offCodeSum++; optPtr->offCodeSum++;
@ -338,7 +379,7 @@ MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
/* Update hashTable3 up to ip (excluded) /* Update hashTable3 up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */ Assumption : always within prefix (i.e. not within extDict) */
static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms, static U32 ZSTD_insertAndFindFirstIndexHash3 (const ZSTD_matchState_t* ms,
U32* nextToUpdate3, U32* nextToUpdate3,
const BYTE* const ip) const BYTE* const ip)
{ {
@ -364,11 +405,13 @@ static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
* Binary Tree search * Binary Tree search
***************************************/ ***************************************/
/** ZSTD_insertBt1() : add one or multiple positions to tree. /** ZSTD_insertBt1() : add one or multiple positions to tree.
* ip : assumed <= iend-8 . * @param ip assumed <= iend-8 .
* @param target The target of ZSTD_updateTree_internal() - we are filling to this position
* @return : nb of positions added */ * @return : nb of positions added */
static U32 ZSTD_insertBt1( static U32 ZSTD_insertBt1(
ZSTD_matchState_t* ms, const ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend, const BYTE* const ip, const BYTE* const iend,
U32 const target,
U32 const mls, const int extDict) U32 const mls, const int extDict)
{ {
const ZSTD_compressionParameters* const cParams = &ms->cParams; const ZSTD_compressionParameters* const cParams = &ms->cParams;
@ -391,7 +434,10 @@ static U32 ZSTD_insertBt1(
U32* smallerPtr = bt + 2*(curr&btMask); U32* smallerPtr = bt + 2*(curr&btMask);
U32* largerPtr = smallerPtr + 1; U32* largerPtr = smallerPtr + 1;
U32 dummy32; /* to be nullified at the end */ U32 dummy32; /* to be nullified at the end */
U32 const windowLow = ms->window.lowLimit; /* windowLow is based on target because
* we only need positions that will be in the window at the end of the tree update.
*/
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, target, cParams->windowLog);
U32 matchEndIdx = curr+8+1; U32 matchEndIdx = curr+8+1;
size_t bestLength = 8; size_t bestLength = 8;
U32 nbCompares = 1U << cParams->searchLog; U32 nbCompares = 1U << cParams->searchLog;
@ -404,11 +450,12 @@ static U32 ZSTD_insertBt1(
DEBUGLOG(8, "ZSTD_insertBt1 (%u)", curr); DEBUGLOG(8, "ZSTD_insertBt1 (%u)", curr);
assert(curr <= target);
assert(ip <= iend-8); /* required for h calculation */ assert(ip <= iend-8); /* required for h calculation */
hashTable[h] = curr; /* Update Hash Table */ hashTable[h] = curr; /* Update Hash Table */
assert(windowLow > 0); assert(windowLow > 0);
while (nbCompares-- && (matchIndex >= windowLow)) { for (; nbCompares && (matchIndex >= windowLow); --nbCompares) {
U32* const nextPtr = bt + 2*(matchIndex & btMask); U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(matchIndex < curr); assert(matchIndex < curr);
@ -492,7 +539,7 @@ void ZSTD_updateTree_internal(
idx, target, dictMode); idx, target, dictMode);
while(idx < target) { while(idx < target) {
U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict); U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, target, mls, dictMode == ZSTD_extDict);
assert(idx < (U32)(idx + forward)); assert(idx < (U32)(idx + forward));
idx += forward; idx += forward;
} }
@ -597,7 +644,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u", DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
repCode, ll0, repOffset, repLen); repCode, ll0, repOffset, repLen);
bestLength = repLen; bestLength = repLen;
matches[mnum].off = repCode - ll0; matches[mnum].off = STORE_REPCODE(repCode - ll0 + 1); /* expect value between 1 and 3 */
matches[mnum].len = (U32)repLen; matches[mnum].len = (U32)repLen;
mnum++; mnum++;
if ( (repLen > sufficient_len) if ( (repLen > sufficient_len)
@ -626,7 +673,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
bestLength = mlen; bestLength = mlen;
assert(curr > matchIndex3); assert(curr > matchIndex3);
assert(mnum==0); /* no prior solution */ assert(mnum==0); /* no prior solution */
matches[0].off = (curr - matchIndex3) + ZSTD_REP_MOVE; matches[0].off = STORE_OFFSET(curr - matchIndex3);
matches[0].len = (U32)mlen; matches[0].len = (U32)mlen;
mnum = 1; mnum = 1;
if ( (mlen > sufficient_len) | if ( (mlen > sufficient_len) |
@ -635,11 +682,11 @@ U32 ZSTD_insertBtAndGetAllMatches (
return 1; return 1;
} } } } } }
/* no dictMatchState lookup: dicts don't have a populated HC3 table */ /* no dictMatchState lookup: dicts don't have a populated HC3 table */
} } /* if (mls == 3) */
hashTable[h] = curr; /* Update Hash Table */ hashTable[h] = curr; /* Update Hash Table */
while (nbCompares-- && (matchIndex >= matchLow)) { for (; nbCompares && (matchIndex >= matchLow); --nbCompares) {
U32* const nextPtr = bt + 2*(matchIndex & btMask); U32* const nextPtr = bt + 2*(matchIndex & btMask);
const BYTE* match; const BYTE* match;
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
@ -660,20 +707,19 @@ U32 ZSTD_insertBtAndGetAllMatches (
if (matchLength > bestLength) { if (matchLength > bestLength) {
DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)", DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
(U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE); (U32)matchLength, curr - matchIndex, STORE_OFFSET(curr - matchIndex));
assert(matchEndIdx > matchIndex); assert(matchEndIdx > matchIndex);
if (matchLength > matchEndIdx - matchIndex) if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength; matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength; bestLength = matchLength;
matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE; matches[mnum].off = STORE_OFFSET(curr - matchIndex);
matches[mnum].len = (U32)matchLength; matches[mnum].len = (U32)matchLength;
mnum++; mnum++;
if ( (matchLength > ZSTD_OPT_NUM) if ( (matchLength > ZSTD_OPT_NUM)
| (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */ if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */
break; /* drop, to preserve bt consistency (miss a little bit of compression) */ break; /* drop, to preserve bt consistency (miss a little bit of compression) */
} } }
}
if (match[matchLength] < ip[matchLength]) { if (match[matchLength] < ip[matchLength]) {
/* match smaller than current */ /* match smaller than current */
@ -692,12 +738,13 @@ U32 ZSTD_insertBtAndGetAllMatches (
*smallerPtr = *largerPtr = 0; *smallerPtr = *largerPtr = 0;
assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
if (dictMode == ZSTD_dictMatchState && nbCompares) { if (dictMode == ZSTD_dictMatchState && nbCompares) {
size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls); size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
U32 dictMatchIndex = dms->hashTable[dmsH]; U32 dictMatchIndex = dms->hashTable[dmsH];
const U32* const dmsBt = dms->chainTable; const U32* const dmsBt = dms->chainTable;
commonLengthSmaller = commonLengthLarger = 0; commonLengthSmaller = commonLengthLarger = 0;
while (nbCompares-- && (dictMatchIndex > dmsLowLimit)) { for (; nbCompares && (dictMatchIndex > dmsLowLimit); --nbCompares) {
const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask); const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match = dmsBase + dictMatchIndex; const BYTE* match = dmsBase + dictMatchIndex;
@ -708,18 +755,17 @@ U32 ZSTD_insertBtAndGetAllMatches (
if (matchLength > bestLength) { if (matchLength > bestLength) {
matchIndex = dictMatchIndex + dmsIndexDelta; matchIndex = dictMatchIndex + dmsIndexDelta;
DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)", DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
(U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE); (U32)matchLength, curr - matchIndex, STORE_OFFSET(curr - matchIndex));
if (matchLength > matchEndIdx - matchIndex) if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength; matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength; bestLength = matchLength;
matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE; matches[mnum].off = STORE_OFFSET(curr - matchIndex);
matches[mnum].len = (U32)matchLength; matches[mnum].len = (U32)matchLength;
mnum++; mnum++;
if ( (matchLength > ZSTD_OPT_NUM) if ( (matchLength > ZSTD_OPT_NUM)
| (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
break; /* drop, to guarantee consistency (miss a little bit of compression) */ break; /* drop, to guarantee consistency (miss a little bit of compression) */
} } }
}
if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */ if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */
if (match[matchLength] < ip[matchLength]) { if (match[matchLength] < ip[matchLength]) {
@ -729,39 +775,91 @@ U32 ZSTD_insertBtAndGetAllMatches (
/* match is larger than current */ /* match is larger than current */
commonLengthLarger = matchLength; commonLengthLarger = matchLength;
dictMatchIndex = nextPtr[0]; dictMatchIndex = nextPtr[0];
} } } } /* if (dictMode == ZSTD_dictMatchState) */
}
}
assert(matchEndIdx > curr+8); assert(matchEndIdx > curr+8);
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
return mnum; return mnum;
} }
typedef U32 (*ZSTD_getAllMatchesFn)(
FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches ( ZSTD_match_t*,
ZSTD_match_t* matches, /* store result (match found, increasing size) in this table */ ZSTD_matchState_t*,
ZSTD_matchState_t* ms, U32*,
U32* nextToUpdate3, const BYTE*,
const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode, const BYTE*,
const U32 rep[ZSTD_REP_NUM], const U32 rep[ZSTD_REP_NUM],
U32 const ll0, U32 const ll0,
U32 const lengthToBeat) U32 const lengthToBeat);
FORCE_INLINE_TEMPLATE U32 ZSTD_btGetAllMatches_internal(
ZSTD_match_t* matches,
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const BYTE* ip,
const BYTE* const iHighLimit,
const U32 rep[ZSTD_REP_NUM],
U32 const ll0,
U32 const lengthToBeat,
const ZSTD_dictMode_e dictMode,
const U32 mls)
{ {
const ZSTD_compressionParameters* const cParams = &ms->cParams; assert(BOUNDED(3, ms->cParams.minMatch, 6) == mls);
U32 const matchLengthSearch = cParams->minMatch; DEBUGLOG(8, "ZSTD_BtGetAllMatches(dictMode=%d, mls=%u)", (int)dictMode, mls);
DEBUGLOG(8, "ZSTD_BtGetAllMatches"); if (ip < ms->window.base + ms->nextToUpdate)
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ return 0; /* skipped area */
ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode); ZSTD_updateTree_internal(ms, ip, iHighLimit, mls, dictMode);
switch(matchLengthSearch) return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, mls);
{ }
case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
default : #define ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, mls) ZSTD_btGetAllMatches_##dictMode##_##mls
case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5); #define GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, mls) \
case 7 : static U32 ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, mls)( \
case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6); ZSTD_match_t* matches, \
ZSTD_matchState_t* ms, \
U32* nextToUpdate3, \
const BYTE* ip, \
const BYTE* const iHighLimit, \
const U32 rep[ZSTD_REP_NUM], \
U32 const ll0, \
U32 const lengthToBeat) \
{ \
return ZSTD_btGetAllMatches_internal( \
matches, ms, nextToUpdate3, ip, iHighLimit, \
rep, ll0, lengthToBeat, ZSTD_##dictMode, mls); \
} }
#define GEN_ZSTD_BT_GET_ALL_MATCHES(dictMode) \
GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 3) \
GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 4) \
GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 5) \
GEN_ZSTD_BT_GET_ALL_MATCHES_(dictMode, 6)
GEN_ZSTD_BT_GET_ALL_MATCHES(noDict)
GEN_ZSTD_BT_GET_ALL_MATCHES(extDict)
GEN_ZSTD_BT_GET_ALL_MATCHES(dictMatchState)
#define ZSTD_BT_GET_ALL_MATCHES_ARRAY(dictMode) \
{ \
ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 3), \
ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 4), \
ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 5), \
ZSTD_BT_GET_ALL_MATCHES_FN(dictMode, 6) \
}
static ZSTD_getAllMatchesFn
ZSTD_selectBtGetAllMatches(ZSTD_matchState_t const* ms, ZSTD_dictMode_e const dictMode)
{
ZSTD_getAllMatchesFn const getAllMatchesFns[3][4] = {
ZSTD_BT_GET_ALL_MATCHES_ARRAY(noDict),
ZSTD_BT_GET_ALL_MATCHES_ARRAY(extDict),
ZSTD_BT_GET_ALL_MATCHES_ARRAY(dictMatchState)
};
U32 const mls = BOUNDED(3, ms->cParams.minMatch, 6);
assert((U32)dictMode < 3);
assert(mls - 3 < 4);
return getAllMatchesFns[(int)dictMode][mls - 3];
} }
/************************* /*************************
@ -777,9 +875,11 @@ typedef struct {
} ZSTD_optLdm_t; } ZSTD_optLdm_t;
/* ZSTD_optLdm_skipRawSeqStoreBytes(): /* ZSTD_optLdm_skipRawSeqStoreBytes():
* Moves forward in rawSeqStore by nbBytes, which will update the fields 'pos' and 'posInSequence'. * Moves forward in @rawSeqStore by @nbBytes,
* which will update the fields 'pos' and 'posInSequence'.
*/ */
static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) { static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes)
{
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes); U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
while (currPos && rawSeqStore->pos < rawSeqStore->size) { while (currPos && rawSeqStore->pos < rawSeqStore->size) {
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos]; rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
@ -800,8 +900,10 @@ static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t
* Calculates the beginning and end of the next match in the current block. * Calculates the beginning and end of the next match in the current block.
* Updates 'pos' and 'posInSequence' of the ldmSeqStore. * Updates 'pos' and 'posInSequence' of the ldmSeqStore.
*/ */
static void ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock, static void
U32 blockBytesRemaining) { ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock,
U32 blockBytesRemaining)
{
rawSeq currSeq; rawSeq currSeq;
U32 currBlockEndPos; U32 currBlockEndPos;
U32 literalsBytesRemaining; U32 literalsBytesRemaining;
@ -813,8 +915,8 @@ static void ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 cu
optLdm->endPosInBlock = UINT_MAX; optLdm->endPosInBlock = UINT_MAX;
return; return;
} }
/* Calculate appropriate bytes left in matchLength and litLength after adjusting /* Calculate appropriate bytes left in matchLength and litLength
based on ldmSeqStore->posInSequence */ * after adjusting based on ldmSeqStore->posInSequence */
currSeq = optLdm->seqStore.seq[optLdm->seqStore.pos]; currSeq = optLdm->seqStore.seq[optLdm->seqStore.pos];
assert(optLdm->seqStore.posInSequence <= currSeq.litLength + currSeq.matchLength); assert(optLdm->seqStore.posInSequence <= currSeq.litLength + currSeq.matchLength);
currBlockEndPos = currPosInBlock + blockBytesRemaining; currBlockEndPos = currPosInBlock + blockBytesRemaining;
@ -850,15 +952,16 @@ static void ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 cu
} }
/* ZSTD_optLdm_maybeAddMatch(): /* ZSTD_optLdm_maybeAddMatch():
* Adds a match if it's long enough, based on it's 'matchStartPosInBlock' * Adds a match if it's long enough,
* and 'matchEndPosInBlock', into 'matches'. Maintains the correct ordering of 'matches' * based on it's 'matchStartPosInBlock' and 'matchEndPosInBlock',
* into 'matches'. Maintains the correct ordering of 'matches'.
*/ */
static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches, static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
ZSTD_optLdm_t* optLdm, U32 currPosInBlock) { const ZSTD_optLdm_t* optLdm, U32 currPosInBlock)
U32 posDiff = currPosInBlock - optLdm->startPosInBlock; {
U32 const posDiff = currPosInBlock - optLdm->startPosInBlock;
/* Note: ZSTD_match_t actually contains offCode and matchLength (before subtracting MINMATCH) */ /* Note: ZSTD_match_t actually contains offCode and matchLength (before subtracting MINMATCH) */
U32 candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff; U32 const candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff;
U32 candidateOffCode = optLdm->offset + ZSTD_REP_MOVE;
/* Ensure that current block position is not outside of the match */ /* Ensure that current block position is not outside of the match */
if (currPosInBlock < optLdm->startPosInBlock if (currPosInBlock < optLdm->startPosInBlock
@ -868,6 +971,7 @@ static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
} }
if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) { if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) {
U32 const candidateOffCode = STORE_OFFSET(optLdm->offset);
DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offCode: %u matchLength %u) at block position=%u", DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offCode: %u matchLength %u) at block position=%u",
candidateOffCode, candidateMatchLength, currPosInBlock); candidateOffCode, candidateMatchLength, currPosInBlock);
matches[*nbMatches].len = candidateMatchLength; matches[*nbMatches].len = candidateMatchLength;
@ -879,8 +983,11 @@ static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
/* ZSTD_optLdm_processMatchCandidate(): /* ZSTD_optLdm_processMatchCandidate():
* Wrapper function to update ldm seq store and call ldm functions as necessary. * Wrapper function to update ldm seq store and call ldm functions as necessary.
*/ */
static void ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, ZSTD_match_t* matches, U32* nbMatches, static void
U32 currPosInBlock, U32 remainingBytes) { ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm,
ZSTD_match_t* matches, U32* nbMatches,
U32 currPosInBlock, U32 remainingBytes)
{
if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) { if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
return; return;
} }
@ -891,7 +998,7 @@ static void ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, ZSTD_match_
* at the end of a match from the ldm seq store, and will often be some bytes * at the end of a match from the ldm seq store, and will often be some bytes
* over beyond matchEndPosInBlock. As such, we need to correct for these "overshoots" * over beyond matchEndPosInBlock. As such, we need to correct for these "overshoots"
*/ */
U32 posOvershoot = currPosInBlock - optLdm->endPosInBlock; U32 const posOvershoot = currPosInBlock - optLdm->endPosInBlock;
ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, posOvershoot); ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, posOvershoot);
} }
ZSTD_opt_getNextMatchAndUpdateSeqStore(optLdm, currPosInBlock, remainingBytes); ZSTD_opt_getNextMatchAndUpdateSeqStore(optLdm, currPosInBlock, remainingBytes);
@ -899,11 +1006,11 @@ static void ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, ZSTD_match_
ZSTD_optLdm_maybeAddMatch(matches, nbMatches, optLdm, currPosInBlock); ZSTD_optLdm_maybeAddMatch(matches, nbMatches, optLdm, currPosInBlock);
} }
/*-******************************* /*-*******************************
* Optimal parser * Optimal parser
*********************************/ *********************************/
static U32 ZSTD_totalLen(ZSTD_optimal_t sol) static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
{ {
return sol.litlen + sol.mlen; return sol.litlen + sol.mlen;
@ -944,6 +1051,8 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
const BYTE* const prefixStart = base + ms->window.dictLimit; const BYTE* const prefixStart = base + ms->window.dictLimit;
const ZSTD_compressionParameters* const cParams = &ms->cParams; const ZSTD_compressionParameters* const cParams = &ms->cParams;
ZSTD_getAllMatchesFn getAllMatches = ZSTD_selectBtGetAllMatches(ms, dictMode);
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4; U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
U32 nextToUpdate3 = ms->nextToUpdate; U32 nextToUpdate3 = ms->nextToUpdate;
@ -971,7 +1080,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
/* find first match */ /* find first match */
{ U32 const litlen = (U32)(ip - anchor); { U32 const litlen = (U32)(ip - anchor);
U32 const ll0 = !litlen; U32 const ll0 = !litlen;
U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch); U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, ip, iend, rep, ll0, minMatch);
ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches, ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
(U32)(ip-istart), (U32)(iend - ip)); (U32)(ip-istart), (U32)(iend - ip));
if (!nbMatches) { ip++; continue; } if (!nbMatches) { ip++; continue; }
@ -985,18 +1094,18 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
* in every price. We include the literal length to avoid negative * in every price. We include the literal length to avoid negative
* prices when we subtract the previous literal length. * prices when we subtract the previous literal length.
*/ */
opt[0].price = ZSTD_litLengthPrice(litlen, optStatePtr, optLevel); opt[0].price = (int)ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);
/* large match -> immediate encoding */ /* large match -> immediate encoding */
{ U32 const maxML = matches[nbMatches-1].len; { U32 const maxML = matches[nbMatches-1].len;
U32 const maxOffset = matches[nbMatches-1].off; U32 const maxOffcode = matches[nbMatches-1].off;
DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series", DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
nbMatches, maxML, maxOffset, (U32)(ip-prefixStart)); nbMatches, maxML, maxOffcode, (U32)(ip-prefixStart));
if (maxML > sufficient_len) { if (maxML > sufficient_len) {
lastSequence.litlen = litlen; lastSequence.litlen = litlen;
lastSequence.mlen = maxML; lastSequence.mlen = maxML;
lastSequence.off = maxOffset; lastSequence.off = maxOffcode;
DEBUGLOG(6, "large match (%u>%u), immediate encoding", DEBUGLOG(6, "large match (%u>%u), immediate encoding",
maxML, sufficient_len); maxML, sufficient_len);
cur = 0; cur = 0;
@ -1005,24 +1114,25 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
} } } }
/* set prices for first matches starting position == 0 */ /* set prices for first matches starting position == 0 */
{ U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel); assert(opt[0].price >= 0);
{ U32 const literalsPrice = (U32)opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
U32 pos; U32 pos;
U32 matchNb; U32 matchNb;
for (pos = 1; pos < minMatch; pos++) { for (pos = 1; pos < minMatch; pos++) {
opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */ opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */
} }
for (matchNb = 0; matchNb < nbMatches; matchNb++) { for (matchNb = 0; matchNb < nbMatches; matchNb++) {
U32 const offset = matches[matchNb].off; U32 const offcode = matches[matchNb].off;
U32 const end = matches[matchNb].len; U32 const end = matches[matchNb].len;
for ( ; pos <= end ; pos++ ) { for ( ; pos <= end ; pos++ ) {
U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel); U32 const matchPrice = ZSTD_getMatchPrice(offcode, pos, optStatePtr, optLevel);
U32 const sequencePrice = literalsPrice + matchPrice; U32 const sequencePrice = literalsPrice + matchPrice;
DEBUGLOG(7, "rPos:%u => set initial price : %.2f", DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
pos, ZSTD_fCost(sequencePrice)); pos, ZSTD_fCost(sequencePrice));
opt[pos].mlen = pos; opt[pos].mlen = pos;
opt[pos].off = offset; opt[pos].off = offcode;
opt[pos].litlen = litlen; opt[pos].litlen = litlen;
opt[pos].price = sequencePrice; opt[pos].price = (int)sequencePrice;
} } } }
last_pos = pos-1; last_pos = pos-1;
} }
@ -1037,9 +1147,9 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
/* Fix current position with one literal if cheaper */ /* Fix current position with one literal if cheaper */
{ U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1; { U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
int const price = opt[cur-1].price int const price = opt[cur-1].price
+ ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel) + (int)ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
+ ZSTD_litLengthPrice(litlen, optStatePtr, optLevel) + (int)ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
- ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel); - (int)ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
assert(price < 1000000000); /* overflow check */ assert(price < 1000000000); /* overflow check */
if (price <= opt[cur].price) { if (price <= opt[cur].price) {
DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)", DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
@ -1065,7 +1175,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
assert(cur >= opt[cur].mlen); assert(cur >= opt[cur].mlen);
if (opt[cur].mlen != 0) { if (opt[cur].mlen != 0) {
U32 const prev = cur - opt[cur].mlen; U32 const prev = cur - opt[cur].mlen;
repcodes_t newReps = ZSTD_updateRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0); repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t)); ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t));
} else { } else {
ZSTD_memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t)); ZSTD_memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t));
@ -1082,11 +1192,12 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */ continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
} }
assert(opt[cur].price >= 0);
{ U32 const ll0 = (opt[cur].mlen != 0); { U32 const ll0 = (opt[cur].mlen != 0);
U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0; U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
U32 const previousPrice = opt[cur].price; U32 const previousPrice = (U32)opt[cur].price;
U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel); U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch); U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, inr, iend, opt[cur].rep, ll0, minMatch);
U32 matchNb; U32 matchNb;
ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches, ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
@ -1124,7 +1235,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */ for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */
U32 const pos = cur + mlen; U32 const pos = cur + mlen;
int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel); int const price = (int)basePrice + (int)ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
if ((pos > last_pos) || (price < opt[pos].price)) { if ((pos > last_pos) || (price < opt[pos].price)) {
DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)", DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
@ -1154,7 +1265,7 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
* update them while traversing the sequences. * update them while traversing the sequences.
*/ */
if (lastSequence.mlen != 0) { if (lastSequence.mlen != 0) {
repcodes_t reps = ZSTD_updateRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0); repcodes_t const reps = ZSTD_newRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
ZSTD_memcpy(rep, &reps, sizeof(reps)); ZSTD_memcpy(rep, &reps, sizeof(reps));
} else { } else {
ZSTD_memcpy(rep, opt[cur].rep, sizeof(repcodes_t)); ZSTD_memcpy(rep, opt[cur].rep, sizeof(repcodes_t));
@ -1198,7 +1309,7 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
assert(anchor + llen <= iend); assert(anchor + llen <= iend);
ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen); ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH); ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen);
anchor += advance; anchor += advance;
ip = anchor; ip = anchor;
} } } }
@ -1210,38 +1321,30 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
return (size_t)(iend - anchor); return (size_t)(iend - anchor);
} }
static size_t ZSTD_compressBlock_opt0(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode)
{
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /* optLevel */, dictMode);
}
static size_t ZSTD_compressBlock_opt2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode)
{
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /* optLevel */, dictMode);
}
size_t ZSTD_compressBlock_btopt( size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize) const void* src, size_t srcSize)
{ {
DEBUGLOG(5, "ZSTD_compressBlock_btopt"); DEBUGLOG(5, "ZSTD_compressBlock_btopt");
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict); return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
} }
/* used in 2-pass strategy */
static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
{
U32 s, sum=0;
assert(ZSTD_FREQ_DIV+bonus >= 0);
for (s=0; s<lastEltIndex+1; s++) {
table[s] <<= ZSTD_FREQ_DIV+bonus;
table[s]--;
sum += table[s];
}
return sum;
}
/* used in 2-pass strategy */
MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
{
if (ZSTD_compressedLiterals(optPtr))
optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
}
/* ZSTD_initStats_ultra(): /* ZSTD_initStats_ultra():
* make a first compression pass, just to seed stats with more accurate starting values. * make a first compression pass, just to seed stats with more accurate starting values.
@ -1263,7 +1366,7 @@ ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */ assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */
assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */ assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */
ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); /* generate stats into ms->opt*/ ZSTD_compressBlock_opt2(ms, seqStore, tmpRep, src, srcSize, ZSTD_noDict); /* generate stats into ms->opt*/
/* invalidate first scan from history */ /* invalidate first scan from history */
ZSTD_resetSeqStore(seqStore); ZSTD_resetSeqStore(seqStore);
@ -1272,8 +1375,6 @@ ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
ms->window.lowLimit = ms->window.dictLimit; ms->window.lowLimit = ms->window.dictLimit;
ms->nextToUpdate = ms->window.dictLimit; ms->nextToUpdate = ms->window.dictLimit;
/* re-inforce weight of collected statistics */
ZSTD_upscaleStats(&ms->opt);
} }
size_t ZSTD_compressBlock_btultra( size_t ZSTD_compressBlock_btultra(
@ -1281,7 +1382,7 @@ size_t ZSTD_compressBlock_btultra(
const void* src, size_t srcSize) const void* src, size_t srcSize)
{ {
DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize); DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize);
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
} }
size_t ZSTD_compressBlock_btultra2( size_t ZSTD_compressBlock_btultra2(
@ -1309,35 +1410,35 @@ size_t ZSTD_compressBlock_btultra2(
ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize); ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
} }
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
} }
size_t ZSTD_compressBlock_btopt_dictMatchState( size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize) const void* src, size_t srcSize)
{ {
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState); return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
} }
size_t ZSTD_compressBlock_btultra_dictMatchState( size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize) const void* src, size_t srcSize)
{ {
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState); return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
} }
size_t ZSTD_compressBlock_btopt_extDict( size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize) const void* src, size_t srcSize)
{ {
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict); return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
} }
size_t ZSTD_compressBlock_btultra_extDict( size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize) const void* src, size_t srcSize)
{ {
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict); return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
} }
/* note : no btultra2 variant for extDict nor dictMatchState, /* note : no btultra2 variant for extDict nor dictMatchState,

View File

@ -102,9 +102,8 @@ typedef struct ZSTDMT_bufferPool_s {
buffer_t bTable[1]; /* variable size */ buffer_t bTable[1]; /* variable size */
} ZSTDMT_bufferPool; } ZSTDMT_bufferPool;
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem) static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
{ {
unsigned const maxNbBuffers = 2*nbWorkers + 3;
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc( ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
if (bufPool==NULL) return NULL; if (bufPool==NULL) return NULL;
@ -160,9 +159,8 @@ static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const
} }
static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers) static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
{ {
unsigned const maxNbBuffers = 2*nbWorkers + 3;
if (srcBufPool==NULL) return NULL; if (srcBufPool==NULL) return NULL;
if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
return srcBufPool; return srcBufPool;
@ -171,7 +169,7 @@ static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool,
size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
ZSTDMT_bufferPool* newBufPool; ZSTDMT_bufferPool* newBufPool;
ZSTDMT_freeBufferPool(srcBufPool); ZSTDMT_freeBufferPool(srcBufPool);
newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
if (newBufPool==NULL) return newBufPool; if (newBufPool==NULL) return newBufPool;
ZSTDMT_setBufferSize(newBufPool, bSize); ZSTDMT_setBufferSize(newBufPool, bSize);
return newBufPool; return newBufPool;
@ -263,6 +261,16 @@ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
ZSTD_customFree(buf.start, bufPool->cMem); ZSTD_customFree(buf.start, bufPool->cMem);
} }
/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
* The 3 additional buffers are as follows:
* 1 buffer for input loading
* 1 buffer for "next input" when submitting current one
* 1 buffer stuck in queue */
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
* So we only need one seq buffer per worker. */
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
/* ===== Seq Pool Wrapper ====== */ /* ===== Seq Pool Wrapper ====== */
@ -316,7 +324,7 @@ static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
{ {
ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem); ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
if (seqPool == NULL) return NULL; if (seqPool == NULL) return NULL;
ZSTDMT_setNbSeq(seqPool, 0); ZSTDMT_setNbSeq(seqPool, 0);
return seqPool; return seqPool;
@ -329,7 +337,7 @@ static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
{ {
return ZSTDMT_expandBufferPool(pool, nbWorkers); return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
} }
@ -467,7 +475,7 @@ ZSTDMT_serialState_reset(serialState_t* serialState,
ZSTD_dictContentType_e dictContentType) ZSTD_dictContentType_e dictContentType)
{ {
/* Adjust parameters */ /* Adjust parameters */
if (params.ldmParams.enableLdm) { if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams); ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
@ -478,7 +486,7 @@ ZSTDMT_serialState_reset(serialState_t* serialState,
serialState->nextJobID = 0; serialState->nextJobID = 0;
if (params.fParams.checksumFlag) if (params.fParams.checksumFlag)
XXH64_reset(&serialState->xxhState, 0); XXH64_reset(&serialState->xxhState, 0);
if (params.ldmParams.enableLdm) { if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
ZSTD_customMem cMem = params.customMem; ZSTD_customMem cMem = params.customMem;
unsigned const hashLog = params.ldmParams.hashLog; unsigned const hashLog = params.ldmParams.hashLog;
size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
@ -564,7 +572,7 @@ static void ZSTDMT_serialState_update(serialState_t* serialState,
/* A future job may error and skip our job */ /* A future job may error and skip our job */
if (serialState->nextJobID == jobID) { if (serialState->nextJobID == jobID) {
/* It is now our turn, do any processing necessary */ /* It is now our turn, do any processing necessary */
if (serialState->params.ldmParams.enableLdm) { if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
size_t error; size_t error;
assert(seqStore.seq != NULL && seqStore.pos == 0 && assert(seqStore.seq != NULL && seqStore.pos == 0 &&
seqStore.size == 0 && seqStore.capacity > 0); seqStore.size == 0 && seqStore.capacity > 0);
@ -594,7 +602,7 @@ static void ZSTDMT_serialState_update(serialState_t* serialState,
if (seqStore.size > 0) { if (seqStore.size > 0) {
size_t const err = ZSTD_referenceExternalSequences( size_t const err = ZSTD_referenceExternalSequences(
jobCCtx, seqStore.seq, seqStore.size); jobCCtx, seqStore.seq, seqStore.size);
assert(serialState->params.ldmParams.enableLdm); assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
assert(!ZSTD_isError(err)); assert(!ZSTD_isError(err));
(void)err; (void)err;
} }
@ -672,7 +680,7 @@ static void ZSTDMT_compressionJob(void* jobDescription)
if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
} }
if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL) if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
JOB_ERROR(ERROR(memory_allocation)); JOB_ERROR(ERROR(memory_allocation));
/* Don't compute the checksum for chunks, since we compute it externally, /* Don't compute the checksum for chunks, since we compute it externally,
@ -680,7 +688,7 @@ static void ZSTDMT_compressionJob(void* jobDescription)
*/ */
if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
/* Don't run LDM for the chunks, since we handle it externally */ /* Don't run LDM for the chunks, since we handle it externally */
jobParams.ldmParams.enableLdm = 0; jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
/* Correct nbWorkers to 0. */ /* Correct nbWorkers to 0. */
jobParams.nbWorkers = 0; jobParams.nbWorkers = 0;
@ -807,6 +815,15 @@ typedef struct {
static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
#define RSYNC_LENGTH 32 #define RSYNC_LENGTH 32
/* Don't create chunks smaller than the zstd block size.
* This stops us from regressing compression ratio too much,
* and ensures our output fits in ZSTD_compressBound().
*
* If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
* ZSTD_COMPRESSBOUND() will need to be updated.
*/
#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
#define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
typedef struct { typedef struct {
U64 hash; U64 hash;
@ -927,7 +944,7 @@ MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers,
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
mtctx->jobIDMask = nbJobs - 1; mtctx->jobIDMask = nbJobs - 1;
mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
initError = ZSTDMT_serialState_init(&mtctx->serial); initError = ZSTDMT_serialState_init(&mtctx->serial);
@ -1030,7 +1047,7 @@ static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
{ {
if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers); mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
if (mtctx->bufPool == NULL) return ERROR(memory_allocation); if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
@ -1135,7 +1152,7 @@ size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
{ {
unsigned jobLog; unsigned jobLog;
if (params->ldmParams.enableLdm) { if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* In Long Range Mode, the windowLog is typically oversized. /* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize * In which case, it's preferable to determine the jobSize
* based on cycleLog instead. */ * based on cycleLog instead. */
@ -1179,7 +1196,7 @@ static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
assert(0 <= overlapRLog && overlapRLog <= 8); assert(0 <= overlapRLog && overlapRLog <= 8);
if (params->ldmParams.enableLdm) { if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
/* In Long Range Mode, the windowLog is typically oversized. /* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize * In which case, it's preferable to determine the jobSize
* based on chainLog instead. * based on chainLog instead.
@ -1252,6 +1269,9 @@ size_t ZSTDMT_initCStream_internal(
/* Aim for the targetsectionSize as the average job size. */ /* Aim for the targetsectionSize as the average job size. */
U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10); U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10); U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
/* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
* expected job size is at least 4x larger. */
assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
DEBUGLOG(4, "rsyncLog = %u", rsyncBits); DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
mtctx->rsync.hash = 0; mtctx->rsync.hash = 0;
mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
@ -1263,7 +1283,7 @@ size_t ZSTDMT_initCStream_internal(
ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
{ {
/* If ldm is enabled we need windowSize space. */ /* If ldm is enabled we need windowSize space. */
size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0; size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
/* Two buffers of slack, plus extra space for the overlap /* Two buffers of slack, plus extra space for the overlap
* This is the minimum slack that LDM works with. One extra because * This is the minimum slack that LDM works with. One extra because
* flush might waste up to targetSectionSize-1 bytes. Another extra * flush might waste up to targetSectionSize-1 bytes. Another extra
@ -1538,17 +1558,21 @@ static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
{ {
BYTE const* const bufferStart = (BYTE const*)buffer.start; BYTE const* const bufferStart = (BYTE const*)buffer.start;
BYTE const* const bufferEnd = bufferStart + buffer.capacity;
BYTE const* const rangeStart = (BYTE const*)range.start; BYTE const* const rangeStart = (BYTE const*)range.start;
BYTE const* const rangeEnd = range.size != 0 ? rangeStart + range.size : rangeStart;
if (rangeStart == NULL || bufferStart == NULL) if (rangeStart == NULL || bufferStart == NULL)
return 0; return 0;
{
BYTE const* const bufferEnd = bufferStart + buffer.capacity;
BYTE const* const rangeEnd = rangeStart + range.size;
/* Empty ranges cannot overlap */ /* Empty ranges cannot overlap */
if (bufferStart == bufferEnd || rangeStart == rangeEnd) if (bufferStart == bufferEnd || rangeStart == rangeEnd)
return 0; return 0;
return bufferStart < rangeEnd && rangeStart < bufferEnd; return bufferStart < rangeEnd && rangeStart < bufferEnd;
}
} }
static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
@ -1575,7 +1599,7 @@ static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
{ {
if (mtctx->params.ldmParams.enableLdm) { if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
DEBUGLOG(5, "source [0x%zx, 0x%zx)", DEBUGLOG(5, "source [0x%zx, 0x%zx)",
@ -1678,6 +1702,11 @@ findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
if (!mtctx->params.rsyncable) if (!mtctx->params.rsyncable)
/* Rsync is disabled. */ /* Rsync is disabled. */
return syncPoint; return syncPoint;
if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
/* We don't emit synchronization points if it would produce too small blocks.
* We don't have enough input to find a synchronization point, so don't look.
*/
return syncPoint;
if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
/* Not enough to compute the hash. /* Not enough to compute the hash.
* We will miss any synchronization points in this RSYNC_LENGTH byte * We will miss any synchronization points in this RSYNC_LENGTH byte
@ -1688,10 +1717,28 @@ findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
*/ */
return syncPoint; return syncPoint;
/* Initialize the loop variables. */ /* Initialize the loop variables. */
if (mtctx->inBuff.filled >= RSYNC_LENGTH) { if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
/* We have enough bytes buffered to initialize the hash. /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
* because they can't possibly be a sync point. So we can start
* part way through the input buffer.
*/
pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
if (pos >= RSYNC_LENGTH) {
prev = istart + pos - RSYNC_LENGTH;
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
} else {
assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
hash = ZSTD_rollingHash_append(hash, istart, pos);
}
} else {
/* We have enough bytes buffered to initialize the hash,
* and are have processed enough bytes to find a sync point.
* Start scanning at the beginning of the input. * Start scanning at the beginning of the input.
*/ */
assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
pos = 0; pos = 0;
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
@ -1705,16 +1752,6 @@ findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
syncPoint.flush = 1; syncPoint.flush = 1;
return syncPoint; return syncPoint;
} }
} else {
/* We don't have enough bytes buffered to initialize the hash, but
* we know we have at least RSYNC_LENGTH bytes total.
* Start scanning after the first RSYNC_LENGTH bytes less the bytes
* already buffered.
*/
pos = RSYNC_LENGTH - mtctx->inBuff.filled;
prev = (BYTE const*)mtctx->inBuff.buffer.start - pos;
hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled);
hash = ZSTD_rollingHash_append(hash, istart, pos);
} }
/* Starting with the hash of the previous RSYNC_LENGTH bytes, roll /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
* through the input. If we hit a synchronization point, then cut the * through the input. If we hit a synchronization point, then cut the
@ -1726,8 +1763,9 @@ findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
*/ */
for (; pos < syncPoint.toLoad; ++pos) { for (; pos < syncPoint.toLoad; ++pos) {
BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
/* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */ assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
if ((hash & hitMask) == hitMask) { if ((hash & hitMask) == hitMask) {
syncPoint.toLoad = pos + 1; syncPoint.toLoad = pos + 1;
syncPoint.flush = 1; syncPoint.flush = 1;

View File

@ -65,8 +65,11 @@ size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx);
* Private use only. Init streaming operation. * Private use only. Init streaming operation.
* expects params to be valid. * expects params to be valid.
* must receive dict, or cdict, or none, but not both. * must receive dict, or cdict, or none, but not both.
* mtctx can be freshly constructed or reused from a prior compression.
* If mtctx is reused, memory allocations from the prior compression may not be freed,
* even if they are not needed for the current compression.
* @return : 0, or an error code */ * @return : 0, or an error code */
size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs, size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict, const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize); ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,585 @@
/*
* Copyright (c) Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "../common/portability_macros.h"
/* Stack marking
* ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
*/
#if defined(__ELF__) && defined(__GNUC__)
.section .note.GNU-stack,"",%progbits
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
/* Calling convention:
*
* %rdi contains the first argument: HUF_DecompressAsmArgs*.
* %rbp isn't maintained (no frame pointer).
* %rsp contains the stack pointer that grows down.
* No red-zone is assumed, only addresses >= %rsp are used.
* All register contents are preserved.
*
* TODO: Support Windows calling convention.
*/
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
.global HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
.global HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
.global _HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
.global _HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
.text
/* Sets up register mappings for clarity.
* op[], bits[], dtable & ip[0] each get their own register.
* ip[1,2,3] & olimit alias var[].
* %rax is a scratch register.
*/
#define op0 rsi
#define op1 rbx
#define op2 rcx
#define op3 rdi
#define ip0 r8
#define ip1 r9
#define ip2 r10
#define ip3 r11
#define bits0 rbp
#define bits1 rdx
#define bits2 r12
#define bits3 r13
#define dtable r14
#define olimit r15
/* var[] aliases ip[1,2,3] & olimit
* ip[1,2,3] are saved every iteration.
* olimit is only used in compute_olimit.
*/
#define var0 r15
#define var1 r9
#define var2 r10
#define var3 r11
/* 32-bit var registers */
#define vard0 r15d
#define vard1 r9d
#define vard2 r10d
#define vard3 r11d
/* Calls X(N) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM(X) \
X(0); \
X(1); \
X(2); \
X(3)
/* Calls X(N, idx) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \
X(0, idx); \
X(1, idx); \
X(2, idx); \
X(3, idx)
/* Define both _HUF_* & HUF_* symbols because MacOS
* C symbols are prefixed with '_' & Linux symbols aren't.
*/
_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
/* Read HUF_DecompressAsmArgs* args from %rax */
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push 104(%rax) /* ilimit */
push 112(%rax) /* oend */
push %olimit /* olimit space */
subq $24, %rsp
.L_4X1_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rbx, rdx must be saved
* op3 & ip0 mustn't be clobbered
*/
movq %rbx, 0(%rsp)
movq %rdx, 8(%rsp)
movq 32(%rsp), %rax /* rax = oend */
subq %op3, %rax /* rax = oend - op3 */
/* r15 = (oend - op3) / 5 */
movabsq $-3689348814741910323, %rdx
mulq %rdx
movq %rdx, %r15
shrq $2, %r15
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilimit */
subq %rdx, %rax /* rax = ip0 - ilimit */
movq %rax, %rbx /* rbx = ip0 - ilimit */
/* rdx = (ip0 - ilimit) / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %rbx
shrq %rbx
addq %rbx, %rdx
shrq $2, %rdx
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* r15 = r15 * 5 */
leaq (%r15, %r15, 4), %r15
/* olimit = op3 + r15 */
addq %op3, %olimit
movq 8(%rsp), %rdx
movq 0(%rsp), %rbx
/* If (op3 + 20 > olimit) */
movq %op3, %rax /* rax = op3 */
addq $20, %rax /* rax = op3 + 20 */
cmpq %rax, %olimit /* op3 + 20 > olimit */
jb .L_4X1_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X1_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X1_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X1_exit
/* Reads top 11 bits from bits[n]
* Loads dt[bits[n]] into var[n]
*/
#define GET_NEXT_DELT(n) \
movq $53, %var##n; \
shrxq %var##n, %bits##n, %var##n; \
movzwl (%dtable,%var##n,2),%vard##n
/* var[n] must contain the DTable entry computed with GET_NEXT_DELT
* Moves var[n] to %rax
* bits[n] <<= var[n] & 63
* op[n][idx] = %rax >> 8
* %ah is a way to access bits [8, 16) of %rax
*/
#define DECODE_FROM_DELT(n, idx) \
movq %var##n, %rax; \
shlxq %var##n, %bits##n, %bits##n; \
movb %ah, idx(%op##n)
/* Assumes GET_NEXT_DELT has been called.
* Calls DECODE_FROM_DELT then GET_NEXT_DELT
*/
#define DECODE_AND_GET_NEXT(n, idx) \
DECODE_FROM_DELT(n, idx); \
GET_NEXT_DELT(n) \
/* // ctz & nbBytes is stored in bits[n]
* // nbBits is stored in %rax
* ctz = CTZ[bits[n]]
* nbBits = ctz & 7
* nbBytes = ctz >> 3
* op[n] += 5
* ip[n] -= nbBytes
* // Note: x86-64 is little-endian ==> no bswap
* bits[n] = MEM_readST(ip[n]) | 1
* bits[n] <<= nbBits
*/
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
andq $7, %rax; \
shrq $3, %bits##n; \
leaq 5(%op##n), %op##n; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlx %rax, %bits##n, %bits##n
/* Store clobbered variables on the stack */
movq %olimit, 24(%rsp)
movq %ip1, 0(%rsp)
movq %ip2, 8(%rsp)
movq %ip3, 16(%rsp)
/* Call GET_NEXT_DELT for each stream */
FOR_EACH_STREAM(GET_NEXT_DELT)
.p2align 6
.L_4X1_loop_body:
/* Decode 5 symbols in each of the 4 streams (20 total)
* Must have called GET_NEXT_DELT for each stream
*/
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4)
/* Load ip[1,2,3] from stack (var[] aliases them)
* ip[] is needed for RELOAD_BITS
* Each will be stored back to the stack after RELOAD
*/
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Reload each stream & fetch the next table entry
* to prepare for the next iteration
*/
RELOAD_BITS(0)
GET_NEXT_DELT(0)
RELOAD_BITS(1)
movq %ip1, 0(%rsp)
GET_NEXT_DELT(1)
RELOAD_BITS(2)
movq %ip2, 8(%rsp)
GET_NEXT_DELT(2)
RELOAD_BITS(3)
movq %ip3, 16(%rsp)
GET_NEXT_DELT(3)
/* If op3 < olimit: continue the loop */
cmp %op3, 24(%rsp)
ja .L_4X1_loop_body
/* Reload ip[1,2,3] from stack */
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Re-compute olimit */
jmp .L_4X1_compute_olimit
#undef GET_NEXT_DELT
#undef DECODE_FROM_DELT
#undef DECODE
#undef RELOAD_BITS
.L_4X1_exit:
addq $24, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* olimit */
pop %rax /* oend */
pop %rax /* ilimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push %rax /* olimit */
push 104(%rax) /* ilimit */
movq 112(%rax), %rax
push %rax /* oend3 */
movq %op3, %rax
push %rax /* oend2 */
movq %op2, %rax
push %rax /* oend1 */
movq %op1, %rax
push %rax /* oend0 */
/* Scratch space */
subq $8, %rsp
.L_4X2_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rdx must be saved
* op[1,2,3,4] & ip0 mustn't be clobbered
*/
movq %rdx, 0(%rsp)
/* We can consume up to 7 input bytes each iteration. */
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilimit */
subq %rdx, %rax /* rax = ip0 - ilimit */
movq %rax, %r15 /* r15 = ip0 - ilimit */
/* rdx = rax / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %r15
shrq %r15
addq %r15, %rdx
shrq $2, %rdx
/* r15 = (ip0 - ilimit) / 7 */
movq %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 8(%rsp), %rax /* rax = oend0 */
subq %op0, %rax /* rax = oend0 - op0 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 16(%rsp), %rax /* rax = oend1 */
subq %op1, %rax /* rax = oend1 - op1 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 24(%rsp), %rax /* rax = oend2 */
subq %op2, %rax /* rax = oend2 - op2 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 32(%rsp), %rax /* rax = oend3 */
subq %op3, %rax /* rax = oend3 - op3 */
mulq %rdx
shrq $3, %rdx /* rdx = rax / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* olimit = op3 + 5 * r15 */
movq %r15, %rax
leaq (%op3, %rax, 4), %olimit
addq %rax, %olimit
movq 0(%rsp), %rdx
/* If (op3 + 10 > olimit) */
movq %op3, %rax /* rax = op3 */
addq $10, %rax /* rax = op3 + 10 */
cmpq %rax, %olimit /* op3 + 10 > olimit */
jb .L_4X2_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X2_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X2_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X2_exit
#define DECODE(n, idx) \
movq %bits##n, %rax; \
shrq $53, %rax; \
movzwl 0(%dtable,%rax,4),%r8d; \
movzbl 2(%dtable,%rax,4),%r15d; \
movzbl 3(%dtable,%rax,4),%eax; \
movw %r8w, (%op##n); \
shlxq %r15, %bits##n, %bits##n; \
addq %rax, %op##n
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
shrq $3, %bits##n; \
andq $7, %rax; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlxq %rax, %bits##n, %bits##n
movq %olimit, 48(%rsp)
.p2align 6
.L_4X2_loop_body:
/* We clobber r8, so store it on the stack */
movq %r8, 0(%rsp)
/* Decode 5 symbols from each of the 4 streams (20 symbols total). */
FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
/* Reload r8 */
movq 0(%rsp), %r8
FOR_EACH_STREAM(RELOAD_BITS)
cmp %op3, 48(%rsp)
ja .L_4X2_loop_body
jmp .L_4X2_compute_olimit
#undef DECODE
#undef RELOAD_BITS
.L_4X2_exit:
addq $8, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* oend0 */
pop %rax /* oend1 */
pop %rax /* oend2 */
pop %rax /* oend3 */
pop %rax /* ilimit */
pop %rax /* olimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
#endif

View File

@ -56,7 +56,6 @@
* Dependencies * Dependencies
*********************************************************/ *********************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
#include "../common/cpu.h" /* bmi2 */
#include "../common/mem.h" /* low level memory routines */ #include "../common/mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY #define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h" #include "../common/fse.h"
@ -177,12 +176,15 @@ static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet,
static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) { static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) {
ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem); ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem);
DEBUGLOG(4, "Allocating new hash set"); DEBUGLOG(4, "Allocating new hash set");
if (!ret)
return NULL;
ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem); ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem);
ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE; if (!ret->ddictPtrTable) {
ret->ddictPtrCount = 0; ZSTD_customFree(ret, customMem);
if (!ret || !ret->ddictPtrTable) {
return NULL; return NULL;
} }
ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE;
ret->ddictPtrCount = 0;
return ret; return ret;
} }
@ -255,11 +257,15 @@ static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
dctx->inBuffSize = 0; dctx->inBuffSize = 0;
dctx->outBuffSize = 0; dctx->outBuffSize = 0;
dctx->streamStage = zdss_init; dctx->streamStage = zdss_init;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
dctx->legacyContext = NULL; dctx->legacyContext = NULL;
dctx->previousLegacyVersion = 0; dctx->previousLegacyVersion = 0;
#endif
dctx->noForwardProgress = 0; dctx->noForwardProgress = 0;
dctx->oversizedDuration = 0; dctx->oversizedDuration = 0;
dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); #if DYNAMIC_BMI2
dctx->bmi2 = ZSTD_cpuSupportsBmi2();
#endif
dctx->ddictSet = NULL; dctx->ddictSet = NULL;
ZSTD_DCtx_resetParameters(dctx); ZSTD_DCtx_resetParameters(dctx);
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
@ -280,8 +286,7 @@ ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize)
return dctx; return dctx;
} }
ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) static ZSTD_DCtx* ZSTD_createDCtx_internal(ZSTD_customMem customMem) {
{
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem); { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem);
@ -292,10 +297,15 @@ ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
} }
} }
ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createDCtx_internal(customMem);
}
ZSTD_DCtx* ZSTD_createDCtx(void) ZSTD_DCtx* ZSTD_createDCtx(void)
{ {
DEBUGLOG(3, "ZSTD_createDCtx"); DEBUGLOG(3, "ZSTD_createDCtx");
return ZSTD_createDCtx_advanced(ZSTD_defaultCMem); return ZSTD_createDCtx_internal(ZSTD_defaultCMem);
} }
static void ZSTD_clearDict(ZSTD_DCtx* dctx) static void ZSTD_clearDict(ZSTD_DCtx* dctx)
@ -380,6 +390,19 @@ unsigned ZSTD_isFrame(const void* buffer, size_t size)
return 0; return 0;
} }
/*! ZSTD_isSkippableFrame() :
* Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame.
* Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
*/
unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size)
{
if (size < ZSTD_FRAMEIDSIZE) return 0;
{ U32 const magic = MEM_readLE32(buffer);
if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
}
return 0;
}
/** ZSTD_frameHeaderSize_internal() : /** ZSTD_frameHeaderSize_internal() :
* srcSize must be large enough to reach header size fields. * srcSize must be large enough to reach header size fields.
* note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless. * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless.
@ -466,7 +489,9 @@ size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, s
} }
switch(dictIDSizeCode) switch(dictIDSizeCode)
{ {
default: assert(0); /* impossible */ default:
assert(0); /* impossible */
ZSTD_FALLTHROUGH;
case 0 : break; case 0 : break;
case 1 : dictID = ip[pos]; pos++; break; case 1 : dictID = ip[pos]; pos++; break;
case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
@ -474,7 +499,9 @@ size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, s
} }
switch(fcsID) switch(fcsID)
{ {
default: assert(0); /* impossible */ default:
assert(0); /* impossible */
ZSTD_FALLTHROUGH;
case 0 : if (singleSegment) frameContentSize = ip[pos]; break; case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
case 2 : frameContentSize = MEM_readLE32(ip+pos); break; case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
@ -503,7 +530,6 @@ size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t src
return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1); return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1);
} }
/** ZSTD_getFrameContentSize() : /** ZSTD_getFrameContentSize() :
* compatible with legacy mode * compatible with legacy mode
* @return : decompressed size of the single frame pointed to be `src` if known, otherwise * @return : decompressed size of the single frame pointed to be `src` if known, otherwise
@ -544,6 +570,37 @@ static size_t readSkippableFrameSize(void const* src, size_t srcSize)
} }
} }
/*! ZSTD_readSkippableFrame() :
* Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
*
* The parameter magicVariant will receive the magicVariant that was supplied when the frame was written,
* i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested
* in the magicVariant.
*
* Returns an error if destination buffer is not large enough, or if the frame is not skippable.
*
* @return : number of bytes written or a ZSTD error.
*/
ZSTDLIB_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant,
const void* src, size_t srcSize)
{
U32 const magicNumber = MEM_readLE32(src);
size_t skippableFrameSize = readSkippableFrameSize(src, srcSize);
size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE;
/* check input validity */
RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, "");
RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, "");
RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, "");
/* deliver payload */
if (skippableContentSize > 0 && dst != NULL)
ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize);
if (magicVariant != NULL)
*magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START;
return skippableContentSize;
}
/** ZSTD_findDecompressedSize() : /** ZSTD_findDecompressedSize() :
* compatible with legacy mode * compatible with legacy mode
* `srcSize` must be the exact length of some number of ZSTD compressed and/or * `srcSize` must be the exact length of some number of ZSTD compressed and/or
@ -858,7 +915,7 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
switch(blockProperties.blockType) switch(blockProperties.blockType)
{ {
case bt_compressed: case bt_compressed:
decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1); decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1, not_streaming);
break; break;
case bt_raw : case bt_raw :
decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize); decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize);
@ -1009,7 +1066,7 @@ static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx)
switch (dctx->dictUses) { switch (dctx->dictUses) {
default: default:
assert(0 /* Impossible */); assert(0 /* Impossible */);
/* fall-through */ ZSTD_FALLTHROUGH;
case ZSTD_dont_use: case ZSTD_dont_use:
ZSTD_clearDict(dctx); ZSTD_clearDict(dctx);
return NULL; return NULL;
@ -1031,7 +1088,7 @@ size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t sr
{ {
#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1)
size_t regenSize; size_t regenSize;
ZSTD_DCtx* const dctx = ZSTD_createDCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx_internal(ZSTD_defaultCMem);
RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!"); RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!");
regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
ZSTD_freeDCtx(dctx); ZSTD_freeDCtx(dctx);
@ -1065,7 +1122,7 @@ static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t
return dctx->expected; return dctx->expected;
if (dctx->bType != bt_raw) if (dctx->bType != bt_raw)
return dctx->expected; return dctx->expected;
return MIN(MAX(inputSize, 1), dctx->expected); return BOUNDED(1, inputSize, dctx->expected);
} }
ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
@ -1073,7 +1130,9 @@ ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
{ {
default: /* should not happen */ default: /* should not happen */
assert(0); assert(0);
ZSTD_FALLTHROUGH;
case ZSTDds_getFrameHeaderSize: case ZSTDds_getFrameHeaderSize:
ZSTD_FALLTHROUGH;
case ZSTDds_decodeFrameHeader: case ZSTDds_decodeFrameHeader:
return ZSTDnit_frameHeader; return ZSTDnit_frameHeader;
case ZSTDds_decodeBlockHeader: case ZSTDds_decodeBlockHeader:
@ -1085,6 +1144,7 @@ ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
case ZSTDds_checkChecksum: case ZSTDds_checkChecksum:
return ZSTDnit_checksum; return ZSTDnit_checksum;
case ZSTDds_decodeSkippableHeader: case ZSTDds_decodeSkippableHeader:
ZSTD_FALLTHROUGH;
case ZSTDds_skipFrame: case ZSTDds_skipFrame:
return ZSTDnit_skippableFrame; return ZSTDnit_skippableFrame;
} }
@ -1168,7 +1228,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
{ {
case bt_compressed: case bt_compressed:
DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed"); DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed");
rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1); rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1, is_streaming);
dctx->expected = 0; /* Streaming not supported */ dctx->expected = 0; /* Streaming not supported */
break; break;
case bt_raw : case bt_raw :
@ -1493,7 +1553,7 @@ size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
ZSTD_DStream* ZSTD_createDStream(void) ZSTD_DStream* ZSTD_createDStream(void)
{ {
DEBUGLOG(3, "ZSTD_createDStream"); DEBUGLOG(3, "ZSTD_createDStream");
return ZSTD_createDStream_advanced(ZSTD_defaultCMem); return ZSTD_createDCtx_internal(ZSTD_defaultCMem);
} }
ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize)
@ -1503,7 +1563,7 @@ ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize)
ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
{ {
return ZSTD_createDCtx_advanced(customMem); return ZSTD_createDCtx_internal(customMem);
} }
size_t ZSTD_freeDStream(ZSTD_DStream* zds) size_t ZSTD_freeDStream(ZSTD_DStream* zds)
@ -1763,7 +1823,8 @@ size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx)
size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize) size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
{ {
size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2); /* space is needed to store the litbuffer after the output of a given block without stomping the extDict of a previous run, as well as to cover both windows against wildcopy*/
unsigned long long const neededRBSize = windowSize + blockSize + ZSTD_BLOCKSIZE_MAX + (WILDCOPY_OVERLENGTH * 2);
unsigned long long const neededSize = MIN(frameContentSize, neededRBSize); unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
size_t const minRBSize = (size_t) neededSize; size_t const minRBSize = (size_t) neededSize;
RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize, RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize,
@ -1897,10 +1958,12 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
DEBUGLOG(5, "stage zdss_init => transparent reset "); DEBUGLOG(5, "stage zdss_init => transparent reset ");
zds->streamStage = zdss_loadHeader; zds->streamStage = zdss_loadHeader;
zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
zds->legacyVersion = 0; zds->legacyVersion = 0;
#endif
zds->hostageByte = 0; zds->hostageByte = 0;
zds->expectedOutBuffer = *output; zds->expectedOutBuffer = *output;
/* fall-through */ ZSTD_FALLTHROUGH;
case zdss_loadHeader : case zdss_loadHeader :
DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip)); DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip));
@ -2038,7 +2101,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
zds->outBuffSize = neededOutBuffSize; zds->outBuffSize = neededOutBuffSize;
} } } } } }
zds->streamStage = zdss_read; zds->streamStage = zdss_read;
/* fall-through */ ZSTD_FALLTHROUGH;
case zdss_read: case zdss_read:
DEBUGLOG(5, "stage zdss_read"); DEBUGLOG(5, "stage zdss_read");
@ -2057,7 +2120,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
} } } }
if (ip==iend) { someMoreWork = 0; break; } /* no more input */ if (ip==iend) { someMoreWork = 0; break; } /* no more input */
zds->streamStage = zdss_load; zds->streamStage = zdss_load;
/* fall-through */ ZSTD_FALLTHROUGH;
case zdss_load: case zdss_load:
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);

File diff suppressed because it is too large Load Diff

View File

@ -33,6 +33,12 @@
*/ */
/* Streaming state is used to inform allocation of the literal buffer */
typedef enum {
not_streaming = 0,
is_streaming = 1
} streaming_operation;
/* ZSTD_decompressBlock_internal() : /* ZSTD_decompressBlock_internal() :
* decompress block, starting at `src`, * decompress block, starting at `src`,
* into destination buffer `dst`. * into destination buffer `dst`.
@ -41,7 +47,7 @@
*/ */
size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity, void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const int frame); const void* src, size_t srcSize, const int frame, const streaming_operation streaming);
/* ZSTD_buildFSETable() : /* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off) * generate FSE decoding table for one symbol (ll, ml or off)
@ -54,7 +60,7 @@ size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
*/ */
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt, void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue, const short* normalizedCounter, unsigned maxSymbolValue,
const U32* baseValue, const U32* nbAdditionalBits, const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize, unsigned tableLog, void* wksp, size_t wkspSize,
int bmi2); int bmi2);

View File

@ -20,7 +20,7 @@
* Dependencies * Dependencies
*********************************************************/ *********************************************************/
#include "../common/mem.h" /* BYTE, U16, U32 */ #include "../common/mem.h" /* BYTE, U16, U32 */
#include "../common/zstd_internal.h" /* ZSTD_seqSymbol */ #include "../common/zstd_internal.h" /* constants : MaxLL, MaxML, MaxOff, LLFSELog, etc. */
@ -40,7 +40,7 @@ static UNUSED_ATTR const U32 OF_base[MaxOff+1] = {
0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD }; 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
static UNUSED_ATTR const U32 OF_bits[MaxOff+1] = { static UNUSED_ATTR const U8 OF_bits[MaxOff+1] = {
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 16, 17, 18, 19, 20, 21, 22, 23,
@ -106,6 +106,22 @@ typedef struct {
size_t ddictPtrCount; size_t ddictPtrCount;
} ZSTD_DDictHashSet; } ZSTD_DDictHashSet;
#ifndef ZSTD_DECODER_INTERNAL_BUFFER
# define ZSTD_DECODER_INTERNAL_BUFFER (1 << 16)
#endif
#define ZSTD_LBMIN 64
#define ZSTD_LBMAX (128 << 10)
/* extra buffer, compensates when dst is not large enough to store litBuffer */
#define ZSTD_LITBUFFEREXTRASIZE BOUNDED(ZSTD_LBMIN, ZSTD_DECODER_INTERNAL_BUFFER, ZSTD_LBMAX)
typedef enum {
ZSTD_not_in_dst = 0, /* Stored entirely within litExtraBuffer */
ZSTD_in_dst = 1, /* Stored entirely within dst (in memory after current output write) */
ZSTD_split = 2 /* Split between litExtraBuffer and dst */
} ZSTD_litLocation_e;
struct ZSTD_DCtx_s struct ZSTD_DCtx_s
{ {
const ZSTD_seqSymbol* LLTptr; const ZSTD_seqSymbol* LLTptr;
@ -136,7 +152,9 @@ struct ZSTD_DCtx_s
size_t litSize; size_t litSize;
size_t rleSize; size_t rleSize;
size_t staticSize; size_t staticSize;
#if DYNAMIC_BMI2 != 0
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
#endif
/* dictionary */ /* dictionary */
ZSTD_DDict* ddictLocal; ZSTD_DDict* ddictLocal;
@ -158,16 +176,21 @@ struct ZSTD_DCtx_s
size_t outStart; size_t outStart;
size_t outEnd; size_t outEnd;
size_t lhSize; size_t lhSize;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
void* legacyContext; void* legacyContext;
U32 previousLegacyVersion; U32 previousLegacyVersion;
U32 legacyVersion; U32 legacyVersion;
#endif
U32 hostageByte; U32 hostageByte;
int noForwardProgress; int noForwardProgress;
ZSTD_bufferMode_e outBufferMode; ZSTD_bufferMode_e outBufferMode;
ZSTD_outBuffer expectedOutBuffer; ZSTD_outBuffer expectedOutBuffer;
/* workspace */ /* workspace */
BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH]; BYTE* litBuffer;
const BYTE* litBufferEnd;
ZSTD_litLocation_e litBufferLocation;
BYTE litExtraBuffer[ZSTD_LITBUFFEREXTRASIZE + WILDCOPY_OVERLENGTH]; /* literal buffer can be split between storage within dst and within this scratch buffer */
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
size_t oversizedDuration; size_t oversizedDuration;
@ -183,6 +206,14 @@ struct ZSTD_DCtx_s
#endif #endif
}; /* typedef'd to ZSTD_DCtx within "zstd.h" */ }; /* typedef'd to ZSTD_DCtx within "zstd.h" */
MEM_STATIC int ZSTD_DCtx_get_bmi2(const struct ZSTD_DCtx_s *dctx) {
#if DYNAMIC_BMI2 != 0
return dctx->bmi2;
#else
(void)dctx;
return 0;
#endif
}
/*-******************************************************* /*-*******************************************************
* Shared internal functions * Shared internal functions

297
thirdparty/zstd/zstd.h vendored
View File

@ -20,19 +20,21 @@ extern "C" {
/* ===== ZSTDLIB_API : control library symbols visibility ===== */ /* ===== ZSTDLIB_API : control library symbols visibility ===== */
#ifndef ZSTDLIB_VISIBILITY #ifndef ZSTDLIB_VISIBLE
# if defined(__GNUC__) && (__GNUC__ >= 4) # if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZSTDLIB_VISIBILITY __attribute__ ((visibility ("default"))) # define ZSTDLIB_VISIBLE __attribute__ ((visibility ("default")))
# define ZSTDLIB_HIDDEN __attribute__ ((visibility ("hidden")))
# else # else
# define ZSTDLIB_VISIBILITY # define ZSTDLIB_VISIBLE
# define ZSTDLIB_HIDDEN
# endif # endif
#endif #endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) #if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBILITY # define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBLE
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) #elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ # define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else #else
# define ZSTDLIB_API ZSTDLIB_VISIBILITY # define ZSTDLIB_API ZSTDLIB_VISIBLE
#endif #endif
@ -72,7 +74,7 @@ extern "C" {
/*------ Version ------*/ /*------ Version ------*/
#define ZSTD_VERSION_MAJOR 1 #define ZSTD_VERSION_MAJOR 1
#define ZSTD_VERSION_MINOR 5 #define ZSTD_VERSION_MINOR 5
#define ZSTD_VERSION_RELEASE 0 #define ZSTD_VERSION_RELEASE 2
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) #define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/*! ZSTD_versionNumber() : /*! ZSTD_versionNumber() :
@ -247,7 +249,7 @@ ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx,
* *
* It's possible to reset all parameters to "default" using ZSTD_CCtx_reset(). * It's possible to reset all parameters to "default" using ZSTD_CCtx_reset().
* *
* This API supercedes all other "advanced" API entry points in the experimental section. * This API supersedes all other "advanced" API entry points in the experimental section.
* In the future, we expect to remove from experimental API entry points which are redundant with this API. * In the future, we expect to remove from experimental API entry points which are redundant with this API.
*/ */
@ -417,7 +419,7 @@ typedef enum {
* ZSTD_c_stableOutBuffer * ZSTD_c_stableOutBuffer
* ZSTD_c_blockDelimiters * ZSTD_c_blockDelimiters
* ZSTD_c_validateSequences * ZSTD_c_validateSequences
* ZSTD_c_splitBlocks * ZSTD_c_useBlockSplitter
* ZSTD_c_useRowMatchFinder * ZSTD_c_useRowMatchFinder
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly; * note : never ever use experimentalParam? names directly;
@ -932,7 +934,7 @@ ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
* Advanced dictionary and prefix API (Requires v1.4.0+) * Advanced dictionary and prefix API (Requires v1.4.0+)
* *
* This API allows dictionaries to be used with ZSTD_compress2(), * This API allows dictionaries to be used with ZSTD_compress2(),
* ZSTD_compressStream2(), and ZSTD_decompress(). Dictionaries are sticky, and * ZSTD_compressStream2(), and ZSTD_decompressDCtx(). Dictionaries are sticky, and
* only reset with the context is reset with ZSTD_reset_parameters or * only reset with the context is reset with ZSTD_reset_parameters or
* ZSTD_reset_session_and_parameters. Prefixes are single-use. * ZSTD_reset_session_and_parameters. Prefixes are single-use.
******************************************************************************/ ******************************************************************************/
@ -1073,25 +1075,36 @@ ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
#if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY) #if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY)
#define ZSTD_H_ZSTD_STATIC_LINKING_ONLY #define ZSTD_H_ZSTD_STATIC_LINKING_ONLY
/* This can be overridden externally to hide static symbols. */
#ifndef ZSTDLIB_STATIC_API
# if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDLIB_STATIC_API __declspec(dllexport) ZSTDLIB_VISIBLE
# elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDLIB_STATIC_API __declspec(dllimport) ZSTDLIB_VISIBLE
# else
# define ZSTDLIB_STATIC_API ZSTDLIB_VISIBLE
# endif
#endif
/* Deprecation warnings : /* Deprecation warnings :
* Should these warnings be a problem, it is generally possible to disable them, * Should these warnings be a problem, it is generally possible to disable them,
* typically with -Wno-deprecated-declarations for gcc or _CRT_SECURE_NO_WARNINGS in Visual. * typically with -Wno-deprecated-declarations for gcc or _CRT_SECURE_NO_WARNINGS in Visual.
* Otherwise, it's also possible to define ZSTD_DISABLE_DEPRECATE_WARNINGS. * Otherwise, it's also possible to define ZSTD_DISABLE_DEPRECATE_WARNINGS.
*/ */
#ifdef ZSTD_DISABLE_DEPRECATE_WARNINGS #ifdef ZSTD_DISABLE_DEPRECATE_WARNINGS
# define ZSTD_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */ # define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API /* disable deprecation warnings */
#else #else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */ # if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZSTD_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API # define ZSTD_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_STATIC_API
# elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__) # elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__)
# define ZSTD_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message))) # define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3) # elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZSTD_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated)) # define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API __attribute__((deprecated))
# elif defined(_MSC_VER) # elif defined(_MSC_VER)
# define ZSTD_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message)) # define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API __declspec(deprecated(message))
# else # else
# pragma message("WARNING: You need to implement ZSTD_DEPRECATED for this compiler") # pragma message("WARNING: You need to implement ZSTD_DEPRECATED for this compiler")
# define ZSTD_DEPRECATED(message) ZSTDLIB_API # define ZSTD_DEPRECATED(message) ZSTDLIB_STATIC_API
# endif # endif
#endif /* ZSTD_DISABLE_DEPRECATE_WARNINGS */ #endif /* ZSTD_DISABLE_DEPRECATE_WARNINGS */
@ -1157,9 +1170,6 @@ ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
#define ZSTD_SRCSIZEHINT_MIN 0 #define ZSTD_SRCSIZEHINT_MIN 0
#define ZSTD_SRCSIZEHINT_MAX INT_MAX #define ZSTD_SRCSIZEHINT_MAX INT_MAX
/* internal */
#define ZSTD_HASHLOG3_MAX 17
/* --- Advanced types --- */ /* --- Advanced types --- */
@ -1302,10 +1312,14 @@ typedef enum {
} ZSTD_literalCompressionMode_e; } ZSTD_literalCompressionMode_e;
typedef enum { typedef enum {
ZSTD_urm_auto = 0, /* Automatically determine whether or not we use row matchfinder */ /* Note: This enum controls features which are conditionally beneficial. Zstd typically will make a final
ZSTD_urm_disableRowMatchFinder = 1, /* Never use row matchfinder */ * decision on whether or not to enable the feature (ZSTD_ps_auto), but setting the switch to ZSTD_ps_enable
ZSTD_urm_enableRowMatchFinder = 2 /* Always use row matchfinder when applicable */ * or ZSTD_ps_disable allow for a force enable/disable the feature.
} ZSTD_useRowMatchFinderMode_e; */
ZSTD_ps_auto = 0, /* Let the library automatically determine whether the feature shall be enabled */
ZSTD_ps_enable = 1, /* Force-enable the feature */
ZSTD_ps_disable = 2 /* Do not use the feature */
} ZSTD_paramSwitch_e;
/*************************************** /***************************************
* Frame size functions * Frame size functions
@ -1332,7 +1346,7 @@ typedef enum {
* note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to * note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to
* read each contained frame header. This is fast as most of the data is skipped, * read each contained frame header. This is fast as most of the data is skipped,
* however it does mean that all frame data must be present and valid. */ * however it does mean that all frame data must be present and valid. */
ZSTDLIB_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize); ZSTDLIB_STATIC_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize);
/*! ZSTD_decompressBound() : /*! ZSTD_decompressBound() :
* `src` should point to the start of a series of ZSTD encoded and/or skippable frames * `src` should point to the start of a series of ZSTD encoded and/or skippable frames
@ -1347,13 +1361,13 @@ ZSTDLIB_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t
* note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by: * note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by:
* upper-bound = # blocks * min(128 KB, Window_Size) * upper-bound = # blocks * min(128 KB, Window_Size)
*/ */
ZSTDLIB_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize); ZSTDLIB_STATIC_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize);
/*! ZSTD_frameHeaderSize() : /*! ZSTD_frameHeaderSize() :
* srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX. * srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX.
* @return : size of the Frame Header, * @return : size of the Frame Header,
* or an error code (if srcSize is too small) */ * or an error code (if srcSize is too small) */
ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
typedef enum { typedef enum {
ZSTD_sf_noBlockDelimiters = 0, /* Representation of ZSTD_Sequence has no block delimiters, sequences only */ ZSTD_sf_noBlockDelimiters = 0, /* Representation of ZSTD_Sequence has no block delimiters, sequences only */
@ -1376,7 +1390,7 @@ typedef enum {
* @return : number of sequences generated * @return : number of sequences generated
*/ */
ZSTDLIB_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs, ZSTDLIB_STATIC_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
size_t outSeqsSize, const void* src, size_t srcSize); size_t outSeqsSize, const void* src, size_t srcSize);
/*! ZSTD_mergeBlockDelimiters() : /*! ZSTD_mergeBlockDelimiters() :
@ -1390,7 +1404,7 @@ ZSTDLIB_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
* setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters * setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters
* @return : number of sequences left after merging * @return : number of sequences left after merging
*/ */
ZSTDLIB_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize); ZSTDLIB_STATIC_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize);
/*! ZSTD_compressSequences() : /*! ZSTD_compressSequences() :
* Compress an array of ZSTD_Sequence, generated from the original source buffer, into dst. * Compress an array of ZSTD_Sequence, generated from the original source buffer, into dst.
@ -1420,7 +1434,7 @@ ZSTDLIB_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t se
* and cannot emit an RLE block that disagrees with the repcode history * and cannot emit an RLE block that disagrees with the repcode history
* @return : final compressed size or a ZSTD error. * @return : final compressed size or a ZSTD error.
*/ */
ZSTDLIB_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize, ZSTDLIB_STATIC_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize,
const ZSTD_Sequence* inSeqs, size_t inSeqsSize, const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
const void* src, size_t srcSize); const void* src, size_t srcSize);
@ -1438,9 +1452,29 @@ ZSTDLIB_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size
* *
* @return : number of bytes written or a ZSTD error. * @return : number of bytes written or a ZSTD error.
*/ */
ZSTDLIB_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity, ZSTDLIB_STATIC_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
const void* src, size_t srcSize, unsigned magicVariant); const void* src, size_t srcSize, unsigned magicVariant);
/*! ZSTD_readSkippableFrame() :
* Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
*
* The parameter magicVariant will receive the magicVariant that was supplied when the frame was written,
* i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested
* in the magicVariant.
*
* Returns an error if destination buffer is not large enough, or if the frame is not skippable.
*
* @return : number of bytes written or a ZSTD error.
*/
ZSTDLIB_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant,
const void* src, size_t srcSize);
/*! ZSTD_isSkippableFrame() :
* Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame.
*/
ZSTDLIB_API unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size);
/*************************************** /***************************************
* Memory management * Memory management
@ -1469,10 +1503,10 @@ ZSTDLIB_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
* Note 2 : only single-threaded compression is supported. * Note 2 : only single-threaded compression is supported.
* ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1. * ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1.
*/ */
ZSTDLIB_API size_t ZSTD_estimateCCtxSize(int compressionLevel); ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams); ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params); ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void); ZSTDLIB_STATIC_API size_t ZSTD_estimateDCtxSize(void);
/*! ZSTD_estimateCStreamSize() : /*! ZSTD_estimateCStreamSize() :
* ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one. * ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one.
@ -1487,20 +1521,20 @@ ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void);
* Note : if streaming is init with function ZSTD_init?Stream_usingDict(), * Note : if streaming is init with function ZSTD_init?Stream_usingDict(),
* an internal ?Dict will be created, which additional size is not estimated here. * an internal ?Dict will be created, which additional size is not estimated here.
* In this case, get total size by adding ZSTD_estimate?DictSize */ * In this case, get total size by adding ZSTD_estimate?DictSize */
ZSTDLIB_API size_t ZSTD_estimateCStreamSize(int compressionLevel); ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize(int compressionLevel);
ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams); ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params); ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
ZSTDLIB_API size_t ZSTD_estimateDStreamSize(size_t windowSize); ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
/*! ZSTD_estimate?DictSize() : /*! ZSTD_estimate?DictSize() :
* ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict(). * ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict().
* ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced(). * ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced().
* Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller. * Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller.
*/ */
ZSTDLIB_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel); ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
ZSTDLIB_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod); ZSTDLIB_STATIC_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod); ZSTDLIB_STATIC_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
/*! ZSTD_initStatic*() : /*! ZSTD_initStatic*() :
* Initialize an object using a pre-allocated fixed-size buffer. * Initialize an object using a pre-allocated fixed-size buffer.
@ -1523,20 +1557,20 @@ ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e
* Limitation 2 : static cctx currently not compatible with multi-threading. * Limitation 2 : static cctx currently not compatible with multi-threading.
* Limitation 3 : static dctx is incompatible with legacy support. * Limitation 3 : static dctx is incompatible with legacy support.
*/ */
ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize); ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */ ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */
ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize); ZSTDLIB_STATIC_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize);
ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */ ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */
ZSTDLIB_API const ZSTD_CDict* ZSTD_initStaticCDict( ZSTDLIB_STATIC_API const ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize, void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType, ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams); ZSTD_compressionParameters cParams);
ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict( ZSTDLIB_STATIC_API const ZSTD_DDict* ZSTD_initStaticDDict(
void* workspace, size_t workspaceSize, void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictLoadMethod_e dictLoadMethod,
@ -1557,18 +1591,18 @@ __attribute__((__unused__))
#endif #endif
ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */ ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem); ZSTDLIB_STATIC_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem); ZSTDLIB_STATIC_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem); ZSTDLIB_STATIC_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem); ZSTDLIB_STATIC_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize, ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType, ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams, ZSTD_compressionParameters cParams,
ZSTD_customMem customMem); ZSTD_customMem customMem);
/* ! Thread pool : /*! Thread pool :
* These prototypes make it possible to share a thread pool among multiple compression contexts. * These prototypes make it possible to share a thread pool among multiple compression contexts.
* This can limit resources for applications with multiple threads where each one uses * This can limit resources for applications with multiple threads where each one uses
* a threaded compression mode (via ZSTD_c_nbWorkers parameter). * a threaded compression mode (via ZSTD_c_nbWorkers parameter).
@ -1579,22 +1613,22 @@ ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictS
* ZSTD_freeThreadPool frees a thread pool, accepts NULL pointer. * ZSTD_freeThreadPool frees a thread pool, accepts NULL pointer.
*/ */
typedef struct POOL_ctx_s ZSTD_threadPool; typedef struct POOL_ctx_s ZSTD_threadPool;
ZSTDLIB_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads); ZSTDLIB_STATIC_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads);
ZSTDLIB_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool); /* accept NULL pointer */ ZSTDLIB_STATIC_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool); /* accept NULL pointer */
ZSTDLIB_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool); ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool);
/* /*
* This API is temporary and is expected to change or disappear in the future! * This API is temporary and is expected to change or disappear in the future!
*/ */
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2( ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_advanced2(
const void* dict, size_t dictSize, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType, ZSTD_dictContentType_e dictContentType,
const ZSTD_CCtx_params* cctxParams, const ZSTD_CCtx_params* cctxParams,
ZSTD_customMem customMem); ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced( ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_advanced(
const void* dict, size_t dictSize, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType, ZSTD_dictContentType_e dictContentType,
@ -1611,22 +1645,22 @@ ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(
* As a consequence, `dictBuffer` **must** outlive CDict, * As a consequence, `dictBuffer` **must** outlive CDict,
* and its content must remain unmodified throughout the lifetime of CDict. * and its content must remain unmodified throughout the lifetime of CDict.
* note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef */ * note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef */
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel); ZSTDLIB_STATIC_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
/*! ZSTD_getCParams() : /*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize. * @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize.
* `estimatedSrcSize` value is optional, select 0 if not known */ * `estimatedSrcSize` value is optional, select 0 if not known */
ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
/*! ZSTD_getParams() : /*! ZSTD_getParams() :
* same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`. * same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`.
* All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */ * All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */
ZSTDLIB_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); ZSTDLIB_STATIC_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize);
/*! ZSTD_checkCParams() : /*! ZSTD_checkCParams() :
* Ensure param values remain within authorized range. * Ensure param values remain within authorized range.
* @return 0 on success, or an error code (can be checked with ZSTD_isError()) */ * @return 0 on success, or an error code (can be checked with ZSTD_isError()) */
ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params); ZSTDLIB_STATIC_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
/*! ZSTD_adjustCParams() : /*! ZSTD_adjustCParams() :
* optimize params for a given `srcSize` and `dictSize`. * optimize params for a given `srcSize` and `dictSize`.
@ -1634,7 +1668,7 @@ ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
* `dictSize` must be `0` when there is no dictionary. * `dictSize` must be `0` when there is no dictionary.
* cPar can be invalid : all parameters will be clamped within valid range in the @return struct. * cPar can be invalid : all parameters will be clamped within valid range in the @return struct.
* This function never fails (wide contract) */ * This function never fails (wide contract) */
ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize); ZSTDLIB_STATIC_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
/*! ZSTD_compress_advanced() : /*! ZSTD_compress_advanced() :
* Note : this function is now DEPRECATED. * Note : this function is now DEPRECATED.
@ -1662,18 +1696,18 @@ size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
/*! ZSTD_CCtx_loadDictionary_byReference() : /*! ZSTD_CCtx_loadDictionary_byReference() :
* Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx. * Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx.
* It saves some memory, but also requires that `dict` outlives its usage within `cctx` */ * It saves some memory, but also requires that `dict` outlives its usage within `cctx` */
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
/*! ZSTD_CCtx_loadDictionary_advanced() : /*! ZSTD_CCtx_loadDictionary_advanced() :
* Same as ZSTD_CCtx_loadDictionary(), but gives finer control over * Same as ZSTD_CCtx_loadDictionary(), but gives finer control over
* how to load the dictionary (by copy ? by reference ?) * how to load the dictionary (by copy ? by reference ?)
* and how to interpret it (automatic ? force raw mode ? full mode only ?) */ * and how to interpret it (automatic ? force raw mode ? full mode only ?) */
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); ZSTDLIB_STATIC_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_CCtx_refPrefix_advanced() : /*! ZSTD_CCtx_refPrefix_advanced() :
* Same as ZSTD_CCtx_refPrefix(), but gives finer control over * Same as ZSTD_CCtx_refPrefix(), but gives finer control over
* how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */
ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
/* === experimental parameters === */ /* === experimental parameters === */
/* these parameters can be used with ZSTD_setParameter() /* these parameters can be used with ZSTD_setParameter()
@ -1712,9 +1746,15 @@ ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* pre
* See the comments on that enum for an explanation of the feature. */ * See the comments on that enum for an explanation of the feature. */
#define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4 #define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4
/* Controls how the literals are compressed (default is auto). /* Controlled with ZSTD_paramSwitch_e enum.
* The value must be of type ZSTD_literalCompressionMode_e. * Default is ZSTD_ps_auto.
* See ZSTD_literalCompressionMode_e enum definition for details. * Set to ZSTD_ps_disable to never compress literals.
* Set to ZSTD_ps_enable to always compress literals. (Note: uncompressed literals
* may still be emitted if huffman is not beneficial to use.)
*
* By default, in ZSTD_ps_auto, the library will decide at runtime whether to use
* literals compression based on the compression parameters - specifically,
* negative compression levels do not use literal compression.
*/ */
#define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5 #define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5
@ -1777,7 +1817,7 @@ ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* pre
* *
* Note that this means that the CDict tables can no longer be copied into the * Note that this means that the CDict tables can no longer be copied into the
* CCtx, so the dict attachment mode ZSTD_dictForceCopy will no longer be * CCtx, so the dict attachment mode ZSTD_dictForceCopy will no longer be
* useable. The dictionary can only be attached or reloaded. * usable. The dictionary can only be attached or reloaded.
* *
* In general, you should expect compression to be faster--sometimes very much * In general, you should expect compression to be faster--sometimes very much
* so--and CDict creation to be slightly slower. Eventually, we will probably * so--and CDict creation to be slightly slower. Eventually, we will probably
@ -1866,23 +1906,26 @@ ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* pre
*/ */
#define ZSTD_c_validateSequences ZSTD_c_experimentalParam12 #define ZSTD_c_validateSequences ZSTD_c_experimentalParam12
/* ZSTD_c_splitBlocks /* ZSTD_c_useBlockSplitter
* Default is 0 == disabled. Set to 1 to enable block splitting. * Controlled with ZSTD_paramSwitch_e enum.
* Default is ZSTD_ps_auto.
* Set to ZSTD_ps_disable to never use block splitter.
* Set to ZSTD_ps_enable to always use block splitter.
* *
* Will attempt to split blocks in order to improve compression ratio at the cost of speed. * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use
* block splitting based on the compression parameters.
*/ */
#define ZSTD_c_splitBlocks ZSTD_c_experimentalParam13 #define ZSTD_c_useBlockSplitter ZSTD_c_experimentalParam13
/* ZSTD_c_useRowMatchFinder /* ZSTD_c_useRowMatchFinder
* Default is ZSTD_urm_auto. * Controlled with ZSTD_paramSwitch_e enum.
* Controlled with ZSTD_useRowMatchFinderMode_e enum. * Default is ZSTD_ps_auto.
* Set to ZSTD_ps_disable to never use row-based matchfinder.
* Set to ZSTD_ps_enable to force usage of row-based matchfinder.
* *
* By default, in ZSTD_urm_auto, when finalizing the compression parameters, the library * By default, in ZSTD_ps_auto, the library will decide at runtime whether to use
* will decide at runtime whether to use the row-based matchfinder based on support for SIMD * the row-based matchfinder based on support for SIMD instructions and the window log.
* instructions as well as the windowLog. * Note that this only pertains to compression strategies: greedy, lazy, and lazy2
*
* Set to ZSTD_urm_disableRowMatchFinder to never use row-based matchfinder.
* Set to ZSTD_urm_enableRowMatchFinder to force usage of row-based matchfinder.
*/ */
#define ZSTD_c_useRowMatchFinder ZSTD_c_experimentalParam14 #define ZSTD_c_useRowMatchFinder ZSTD_c_experimentalParam14
@ -1911,7 +1954,7 @@ ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* pre
* and store it into int* value. * and store it into int* value.
* @return : 0, or an error code (which can be tested with ZSTD_isError()). * @return : 0, or an error code (which can be tested with ZSTD_isError()).
*/ */
ZSTDLIB_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value); ZSTDLIB_STATIC_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value);
/*! ZSTD_CCtx_params : /*! ZSTD_CCtx_params :
@ -1931,25 +1974,25 @@ ZSTDLIB_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter
* This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams() * This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams()
* for static allocation of CCtx for single-threaded compression. * for static allocation of CCtx for single-threaded compression.
*/ */
ZSTDLIB_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void); ZSTDLIB_STATIC_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); /* accept NULL pointer */ ZSTDLIB_STATIC_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); /* accept NULL pointer */
/*! ZSTD_CCtxParams_reset() : /*! ZSTD_CCtxParams_reset() :
* Reset params to default values. * Reset params to default values.
*/ */
ZSTDLIB_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params); ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
/*! ZSTD_CCtxParams_init() : /*! ZSTD_CCtxParams_init() :
* Initializes the compression parameters of cctxParams according to * Initializes the compression parameters of cctxParams according to
* compression level. All other parameters are reset to their default values. * compression level. All other parameters are reset to their default values.
*/ */
ZSTDLIB_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel); ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
/*! ZSTD_CCtxParams_init_advanced() : /*! ZSTD_CCtxParams_init_advanced() :
* Initializes the compression and frame parameters of cctxParams according to * Initializes the compression and frame parameters of cctxParams according to
* params. All other parameters are reset to their default values. * params. All other parameters are reset to their default values.
*/ */
ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params); ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
/*! ZSTD_CCtxParams_setParameter() : Requires v1.4.0+ /*! ZSTD_CCtxParams_setParameter() : Requires v1.4.0+
* Similar to ZSTD_CCtx_setParameter. * Similar to ZSTD_CCtx_setParameter.
@ -1959,14 +2002,14 @@ ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, Z
* @result : a code representing success or failure (which can be tested with * @result : a code representing success or failure (which can be tested with
* ZSTD_isError()). * ZSTD_isError()).
*/ */
ZSTDLIB_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value); ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value);
/*! ZSTD_CCtxParams_getParameter() : /*! ZSTD_CCtxParams_getParameter() :
* Similar to ZSTD_CCtx_getParameter. * Similar to ZSTD_CCtx_getParameter.
* Get the requested value of one compression parameter, selected by enum ZSTD_cParameter. * Get the requested value of one compression parameter, selected by enum ZSTD_cParameter.
* @result : 0, or an error code (which can be tested with ZSTD_isError()). * @result : 0, or an error code (which can be tested with ZSTD_isError()).
*/ */
ZSTDLIB_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value); ZSTDLIB_STATIC_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value);
/*! ZSTD_CCtx_setParametersUsingCCtxParams() : /*! ZSTD_CCtx_setParametersUsingCCtxParams() :
* Apply a set of ZSTD_CCtx_params to the compression context. * Apply a set of ZSTD_CCtx_params to the compression context.
@ -1975,7 +2018,7 @@ ZSTDLIB_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params,
* if nbWorkers>=1, new parameters will be picked up at next job, * if nbWorkers>=1, new parameters will be picked up at next job,
* with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated). * with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated).
*/ */
ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams( ZSTDLIB_STATIC_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params); ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params);
/*! ZSTD_compressStream2_simpleArgs() : /*! ZSTD_compressStream2_simpleArgs() :
@ -1984,7 +2027,7 @@ ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
* This variant might be helpful for binders from dynamic languages * This variant might be helpful for binders from dynamic languages
* which have troubles handling structures containing memory pointers. * which have troubles handling structures containing memory pointers.
*/ */
ZSTDLIB_API size_t ZSTD_compressStream2_simpleArgs ( ZSTDLIB_STATIC_API size_t ZSTD_compressStream2_simpleArgs (
ZSTD_CCtx* cctx, ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos, void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos, const void* src, size_t srcSize, size_t* srcPos,
@ -2000,33 +2043,33 @@ ZSTDLIB_API size_t ZSTD_compressStream2_simpleArgs (
* Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
* Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
* Note 3 : Skippable Frame Identifiers are considered valid. */ * Note 3 : Skippable Frame Identifiers are considered valid. */
ZSTDLIB_API unsigned ZSTD_isFrame(const void* buffer, size_t size); ZSTDLIB_STATIC_API unsigned ZSTD_isFrame(const void* buffer, size_t size);
/*! ZSTD_createDDict_byReference() : /*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, ready to start decompression operation without startup delay. * Create a digested dictionary, ready to start decompression operation without startup delay.
* Dictionary content is referenced, and therefore stays in dictBuffer. * Dictionary content is referenced, and therefore stays in dictBuffer.
* It is important that dictBuffer outlives DDict, * It is important that dictBuffer outlives DDict,
* it must remain read accessible throughout the lifetime of DDict */ * it must remain read accessible throughout the lifetime of DDict */
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize); ZSTDLIB_STATIC_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
/*! ZSTD_DCtx_loadDictionary_byReference() : /*! ZSTD_DCtx_loadDictionary_byReference() :
* Same as ZSTD_DCtx_loadDictionary(), * Same as ZSTD_DCtx_loadDictionary(),
* but references `dict` content instead of copying it into `dctx`. * but references `dict` content instead of copying it into `dctx`.
* This saves memory if `dict` remains around., * This saves memory if `dict` remains around.,
* However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */ * However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
/*! ZSTD_DCtx_loadDictionary_advanced() : /*! ZSTD_DCtx_loadDictionary_advanced() :
* Same as ZSTD_DCtx_loadDictionary(), * Same as ZSTD_DCtx_loadDictionary(),
* but gives direct control over * but gives direct control over
* how to load the dictionary (by copy ? by reference ?) * how to load the dictionary (by copy ? by reference ?)
* and how to interpret it (automatic ? force raw mode ? full mode only ?). */ * and how to interpret it (automatic ? force raw mode ? full mode only ?). */
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); ZSTDLIB_STATIC_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_DCtx_refPrefix_advanced() : /*! ZSTD_DCtx_refPrefix_advanced() :
* Same as ZSTD_DCtx_refPrefix(), but gives finer control over * Same as ZSTD_DCtx_refPrefix(), but gives finer control over
* how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */
ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); ZSTDLIB_STATIC_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_DCtx_setMaxWindowSize() : /*! ZSTD_DCtx_setMaxWindowSize() :
* Refuses allocating internal buffers for frames requiring a window size larger than provided limit. * Refuses allocating internal buffers for frames requiring a window size larger than provided limit.
@ -2035,14 +2078,14 @@ ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* pre
* By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) * By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT)
* @return : 0, or an error code (which can be tested using ZSTD_isError()). * @return : 0, or an error code (which can be tested using ZSTD_isError()).
*/ */
ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize); ZSTDLIB_STATIC_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize);
/*! ZSTD_DCtx_getParameter() : /*! ZSTD_DCtx_getParameter() :
* Get the requested decompression parameter value, selected by enum ZSTD_dParameter, * Get the requested decompression parameter value, selected by enum ZSTD_dParameter,
* and store it into int* value. * and store it into int* value.
* @return : 0, or an error code (which can be tested with ZSTD_isError()). * @return : 0, or an error code (which can be tested with ZSTD_isError()).
*/ */
ZSTDLIB_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value); ZSTDLIB_STATIC_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value);
/* ZSTD_d_format /* ZSTD_d_format
* experimental parameter, * experimental parameter,
@ -2131,7 +2174,7 @@ size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format);
* This can be helpful for binders from dynamic languages * This can be helpful for binders from dynamic languages
* which have troubles handling structures containing memory pointers. * which have troubles handling structures containing memory pointers.
*/ */
ZSTDLIB_API size_t ZSTD_decompressStream_simpleArgs ( ZSTDLIB_STATIC_API size_t ZSTD_decompressStream_simpleArgs (
ZSTD_DCtx* dctx, ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity, size_t* dstPos, void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos); const void* src, size_t srcSize, size_t* srcPos);
@ -2270,7 +2313,7 @@ typedef struct {
* Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed. * Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed.
* Aggregates progression inside active worker threads. * Aggregates progression inside active worker threads.
*/ */
ZSTDLIB_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx); ZSTDLIB_STATIC_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx);
/*! ZSTD_toFlushNow() : /*! ZSTD_toFlushNow() :
* Tell how many bytes are ready to be flushed immediately. * Tell how many bytes are ready to be flushed immediately.
@ -2285,7 +2328,7 @@ ZSTDLIB_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx
* therefore flush speed is limited by production speed of oldest job * therefore flush speed is limited by production speed of oldest job
* irrespective of the speed of concurrent (and newer) jobs. * irrespective of the speed of concurrent (and newer) jobs.
*/ */
ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx); ZSTDLIB_STATIC_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
/*===== Advanced Streaming decompression functions =====*/ /*===== Advanced Streaming decompression functions =====*/
@ -2299,7 +2342,7 @@ ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx);
* note: no dictionary will be used if dict == NULL or dictSize < 8 * note: no dictionary will be used if dict == NULL or dictSize < 8
* Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
*/ */
ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize); ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
/*! /*!
* This function is deprecated, and is equivalent to: * This function is deprecated, and is equivalent to:
@ -2310,7 +2353,7 @@ ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dic
* note : ddict is referenced, it must outlive decompression session * note : ddict is referenced, it must outlive decompression session
* Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
*/ */
ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict); ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);
/*! /*!
* This function is deprecated, and is equivalent to: * This function is deprecated, and is equivalent to:
@ -2320,7 +2363,7 @@ ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDi
* re-use decompression parameters from previous init; saves dictionary loading * re-use decompression parameters from previous init; saves dictionary loading
* Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x
*/ */
ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds); ZSTDLIB_STATIC_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
/********************************************************************* /*********************************************************************
@ -2362,13 +2405,13 @@ ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
*/ */
/*===== Buffer-less streaming compression functions =====*/ /*===== Buffer-less streaming compression functions =====*/
ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel); ZSTDLIB_STATIC_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel); ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */ ZSTDLIB_STATIC_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */
ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */ ZSTDLIB_STATIC_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */
ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* The ZSTD_compressBegin_advanced() and ZSTD_compressBegin_usingCDict_advanced() are now DEPRECATED and will generate a compiler warning */ /* The ZSTD_compressBegin_advanced() and ZSTD_compressBegin_usingCDict_advanced() are now DEPRECATED and will generate a compiler warning */
ZSTD_DEPRECATED("use advanced API to access custom parameters") ZSTD_DEPRECATED("use advanced API to access custom parameters")
@ -2465,24 +2508,24 @@ typedef struct {
* @return : 0, `zfhPtr` is correctly filled, * @return : 0, `zfhPtr` is correctly filled,
* >0, `srcSize` is too small, value is wanted `srcSize` amount, * >0, `srcSize` is too small, value is wanted `srcSize` amount,
* or an error code, which can be tested using ZSTD_isError() */ * or an error code, which can be tested using ZSTD_isError() */
ZSTDLIB_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */ ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */
/*! ZSTD_getFrameHeader_advanced() : /*! ZSTD_getFrameHeader_advanced() :
* same as ZSTD_getFrameHeader(), * same as ZSTD_getFrameHeader(),
* with added capability to select a format (like ZSTD_f_zstd1_magicless) */ * with added capability to select a format (like ZSTD_f_zstd1_magicless) */
ZSTDLIB_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format); ZSTDLIB_STATIC_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format);
ZSTDLIB_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */ ZSTDLIB_STATIC_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */
ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx); ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIB_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); ZSTDLIB_STATIC_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx); ZSTDLIB_STATIC_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* misc */ /* misc */
ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx); ZSTDLIB_STATIC_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e; typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e;
ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx); ZSTDLIB_STATIC_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
@ -2519,10 +2562,10 @@ ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
*/ */
/*===== Raw zstd block functions =====*/ /*===== Raw zstd block functions =====*/
ZSTDLIB_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx); ZSTDLIB_STATIC_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); ZSTDLIB_STATIC_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
ZSTDLIB_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */ ZSTDLIB_STATIC_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */
#endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */ #endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */