Merge pull request #11227 from willt/@GDScript

In @GDScript added previous changes that went missing. added more des…

[ci skip]
This commit is contained in:
Rémi Verschelde 2017-09-17 12:35:40 +02:00 committed by GitHub
commit 5d8d899385

View File

@ -82,7 +82,7 @@
Returns the arc sine of 's' in radians. Use to get the angle of sine 's'.
[codeblock]
# s is 0.523599 or 30 degrees if converted with rad2deg(s)
s = asin(0.5)
s = asin(0.5)
[/codeblock]
</description>
</method>
@ -92,6 +92,14 @@
<argument index="0" name="condition" type="bool">
</argument>
<description>
Assert that the condition is true. If the condition is false a fatal error is generated and the program is halted. Useful for debugging to make sure a value is always true.
[codeblock]
# Speed should always be between 0 and 20
speed = -10
assert(speed < 20) # Is true and program continues
assert(speed >= 0) # Is false and program stops
assert(speed >= 0 &amp;&amp; speed < 20) # Or combined
[/codeblock]
</description>
</method>
<method name="atan">
@ -100,6 +108,11 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the arc tangent of 's' in radians. Use it to get the angle from an angle's tangent in trigonometry: [code]atan(tan(angle)) == angle[/code].
The method cannot know in which quadrant the angle should fall. See [method atan2] if you always want an exact angle.
[codeblock]
a = atan(0.5) # a is 0.463648
[/codeblock]
</description>
</method>
<method name="atan2">
@ -110,10 +123,9 @@
<argument index="1" name="y" type="float">
</argument>
<description>
Returns the arc tangent of y/x in radians. Use to get the angle of tangent y/x. To compute the value, the function takes into account the sign of both arguments in order to determine the quadrant.
Returns the arc tangent of y/x in radians. Use to get the angle of tangent y/x. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant.
[codeblock]
# a is 3.141593
a = atan(0,-1)
a = atan(0,-1) # a is 3.141593
[/codeblock]
</description>
</method>
@ -134,10 +146,8 @@
<description>
Rounds 's' upward, returning the smallest integral value that is not less than 's'.
[codeblock]
# i is 2
i = ceil(1.45)
# i is 2
i = ceil(1.001)
i = ceil(1.45) # i is 2
i = ceil(1.001) # i is 2
[/codeblock]
</description>
</method>
@ -303,7 +313,10 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns [b]e[/b] raised to the power of 's'. [b]e[/b] sometimes called "Euler's number" is a mathematical constant whose value is approximately 2.71828.
Raises the Euler's constant [b]e[/b] to the power of 's' and returns it. [b] has an approximate value of 2.71828.
[codeblock]
a = exp(2) # approximately 7.39
[/codeblock]
</description>
</method>
<method name="floor">
@ -312,7 +325,13 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the largest integer value (rounded down) that is less than or equal to 's'.
Rounds 's' to the closest smaller integer and returns it.
[codeblock]
# a is 2
a = floor(2.99)
# a is -3
a = floor(-2.99)
[/codeblock]
</description>
</method>
<method name="fmod">
@ -338,6 +357,26 @@
<argument index="1" name="y" type="float">
</argument>
<description>
Returns the floating-point remainder of x/y that wraps equally in positive and negative.
[codeblock]
var i = -10;
while i < 0:
prints(i, fposmod(i, 10))
i += 1
[/codeblock]
Produces:
[codeblock]
-10 10
-9 1
-8 2
-7 3
-6 4
-5 5
-4 6
-3 7
-2 8
-1 9
[/codeblock]
</description>
</method>
<method name="funcref">
@ -348,6 +387,14 @@
<argument index="1" name="funcname" type="String">
</argument>
<description>
Returns a reference to the specified function 'funcname' in the 'instance' node. As functions aren't first-class objects in GDscript, use 'funcref' to store a function in a variable and call it later.
[codeblock]
func foo():
return("bar")
a = funcref(self, "foo")
print(a.call_func()) # prints bar
[/codeblock]
</description>
</method>
<method name="hash">
@ -358,8 +405,7 @@
<description>
Returns the integer hash of the variable passed.
[codeblock]
# print 177670
print(hash("a"))
print(hash("a")) # prints 177670
[/codeblock]
</description>
</method>
@ -396,9 +442,8 @@
func _ready():
var id = get_instance_id()
var inst = instance_from_id(id)
print(inst.foo)
print(inst.foo) # prints bar
[/codeblock]
Prints "bar"
</description>
</method>
<method name="inverse_lerp">
@ -413,7 +458,7 @@
<description>
Returns a normalized value considering the given range.
[codeblock]
inverse_lerp(3, 5, 4) # return 0.5
inverse_lerp(3, 5, 4) # returns 0.5
[/codeblock]
</description>
</method>
@ -444,9 +489,8 @@
Returns length of Variant 'var'. Length is the character count of String, element count of Array, size of Dictionary, etc. Note: Generates a fatal error if Variant can not provide a length.
[codeblock]
a = [1, 2, 3, 4]
print(len(a))
len(a) # returns 4
[/codeblock]
Prints 4
</description>
</method>
<method name="lerp">
@ -460,6 +504,9 @@
</argument>
<description>
Linear interpolates between two values by a normalized value.
[codeblock]
lerp(1, 3, 0.5) # returns 2
[/codeblock]
</description>
</method>
<method name="linear2db">
@ -492,8 +539,7 @@
<description>
Natural logarithm. The amount of time needed to reach a certain level of continuous growth. Note: This is not the same as the log funcation on your calculator which is a base 10 logarithm.
[codeblock]
# a is 2.302585
a = log(10)
log(10) # returns 2.302585
[/codeblock]
</description>
</method>
@ -507,10 +553,8 @@
<description>
Returns the maximum of two values.
[codeblock]
# a is 2
a = max(1,2)
# a is -3.99
a = max(-3.99, -4)
max(1,2) # returns 2
max(-3.99, -4) # returns -3.99
[/codeblock]
</description>
</method>
@ -524,10 +568,8 @@
<description>
Returns the minimum of two values.
[codeblock]
# a is 1
a = min(1,2)
# a is -4
a = min(-3.99, -4)
min(1,2) # returns 1
min(-3.99, -4) # returns -4
[/codeblock]
</description>
</method>
@ -537,14 +579,11 @@
<argument index="0" name="val" type="int">
</argument>
<description>
Returns the nearest larger power of 2 for an integer.
Returns the nearest larger power of 2 for integer 'val'.
[codeblock]
# a is 4
a = nearest_po2(3)
# a is 4
a = nearest_po2(4)
# a is 8
a = nearest_po2(5)
nearest_po2(3) # returns 4
nearest_po2(4) # returns 4
nearest_po2(5) # returns 8
[/codeblock]
</description>
</method>
@ -559,7 +598,7 @@
[codeblock]
p = parse_json('["a", "b", "c"]')
if typeof(p) == TYPE_ARRAY:
print(p[0])
print(p[0]) # prints a
else:
print("unexpected results")
[/codeblock]
@ -575,8 +614,7 @@
<description>
Returns the result of 'x' raised to the power of 'y'.
[codeblock]
# a is 32
a = pow(2,5)
pow(2,5) # returns 32
[/codeblock]
</description>
</method>
@ -590,6 +628,7 @@
[codeblock]
# load a scene called main located in the root of the project directory
var main = preload("res://main.tscn")
[/codeblock]
</description>
</method>
<method name="print" qualifiers="vararg">
@ -599,9 +638,8 @@
Converts one or more arguments to strings in the best way possible and prints them to the console.
[codeblock]
a = [1,2,3]
print("a","b",a)
print("a","b",a) # prints ab[1, 2, 3]
[/codeblock]
Prints ab[1, 2, 3]
</description>
</method>
<method name="print_stack">
@ -609,6 +647,10 @@
</return>
<description>
Print a stack track at code location, only works when running with debugger turned on.
Output in the console would look something like this:
[codeblock]
Frame 0 - res://test.gd:16 in function '_process'
[/codeblock]
</description>
</method>
<method name="printerr" qualifiers="vararg">
@ -616,6 +658,9 @@
</return>
<description>
Print one or more arguments to strings in the best way possible to standard error line.
[codeblock]
printerr("prints to stderr")
[/codeblock]
</description>
</method>
<method name="printraw" qualifiers="vararg">
@ -623,6 +668,11 @@
</return>
<description>
Print one or more arguments to strings in the best way possible to console. No newline is added at the end.
[codeblock]
printraw("A")
printraw("B")
# prints AB
[/codeblock]
</description>
</method>
<method name="prints" qualifiers="vararg">
@ -630,6 +680,9 @@
</return>
<description>
Print one or more arguments to the console with a space between each argument.
[codeblock]
prints("A", "B", "C") # prints A B C
[/codeblock]
</description>
</method>
<method name="printt" qualifiers="vararg">
@ -637,6 +690,9 @@
</return>
<description>
Print one or more arguments to the console with a tab between each argument.
[codeblock]
printt("A", "B", "C") # prints A B C
[/codeblock]
</description>
</method>
<method name="rad2deg">
@ -646,6 +702,9 @@
</argument>
<description>
Convert from radians to degrees.
[codeblock]
rad2deg(0.523599) # returns 30
[/codeblock]
</description>
</method>
<method name="rand_range">
@ -657,6 +716,9 @@
</argument>
<description>
Random range, any floating point value between 'from' and 'to'.
[codeblock]
prints(rand_range(0, 1), rand_range(0, 1)) # prints 0.135591 0.405263
[/codeblock]
</description>
</method>
<method name="rand_seed">
@ -673,13 +735,21 @@
</return>
<description>
Return a random floating point value between 0 and 1.
[codeblock]
randf() # returns 0.375671
[/codeblock]
</description>
</method>
<method name="randi">
<return type="int">
</return>
<description>
Return a random 32 bits integer value. To obtain a random value between 0 to N (where N is smaller than 2^32 - 1), you can use remainder. For example, to get a random integer between 0 and 19 inclusive, you can use randi() % 20.
Return a random 32 bit integer. Use remainder to obtain a random value between 0 and N (where N is smaller than 2^32 -1).
[codeblock]
randi() % 20 # returns random number between 0 and 19
randi() % 100 # returns random number between 0 and 99
randi() % 100 + 1 # returns random number between 1 and 100
[/codeblock]
</description>
</method>
<method name="randomize">
@ -687,6 +757,10 @@
</return>
<description>
Randomize the seed (or the internal state) of the random number generator. Current implementation reseeds using a number based on time.
[codeblock]
func _ready():
randomize()
[/codeblock]
</description>
</method>
<method name="range" qualifiers="vararg">
@ -694,6 +768,29 @@
</return>
<description>
Return an array with the given range. Range can be 1 argument N (0 to N-1), two arguments (initial, final-1) or three arguments (initial, final-1, increment).
[codeblock]
for i in range(4):
print(i)
for i in range(2, 5):
print(i)
for i in range(0, 6, 2):
print(i)
[/codeblock]
Output:
[codeblock]
0
1
2
3
2
3
4
0
2
4
[/codeblock]
</description>
</method>
<method name="range_lerp">
@ -723,6 +820,9 @@
</argument>
<description>
Returns the integral value that is nearest to s, with halfway cases rounded away from zero.
[codeblock]
round(2.6) # returns 3
[/codeblock]
</description>
</method>
<method name="seed">
@ -732,6 +832,10 @@
</argument>
<description>
Set seed for the random number generator.
[codeblock]
my_seed = "Godot Rocks"
seed(my_seed.hash())
[/codeblock]
</description>
</method>
<method name="sign">
@ -740,7 +844,11 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Return sign (-1 or +1).
Return sign of 's' -1 or 1.
[codeblock]
sign(-6) # returns -1
sign(6) # returns 1
[/codeblock]
</description>
</method>
<method name="sin">
@ -749,7 +857,10 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the sine of an angle of s radians.
Return the sine of angle 's' in radians.
[codeblock]
sin(0.523599) # returns 0.5
[/codeblock]
</description>
</method>
<method name="sinh">
@ -758,7 +869,11 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the hyperbolic sine of s.
Return the hyperbolic sine of 's'.
[codeblock]
a = log(2.0) # returns 0.693147
sinh(a) # returns 0.75
[/codeblock]
</description>
</method>
<method name="sqrt">
@ -767,7 +882,10 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the square root of s.
Return the square root of 's'.
[codeblock]
sqrt(9) # returns 3
[/codeblock]
</description>
</method>
<method name="stepify">
@ -786,6 +904,12 @@
</return>
<description>
Convert one or more arguments to string in the best way possible.
[codeblock]
var a = [10, 20, 30]
var b = str(a);
len(a) # returns 3
len(b) # returns 12
[/codeblock]
</description>
</method>
<method name="str2var">
@ -795,6 +919,11 @@
</argument>
<description>
Convert a formatted string that was returned by [method var2str] to the original value.
[codeblock]
a = '{ "a": 1, "b": 2 }'
b = str2var(a)
print(b['a']) # prints 1
[/codeblock]
</description>
</method>
<method name="tan">
@ -803,7 +932,10 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the tangent of an angle of s radians.
Return the tangent of angle 's' in radians.
[codeblock]
tan( deg2rad(45) ) # returns 1
[/codeblock]
</description>
</method>
<method name="tanh">
@ -812,7 +944,11 @@
<argument index="0" name="s" type="float">
</argument>
<description>
Returns the hyperbolic tangent of s.
Returns the hyperbolic tangent of 's'.
[codeblock]
a = log(2.0) # returns 0.693147
tanh(a) # returns 0.6
[/codeblock]
</description>
</method>
<method name="to_json">
@ -821,7 +957,12 @@
<argument index="0" name="var" type="Variant">
</argument>
<description>
Convert a Variant to json text.
Convert a Variant 'var' to json text and return the result. Useful for serializing data to store or send over the network
[codeblock]
a = { 'a': 1, 'b': 2 }
b = to_json(a)
print(b) # {"a":1, "b":2}
[/codeblock]
</description>
</method>
<method name="type_exists">
@ -844,6 +985,13 @@
</argument>
<description>
Return the internal type of the given Variant object, using the TYPE_* enum in [@Global Scope].
[codeblock]
p = parse_json('["a", "b", "c"]')
if typeof(p) == TYPE_ARRAY:
print(p[0]) # prints a
else:
print("unexpected results")
[/codeblock]
</description>
</method>
<method name="validate_json">
@ -852,7 +1000,15 @@
<argument index="0" name="json" type="String">
</argument>
<description>
This method is used to validate the structure and data types of a piece of JSON, similar to XML Schema for XML.
Check that 'json' is valid json data. Return empty string if valid. Return error message if not valid.
[codeblock]
j = to_json([1, 2, 3])
v = validate_json(j)
if not v:
print("valid")
else:
prints("invalid", v)
[/codeblock]
</description>
</method>
<method name="var2bytes">
@ -871,6 +1027,17 @@
</argument>
<description>
Convert a value to a formatted string that can later be parsed using [method str2var].
[codeblock]
a = { 'a': 1, 'b': 2 }
print(var2str(a))
[/codeblock]
prints
[codeblock]
{
"a": 1,
"b": 2
}
[/codeblock]
</description>
</method>
<method name="weakref">