Move GLTF light conversion code into GLTFLight
This commit is contained in:
parent
006915b482
commit
3d76b91229
|
@ -9,6 +9,34 @@
|
|||
<tutorials>
|
||||
<link title="KHR_lights_punctual GLTF extension spec">https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_lights_punctual</link>
|
||||
</tutorials>
|
||||
<methods>
|
||||
<method name="from_dictionary" qualifiers="static">
|
||||
<return type="GLTFLight" />
|
||||
<param index="0" name="dictionary" type="Dictionary" />
|
||||
<description>
|
||||
Creates a new GLTFLight instance by parsing the given [Dictionary].
|
||||
</description>
|
||||
</method>
|
||||
<method name="from_node" qualifiers="static">
|
||||
<return type="GLTFLight" />
|
||||
<param index="0" name="light_node" type="Light3D" />
|
||||
<description>
|
||||
Create a new GLTFLight instance from the given Godot [Light3D] node.
|
||||
</description>
|
||||
</method>
|
||||
<method name="to_dictionary" qualifiers="const">
|
||||
<return type="Dictionary" />
|
||||
<description>
|
||||
Serializes this GLTFLight instance into a [Dictionary].
|
||||
</description>
|
||||
</method>
|
||||
<method name="to_node" qualifiers="const">
|
||||
<return type="Light3D" />
|
||||
<description>
|
||||
Converts this GLTFLight instance into a Godot [Light3D] node.
|
||||
</description>
|
||||
</method>
|
||||
</methods>
|
||||
<members>
|
||||
<member name="color" type="Color" setter="set_color" getter="get_color" default="Color(1, 1, 1, 1)">
|
||||
The [Color] of the light. Defaults to white. A black color causes the light to have no effect.
|
||||
|
|
|
@ -31,6 +31,12 @@
|
|||
#include "gltf_light.h"
|
||||
|
||||
void GLTFLight::_bind_methods() {
|
||||
ClassDB::bind_static_method("GLTFLight", D_METHOD("from_node", "light_node"), &GLTFLight::from_node);
|
||||
ClassDB::bind_method(D_METHOD("to_node"), &GLTFLight::to_node);
|
||||
|
||||
ClassDB::bind_static_method("GLTFLight", D_METHOD("from_dictionary", "dictionary"), &GLTFLight::from_dictionary);
|
||||
ClassDB::bind_method(D_METHOD("to_dictionary"), &GLTFLight::to_dictionary);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_color"), &GLTFLight::get_color);
|
||||
ClassDB::bind_method(D_METHOD("set_color", "color"), &GLTFLight::set_color);
|
||||
ClassDB::bind_method(D_METHOD("get_intensity"), &GLTFLight::get_intensity);
|
||||
|
@ -99,3 +105,116 @@ float GLTFLight::get_outer_cone_angle() {
|
|||
void GLTFLight::set_outer_cone_angle(float p_outer_cone_angle) {
|
||||
outer_cone_angle = p_outer_cone_angle;
|
||||
}
|
||||
|
||||
Ref<GLTFLight> GLTFLight::from_node(const Light3D *p_light) {
|
||||
Ref<GLTFLight> l;
|
||||
l.instantiate();
|
||||
l->color = p_light->get_color();
|
||||
if (cast_to<DirectionalLight3D>(p_light)) {
|
||||
l->light_type = "directional";
|
||||
const DirectionalLight3D *light = cast_to<const DirectionalLight3D>(p_light);
|
||||
l->intensity = light->get_param(DirectionalLight3D::PARAM_ENERGY);
|
||||
l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
|
||||
} else if (cast_to<const OmniLight3D>(p_light)) {
|
||||
l->light_type = "point";
|
||||
const OmniLight3D *light = cast_to<const OmniLight3D>(p_light);
|
||||
l->range = light->get_param(OmniLight3D::PARAM_RANGE);
|
||||
l->intensity = light->get_param(OmniLight3D::PARAM_ENERGY);
|
||||
} else if (cast_to<const SpotLight3D>(p_light)) {
|
||||
l->light_type = "spot";
|
||||
const SpotLight3D *light = cast_to<const SpotLight3D>(p_light);
|
||||
l->range = light->get_param(SpotLight3D::PARAM_RANGE);
|
||||
l->intensity = light->get_param(SpotLight3D::PARAM_ENERGY);
|
||||
l->outer_cone_angle = Math::deg_to_rad(light->get_param(SpotLight3D::PARAM_SPOT_ANGLE));
|
||||
// This equation is the inverse of the import equation (which has a desmos link).
|
||||
float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight3D::PARAM_SPOT_ATTENUATION)));
|
||||
angle_ratio = MAX(0, angle_ratio);
|
||||
l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
|
||||
}
|
||||
return l;
|
||||
}
|
||||
|
||||
Light3D *GLTFLight::to_node() const {
|
||||
if (light_type == "directional") {
|
||||
DirectionalLight3D *light = memnew(DirectionalLight3D);
|
||||
light->set_param(Light3D::PARAM_ENERGY, intensity);
|
||||
light->set_color(color);
|
||||
return light;
|
||||
}
|
||||
const float range = CLAMP(this->range, 0, 4096);
|
||||
if (light_type == "point") {
|
||||
OmniLight3D *light = memnew(OmniLight3D);
|
||||
light->set_param(OmniLight3D::PARAM_ENERGY, intensity);
|
||||
light->set_param(OmniLight3D::PARAM_RANGE, range);
|
||||
light->set_color(color);
|
||||
return light;
|
||||
}
|
||||
if (light_type == "spot") {
|
||||
SpotLight3D *light = memnew(SpotLight3D);
|
||||
light->set_param(SpotLight3D::PARAM_ENERGY, intensity);
|
||||
light->set_param(SpotLight3D::PARAM_RANGE, range);
|
||||
light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, Math::rad_to_deg(outer_cone_angle));
|
||||
light->set_color(color);
|
||||
// Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
|
||||
// The points in desmos are not exact, except for (1, infinity).
|
||||
float angle_ratio = inner_cone_angle / outer_cone_angle;
|
||||
float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
|
||||
light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation);
|
||||
return light;
|
||||
}
|
||||
return memnew(Light3D);
|
||||
}
|
||||
|
||||
Ref<GLTFLight> GLTFLight::from_dictionary(const Dictionary p_dictionary) {
|
||||
ERR_FAIL_COND_V_MSG(!p_dictionary.has("type"), Ref<GLTFLight>(), "Failed to parse GLTF light, missing required field 'type'.");
|
||||
Ref<GLTFLight> light;
|
||||
light.instantiate();
|
||||
const String &type = p_dictionary["type"];
|
||||
light->light_type = type;
|
||||
|
||||
if (p_dictionary.has("color")) {
|
||||
const Array &arr = p_dictionary["color"];
|
||||
if (arr.size() == 3) {
|
||||
light->color = Color(arr[0], arr[1], arr[2]).linear_to_srgb();
|
||||
} else {
|
||||
ERR_PRINT("Error parsing GLTF light: The color must have exactly 3 numbers.");
|
||||
}
|
||||
}
|
||||
if (p_dictionary.has("intensity")) {
|
||||
light->intensity = p_dictionary["intensity"];
|
||||
}
|
||||
if (p_dictionary.has("range")) {
|
||||
light->range = p_dictionary["range"];
|
||||
}
|
||||
if (type == "spot") {
|
||||
const Dictionary &spot = p_dictionary["spot"];
|
||||
light->inner_cone_angle = spot["innerConeAngle"];
|
||||
light->outer_cone_angle = spot["outerConeAngle"];
|
||||
if (light->inner_cone_angle >= light->outer_cone_angle) {
|
||||
ERR_PRINT("Error parsing GLTF light: The inner angle must be smaller than the outer angle.");
|
||||
}
|
||||
} else if (type != "point" && type != "directional") {
|
||||
ERR_PRINT("Error parsing GLTF light: Light type '" + type + "' is unknown.");
|
||||
}
|
||||
return light;
|
||||
}
|
||||
|
||||
Dictionary GLTFLight::to_dictionary() const {
|
||||
Dictionary d;
|
||||
Array color_array;
|
||||
color_array.resize(3);
|
||||
color_array[0] = color.r;
|
||||
color_array[1] = color.g;
|
||||
color_array[2] = color.b;
|
||||
d["color"] = color_array;
|
||||
d["type"] = light_type;
|
||||
if (light_type == "spot") {
|
||||
Dictionary spot_dict;
|
||||
spot_dict["innerConeAngle"] = inner_cone_angle;
|
||||
spot_dict["outerConeAngle"] = outer_cone_angle;
|
||||
d["spot"] = spot_dict;
|
||||
}
|
||||
d["intensity"] = intensity;
|
||||
d["range"] = range;
|
||||
return d;
|
||||
}
|
||||
|
|
|
@ -70,6 +70,12 @@ public:
|
|||
|
||||
float get_outer_cone_angle();
|
||||
void set_outer_cone_angle(float p_outer_cone_angle);
|
||||
|
||||
static Ref<GLTFLight> from_node(const Light3D *p_light);
|
||||
Light3D *to_node() const;
|
||||
|
||||
static Ref<GLTFLight> from_dictionary(const Dictionary p_dictionary);
|
||||
Dictionary to_dictionary() const;
|
||||
};
|
||||
|
||||
#endif // GLTF_LIGHT_H
|
||||
|
|
|
@ -4534,28 +4534,7 @@ Error GLTFDocument::_serialize_lights(Ref<GLTFState> state) {
|
|||
}
|
||||
Array lights;
|
||||
for (GLTFLightIndex i = 0; i < state->lights.size(); i++) {
|
||||
Dictionary d;
|
||||
Ref<GLTFLight> light = state->lights[i];
|
||||
Array color;
|
||||
color.resize(3);
|
||||
color[0] = light->color.r;
|
||||
color[1] = light->color.g;
|
||||
color[2] = light->color.b;
|
||||
d["color"] = color;
|
||||
d["type"] = light->light_type;
|
||||
if (light->light_type == "spot") {
|
||||
Dictionary s;
|
||||
float inner_cone_angle = light->inner_cone_angle;
|
||||
s["innerConeAngle"] = inner_cone_angle;
|
||||
float outer_cone_angle = light->outer_cone_angle;
|
||||
s["outerConeAngle"] = outer_cone_angle;
|
||||
d["spot"] = s;
|
||||
}
|
||||
float intensity = light->intensity;
|
||||
d["intensity"] = intensity;
|
||||
float range = light->range;
|
||||
d["range"] = range;
|
||||
lights.push_back(d);
|
||||
lights.push_back(state->lights[i]->to_dictionary());
|
||||
}
|
||||
|
||||
Dictionary extensions;
|
||||
|
@ -4627,35 +4606,10 @@ Error GLTFDocument::_parse_lights(Ref<GLTFState> state) {
|
|||
const Array &lights = lights_punctual["lights"];
|
||||
|
||||
for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) {
|
||||
const Dictionary &d = lights[light_i];
|
||||
|
||||
Ref<GLTFLight> light;
|
||||
light.instantiate();
|
||||
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
|
||||
const String &type = d["type"];
|
||||
light->light_type = type;
|
||||
|
||||
if (d.has("color")) {
|
||||
const Array &arr = d["color"];
|
||||
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
|
||||
const Color c = Color(arr[0], arr[1], arr[2]).linear_to_srgb();
|
||||
light->color = c;
|
||||
Ref<GLTFLight> light = GLTFLight::from_dictionary(lights[light_i]);
|
||||
if (light.is_null()) {
|
||||
return Error::ERR_PARSE_ERROR;
|
||||
}
|
||||
if (d.has("intensity")) {
|
||||
light->intensity = d["intensity"];
|
||||
}
|
||||
if (d.has("range")) {
|
||||
light->range = d["range"];
|
||||
}
|
||||
if (type == "spot") {
|
||||
const Dictionary &spot = d["spot"];
|
||||
light->inner_cone_angle = spot["innerConeAngle"];
|
||||
light->outer_cone_angle = spot["outerConeAngle"];
|
||||
ERR_CONTINUE_MSG(light->inner_cone_angle >= light->outer_cone_angle, "The inner angle must be smaller than the outer angle.");
|
||||
} else if (type != "point" && type != "directional") {
|
||||
ERR_CONTINUE_MSG(true, "Light type is unknown.");
|
||||
}
|
||||
|
||||
state->lights.push_back(light);
|
||||
}
|
||||
|
||||
|
@ -5148,45 +5102,7 @@ Node3D *GLTFDocument::_generate_light(Ref<GLTFState> state, const GLTFNodeIndex
|
|||
print_verbose("glTF: Creating light for: " + gltf_node->get_name());
|
||||
|
||||
Ref<GLTFLight> l = state->lights[gltf_node->light];
|
||||
|
||||
float intensity = l->intensity;
|
||||
if (intensity > 10) {
|
||||
// GLTF spec has the default around 1, but Blender defaults lights to 100.
|
||||
// The only sane way to handle this is to check where it came from and
|
||||
// handle it accordingly. If it's over 10, it probably came from Blender.
|
||||
intensity /= 100;
|
||||
}
|
||||
|
||||
if (l->light_type == "directional") {
|
||||
DirectionalLight3D *light = memnew(DirectionalLight3D);
|
||||
light->set_param(Light3D::PARAM_ENERGY, intensity);
|
||||
light->set_color(l->color);
|
||||
return light;
|
||||
}
|
||||
|
||||
const float range = CLAMP(l->range, 0, 4096);
|
||||
if (l->light_type == "point") {
|
||||
OmniLight3D *light = memnew(OmniLight3D);
|
||||
light->set_param(OmniLight3D::PARAM_ENERGY, intensity);
|
||||
light->set_param(OmniLight3D::PARAM_RANGE, range);
|
||||
light->set_color(l->color);
|
||||
return light;
|
||||
}
|
||||
if (l->light_type == "spot") {
|
||||
SpotLight3D *light = memnew(SpotLight3D);
|
||||
light->set_param(SpotLight3D::PARAM_ENERGY, intensity);
|
||||
light->set_param(SpotLight3D::PARAM_RANGE, range);
|
||||
light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, Math::rad_to_deg(l->outer_cone_angle));
|
||||
light->set_color(l->color);
|
||||
|
||||
// Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
|
||||
// The points in desmos are not exact, except for (1, infinity).
|
||||
float angle_ratio = l->inner_cone_angle / l->outer_cone_angle;
|
||||
float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
|
||||
light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation);
|
||||
return light;
|
||||
}
|
||||
return memnew(Node3D);
|
||||
return l->to_node();
|
||||
}
|
||||
|
||||
Camera3D *GLTFDocument::_generate_camera(Ref<GLTFState> state, const GLTFNodeIndex node_index) {
|
||||
|
@ -5228,31 +5144,7 @@ GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> state, Camera3D *p_
|
|||
GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> state, Light3D *p_light) {
|
||||
print_verbose("glTF: Converting light: " + p_light->get_name());
|
||||
|
||||
Ref<GLTFLight> l;
|
||||
l.instantiate();
|
||||
l->color = p_light->get_color();
|
||||
if (cast_to<DirectionalLight3D>(p_light)) {
|
||||
l->light_type = "directional";
|
||||
DirectionalLight3D *light = cast_to<DirectionalLight3D>(p_light);
|
||||
l->intensity = light->get_param(DirectionalLight3D::PARAM_ENERGY);
|
||||
l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
|
||||
} else if (cast_to<OmniLight3D>(p_light)) {
|
||||
l->light_type = "point";
|
||||
OmniLight3D *light = cast_to<OmniLight3D>(p_light);
|
||||
l->range = light->get_param(OmniLight3D::PARAM_RANGE);
|
||||
l->intensity = light->get_param(OmniLight3D::PARAM_ENERGY);
|
||||
} else if (cast_to<SpotLight3D>(p_light)) {
|
||||
l->light_type = "spot";
|
||||
SpotLight3D *light = cast_to<SpotLight3D>(p_light);
|
||||
l->range = light->get_param(SpotLight3D::PARAM_RANGE);
|
||||
l->intensity = light->get_param(SpotLight3D::PARAM_ENERGY);
|
||||
l->outer_cone_angle = Math::deg_to_rad(light->get_param(SpotLight3D::PARAM_SPOT_ANGLE));
|
||||
|
||||
// This equation is the inverse of the import equation (which has a desmos link).
|
||||
float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight3D::PARAM_SPOT_ATTENUATION)));
|
||||
angle_ratio = MAX(0, angle_ratio);
|
||||
l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
|
||||
}
|
||||
Ref<GLTFLight> l = GLTFLight::from_node(p_light);
|
||||
|
||||
GLTFLightIndex light_index = state->lights.size();
|
||||
state->lights.push_back(l);
|
||||
|
|
Loading…
Reference in New Issue