diff --git a/doc/classes/RayCast.xml b/doc/classes/RayCast.xml
index 910f5c8ad41..84c83d12821 100644
--- a/doc/classes/RayCast.xml
+++ b/doc/classes/RayCast.xml
@@ -6,6 +6,7 @@
A RayCast represents a line from its origin to its destination position, [code]cast_to[/code]. It is used to query the 3D space in order to find the closest object along the path of the ray.
RayCast can ignore some objects by adding them to the exception list via [code]add_exception[/code], by setting proper filtering with collision layers, or by filtering object types with type masks.
+ RayCast can be configured to report collisions with [Area]s ([member collide_with_areas]) and/or [PhysicsBody]s ([member collide_with_bodies]).
Only enabled raycasts will be able to query the space and report collisions.
RayCast calculates intersection every physics frame (see [Node]), and the result is cached so it can be used later until the next frame. If multiple queries are required between physics frames (or during the same frame) use [method force_raycast_update] after adjusting the raycast.
@@ -51,24 +52,14 @@
- Return the closest object the ray is pointing to. Note that this does not consider the length of the ray, so you must also use [method is_colliding] to check if the object returned is actually colliding with the ray.
- Example:
- [codeblock]
- if RayCast.is_colliding():
- var collider = RayCast.get_collider()
- [/codeblock]
+ Return the first object that the ray intersects, or [code]null[/code] if no object is intersecting the ray (i.e. [method is_colliding] returns [code]false[/code]).
- Returns the collision shape of the closest object the ray is pointing to. Note that this does not consider the length of the ray, so you must also use [method is_colliding] to check if the object returned is actually colliding with the ray.
- Example:
- [codeblock]
- if RayCast.is_colliding():
- var shape = RayCast.get_collider_shape()
- [/codeblock]
+ Returns the shape ID of the first object that the ray intersects, or [code]0[/code] if no object is intersecting the ray (i.e. [method is_colliding] returns [code]false[/code]).
@@ -98,7 +89,7 @@
- Return whether the closest object the ray is pointing to is colliding with the vector (considering the vector length).
+ Return whether any object is intersecting with the ray's vector (considering the vector length).
@@ -136,8 +127,10 @@
The ray's destination point, relative to the RayCast's [code]position[/code].
+ If [code]true[/code], collision with [Area]s will be reported. Default value: [code]false[/code].
+ If [code]true[/code], collision with [PhysicsBody]s will be reported. Default value: [code]true[/code].
The ray's collision mask. Only objects in at least one collision layer enabled in the mask will be detected.
diff --git a/doc/classes/RayCast2D.xml b/doc/classes/RayCast2D.xml
index 8ba9ee2bcf6..e4d1ecb7f85 100644
--- a/doc/classes/RayCast2D.xml
+++ b/doc/classes/RayCast2D.xml
@@ -6,6 +6,7 @@
A RayCast represents a line from its origin to its destination position, [code]cast_to[/code]. It is used to query the 2D space in order to find the closest object along the path of the ray.
RayCast2D can ignore some objects by adding them to the exception list via [code]add_exception[/code], by setting proper filtering with collision layers, or by filtering object types with type masks.
+ RayCast2D can be configured to report collisions with [Area2D]s ([member collide_with_areas]) and/or [PhysicsBody2D]s ([member collide_with_bodies]).
Only enabled raycasts will be able to query the space and report collisions.
RayCast2D calculates intersection every physics frame (see [Node]), and the result is cached so it can be used later until the next frame. If multiple queries are required between physics frames (or during the same frame) use [method force_raycast_update] after adjusting the raycast.
@@ -50,24 +51,14 @@
- Returns the closest object the ray is pointing to. Note that this does not consider the length of the ray, so you must also use [method is_colliding] to check if the object returned is actually colliding with the ray.
- Example:
- [codeblock]
- if RayCast2D.is_colliding():
- var collider = RayCast2D.get_collider()
- [/codeblock]
+ Return the first object that the ray intersects, or [code]null[/code] if no object is intersecting the ray (i.e. [method is_colliding] returns [code]false[/code]).
- Returns the collision shape of the closest object the ray is pointing to. Note that this does not consider the length of the ray, so you must also use [method is_colliding] to check if the object returned is actually colliding with the ray.
- Example:
- [codeblock]
- if RayCast2D.is_colliding():
- var shape = RayCast2D.get_collider_shape()
- [/codeblock]
+ Returns the shape ID of the first object that the ray intersects, or [code]0[/code] if no object is intersecting the ray (i.e. [method is_colliding] returns [code]false[/code]).
@@ -97,7 +88,7 @@
- Return whether the closest object the ray is pointing to is colliding with the vector (considering the vector length).
+ Return whether any object is intersecting with the ray's vector (considering the vector length).
@@ -135,8 +126,10 @@
The ray's destination point, relative to the RayCast's [code]position[/code].
+ If [code]true[/code], collision with [Area2D]s will be reported. Default value: [code]false[/code].
+ If [code]true[/code], collision with [PhysicsBody2D]s will be reported. Default value: [code]true[/code].
The ray's collision mask. Only objects in at least one collision layer enabled in the mask will be detected.
diff --git a/scene/2d/ray_cast_2d.cpp b/scene/2d/ray_cast_2d.cpp
index 9582c08110f..d9b3cb07fcc 100644
--- a/scene/2d/ray_cast_2d.cpp
+++ b/scene/2d/ray_cast_2d.cpp
@@ -218,6 +218,8 @@ void RayCast2D::_update_raycast_state() {
against_shape = rr.shape;
} else {
collided = false;
+ against = 0;
+ against_shape = 0;
}
}