zstd: Update to upstream version 1.5.5
Release notes: - https://github.com/facebook/zstd/releases/tag/v1.5.3 - https://github.com/facebook/zstd/releases/tag/v1.5.4 - https://github.com/facebook/zstd/releases/tag/v1.5.5
This commit is contained in:
parent
65fa775ff6
commit
6100b4bd33
|
@ -487,7 +487,7 @@ License: Zlib
|
|||
|
||||
Files: ./thirdparty/zstd/
|
||||
Comment: Zstandard
|
||||
Copyright: 2016-2021, Facebook, Inc.
|
||||
Copyright: Meta Platforms, Inc. and affiliates.
|
||||
License: BSD-3-clause
|
||||
|
||||
|
||||
|
|
|
@ -815,7 +815,7 @@ Files extracted from upstream source:
|
|||
## zstd
|
||||
|
||||
- Upstream: https://github.com/facebook/zstd
|
||||
- Version: 1.5.2 (e47e674cd09583ff0503f0f6defd6d23d8b718d3, 2022)
|
||||
- Version: 1.5.5 (63779c798237346c2b245c546c40b72a5a5913fe, 2023)
|
||||
- License: BSD-3-Clause
|
||||
|
||||
Files extracted from upstream source:
|
||||
|
|
|
@ -2,7 +2,7 @@ BSD License
|
|||
|
||||
For Zstandard software
|
||||
|
||||
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
|
||||
Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
@ -14,9 +14,9 @@ are permitted provided that the following conditions are met:
|
|||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name Facebook nor the names of its contributors may be used to
|
||||
endorse or promote products derived from this software without specific
|
||||
prior written permission.
|
||||
* Neither the name Facebook, nor Meta, nor the names of its contributors may
|
||||
be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
||||
* in the COPYING file in the root directory of this source tree).
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
/* This file provides custom allocation primitives
|
||||
*/
|
||||
|
||||
#define ZSTD_DEPS_NEED_MALLOC
|
||||
#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
|
||||
|
||||
#include "mem.h" /* MEM_STATIC */
|
||||
#define ZSTD_STATIC_LINKING_ONLY
|
||||
#include "../zstd.h" /* ZSTD_customMem */
|
||||
|
||||
#ifndef ZSTD_ALLOCATIONS_H
|
||||
#define ZSTD_ALLOCATIONS_H
|
||||
|
||||
/* custom memory allocation functions */
|
||||
|
||||
MEM_STATIC void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem)
|
||||
{
|
||||
if (customMem.customAlloc)
|
||||
return customMem.customAlloc(customMem.opaque, size);
|
||||
return ZSTD_malloc(size);
|
||||
}
|
||||
|
||||
MEM_STATIC void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem)
|
||||
{
|
||||
if (customMem.customAlloc) {
|
||||
/* calloc implemented as malloc+memset;
|
||||
* not as efficient as calloc, but next best guess for custom malloc */
|
||||
void* const ptr = customMem.customAlloc(customMem.opaque, size);
|
||||
ZSTD_memset(ptr, 0, size);
|
||||
return ptr;
|
||||
}
|
||||
return ZSTD_calloc(1, size);
|
||||
}
|
||||
|
||||
MEM_STATIC void ZSTD_customFree(void* ptr, ZSTD_customMem customMem)
|
||||
{
|
||||
if (ptr!=NULL) {
|
||||
if (customMem.customFree)
|
||||
customMem.customFree(customMem.opaque, ptr);
|
||||
else
|
||||
ZSTD_free(ptr);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ZSTD_ALLOCATIONS_H */
|
|
@ -0,0 +1,200 @@
|
|||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
||||
* in the COPYING file in the root directory of this source tree).
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
#ifndef ZSTD_BITS_H
|
||||
#define ZSTD_BITS_H
|
||||
|
||||
#include "mem.h"
|
||||
|
||||
MEM_STATIC unsigned ZSTD_countTrailingZeros32_fallback(U32 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
{
|
||||
static const U32 DeBruijnBytePos[32] = {0, 1, 28, 2, 29, 14, 24, 3,
|
||||
30, 22, 20, 15, 25, 17, 4, 8,
|
||||
31, 27, 13, 23, 21, 19, 16, 7,
|
||||
26, 12, 18, 6, 11, 5, 10, 9};
|
||||
return DeBruijnBytePos[((U32) ((val & -(S32) val) * 0x077CB531U)) >> 27];
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_countTrailingZeros32(U32 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
# if defined(_MSC_VER)
|
||||
# if STATIC_BMI2 == 1
|
||||
return (unsigned)_tzcnt_u32(val);
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward(&r, val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (unsigned)__builtin_ctz(val);
|
||||
# else
|
||||
return ZSTD_countTrailingZeros32_fallback(val);
|
||||
# endif
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_countLeadingZeros32_fallback(U32 val) {
|
||||
assert(val != 0);
|
||||
{
|
||||
static const U32 DeBruijnClz[32] = {0, 9, 1, 10, 13, 21, 2, 29,
|
||||
11, 14, 16, 18, 22, 25, 3, 30,
|
||||
8, 12, 20, 28, 15, 17, 24, 7,
|
||||
19, 27, 23, 6, 26, 5, 4, 31};
|
||||
val |= val >> 1;
|
||||
val |= val >> 2;
|
||||
val |= val >> 4;
|
||||
val |= val >> 8;
|
||||
val |= val >> 16;
|
||||
return 31 - DeBruijnClz[(val * 0x07C4ACDDU) >> 27];
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_countLeadingZeros32(U32 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
# if defined(_MSC_VER)
|
||||
# if STATIC_BMI2 == 1
|
||||
return (unsigned)_lzcnt_u32(val);
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanReverse(&r, val);
|
||||
return (unsigned)(31 - r);
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (unsigned)__builtin_clz(val);
|
||||
# else
|
||||
return ZSTD_countLeadingZeros32_fallback(val);
|
||||
# endif
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_countTrailingZeros64(U64 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
# if STATIC_BMI2 == 1
|
||||
return (unsigned)_tzcnt_u64(val);
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward64(&r, val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4) && defined(__LP64__)
|
||||
return (unsigned)__builtin_ctzll(val);
|
||||
# else
|
||||
{
|
||||
U32 mostSignificantWord = (U32)(val >> 32);
|
||||
U32 leastSignificantWord = (U32)val;
|
||||
if (leastSignificantWord == 0) {
|
||||
return 32 + ZSTD_countTrailingZeros32(mostSignificantWord);
|
||||
} else {
|
||||
return ZSTD_countTrailingZeros32(leastSignificantWord);
|
||||
}
|
||||
}
|
||||
# endif
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_countLeadingZeros64(U64 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
# if STATIC_BMI2 == 1
|
||||
return (unsigned)_lzcnt_u64(val);
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanReverse64(&r, val);
|
||||
return (unsigned)(63 - r);
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (unsigned)(__builtin_clzll(val));
|
||||
# else
|
||||
{
|
||||
U32 mostSignificantWord = (U32)(val >> 32);
|
||||
U32 leastSignificantWord = (U32)val;
|
||||
if (mostSignificantWord == 0) {
|
||||
return 32 + ZSTD_countLeadingZeros32(leastSignificantWord);
|
||||
} else {
|
||||
return ZSTD_countLeadingZeros32(mostSignificantWord);
|
||||
}
|
||||
}
|
||||
# endif
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_NbCommonBytes(size_t val)
|
||||
{
|
||||
if (MEM_isLittleEndian()) {
|
||||
if (MEM_64bits()) {
|
||||
return ZSTD_countTrailingZeros64((U64)val) >> 3;
|
||||
} else {
|
||||
return ZSTD_countTrailingZeros32((U32)val) >> 3;
|
||||
}
|
||||
} else { /* Big Endian CPU */
|
||||
if (MEM_64bits()) {
|
||||
return ZSTD_countLeadingZeros64((U64)val) >> 3;
|
||||
} else {
|
||||
return ZSTD_countLeadingZeros32((U32)val) >> 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
|
||||
{
|
||||
assert(val != 0);
|
||||
return 31 - ZSTD_countLeadingZeros32(val);
|
||||
}
|
||||
|
||||
/* ZSTD_rotateRight_*():
|
||||
* Rotates a bitfield to the right by "count" bits.
|
||||
* https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts
|
||||
*/
|
||||
MEM_STATIC
|
||||
U64 ZSTD_rotateRight_U64(U64 const value, U32 count) {
|
||||
assert(count < 64);
|
||||
count &= 0x3F; /* for fickle pattern recognition */
|
||||
return (value >> count) | (U64)(value << ((0U - count) & 0x3F));
|
||||
}
|
||||
|
||||
MEM_STATIC
|
||||
U32 ZSTD_rotateRight_U32(U32 const value, U32 count) {
|
||||
assert(count < 32);
|
||||
count &= 0x1F; /* for fickle pattern recognition */
|
||||
return (value >> count) | (U32)(value << ((0U - count) & 0x1F));
|
||||
}
|
||||
|
||||
MEM_STATIC
|
||||
U16 ZSTD_rotateRight_U16(U16 const value, U32 count) {
|
||||
assert(count < 16);
|
||||
count &= 0x0F; /* for fickle pattern recognition */
|
||||
return (value >> count) | (U16)(value << ((0U - count) & 0x0F));
|
||||
}
|
||||
|
||||
#endif /* ZSTD_BITS_H */
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* bitstream
|
||||
* Part of FSE library
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -30,14 +30,15 @@ extern "C" {
|
|||
#include "compiler.h" /* UNLIKELY() */
|
||||
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
|
||||
#include "error_private.h" /* error codes and messages */
|
||||
#include "bits.h" /* ZSTD_highbit32 */
|
||||
|
||||
|
||||
/*=========================================
|
||||
* Target specific
|
||||
=========================================*/
|
||||
#ifndef ZSTD_NO_INTRINSICS
|
||||
# if defined(__BMI__) && defined(__GNUC__)
|
||||
# include <immintrin.h> /* support for bextr (experimental) */
|
||||
# if (defined(__BMI__) || defined(__BMI2__)) && defined(__GNUC__)
|
||||
# include <immintrin.h> /* support for bextr (experimental)/bzhi */
|
||||
# elif defined(__ICCARM__)
|
||||
# include <intrinsics.h>
|
||||
# endif
|
||||
|
@ -132,48 +133,6 @@ MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
|
|||
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
/* faster, but works only if nbBits >= 1 */
|
||||
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* Internal functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BIT_highbit32 (U32 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
# if STATIC_BMI2 == 1
|
||||
return _lzcnt_u32(val) ^ 31;
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanReverse(&r, val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
|
||||
return __builtin_clz (val) ^ 31;
|
||||
# elif defined(__ICCARM__) /* IAR Intrinsic */
|
||||
return 31 - __CLZ(val);
|
||||
# else /* Software version */
|
||||
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
|
||||
11, 14, 16, 18, 22, 25, 3, 30,
|
||||
8, 12, 20, 28, 15, 17, 24, 7,
|
||||
19, 27, 23, 6, 26, 5, 4, 31 };
|
||||
U32 v = val;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
|
||||
# endif
|
||||
}
|
||||
}
|
||||
|
||||
/*===== Local Constants =====*/
|
||||
static const unsigned BIT_mask[] = {
|
||||
0, 1, 3, 7, 0xF, 0x1F,
|
||||
|
@ -203,6 +162,16 @@ MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
|
|||
return 0;
|
||||
}
|
||||
|
||||
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
|
||||
{
|
||||
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1 && !defined(ZSTD_NO_INTRINSICS)
|
||||
return _bzhi_u64(bitContainer, nbBits);
|
||||
#else
|
||||
assert(nbBits < BIT_MASK_SIZE);
|
||||
return bitContainer & BIT_mask[nbBits];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*! BIT_addBits() :
|
||||
* can add up to 31 bits into `bitC`.
|
||||
* Note : does not check for register overflow ! */
|
||||
|
@ -212,7 +181,7 @@ MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
|
|||
DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
|
||||
assert(nbBits < BIT_MASK_SIZE);
|
||||
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
|
||||
bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
|
||||
bitC->bitContainer |= BIT_getLowerBits(value, nbBits) << bitC->bitPos;
|
||||
bitC->bitPos += nbBits;
|
||||
}
|
||||
|
||||
|
@ -291,7 +260,7 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
|||
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
|
||||
bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
||||
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
|
||||
bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
|
||||
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
|
||||
} else {
|
||||
bitD->ptr = bitD->start;
|
||||
|
@ -319,7 +288,7 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
|||
default: break;
|
||||
}
|
||||
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
|
||||
bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
|
||||
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
|
||||
}
|
||||
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
|
||||
|
@ -350,16 +319,6 @@ MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 c
|
|||
#endif
|
||||
}
|
||||
|
||||
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
|
||||
{
|
||||
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1
|
||||
return _bzhi_u64(bitContainer, nbBits);
|
||||
#else
|
||||
assert(nbBits < BIT_MASK_SIZE);
|
||||
return bitContainer & BIT_mask[nbBits];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*! BIT_lookBits() :
|
||||
* Provides next n bits from local register.
|
||||
* local register is not modified.
|
||||
|
@ -406,7 +365,7 @@ MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned n
|
|||
}
|
||||
|
||||
/*! BIT_readBitsFast() :
|
||||
* unsafe version; only works only if nbBits >= 1 */
|
||||
* unsafe version; only works if nbBits >= 1 */
|
||||
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
|
||||
{
|
||||
size_t const value = BIT_lookBitsFast(bitD, nbBits);
|
||||
|
@ -437,7 +396,7 @@ MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
|
|||
* This function is safe, it guarantees it will not read beyond src buffer.
|
||||
* @return : status of `BIT_DStream_t` internal register.
|
||||
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
|
||||
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
|
||||
MEM_STATIC FORCE_INLINE_ATTR BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
|
||||
{
|
||||
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
|
||||
return BIT_DStream_overflow;
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -165,6 +165,12 @@
|
|||
#define UNLIKELY(x) (x)
|
||||
#endif
|
||||
|
||||
#if __has_builtin(__builtin_unreachable) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)))
|
||||
# define ZSTD_UNREACHABLE { assert(0), __builtin_unreachable(); }
|
||||
#else
|
||||
# define ZSTD_UNREACHABLE { assert(0); }
|
||||
#endif
|
||||
|
||||
/* disable warnings */
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
# include <intrin.h> /* For Visual 2005 */
|
||||
|
@ -181,6 +187,8 @@
|
|||
# ifdef __AVX2__ //MSVC does not have a BMI2 specific flag, but every CPU that supports AVX2 also supports BMI2
|
||||
# define STATIC_BMI2 1
|
||||
# endif
|
||||
# elif defined(__BMI2__) && defined(__x86_64__) && defined(__GNUC__)
|
||||
# define STATIC_BMI2 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
@ -273,7 +281,18 @@
|
|||
* Sanitizer
|
||||
*****************************************************************/
|
||||
|
||||
#if ZSTD_MEMORY_SANITIZER
|
||||
/* Issue #3240 reports an ASAN failure on an llvm-mingw build. Out of an
|
||||
* abundance of caution, disable our custom poisoning on mingw. */
|
||||
#ifdef __MINGW32__
|
||||
#ifndef ZSTD_ASAN_DONT_POISON_WORKSPACE
|
||||
#define ZSTD_ASAN_DONT_POISON_WORKSPACE 1
|
||||
#endif
|
||||
#ifndef ZSTD_MSAN_DONT_POISON_WORKSPACE
|
||||
#define ZSTD_MSAN_DONT_POISON_WORKSPACE 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
|
||||
/* Not all platforms that support msan provide sanitizers/msan_interface.h.
|
||||
* We therefore declare the functions we need ourselves, rather than trying to
|
||||
* include the header file... */
|
||||
|
@ -292,9 +311,13 @@ void __msan_poison(const volatile void *a, size_t size);
|
|||
/* Returns the offset of the first (at least partially) poisoned byte in the
|
||||
memory range, or -1 if the whole range is good. */
|
||||
intptr_t __msan_test_shadow(const volatile void *x, size_t size);
|
||||
|
||||
/* Print shadow and origin for the memory range to stderr in a human-readable
|
||||
format. */
|
||||
void __msan_print_shadow(const volatile void *x, size_t size);
|
||||
#endif
|
||||
|
||||
#if ZSTD_ADDRESS_SANITIZER
|
||||
#if ZSTD_ADDRESS_SANITIZER && !defined(ZSTD_ASAN_DONT_POISON_WORKSPACE)
|
||||
/* Not all platforms that support asan provide sanitizers/asan_interface.h.
|
||||
* We therefore declare the functions we need ourselves, rather than trying to
|
||||
* include the header file... */
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* debug
|
||||
* Part of FSE library
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* debug
|
||||
* Part of FSE library
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* ******************************************************************
|
||||
* Common functions of New Generation Entropy library
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -19,8 +19,8 @@
|
|||
#include "error_private.h" /* ERR_*, ERROR */
|
||||
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
|
||||
#include "fse.h"
|
||||
#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
|
||||
#include "huf.h"
|
||||
#include "bits.h" /* ZSDT_highbit32, ZSTD_countTrailingZeros32 */
|
||||
|
||||
|
||||
/*=== Version ===*/
|
||||
|
@ -38,34 +38,6 @@ const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
|||
/*-**************************************************************
|
||||
* FSE NCount encoding-decoding
|
||||
****************************************************************/
|
||||
static U32 FSE_ctz(U32 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward(&r, val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
|
||||
return __builtin_ctz(val);
|
||||
# elif defined(__ICCARM__) /* IAR Intrinsic */
|
||||
return __CTZ(val);
|
||||
# else /* Software version */
|
||||
U32 count = 0;
|
||||
while ((val & 1) == 0) {
|
||||
val >>= 1;
|
||||
++count;
|
||||
}
|
||||
return count;
|
||||
# endif
|
||||
}
|
||||
}
|
||||
|
||||
FORCE_INLINE_TEMPLATE
|
||||
size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
|
||||
const void* headerBuffer, size_t hbSize)
|
||||
|
@ -113,7 +85,7 @@ size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigne
|
|||
* repeat.
|
||||
* Avoid UB by setting the high bit to 1.
|
||||
*/
|
||||
int repeats = FSE_ctz(~bitStream | 0x80000000) >> 1;
|
||||
int repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1;
|
||||
while (repeats >= 12) {
|
||||
charnum += 3 * 12;
|
||||
if (LIKELY(ip <= iend-7)) {
|
||||
|
@ -124,7 +96,7 @@ size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigne
|
|||
ip = iend - 4;
|
||||
}
|
||||
bitStream = MEM_readLE32(ip) >> bitCount;
|
||||
repeats = FSE_ctz(~bitStream | 0x80000000) >> 1;
|
||||
repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1;
|
||||
}
|
||||
charnum += 3 * repeats;
|
||||
bitStream >>= 2 * repeats;
|
||||
|
@ -189,7 +161,7 @@ size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigne
|
|||
* know that threshold > 1.
|
||||
*/
|
||||
if (remaining <= 1) break;
|
||||
nbBits = BIT_highbit32(remaining) + 1;
|
||||
nbBits = ZSTD_highbit32(remaining) + 1;
|
||||
threshold = 1 << (nbBits - 1);
|
||||
}
|
||||
if (charnum >= maxSV1) break;
|
||||
|
@ -264,7 +236,7 @@ size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|||
const void* src, size_t srcSize)
|
||||
{
|
||||
U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
|
||||
return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* bmi2 */ 0);
|
||||
return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* flags */ 0);
|
||||
}
|
||||
|
||||
FORCE_INLINE_TEMPLATE size_t
|
||||
|
@ -312,14 +284,14 @@ HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|||
if (weightTotal == 0) return ERROR(corruption_detected);
|
||||
|
||||
/* get last non-null symbol weight (implied, total must be 2^n) */
|
||||
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
|
||||
{ U32 const tableLog = ZSTD_highbit32(weightTotal) + 1;
|
||||
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
|
||||
*tableLogPtr = tableLog;
|
||||
/* determine last weight */
|
||||
{ U32 const total = 1 << tableLog;
|
||||
U32 const rest = total - weightTotal;
|
||||
U32 const verif = 1 << BIT_highbit32(rest);
|
||||
U32 const lastWeight = BIT_highbit32(rest) + 1;
|
||||
U32 const verif = 1 << ZSTD_highbit32(rest);
|
||||
U32 const lastWeight = ZSTD_highbit32(rest) + 1;
|
||||
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
|
||||
huffWeight[oSize] = (BYTE)lastWeight;
|
||||
rankStats[lastWeight]++;
|
||||
|
@ -356,13 +328,13 @@ size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|||
U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
const void* src, size_t srcSize,
|
||||
void* workSpace, size_t wkspSize,
|
||||
int bmi2)
|
||||
int flags)
|
||||
{
|
||||
#if DYNAMIC_BMI2
|
||||
if (bmi2) {
|
||||
if (flags & HUF_flags_bmi2) {
|
||||
return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
|
||||
}
|
||||
#endif
|
||||
(void)bmi2;
|
||||
(void)flags;
|
||||
return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -27,9 +27,11 @@ const char* ERR_getErrorString(ERR_enum code)
|
|||
case PREFIX(version_unsupported): return "Version not supported";
|
||||
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
|
||||
case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
|
||||
case PREFIX(corruption_detected): return "Corrupted block detected";
|
||||
case PREFIX(corruption_detected): return "Data corruption detected";
|
||||
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
|
||||
case PREFIX(literals_headerWrong): return "Header of Literals' block doesn't respect format specification";
|
||||
case PREFIX(parameter_unsupported): return "Unsupported parameter";
|
||||
case PREFIX(parameter_combination_unsupported): return "Unsupported combination of parameters";
|
||||
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
|
||||
case PREFIX(init_missing): return "Context should be init first";
|
||||
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
|
||||
|
@ -38,17 +40,22 @@ const char* ERR_getErrorString(ERR_enum code)
|
|||
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
|
||||
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
|
||||
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
|
||||
case PREFIX(stabilityCondition_notRespected): return "pledged buffer stability condition is not respected";
|
||||
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
|
||||
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
|
||||
case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
|
||||
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
|
||||
case PREFIX(srcSize_wrong): return "Src size is incorrect";
|
||||
case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer";
|
||||
case PREFIX(noForwardProgress_destFull): return "Operation made no progress over multiple calls, due to output buffer being full";
|
||||
case PREFIX(noForwardProgress_inputEmpty): return "Operation made no progress over multiple calls, due to input being empty";
|
||||
/* following error codes are not stable and may be removed or changed in a future version */
|
||||
case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
|
||||
case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
|
||||
case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong";
|
||||
case PREFIX(srcBuffer_wrong): return "Source buffer is wrong";
|
||||
case PREFIX(sequenceProducer_failed): return "Block-level external sequence producer returned an error code";
|
||||
case PREFIX(externalSequences_invalid): return "External sequences are not valid";
|
||||
case PREFIX(maxCode):
|
||||
default: return notErrorCode;
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* FSE : Finite State Entropy codec
|
||||
* Public Prototypes declaration
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -53,34 +53,6 @@ extern "C" {
|
|||
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* FSE simple functions
|
||||
******************************************/
|
||||
/*! FSE_compress() :
|
||||
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
|
||||
'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
|
||||
@return : size of compressed data (<= dstCapacity).
|
||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
|
||||
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
|
||||
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
|
||||
*/
|
||||
FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/*! FSE_decompress():
|
||||
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
|
||||
into already allocated destination buffer 'dst', of size 'dstCapacity'.
|
||||
@return : size of regenerated data (<= maxDstSize),
|
||||
or an error code, which can be tested using FSE_isError() .
|
||||
|
||||
** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
|
||||
Why ? : making this distinction requires a header.
|
||||
Header management is intentionally delegated to the user layer, which can better manage special cases.
|
||||
*/
|
||||
FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity,
|
||||
const void* cSrc, size_t cSrcSize);
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* Tool functions
|
||||
******************************************/
|
||||
|
@ -91,20 +63,6 @@ FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return
|
|||
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* FSE advanced functions
|
||||
******************************************/
|
||||
/*! FSE_compress2() :
|
||||
Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
|
||||
Both parameters can be defined as '0' to mean : use default value
|
||||
@return : size of compressed data
|
||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
|
||||
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
|
||||
if FSE_isError(return), it's an error code.
|
||||
*/
|
||||
FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* FSE detailed API
|
||||
******************************************/
|
||||
|
@ -164,8 +122,6 @@ FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
|
|||
/*! Constructor and Destructor of FSE_CTable.
|
||||
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
|
||||
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
|
||||
FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
|
||||
FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct);
|
||||
|
||||
/*! FSE_buildCTable():
|
||||
Builds `ct`, which must be already allocated, using FSE_createCTable().
|
||||
|
@ -241,23 +197,7 @@ FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
|
|||
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
|
||||
const void* rBuffer, size_t rBuffSize, int bmi2);
|
||||
|
||||
/*! Constructor and Destructor of FSE_DTable.
|
||||
Note that its size depends on 'tableLog' */
|
||||
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
|
||||
FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
|
||||
FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt);
|
||||
|
||||
/*! FSE_buildDTable():
|
||||
Builds 'dt', which must be already allocated, using FSE_createDTable().
|
||||
return : 0, or an errorCode, which can be tested using FSE_isError() */
|
||||
FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/*! FSE_decompress_usingDTable():
|
||||
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
|
||||
into `dst` which must be already allocated.
|
||||
@return : size of regenerated data (necessarily <= `dstCapacity`),
|
||||
or an errorCode, which can be tested using FSE_isError() */
|
||||
FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
|
||||
|
||||
/*!
|
||||
Tutorial :
|
||||
|
@ -320,16 +260,6 @@ If there is an error, the function will return an error code, which can be teste
|
|||
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
|
||||
/**< same as FSE_optimalTableLog(), which used `minus==2` */
|
||||
|
||||
/* FSE_compress_wksp() :
|
||||
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
|
||||
* FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
|
||||
*/
|
||||
#define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
|
||||
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
|
||||
|
||||
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
|
||||
/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
|
||||
|
||||
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
|
||||
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
|
||||
|
||||
|
@ -347,19 +277,11 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsi
|
|||
FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
|
||||
/**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
|
||||
|
||||
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
|
||||
/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
|
||||
|
||||
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
|
||||
/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
|
||||
|
||||
#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
|
||||
#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
|
||||
#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
|
||||
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize);
|
||||
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */
|
||||
|
||||
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
|
||||
/**< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */
|
||||
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
|
||||
* Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
|
||||
|
||||
typedef enum {
|
||||
FSE_repeat_none, /**< Cannot use the previous table */
|
||||
|
@ -555,7 +477,7 @@ MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePt
|
|||
|
||||
/* FSE_getMaxNbBits() :
|
||||
* Approximate maximum cost of a symbol, in bits.
|
||||
* Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
|
||||
* Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
|
||||
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
|
||||
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
|
||||
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* ******************************************************************
|
||||
* FSE : Finite State Entropy decoder
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -24,6 +24,7 @@
|
|||
#include "error_private.h"
|
||||
#define ZSTD_DEPS_NEED_MALLOC
|
||||
#include "zstd_deps.h"
|
||||
#include "bits.h" /* ZSTD_highbit32 */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
|
@ -55,19 +56,6 @@
|
|||
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
|
||||
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
|
||||
|
||||
|
||||
/* Function templates */
|
||||
FSE_DTable* FSE_createDTable (unsigned tableLog)
|
||||
{
|
||||
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
|
||||
return (FSE_DTable*)ZSTD_malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
|
||||
}
|
||||
|
||||
void FSE_freeDTable (FSE_DTable* dt)
|
||||
{
|
||||
ZSTD_free(dt);
|
||||
}
|
||||
|
||||
static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
|
||||
{
|
||||
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
|
||||
|
@ -127,10 +115,10 @@ static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCo
|
|||
}
|
||||
}
|
||||
/* Now we spread those positions across the table.
|
||||
* The benefit of doing it in two stages is that we avoid the the
|
||||
* The benefit of doing it in two stages is that we avoid the
|
||||
* variable size inner loop, which caused lots of branch misses.
|
||||
* Now we can run through all the positions without any branch misses.
|
||||
* We unroll the loop twice, since that is what emperically worked best.
|
||||
* We unroll the loop twice, since that is what empirically worked best.
|
||||
*/
|
||||
{
|
||||
size_t position = 0;
|
||||
|
@ -166,7 +154,7 @@ static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCo
|
|||
for (u=0; u<tableSize; u++) {
|
||||
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
|
||||
U32 const nextState = symbolNext[symbol]++;
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
|
||||
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
|
||||
} }
|
||||
|
||||
|
@ -184,49 +172,6 @@ size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsi
|
|||
/*-*******************************************************
|
||||
* Decompression (Byte symbols)
|
||||
*********************************************************/
|
||||
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
|
||||
{
|
||||
void* ptr = dt;
|
||||
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
|
||||
void* dPtr = dt + 1;
|
||||
FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
|
||||
|
||||
DTableH->tableLog = 0;
|
||||
DTableH->fastMode = 0;
|
||||
|
||||
cell->newState = 0;
|
||||
cell->symbol = symbolValue;
|
||||
cell->nbBits = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
|
||||
{
|
||||
void* ptr = dt;
|
||||
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
|
||||
void* dPtr = dt + 1;
|
||||
FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
|
||||
const unsigned tableSize = 1 << nbBits;
|
||||
const unsigned tableMask = tableSize - 1;
|
||||
const unsigned maxSV1 = tableMask+1;
|
||||
unsigned s;
|
||||
|
||||
/* Sanity checks */
|
||||
if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
||||
|
||||
/* Build Decoding Table */
|
||||
DTableH->tableLog = (U16)nbBits;
|
||||
DTableH->fastMode = 1;
|
||||
for (s=0; s<maxSV1; s++) {
|
||||
dinfo[s].newState = 0;
|
||||
dinfo[s].symbol = (BYTE)s;
|
||||
dinfo[s].nbBits = (BYTE)nbBits;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
|
||||
void* dst, size_t maxDstSize,
|
||||
|
@ -290,26 +235,6 @@ FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
|
|||
return op-ostart;
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const FSE_DTable* dt)
|
||||
{
|
||||
const void* ptr = dt;
|
||||
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
|
||||
const U32 fastMode = DTableH->fastMode;
|
||||
|
||||
/* select fast mode (static) */
|
||||
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
|
||||
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
|
||||
{
|
||||
return FSE_decompress_wksp_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, /* bmi2 */ 0);
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
short ncount[FSE_MAX_SYMBOL_VALUE + 1];
|
||||
FSE_DTable dtable[1]; /* Dynamically sized */
|
||||
|
@ -342,7 +267,8 @@ FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
|
|||
}
|
||||
|
||||
if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge);
|
||||
workSpace = wksp->dtable + FSE_DTABLE_SIZE_U32(tableLog);
|
||||
assert(sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog) <= wkspSize);
|
||||
workSpace = (BYTE*)workSpace + sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
|
||||
wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
|
||||
|
||||
CHECK_F( FSE_buildDTable_internal(wksp->dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
|
||||
|
@ -382,22 +308,4 @@ size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc,
|
|||
return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
|
||||
}
|
||||
|
||||
|
||||
typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
|
||||
|
||||
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
|
||||
size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) {
|
||||
U32 wksp[FSE_BUILD_DTABLE_WKSP_SIZE_U32(FSE_TABLELOG_ABSOLUTE_MAX, FSE_MAX_SYMBOL_VALUE)];
|
||||
return FSE_buildDTable_wksp(dt, normalizedCounter, maxSymbolValue, tableLog, wksp, sizeof(wksp));
|
||||
}
|
||||
|
||||
size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
/* Static analyzer seems unable to understand this table will be properly initialized later */
|
||||
U32 wksp[FSE_DECOMPRESS_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
|
||||
return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, FSE_MAX_TABLELOG, wksp, sizeof(wksp));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* FSE_COMMONDEFS_ONLY */
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* huff0 huffman codec,
|
||||
* part of Finite State Entropy library
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -21,100 +21,23 @@ extern "C" {
|
|||
|
||||
/* *** Dependencies *** */
|
||||
#include "zstd_deps.h" /* size_t */
|
||||
|
||||
|
||||
/* *** library symbols visibility *** */
|
||||
/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual,
|
||||
* HUF symbols remain "private" (internal symbols for library only).
|
||||
* Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */
|
||||
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
# define HUF_PUBLIC_API __attribute__ ((visibility ("default")))
|
||||
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
|
||||
# define HUF_PUBLIC_API __declspec(dllexport)
|
||||
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
|
||||
# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */
|
||||
#else
|
||||
# define HUF_PUBLIC_API
|
||||
#endif
|
||||
|
||||
|
||||
/* ========================== */
|
||||
/* *** simple functions *** */
|
||||
/* ========================== */
|
||||
|
||||
/** HUF_compress() :
|
||||
* Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
|
||||
* 'dst' buffer must be already allocated.
|
||||
* Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
|
||||
* `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
|
||||
* @return : size of compressed data (<= `dstCapacity`).
|
||||
* Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
|
||||
* if HUF_isError(return), compression failed (more details using HUF_getErrorName())
|
||||
*/
|
||||
HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/** HUF_decompress() :
|
||||
* Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
|
||||
* into already allocated buffer 'dst', of minimum size 'dstSize'.
|
||||
* `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
|
||||
* Note : in contrast with FSE, HUF_decompress can regenerate
|
||||
* RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
|
||||
* because it knows size to regenerate (originalSize).
|
||||
* @return : size of regenerated data (== originalSize),
|
||||
* or an error code, which can be tested using HUF_isError()
|
||||
*/
|
||||
HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
|
||||
const void* cSrc, size_t cSrcSize);
|
||||
|
||||
|
||||
/* *** Tool functions *** */
|
||||
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
|
||||
HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
|
||||
|
||||
/* Error Management */
|
||||
HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
|
||||
HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
|
||||
|
||||
|
||||
/* *** Advanced function *** */
|
||||
|
||||
/** HUF_compress2() :
|
||||
* Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
|
||||
* `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
|
||||
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
|
||||
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/** HUF_compress4X_wksp() :
|
||||
* Same as HUF_compress2(), but uses externally allocated `workSpace`.
|
||||
* `workspace` must be at least as large as HUF_WORKSPACE_SIZE */
|
||||
#define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */)
|
||||
#define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64))
|
||||
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize);
|
||||
|
||||
#endif /* HUF_H_298734234 */
|
||||
|
||||
/* ******************************************************************
|
||||
* WARNING !!
|
||||
* The following section contains advanced and experimental definitions
|
||||
* which shall never be used in the context of a dynamic library,
|
||||
* because they are not guaranteed to remain stable in the future.
|
||||
* Only consider them in association with static linking.
|
||||
* *****************************************************************/
|
||||
#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
|
||||
#define HUF_H_HUF_STATIC_LINKING_ONLY
|
||||
|
||||
/* *** Dependencies *** */
|
||||
#include "mem.h" /* U32 */
|
||||
#include "mem.h" /* U32 */
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "fse.h"
|
||||
|
||||
|
||||
/* *** Tool functions *** */
|
||||
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
|
||||
size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
|
||||
|
||||
/* Error Management */
|
||||
unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
|
||||
const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
|
||||
|
||||
|
||||
#define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */)
|
||||
#define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64))
|
||||
|
||||
/* *** Constants *** */
|
||||
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_TABLELOG_ABSOLUTEMAX */
|
||||
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
|
||||
|
@ -154,25 +77,49 @@ typedef U32 HUF_DTable;
|
|||
/* ****************************************
|
||||
* Advanced decompression functions
|
||||
******************************************/
|
||||
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
#endif
|
||||
|
||||
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
|
||||
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
|
||||
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */
|
||||
size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
|
||||
#endif
|
||||
/**
|
||||
* Huffman flags bitset.
|
||||
* For all flags, 0 is the default value.
|
||||
*/
|
||||
typedef enum {
|
||||
/**
|
||||
* If compiled with DYNAMIC_BMI2: Set flag only if the CPU supports BMI2 at runtime.
|
||||
* Otherwise: Ignored.
|
||||
*/
|
||||
HUF_flags_bmi2 = (1 << 0),
|
||||
/**
|
||||
* If set: Test possible table depths to find the one that produces the smallest header + encoded size.
|
||||
* If unset: Use heuristic to find the table depth.
|
||||
*/
|
||||
HUF_flags_optimalDepth = (1 << 1),
|
||||
/**
|
||||
* If set: If the previous table can encode the input, always reuse the previous table.
|
||||
* If unset: If the previous table can encode the input, reuse the previous table if it results in a smaller output.
|
||||
*/
|
||||
HUF_flags_preferRepeat = (1 << 2),
|
||||
/**
|
||||
* If set: Sample the input and check if the sample is uncompressible, if it is then don't attempt to compress.
|
||||
* If unset: Always histogram the entire input.
|
||||
*/
|
||||
HUF_flags_suspectUncompressible = (1 << 3),
|
||||
/**
|
||||
* If set: Don't use assembly implementations
|
||||
* If unset: Allow using assembly implementations
|
||||
*/
|
||||
HUF_flags_disableAsm = (1 << 4),
|
||||
/**
|
||||
* If set: Don't use the fast decoding loop, always use the fallback decoding loop.
|
||||
* If unset: Use the fast decoding loop when possible.
|
||||
*/
|
||||
HUF_flags_disableFast = (1 << 5)
|
||||
} HUF_flags_e;
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* HUF detailed API
|
||||
* ****************************************/
|
||||
#define HUF_OPTIMAL_DEPTH_THRESHOLD ZSTD_btultra
|
||||
|
||||
/*! HUF_compress() does the following:
|
||||
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
|
||||
|
@ -185,12 +132,12 @@ size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
|
|||
* For example, it's possible to compress several blocks using the same 'CTable',
|
||||
* or to save and regenerate 'CTable' using external methods.
|
||||
*/
|
||||
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
|
||||
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
|
||||
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
|
||||
unsigned HUF_minTableLog(unsigned symbolCardinality);
|
||||
unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue);
|
||||
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, void* workSpace,
|
||||
size_t wkspSize, HUF_CElt* table, const unsigned* count, int flags); /* table is used as scratch space for building and testing tables, not a return value */
|
||||
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize);
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2);
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags);
|
||||
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
|
||||
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
|
||||
|
||||
|
@ -199,6 +146,7 @@ typedef enum {
|
|||
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
|
||||
HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
|
||||
} HUF_repeat;
|
||||
|
||||
/** HUF_compress4X_repeat() :
|
||||
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
||||
* If it uses hufTable it does not modify hufTable or repeat.
|
||||
|
@ -209,13 +157,13 @@ size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
|
|||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible);
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int flags);
|
||||
|
||||
/** HUF_buildCTable_wksp() :
|
||||
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
|
||||
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
|
||||
*/
|
||||
#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
|
||||
#define HUF_CTABLE_WORKSPACE_SIZE_U32 ((4 * (HUF_SYMBOLVALUE_MAX + 1)) + 192)
|
||||
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
|
||||
size_t HUF_buildCTable_wksp (HUF_CElt* tree,
|
||||
const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
|
||||
|
@ -241,7 +189,7 @@ size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize,
|
|||
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
const void* src, size_t srcSize,
|
||||
void* workspace, size_t wkspSize,
|
||||
int bmi2);
|
||||
int flags);
|
||||
|
||||
/** HUF_readCTable() :
|
||||
* Loading a CTable saved with HUF_writeCTable() */
|
||||
|
@ -279,32 +227,12 @@ U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
|
|||
#define HUF_DECOMPRESS_WORKSPACE_SIZE ((2 << 10) + (1 << 9))
|
||||
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
|
||||
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||||
size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
|
||||
#endif
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
|
||||
#endif
|
||||
|
||||
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||||
size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
#endif
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
#endif
|
||||
|
||||
|
||||
/* ====================== */
|
||||
/* single stream variants */
|
||||
/* ====================== */
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U64 U64 */
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2);
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags);
|
||||
/** HUF_compress1X_repeat() :
|
||||
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
||||
* If it uses hufTable it does not modify hufTable or repeat.
|
||||
|
@ -315,49 +243,30 @@ size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
|
|||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible);
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int flags);
|
||||
|
||||
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
||||
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
|
||||
#endif
|
||||
|
||||
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
||||
size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||||
size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
|
||||
#endif
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
|
||||
#endif
|
||||
|
||||
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||||
size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
#endif
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); /**< double-symbols decoder */
|
||||
#endif
|
||||
|
||||
/* BMI2 variants.
|
||||
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
|
||||
*/
|
||||
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
|
||||
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags);
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||||
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
|
||||
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
|
||||
#endif
|
||||
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
|
||||
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
|
||||
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags);
|
||||
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||||
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
|
||||
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags);
|
||||
#endif
|
||||
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||||
size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
|
||||
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags);
|
||||
#endif
|
||||
|
||||
#endif /* HUF_STATIC_LINKING_ONLY */
|
||||
#endif /* HUF_H_298734234 */
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -133,21 +133,15 @@ MEM_STATIC size_t MEM_swapST(size_t in);
|
|||
/*-**************************************************************
|
||||
* Memory I/O Implementation
|
||||
*****************************************************************/
|
||||
/* MEM_FORCE_MEMORY_ACCESS :
|
||||
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
|
||||
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
|
||||
* The below switch allow to select different access method for improved performance.
|
||||
* Method 0 (default) : use `memcpy()`. Safe and portable.
|
||||
* Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
|
||||
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
|
||||
/* MEM_FORCE_MEMORY_ACCESS : For accessing unaligned memory:
|
||||
* Method 0 : always use `memcpy()`. Safe and portable.
|
||||
* Method 1 : Use compiler extension to set unaligned access.
|
||||
* Method 2 : direct access. This method is portable but violate C standard.
|
||||
* It can generate buggy code on targets depending on alignment.
|
||||
* In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
|
||||
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
|
||||
* Prefer these methods in priority order (0 > 1 > 2)
|
||||
* Default : method 1 if supported, else method 0
|
||||
*/
|
||||
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
||||
# if defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
|
||||
# ifdef __GNUC__
|
||||
# define MEM_FORCE_MEMORY_ACCESS 1
|
||||
# endif
|
||||
#endif
|
||||
|
@ -190,30 +184,19 @@ MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
|
|||
|
||||
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
|
||||
|
||||
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
||||
/* currently only defined for gcc and icc */
|
||||
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
|
||||
__pragma( pack(push, 1) )
|
||||
typedef struct { U16 v; } unalign16;
|
||||
typedef struct { U32 v; } unalign32;
|
||||
typedef struct { U64 v; } unalign64;
|
||||
typedef struct { size_t v; } unalignArch;
|
||||
__pragma( pack(pop) )
|
||||
#else
|
||||
typedef struct { U16 v; } __attribute__((packed)) unalign16;
|
||||
typedef struct { U32 v; } __attribute__((packed)) unalign32;
|
||||
typedef struct { U64 v; } __attribute__((packed)) unalign64;
|
||||
typedef struct { size_t v; } __attribute__((packed)) unalignArch;
|
||||
#endif
|
||||
typedef __attribute__((aligned(1))) U16 unalign16;
|
||||
typedef __attribute__((aligned(1))) U32 unalign32;
|
||||
typedef __attribute__((aligned(1))) U64 unalign64;
|
||||
typedef __attribute__((aligned(1))) size_t unalignArch;
|
||||
|
||||
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
|
||||
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
|
||||
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
|
||||
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
|
||||
MEM_STATIC U16 MEM_read16(const void* ptr) { return *(const unalign16*)ptr; }
|
||||
MEM_STATIC U32 MEM_read32(const void* ptr) { return *(const unalign32*)ptr; }
|
||||
MEM_STATIC U64 MEM_read64(const void* ptr) { return *(const unalign64*)ptr; }
|
||||
MEM_STATIC size_t MEM_readST(const void* ptr) { return *(const unalignArch*)ptr; }
|
||||
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(unalign16*)memPtr = value; }
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(unalign32*)memPtr = value; }
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(unalign64*)memPtr = value; }
|
||||
|
||||
#else
|
||||
|
||||
|
@ -257,6 +240,14 @@ MEM_STATIC void MEM_write64(void* memPtr, U64 value)
|
|||
|
||||
#endif /* MEM_FORCE_MEMORY_ACCESS */
|
||||
|
||||
MEM_STATIC U32 MEM_swap32_fallback(U32 in)
|
||||
{
|
||||
return ((in << 24) & 0xff000000 ) |
|
||||
((in << 8) & 0x00ff0000 ) |
|
||||
((in >> 8) & 0x0000ff00 ) |
|
||||
((in >> 24) & 0x000000ff );
|
||||
}
|
||||
|
||||
MEM_STATIC U32 MEM_swap32(U32 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
|
@ -265,13 +256,22 @@ MEM_STATIC U32 MEM_swap32(U32 in)
|
|||
|| (defined(__clang__) && __has_builtin(__builtin_bswap32))
|
||||
return __builtin_bswap32(in);
|
||||
#else
|
||||
return ((in << 24) & 0xff000000 ) |
|
||||
((in << 8) & 0x00ff0000 ) |
|
||||
((in >> 8) & 0x0000ff00 ) |
|
||||
((in >> 24) & 0x000000ff );
|
||||
return MEM_swap32_fallback(in);
|
||||
#endif
|
||||
}
|
||||
|
||||
MEM_STATIC U64 MEM_swap64_fallback(U64 in)
|
||||
{
|
||||
return ((in << 56) & 0xff00000000000000ULL) |
|
||||
((in << 40) & 0x00ff000000000000ULL) |
|
||||
((in << 24) & 0x0000ff0000000000ULL) |
|
||||
((in << 8) & 0x000000ff00000000ULL) |
|
||||
((in >> 8) & 0x00000000ff000000ULL) |
|
||||
((in >> 24) & 0x0000000000ff0000ULL) |
|
||||
((in >> 40) & 0x000000000000ff00ULL) |
|
||||
((in >> 56) & 0x00000000000000ffULL);
|
||||
}
|
||||
|
||||
MEM_STATIC U64 MEM_swap64(U64 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
|
@ -280,14 +280,7 @@ MEM_STATIC U64 MEM_swap64(U64 in)
|
|||
|| (defined(__clang__) && __has_builtin(__builtin_bswap64))
|
||||
return __builtin_bswap64(in);
|
||||
#else
|
||||
return ((in << 56) & 0xff00000000000000ULL) |
|
||||
((in << 40) & 0x00ff000000000000ULL) |
|
||||
((in << 24) & 0x0000ff0000000000ULL) |
|
||||
((in << 8) & 0x000000ff00000000ULL) |
|
||||
((in >> 8) & 0x00000000ff000000ULL) |
|
||||
((in >> 24) & 0x0000000000ff0000ULL) |
|
||||
((in >> 40) & 0x000000000000ff00ULL) |
|
||||
((in >> 56) & 0x00000000000000ffULL);
|
||||
return MEM_swap64_fallback(in);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -10,9 +10,9 @@
|
|||
|
||||
|
||||
/* ====== Dependencies ======= */
|
||||
#include "../common/allocations.h" /* ZSTD_customCalloc, ZSTD_customFree */
|
||||
#include "zstd_deps.h" /* size_t */
|
||||
#include "debug.h" /* assert */
|
||||
#include "zstd_internal.h" /* ZSTD_customMalloc, ZSTD_customFree */
|
||||
#include "pool.h"
|
||||
|
||||
/* ====== Compiler specifics ====== */
|
||||
|
@ -96,9 +96,7 @@ static void* POOL_thread(void* opaque) {
|
|||
/* If the intended queue size was 0, signal after finishing job */
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
ctx->numThreadsBusy--;
|
||||
if (ctx->queueSize == 1) {
|
||||
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
|
||||
}
|
||||
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
}
|
||||
} /* for (;;) */
|
||||
|
@ -128,7 +126,7 @@ POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
|
|||
* empty and full queues.
|
||||
*/
|
||||
ctx->queueSize = queueSize + 1;
|
||||
ctx->queue = (POOL_job*)ZSTD_customMalloc(ctx->queueSize * sizeof(POOL_job), customMem);
|
||||
ctx->queue = (POOL_job*)ZSTD_customCalloc(ctx->queueSize * sizeof(POOL_job), customMem);
|
||||
ctx->queueHead = 0;
|
||||
ctx->queueTail = 0;
|
||||
ctx->numThreadsBusy = 0;
|
||||
|
@ -142,7 +140,7 @@ POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
|
|||
}
|
||||
ctx->shutdown = 0;
|
||||
/* Allocate space for the thread handles */
|
||||
ctx->threads = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
|
||||
ctx->threads = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
|
||||
ctx->threadCapacity = 0;
|
||||
ctx->customMem = customMem;
|
||||
/* Check for errors */
|
||||
|
@ -175,7 +173,7 @@ static void POOL_join(POOL_ctx* ctx) {
|
|||
/* Join all of the threads */
|
||||
{ size_t i;
|
||||
for (i = 0; i < ctx->threadCapacity; ++i) {
|
||||
ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */
|
||||
ZSTD_pthread_join(ctx->threads[i]); /* note : could fail */
|
||||
} }
|
||||
}
|
||||
|
||||
|
@ -190,6 +188,17 @@ void POOL_free(POOL_ctx *ctx) {
|
|||
ZSTD_customFree(ctx, ctx->customMem);
|
||||
}
|
||||
|
||||
/*! POOL_joinJobs() :
|
||||
* Waits for all queued jobs to finish executing.
|
||||
*/
|
||||
void POOL_joinJobs(POOL_ctx* ctx) {
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
while(!ctx->queueEmpty || ctx->numThreadsBusy > 0) {
|
||||
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
|
||||
}
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
}
|
||||
|
||||
void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
|
||||
POOL_free (pool);
|
||||
}
|
||||
|
@ -211,7 +220,7 @@ static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
|
|||
return 0;
|
||||
}
|
||||
/* numThreads > threadCapacity */
|
||||
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
|
||||
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
|
||||
if (!threadPool) return 1;
|
||||
/* replace existing thread pool */
|
||||
ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
|
||||
|
@ -262,7 +271,9 @@ static int isQueueFull(POOL_ctx const* ctx) {
|
|||
static void
|
||||
POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
|
||||
{
|
||||
POOL_job const job = {function, opaque};
|
||||
POOL_job job;
|
||||
job.function = function;
|
||||
job.opaque = opaque;
|
||||
assert(ctx != NULL);
|
||||
if (ctx->shutdown) return;
|
||||
|
||||
|
@ -330,6 +341,11 @@ void POOL_free(POOL_ctx* ctx) {
|
|||
(void)ctx;
|
||||
}
|
||||
|
||||
void POOL_joinJobs(POOL_ctx* ctx){
|
||||
assert(!ctx || ctx == &g_poolCtx);
|
||||
(void)ctx;
|
||||
}
|
||||
|
||||
int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
|
||||
(void)ctx; (void)numThreads;
|
||||
return 0;
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -38,6 +38,12 @@ POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
|
|||
*/
|
||||
void POOL_free(POOL_ctx* ctx);
|
||||
|
||||
|
||||
/*! POOL_joinJobs() :
|
||||
* Waits for all queued jobs to finish executing.
|
||||
*/
|
||||
void POOL_joinJobs(POOL_ctx* ctx);
|
||||
|
||||
/*! POOL_resize() :
|
||||
* Expands or shrinks pool's number of threads.
|
||||
* This is more efficient than releasing + creating a new context,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -12,7 +12,7 @@
|
|||
#define ZSTD_PORTABILITY_MACROS_H
|
||||
|
||||
/**
|
||||
* This header file contains macro defintions to support portability.
|
||||
* This header file contains macro definitions to support portability.
|
||||
* This header is shared between C and ASM code, so it MUST only
|
||||
* contain macro definitions. It MUST not contain any C code.
|
||||
*
|
||||
|
@ -88,7 +88,7 @@
|
|||
#endif
|
||||
|
||||
/**
|
||||
* Only enable assembly for GNUC comptabile compilers,
|
||||
* Only enable assembly for GNUC compatible compilers,
|
||||
* because other platforms may not support GAS assembly syntax.
|
||||
*
|
||||
* Only enable assembly for Linux / MacOS, other platforms may
|
||||
|
@ -134,4 +134,23 @@
|
|||
# define ZSTD_ENABLE_ASM_X86_64_BMI2 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
* For x86 ELF targets, add .note.gnu.property section for Intel CET in
|
||||
* assembly sources when CET is enabled.
|
||||
*
|
||||
* Additionally, any function that may be called indirectly must begin
|
||||
* with ZSTD_CET_ENDBRANCH.
|
||||
*/
|
||||
#if defined(__ELF__) && (defined(__x86_64__) || defined(__i386__)) \
|
||||
&& defined(__has_include)
|
||||
# if __has_include(<cet.h>)
|
||||
# include <cet.h>
|
||||
# define ZSTD_CET_ENDBRANCH _CET_ENDBR
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef ZSTD_CET_ENDBRANCH
|
||||
# define ZSTD_CET_ENDBRANCH
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_PORTABILITY_MACROS_H */
|
||||
|
|
|
@ -23,8 +23,7 @@ int g_ZSTD_threading_useless_symbol;
|
|||
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
|
||||
|
||||
/**
|
||||
* Windows minimalist Pthread Wrapper, based on :
|
||||
* http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
|
||||
* Windows minimalist Pthread Wrapper
|
||||
*/
|
||||
|
||||
|
||||
|
@ -35,37 +34,92 @@ int g_ZSTD_threading_useless_symbol;
|
|||
|
||||
/* === Implementation === */
|
||||
|
||||
typedef struct {
|
||||
void* (*start_routine)(void*);
|
||||
void* arg;
|
||||
int initialized;
|
||||
ZSTD_pthread_cond_t initialized_cond;
|
||||
ZSTD_pthread_mutex_t initialized_mutex;
|
||||
} ZSTD_thread_params_t;
|
||||
|
||||
static unsigned __stdcall worker(void *arg)
|
||||
{
|
||||
ZSTD_pthread_t* const thread = (ZSTD_pthread_t*) arg;
|
||||
thread->arg = thread->start_routine(thread->arg);
|
||||
void* (*start_routine)(void*);
|
||||
void* thread_arg;
|
||||
|
||||
/* Initialized thread_arg and start_routine and signal main thread that we don't need it
|
||||
* to wait any longer.
|
||||
*/
|
||||
{
|
||||
ZSTD_thread_params_t* thread_param = (ZSTD_thread_params_t*)arg;
|
||||
thread_arg = thread_param->arg;
|
||||
start_routine = thread_param->start_routine;
|
||||
|
||||
/* Signal main thread that we are running and do not depend on its memory anymore */
|
||||
ZSTD_pthread_mutex_lock(&thread_param->initialized_mutex);
|
||||
thread_param->initialized = 1;
|
||||
ZSTD_pthread_cond_signal(&thread_param->initialized_cond);
|
||||
ZSTD_pthread_mutex_unlock(&thread_param->initialized_mutex);
|
||||
}
|
||||
|
||||
start_routine(thread_arg);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
|
||||
void* (*start_routine) (void*), void* arg)
|
||||
{
|
||||
ZSTD_thread_params_t thread_param;
|
||||
(void)unused;
|
||||
thread->arg = arg;
|
||||
thread->start_routine = start_routine;
|
||||
thread->handle = (HANDLE) _beginthreadex(NULL, 0, worker, thread, 0, NULL);
|
||||
|
||||
if (!thread->handle)
|
||||
thread_param.start_routine = start_routine;
|
||||
thread_param.arg = arg;
|
||||
thread_param.initialized = 0;
|
||||
*thread = NULL;
|
||||
|
||||
/* Setup thread initialization synchronization */
|
||||
if(ZSTD_pthread_cond_init(&thread_param.initialized_cond, NULL)) {
|
||||
/* Should never happen on Windows */
|
||||
return -1;
|
||||
}
|
||||
if(ZSTD_pthread_mutex_init(&thread_param.initialized_mutex, NULL)) {
|
||||
/* Should never happen on Windows */
|
||||
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Spawn thread */
|
||||
*thread = (HANDLE)_beginthreadex(NULL, 0, worker, &thread_param, 0, NULL);
|
||||
if (!thread) {
|
||||
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
|
||||
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
|
||||
return errno;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Wait for thread to be initialized */
|
||||
ZSTD_pthread_mutex_lock(&thread_param.initialized_mutex);
|
||||
while(!thread_param.initialized) {
|
||||
ZSTD_pthread_cond_wait(&thread_param.initialized_cond, &thread_param.initialized_mutex);
|
||||
}
|
||||
ZSTD_pthread_mutex_unlock(&thread_param.initialized_mutex);
|
||||
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
|
||||
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ZSTD_pthread_join(ZSTD_pthread_t thread, void **value_ptr)
|
||||
int ZSTD_pthread_join(ZSTD_pthread_t thread)
|
||||
{
|
||||
DWORD result;
|
||||
|
||||
if (!thread.handle) return 0;
|
||||
if (!thread) return 0;
|
||||
|
||||
result = WaitForSingleObject(thread, INFINITE);
|
||||
CloseHandle(thread);
|
||||
|
||||
result = WaitForSingleObject(thread.handle, INFINITE);
|
||||
switch (result) {
|
||||
case WAIT_OBJECT_0:
|
||||
if (value_ptr) *value_ptr = thread.arg;
|
||||
return 0;
|
||||
case WAIT_ABANDONED:
|
||||
return EINVAL;
|
||||
|
|
|
@ -23,8 +23,7 @@ extern "C" {
|
|||
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
|
||||
|
||||
/**
|
||||
* Windows minimalist Pthread Wrapper, based on :
|
||||
* http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
|
||||
* Windows minimalist Pthread Wrapper
|
||||
*/
|
||||
#ifdef WINVER
|
||||
# undef WINVER
|
||||
|
@ -62,16 +61,12 @@ extern "C" {
|
|||
#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
|
||||
|
||||
/* ZSTD_pthread_create() and ZSTD_pthread_join() */
|
||||
typedef struct {
|
||||
HANDLE handle;
|
||||
void* (*start_routine)(void*);
|
||||
void* arg;
|
||||
} ZSTD_pthread_t;
|
||||
typedef HANDLE ZSTD_pthread_t;
|
||||
|
||||
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
|
||||
void* (*start_routine) (void*), void* arg);
|
||||
|
||||
int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
|
||||
int ZSTD_pthread_join(ZSTD_pthread_t thread);
|
||||
|
||||
/**
|
||||
* add here more wrappers as required
|
||||
|
@ -99,7 +94,7 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
|
|||
|
||||
#define ZSTD_pthread_t pthread_t
|
||||
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
|
||||
#define ZSTD_pthread_join(a, b) pthread_join((a),(b))
|
||||
#define ZSTD_pthread_join(a) pthread_join((a),NULL)
|
||||
|
||||
#else /* DEBUGLEVEL >= 1 */
|
||||
|
||||
|
@ -124,7 +119,7 @@ int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond);
|
|||
|
||||
#define ZSTD_pthread_t pthread_t
|
||||
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
|
||||
#define ZSTD_pthread_join(a, b) pthread_join((a),(b))
|
||||
#define ZSTD_pthread_join(a) pthread_join((a),NULL)
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
/*
|
||||
* xxHash - Fast Hash algorithm
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - xxHash homepage: http://www.xxhash.com
|
||||
* - xxHash homepage: https://cyan4973.github.io/xxHash/
|
||||
* - xxHash source repository : https://github.com/Cyan4973/xxHash
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
/*
|
||||
* xxHash - Fast Hash algorithm
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - xxHash homepage: http://www.xxhash.com
|
||||
* - xxHash homepage: https://cyan4973.github.io/xxHash/
|
||||
* - xxHash source repository : https://github.com/Cyan4973/xxHash
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -1314,7 +1314,7 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
|
|||
* care, as what works on one compiler/platform/optimization level may cause
|
||||
* another to read garbage data or even crash.
|
||||
*
|
||||
* See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
|
||||
* See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
|
||||
*
|
||||
* Prefer these methods in priority order (0 > 3 > 1 > 2)
|
||||
*/
|
||||
|
@ -1534,7 +1534,7 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_
|
|||
* @brief Used to prevent unwanted optimizations for @p var.
|
||||
*
|
||||
* It uses an empty GCC inline assembly statement with a register constraint
|
||||
* which forces @p var into a general purpose register (eg eax, ebx, ecx
|
||||
* which forces @p var into a general purpose register (e.g. eax, ebx, ecx
|
||||
* on x86) and marks it as modified.
|
||||
*
|
||||
* This is used in a few places to avoid unwanted autovectorization (e.g.
|
||||
|
@ -1655,7 +1655,7 @@ static xxh_u32 XXH_read32(const void* ptr)
|
|||
|
||||
/*
|
||||
* Portable and safe solution. Generally efficient.
|
||||
* see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
|
||||
* see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
|
||||
*/
|
||||
static xxh_u32 XXH_read32(const void* memPtr)
|
||||
{
|
||||
|
@ -2296,7 +2296,7 @@ static xxh_u64 XXH_read64(const void* ptr)
|
|||
|
||||
/*
|
||||
* Portable and safe solution. Generally efficient.
|
||||
* see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
|
||||
* see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
|
||||
*/
|
||||
static xxh_u64 XXH_read64(const void* memPtr)
|
||||
{
|
||||
|
@ -2809,7 +2809,7 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
|
|||
* @ingroup tuning
|
||||
* @brief Selects the minimum alignment for XXH3's accumulators.
|
||||
*
|
||||
* When using SIMD, this should match the alignment reqired for said vector
|
||||
* When using SIMD, this should match the alignment required for said vector
|
||||
* type, so, for example, 32 for AVX2.
|
||||
*
|
||||
* Default: Auto detected.
|
||||
|
@ -3026,7 +3026,7 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
|
|||
* have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions,
|
||||
* you are only using 2/3 of the CPU bandwidth.
|
||||
*
|
||||
* This is even more noticable on the more advanced cores like the A76 which
|
||||
* This is even more noticeable on the more advanced cores like the A76 which
|
||||
* can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
|
||||
*
|
||||
* Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -14,7 +14,6 @@
|
|||
* Dependencies
|
||||
***************************************/
|
||||
#define ZSTD_DEPS_NEED_MALLOC
|
||||
#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
|
||||
#include "error_private.h"
|
||||
#include "zstd_internal.h"
|
||||
|
||||
|
@ -47,37 +46,3 @@ ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
|
|||
/*! ZSTD_getErrorString() :
|
||||
* provides error code string from enum */
|
||||
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
|
||||
|
||||
|
||||
|
||||
/*=**************************************************************
|
||||
* Custom allocator
|
||||
****************************************************************/
|
||||
void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem)
|
||||
{
|
||||
if (customMem.customAlloc)
|
||||
return customMem.customAlloc(customMem.opaque, size);
|
||||
return ZSTD_malloc(size);
|
||||
}
|
||||
|
||||
void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem)
|
||||
{
|
||||
if (customMem.customAlloc) {
|
||||
/* calloc implemented as malloc+memset;
|
||||
* not as efficient as calloc, but next best guess for custom malloc */
|
||||
void* const ptr = customMem.customAlloc(customMem.opaque, size);
|
||||
ZSTD_memset(ptr, 0, size);
|
||||
return ptr;
|
||||
}
|
||||
return ZSTD_calloc(1, size);
|
||||
}
|
||||
|
||||
void ZSTD_customFree(void* ptr, ZSTD_customMem customMem)
|
||||
{
|
||||
if (ptr!=NULL) {
|
||||
if (customMem.customFree)
|
||||
customMem.customFree(customMem.opaque, ptr);
|
||||
else
|
||||
ZSTD_free(ptr);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -28,7 +28,6 @@
|
|||
#include "../zstd.h"
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "fse.h"
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "huf.h"
|
||||
#ifndef XXH_STATIC_LINKING_ONLY
|
||||
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
|
||||
|
@ -93,9 +92,9 @@ typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
|
|||
#define ZSTD_FRAMECHECKSUMSIZE 4
|
||||
|
||||
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
|
||||
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
|
||||
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */) /* for a non-null block */
|
||||
#define MIN_LITERALS_FOR_4_STREAMS 6
|
||||
|
||||
#define HufLog 12
|
||||
typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
|
||||
|
||||
#define LONGNBSEQ 0x7F00
|
||||
|
@ -103,6 +102,7 @@ typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingTy
|
|||
#define MINMATCH 3
|
||||
|
||||
#define Litbits 8
|
||||
#define LitHufLog 11
|
||||
#define MaxLit ((1<<Litbits) - 1)
|
||||
#define MaxML 52
|
||||
#define MaxLL 35
|
||||
|
@ -113,6 +113,8 @@ typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingTy
|
|||
#define LLFSELog 9
|
||||
#define OffFSELog 8
|
||||
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
|
||||
#define MaxMLBits 16
|
||||
#define MaxLLBits 16
|
||||
|
||||
#define ZSTD_MAX_HUF_HEADER_SIZE 128 /* header + <= 127 byte tree description */
|
||||
/* Each table cannot take more than #symbols * FSELog bits */
|
||||
|
@ -235,12 +237,6 @@ void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e
|
|||
* one COPY16() in the first call. Then, do two calls per loop since
|
||||
* at that point it is more likely to have a high trip count.
|
||||
*/
|
||||
#ifdef __aarch64__
|
||||
do {
|
||||
COPY16(op, ip);
|
||||
}
|
||||
while (op < oend);
|
||||
#else
|
||||
ZSTD_copy16(op, ip);
|
||||
if (16 >= length) return;
|
||||
op += 16;
|
||||
|
@ -250,7 +246,6 @@ void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e
|
|||
COPY16(op, ip);
|
||||
}
|
||||
while (op < oend);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -299,11 +294,11 @@ typedef enum {
|
|||
typedef struct {
|
||||
seqDef* sequencesStart;
|
||||
seqDef* sequences; /* ptr to end of sequences */
|
||||
BYTE* litStart;
|
||||
BYTE* lit; /* ptr to end of literals */
|
||||
BYTE* llCode;
|
||||
BYTE* mlCode;
|
||||
BYTE* ofCode;
|
||||
BYTE* litStart;
|
||||
BYTE* lit; /* ptr to end of literals */
|
||||
BYTE* llCode;
|
||||
BYTE* mlCode;
|
||||
BYTE* ofCode;
|
||||
size_t maxNbSeq;
|
||||
size_t maxNbLit;
|
||||
|
||||
|
@ -311,8 +306,8 @@ typedef struct {
|
|||
* in the seqStore that has a value larger than U16 (if it exists). To do so, we increment
|
||||
* the existing value of the litLength or matchLength by 0x10000.
|
||||
*/
|
||||
ZSTD_longLengthType_e longLengthType;
|
||||
U32 longLengthPos; /* Index of the sequence to apply long length modification to */
|
||||
ZSTD_longLengthType_e longLengthType;
|
||||
U32 longLengthPos; /* Index of the sequence to apply long length modification to */
|
||||
} seqStore_t;
|
||||
|
||||
typedef struct {
|
||||
|
@ -331,10 +326,10 @@ MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore
|
|||
seqLen.matchLength = seq->mlBase + MINMATCH;
|
||||
if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) {
|
||||
if (seqStore->longLengthType == ZSTD_llt_literalLength) {
|
||||
seqLen.litLength += 0xFFFF;
|
||||
seqLen.litLength += 0x10000;
|
||||
}
|
||||
if (seqStore->longLengthType == ZSTD_llt_matchLength) {
|
||||
seqLen.matchLength += 0xFFFF;
|
||||
seqLen.matchLength += 0x10000;
|
||||
}
|
||||
}
|
||||
return seqLen;
|
||||
|
@ -347,109 +342,13 @@ MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore
|
|||
* `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
|
||||
*/
|
||||
typedef struct {
|
||||
size_t nbBlocks;
|
||||
size_t compressedSize;
|
||||
unsigned long long decompressedBound;
|
||||
} ZSTD_frameSizeInfo; /* decompress & legacy */
|
||||
|
||||
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
|
||||
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
|
||||
|
||||
/* custom memory allocation functions */
|
||||
void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem);
|
||||
void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem);
|
||||
void ZSTD_customFree(void* ptr, ZSTD_customMem customMem);
|
||||
|
||||
|
||||
MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
|
||||
{
|
||||
assert(val != 0);
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
# if STATIC_BMI2 == 1
|
||||
return _lzcnt_u32(val)^31;
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanReverse(&r, val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
|
||||
return __builtin_clz (val) ^ 31;
|
||||
# elif defined(__ICCARM__) /* IAR Intrinsic */
|
||||
return 31 - __CLZ(val);
|
||||
# else /* Software version */
|
||||
static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
|
||||
U32 v = val;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
return DeBruijnClz[(v * 0x07C4ACDDU) >> 27];
|
||||
# endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Counts the number of trailing zeros of a `size_t`.
|
||||
* Most compilers should support CTZ as a builtin. A backup
|
||||
* implementation is provided if the builtin isn't supported, but
|
||||
* it may not be terribly efficient.
|
||||
*/
|
||||
MEM_STATIC unsigned ZSTD_countTrailingZeros(size_t val)
|
||||
{
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
# if STATIC_BMI2
|
||||
return _tzcnt_u64(val);
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward64(&r, (U64)val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return __builtin_ctzll((U64)val);
|
||||
# else
|
||||
static const int DeBruijnBytePos[64] = { 0, 1, 2, 7, 3, 13, 8, 19,
|
||||
4, 25, 14, 28, 9, 34, 20, 56,
|
||||
5, 17, 26, 54, 15, 41, 29, 43,
|
||||
10, 31, 38, 35, 21, 45, 49, 57,
|
||||
63, 6, 12, 18, 24, 27, 33, 55,
|
||||
16, 53, 40, 42, 30, 37, 44, 48,
|
||||
62, 11, 23, 32, 52, 39, 36, 47,
|
||||
61, 22, 51, 46, 60, 50, 59, 58 };
|
||||
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward(&r, (U32)val);
|
||||
return (unsigned)r;
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return __builtin_ctz((U32)val);
|
||||
# else
|
||||
static const int DeBruijnBytePos[32] = { 0, 1, 28, 2, 29, 14, 24, 3,
|
||||
30, 22, 20, 15, 25, 17, 4, 8,
|
||||
31, 27, 13, 23, 21, 19, 16, 7,
|
||||
26, 12, 18, 6, 11, 5, 10, 9 };
|
||||
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
||||
# endif
|
||||
}
|
||||
}
|
||||
int ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
|
||||
|
||||
|
||||
/* ZSTD_invalidateRepCodes() :
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -21,13 +21,13 @@ extern "C" {
|
|||
* For now, enable conservatively:
|
||||
* - Only GNUC
|
||||
* - Only ELF
|
||||
* - Only x86-64 and i386
|
||||
* - Only x86-64, i386 and aarch64
|
||||
* Also, explicitly disable on platforms known not to work so they aren't
|
||||
* forgotten in the future.
|
||||
*/
|
||||
#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && \
|
||||
defined(__GNUC__) && defined(__ELF__) && \
|
||||
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86)) && \
|
||||
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86) || defined(__aarch64__)) && \
|
||||
!defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \
|
||||
!defined(__CYGWIN__) && !defined(_AIX)
|
||||
# define ZSTD_HAVE_WEAK_SYMBOLS 1
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* ******************************************************************
|
||||
* FSE : Finite State Entropy encoder
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -26,6 +26,7 @@
|
|||
#define ZSTD_DEPS_NEED_MALLOC
|
||||
#define ZSTD_DEPS_NEED_MATH64
|
||||
#include "../common/zstd_deps.h" /* ZSTD_malloc, ZSTD_free, ZSTD_memcpy, ZSTD_memset */
|
||||
#include "../common/bits.h" /* ZSTD_highbit32 */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
|
@ -90,7 +91,7 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
|
|||
assert(tableLog < 16); /* required for threshold strategy to work */
|
||||
|
||||
/* For explanations on how to distribute symbol values over the table :
|
||||
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
|
||||
* https://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
|
||||
|
||||
#ifdef __clang_analyzer__
|
||||
ZSTD_memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
|
||||
|
@ -191,7 +192,7 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
|
|||
break;
|
||||
default :
|
||||
assert(normalizedCounter[s] > 1);
|
||||
{ U32 const maxBitsOut = tableLog - BIT_highbit32 ((U32)normalizedCounter[s]-1);
|
||||
{ U32 const maxBitsOut = tableLog - ZSTD_highbit32 ((U32)normalizedCounter[s]-1);
|
||||
U32 const minStatePlus = (U32)normalizedCounter[s] << maxBitsOut;
|
||||
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
|
||||
symbolTT[s].deltaFindState = (int)(total - (unsigned)normalizedCounter[s]);
|
||||
|
@ -342,21 +343,11 @@ size_t FSE_writeNCount (void* buffer, size_t bufferSize,
|
|||
* FSE Compression Code
|
||||
****************************************************************/
|
||||
|
||||
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
size_t size;
|
||||
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
|
||||
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
|
||||
return (FSE_CTable*)ZSTD_malloc(size);
|
||||
}
|
||||
|
||||
void FSE_freeCTable (FSE_CTable* ct) { ZSTD_free(ct); }
|
||||
|
||||
/* provides the minimum logSize to safely represent a distribution */
|
||||
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
|
||||
{
|
||||
U32 minBitsSrc = BIT_highbit32((U32)(srcSize)) + 1;
|
||||
U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
|
||||
U32 minBitsSrc = ZSTD_highbit32((U32)(srcSize)) + 1;
|
||||
U32 minBitsSymbols = ZSTD_highbit32(maxSymbolValue) + 2;
|
||||
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
|
||||
assert(srcSize > 1); /* Not supported, RLE should be used instead */
|
||||
return minBits;
|
||||
|
@ -364,7 +355,7 @@ static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
|
|||
|
||||
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
|
||||
{
|
||||
U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
|
||||
U32 maxBitsSrc = ZSTD_highbit32((U32)(srcSize - 1)) - minus;
|
||||
U32 tableLog = maxTableLog;
|
||||
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
|
||||
assert(srcSize > 1); /* Not supported, RLE should be used instead */
|
||||
|
@ -532,40 +523,6 @@ size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
|
|||
return tableLog;
|
||||
}
|
||||
|
||||
|
||||
/* fake FSE_CTable, for raw (uncompressed) input */
|
||||
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
|
||||
{
|
||||
const unsigned tableSize = 1 << nbBits;
|
||||
const unsigned tableMask = tableSize - 1;
|
||||
const unsigned maxSymbolValue = tableMask;
|
||||
void* const ptr = ct;
|
||||
U16* const tableU16 = ( (U16*) ptr) + 2;
|
||||
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
|
||||
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
|
||||
unsigned s;
|
||||
|
||||
/* Sanity checks */
|
||||
if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
||||
|
||||
/* header */
|
||||
tableU16[-2] = (U16) nbBits;
|
||||
tableU16[-1] = (U16) maxSymbolValue;
|
||||
|
||||
/* Build table */
|
||||
for (s=0; s<tableSize; s++)
|
||||
tableU16[s] = (U16)(tableSize + s);
|
||||
|
||||
/* Build Symbol Transformation Table */
|
||||
{ const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
symbolTT[s].deltaNbBits = deltaNbBits;
|
||||
symbolTT[s].deltaFindState = s-1;
|
||||
} }
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* fake FSE_CTable, for rle input (always same symbol) */
|
||||
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
|
||||
{
|
||||
|
@ -664,78 +621,4 @@ size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
|
|||
|
||||
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
|
||||
|
||||
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
|
||||
/* FSE_compress_wksp() :
|
||||
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
|
||||
* `wkspSize` size must be `(1<<tableLog)`.
|
||||
*/
|
||||
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* op = ostart;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
|
||||
unsigned count[FSE_MAX_SYMBOL_VALUE+1];
|
||||
S16 norm[FSE_MAX_SYMBOL_VALUE+1];
|
||||
FSE_CTable* CTable = (FSE_CTable*)workSpace;
|
||||
size_t const CTableSize = FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue);
|
||||
void* scratchBuffer = (void*)(CTable + CTableSize);
|
||||
size_t const scratchBufferSize = wkspSize - (CTableSize * sizeof(FSE_CTable));
|
||||
|
||||
/* init conditions */
|
||||
if (wkspSize < FSE_COMPRESS_WKSP_SIZE_U32(tableLog, maxSymbolValue)) return ERROR(tableLog_tooLarge);
|
||||
if (srcSize <= 1) return 0; /* Not compressible */
|
||||
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
|
||||
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
|
||||
|
||||
/* Scan input and build symbol stats */
|
||||
{ CHECK_V_F(maxCount, HIST_count_wksp(count, &maxSymbolValue, src, srcSize, scratchBuffer, scratchBufferSize) );
|
||||
if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
|
||||
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
|
||||
if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
|
||||
}
|
||||
|
||||
tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
|
||||
CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue, /* useLowProbCount */ srcSize >= 2048) );
|
||||
|
||||
/* Write table description header */
|
||||
{ CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
|
||||
op += nc_err;
|
||||
}
|
||||
|
||||
/* Compress */
|
||||
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) );
|
||||
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) );
|
||||
if (cSize == 0) return 0; /* not enough space for compressed data */
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
/* check compressibility */
|
||||
if ( (size_t)(op-ostart) >= srcSize-1 ) return 0;
|
||||
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
FSE_CTable CTable_max[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
|
||||
union {
|
||||
U32 hist_wksp[HIST_WKSP_SIZE_U32];
|
||||
BYTE scratchBuffer[1 << FSE_MAX_TABLELOG];
|
||||
} workspace;
|
||||
} fseWkspMax_t;
|
||||
|
||||
size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
fseWkspMax_t scratchBuffer;
|
||||
DEBUG_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_COMPRESS_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
||||
return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer));
|
||||
}
|
||||
|
||||
size_t FSE_compress (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
return FSE_compress2(dst, dstCapacity, src, srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* FSE_COMMONDEFS_ONLY */
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* hist : Histogram functions
|
||||
* part of Finite State Entropy project
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/* ******************************************************************
|
||||
* hist : Histogram functions
|
||||
* part of Finite State Entropy project
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* ******************************************************************
|
||||
* Huffman encoder, part of New Generation Entropy library
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
|
@ -29,9 +29,9 @@
|
|||
#include "hist.h"
|
||||
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
|
||||
#include "../common/fse.h" /* header compression */
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "../common/huf.h"
|
||||
#include "../common/error_private.h"
|
||||
#include "../common/bits.h" /* ZSTD_highbit32 */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
|
@ -42,13 +42,67 @@
|
|||
|
||||
|
||||
/* **************************************************************
|
||||
* Utils
|
||||
* Required declarations
|
||||
****************************************************************/
|
||||
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
|
||||
typedef struct nodeElt_s {
|
||||
U32 count;
|
||||
U16 parent;
|
||||
BYTE byte;
|
||||
BYTE nbBits;
|
||||
} nodeElt;
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Debug Traces
|
||||
****************************************************************/
|
||||
|
||||
#if DEBUGLEVEL >= 2
|
||||
|
||||
static size_t showU32(const U32* arr, size_t size)
|
||||
{
|
||||
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
|
||||
size_t u;
|
||||
for (u=0; u<size; u++) {
|
||||
RAWLOG(6, " %u", arr[u]); (void)arr;
|
||||
}
|
||||
RAWLOG(6, " \n");
|
||||
return size;
|
||||
}
|
||||
|
||||
static size_t HUF_getNbBits(HUF_CElt elt);
|
||||
|
||||
static size_t showCTableBits(const HUF_CElt* ctable, size_t size)
|
||||
{
|
||||
size_t u;
|
||||
for (u=0; u<size; u++) {
|
||||
RAWLOG(6, " %zu", HUF_getNbBits(ctable[u])); (void)ctable;
|
||||
}
|
||||
RAWLOG(6, " \n");
|
||||
return size;
|
||||
|
||||
}
|
||||
|
||||
static size_t showHNodeSymbols(const nodeElt* hnode, size_t size)
|
||||
{
|
||||
size_t u;
|
||||
for (u=0; u<size; u++) {
|
||||
RAWLOG(6, " %u", hnode[u].byte); (void)hnode;
|
||||
}
|
||||
RAWLOG(6, " \n");
|
||||
return size;
|
||||
}
|
||||
|
||||
static size_t showHNodeBits(const nodeElt* hnode, size_t size)
|
||||
{
|
||||
size_t u;
|
||||
for (u=0; u<size; u++) {
|
||||
RAWLOG(6, " %u", hnode[u].nbBits); (void)hnode;
|
||||
}
|
||||
RAWLOG(6, " \n");
|
||||
return size;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/* *******************************************************
|
||||
* HUF : Huffman block compression
|
||||
|
@ -89,7 +143,10 @@ typedef struct {
|
|||
S16 norm[HUF_TABLELOG_MAX+1];
|
||||
} HUF_CompressWeightsWksp;
|
||||
|
||||
static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
|
||||
static size_t
|
||||
HUF_compressWeights(void* dst, size_t dstSize,
|
||||
const void* weightTable, size_t wtSize,
|
||||
void* workspace, size_t workspaceSize)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* op = ostart;
|
||||
|
@ -140,7 +197,7 @@ static size_t HUF_getNbBitsFast(HUF_CElt elt)
|
|||
|
||||
static size_t HUF_getValue(HUF_CElt elt)
|
||||
{
|
||||
return elt & ~0xFF;
|
||||
return elt & ~(size_t)0xFF;
|
||||
}
|
||||
|
||||
static size_t HUF_getValueFast(HUF_CElt elt)
|
||||
|
@ -178,6 +235,8 @@ size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
|
|||
U32 n;
|
||||
HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
|
||||
|
||||
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp));
|
||||
|
||||
/* check conditions */
|
||||
if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
|
||||
|
@ -207,16 +266,6 @@ size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
|
|||
return ((maxSymbolValue+1)/2) + 1;
|
||||
}
|
||||
|
||||
/*! HUF_writeCTable() :
|
||||
`CTable` : Huffman tree to save, using huf representation.
|
||||
@return : size of saved CTable */
|
||||
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
|
||||
const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
HUF_WriteCTableWksp wksp;
|
||||
return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
|
||||
{
|
||||
|
@ -272,68 +321,64 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
|
|||
|
||||
U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
|
||||
{
|
||||
const HUF_CElt* ct = CTable + 1;
|
||||
const HUF_CElt* const ct = CTable + 1;
|
||||
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
|
||||
return (U32)HUF_getNbBits(ct[symbolValue]);
|
||||
}
|
||||
|
||||
|
||||
typedef struct nodeElt_s {
|
||||
U32 count;
|
||||
U16 parent;
|
||||
BYTE byte;
|
||||
BYTE nbBits;
|
||||
} nodeElt;
|
||||
|
||||
/**
|
||||
* HUF_setMaxHeight():
|
||||
* Enforces maxNbBits on the Huffman tree described in huffNode.
|
||||
* Try to enforce @targetNbBits on the Huffman tree described in @huffNode.
|
||||
*
|
||||
* It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
|
||||
* the tree to so that it is a valid canonical Huffman tree.
|
||||
* It attempts to convert all nodes with nbBits > @targetNbBits
|
||||
* to employ @targetNbBits instead. Then it adjusts the tree
|
||||
* so that it remains a valid canonical Huffman tree.
|
||||
*
|
||||
* @pre The sum of the ranks of each symbol == 2^largestBits,
|
||||
* where largestBits == huffNode[lastNonNull].nbBits.
|
||||
* @post The sum of the ranks of each symbol == 2^largestBits,
|
||||
* where largestBits is the return value <= maxNbBits.
|
||||
* where largestBits is the return value (expected <= targetNbBits).
|
||||
*
|
||||
* @param huffNode The Huffman tree modified in place to enforce maxNbBits.
|
||||
* @param huffNode The Huffman tree modified in place to enforce targetNbBits.
|
||||
* It's presumed sorted, from most frequent to rarest symbol.
|
||||
* @param lastNonNull The symbol with the lowest count in the Huffman tree.
|
||||
* @param maxNbBits The maximum allowed number of bits, which the Huffman tree
|
||||
* @param targetNbBits The allowed number of bits, which the Huffman tree
|
||||
* may not respect. After this function the Huffman tree will
|
||||
* respect maxNbBits.
|
||||
* @return The maximum number of bits of the Huffman tree after adjustment,
|
||||
* necessarily no more than maxNbBits.
|
||||
* respect targetNbBits.
|
||||
* @return The maximum number of bits of the Huffman tree after adjustment.
|
||||
*/
|
||||
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
||||
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 targetNbBits)
|
||||
{
|
||||
const U32 largestBits = huffNode[lastNonNull].nbBits;
|
||||
/* early exit : no elt > maxNbBits, so the tree is already valid. */
|
||||
if (largestBits <= maxNbBits) return largestBits;
|
||||
/* early exit : no elt > targetNbBits, so the tree is already valid. */
|
||||
if (largestBits <= targetNbBits) return largestBits;
|
||||
|
||||
DEBUGLOG(5, "HUF_setMaxHeight (targetNbBits = %u)", targetNbBits);
|
||||
|
||||
/* there are several too large elements (at least >= 2) */
|
||||
{ int totalCost = 0;
|
||||
const U32 baseCost = 1 << (largestBits - maxNbBits);
|
||||
const U32 baseCost = 1 << (largestBits - targetNbBits);
|
||||
int n = (int)lastNonNull;
|
||||
|
||||
/* Adjust any ranks > maxNbBits to maxNbBits.
|
||||
/* Adjust any ranks > targetNbBits to targetNbBits.
|
||||
* Compute totalCost, which is how far the sum of the ranks is
|
||||
* we are over 2^largestBits after adjust the offending ranks.
|
||||
*/
|
||||
while (huffNode[n].nbBits > maxNbBits) {
|
||||
while (huffNode[n].nbBits > targetNbBits) {
|
||||
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
|
||||
huffNode[n].nbBits = (BYTE)maxNbBits;
|
||||
huffNode[n].nbBits = (BYTE)targetNbBits;
|
||||
n--;
|
||||
}
|
||||
/* n stops at huffNode[n].nbBits <= maxNbBits */
|
||||
assert(huffNode[n].nbBits <= maxNbBits);
|
||||
/* n end at index of smallest symbol using < maxNbBits */
|
||||
while (huffNode[n].nbBits == maxNbBits) --n;
|
||||
/* n stops at huffNode[n].nbBits <= targetNbBits */
|
||||
assert(huffNode[n].nbBits <= targetNbBits);
|
||||
/* n end at index of smallest symbol using < targetNbBits */
|
||||
while (huffNode[n].nbBits == targetNbBits) --n;
|
||||
|
||||
/* renorm totalCost from 2^largestBits to 2^maxNbBits
|
||||
/* renorm totalCost from 2^largestBits to 2^targetNbBits
|
||||
* note : totalCost is necessarily a multiple of baseCost */
|
||||
assert((totalCost & (baseCost - 1)) == 0);
|
||||
totalCost >>= (largestBits - maxNbBits);
|
||||
assert(((U32)totalCost & (baseCost - 1)) == 0);
|
||||
totalCost >>= (largestBits - targetNbBits);
|
||||
assert(totalCost > 0);
|
||||
|
||||
/* repay normalized cost */
|
||||
|
@ -342,19 +387,19 @@ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
|||
|
||||
/* Get pos of last (smallest = lowest cum. count) symbol per rank */
|
||||
ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
|
||||
{ U32 currentNbBits = maxNbBits;
|
||||
{ U32 currentNbBits = targetNbBits;
|
||||
int pos;
|
||||
for (pos=n ; pos >= 0; pos--) {
|
||||
if (huffNode[pos].nbBits >= currentNbBits) continue;
|
||||
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
|
||||
rankLast[maxNbBits-currentNbBits] = (U32)pos;
|
||||
currentNbBits = huffNode[pos].nbBits; /* < targetNbBits */
|
||||
rankLast[targetNbBits-currentNbBits] = (U32)pos;
|
||||
} }
|
||||
|
||||
while (totalCost > 0) {
|
||||
/* Try to reduce the next power of 2 above totalCost because we
|
||||
* gain back half the rank.
|
||||
*/
|
||||
U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
|
||||
U32 nBitsToDecrease = ZSTD_highbit32((U32)totalCost) + 1;
|
||||
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
|
||||
U32 const highPos = rankLast[nBitsToDecrease];
|
||||
U32 const lowPos = rankLast[nBitsToDecrease-1];
|
||||
|
@ -394,7 +439,7 @@ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
|||
rankLast[nBitsToDecrease] = noSymbol;
|
||||
else {
|
||||
rankLast[nBitsToDecrease]--;
|
||||
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
|
||||
if (huffNode[rankLast[nBitsToDecrease]].nbBits != targetNbBits-nBitsToDecrease)
|
||||
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
|
||||
}
|
||||
} /* while (totalCost > 0) */
|
||||
|
@ -406,11 +451,11 @@ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
|||
* TODO.
|
||||
*/
|
||||
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
|
||||
/* special case : no rank 1 symbol (using maxNbBits-1);
|
||||
* let's create one from largest rank 0 (using maxNbBits).
|
||||
/* special case : no rank 1 symbol (using targetNbBits-1);
|
||||
* let's create one from largest rank 0 (using targetNbBits).
|
||||
*/
|
||||
if (rankLast[1] == noSymbol) {
|
||||
while (huffNode[n].nbBits == maxNbBits) n--;
|
||||
while (huffNode[n].nbBits == targetNbBits) n--;
|
||||
huffNode[n+1].nbBits--;
|
||||
assert(n >= 0);
|
||||
rankLast[1] = (U32)(n+1);
|
||||
|
@ -424,7 +469,7 @@ static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
|||
} /* repay normalized cost */
|
||||
} /* there are several too large elements (at least >= 2) */
|
||||
|
||||
return maxNbBits;
|
||||
return targetNbBits;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
|
@ -432,7 +477,7 @@ typedef struct {
|
|||
U16 curr;
|
||||
} rankPos;
|
||||
|
||||
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
|
||||
typedef nodeElt huffNodeTable[2 * (HUF_SYMBOLVALUE_MAX + 1)];
|
||||
|
||||
/* Number of buckets available for HUF_sort() */
|
||||
#define RANK_POSITION_TABLE_SIZE 192
|
||||
|
@ -451,8 +496,8 @@ typedef struct {
|
|||
* Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
|
||||
*/
|
||||
#define RANK_POSITION_MAX_COUNT_LOG 32
|
||||
#define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
|
||||
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
|
||||
#define RANK_POSITION_LOG_BUCKETS_BEGIN ((RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */)
|
||||
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF (RANK_POSITION_LOG_BUCKETS_BEGIN + ZSTD_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */)
|
||||
|
||||
/* Return the appropriate bucket index for a given count. See definition of
|
||||
* RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
|
||||
|
@ -460,7 +505,7 @@ typedef struct {
|
|||
static U32 HUF_getIndex(U32 const count) {
|
||||
return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
|
||||
? count
|
||||
: BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
|
||||
: ZSTD_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
|
||||
}
|
||||
|
||||
/* Helper swap function for HUF_quickSortPartition() */
|
||||
|
@ -583,7 +628,7 @@ static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSy
|
|||
|
||||
/* Sort each bucket. */
|
||||
for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
|
||||
U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
|
||||
int const bucketSize = rankPosition[n].curr - rankPosition[n].base;
|
||||
U32 const bucketStartIdx = rankPosition[n].base;
|
||||
if (bucketSize > 1) {
|
||||
assert(bucketStartIdx < maxSymbolValue1);
|
||||
|
@ -594,6 +639,7 @@ static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSy
|
|||
assert(HUF_isSorted(huffNode, maxSymbolValue1));
|
||||
}
|
||||
|
||||
|
||||
/** HUF_buildCTable_wksp() :
|
||||
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
|
||||
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
|
||||
|
@ -614,6 +660,7 @@ static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
|
|||
int lowS, lowN;
|
||||
int nodeNb = STARTNODE;
|
||||
int n, nodeRoot;
|
||||
DEBUGLOG(5, "HUF_buildTree (alphabet size = %u)", maxSymbolValue + 1);
|
||||
/* init for parents */
|
||||
nonNullRank = (int)maxSymbolValue;
|
||||
while(huffNode[nonNullRank].count == 0) nonNullRank--;
|
||||
|
@ -640,6 +687,8 @@ static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
|
|||
for (n=0; n<=nonNullRank; n++)
|
||||
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
||||
|
||||
DEBUGLOG(6, "Initial distribution of bits completed (%zu sorted symbols)", showHNodeBits(huffNode, maxSymbolValue+1));
|
||||
|
||||
return nonNullRank;
|
||||
}
|
||||
|
||||
|
@ -677,28 +726,36 @@ static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, i
|
|||
CTable[0] = maxNbBits;
|
||||
}
|
||||
|
||||
size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
|
||||
size_t
|
||||
HUF_buildCTable_wksp(HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
|
||||
void* workSpace, size_t wkspSize)
|
||||
{
|
||||
HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
|
||||
HUF_buildCTable_wksp_tables* const wksp_tables =
|
||||
(HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
|
||||
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
|
||||
nodeElt* const huffNode = huffNode0+1;
|
||||
int nonNullRank;
|
||||
|
||||
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE == sizeof(HUF_buildCTable_wksp_tables));
|
||||
|
||||
DEBUGLOG(5, "HUF_buildCTable_wksp (alphabet size = %u)", maxSymbolValue+1);
|
||||
|
||||
/* safety checks */
|
||||
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
|
||||
return ERROR(workSpace_tooSmall);
|
||||
return ERROR(workSpace_tooSmall);
|
||||
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
|
||||
return ERROR(maxSymbolValue_tooLarge);
|
||||
return ERROR(maxSymbolValue_tooLarge);
|
||||
ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
|
||||
|
||||
/* sort, decreasing order */
|
||||
HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
|
||||
DEBUGLOG(6, "sorted symbols completed (%zu symbols)", showHNodeSymbols(huffNode, maxSymbolValue+1));
|
||||
|
||||
/* build tree */
|
||||
nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
|
||||
|
||||
/* enforce maxTableLog */
|
||||
/* determine and enforce maxTableLog */
|
||||
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
|
||||
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
|
||||
|
||||
|
@ -807,7 +864,7 @@ FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int id
|
|||
#if DEBUGLEVEL >= 1
|
||||
{
|
||||
size_t const nbBits = HUF_getNbBits(elt);
|
||||
size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
|
||||
size_t const dirtyBits = nbBits == 0 ? 0 : ZSTD_highbit32((U32)nbBits) + 1;
|
||||
(void)dirtyBits;
|
||||
/* Middle bits are 0. */
|
||||
assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
|
||||
|
@ -887,7 +944,7 @@ static size_t HUF_closeCStream(HUF_CStream_t* bitC)
|
|||
{
|
||||
size_t const nbBits = bitC->bitPos[0] & 0xFF;
|
||||
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
|
||||
return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
|
||||
return (size_t)(bitC->ptr - bitC->startPtr) + (nbBits > 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1048,9 +1105,9 @@ HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
|
|||
static size_t
|
||||
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable, const int bmi2)
|
||||
const HUF_CElt* CTable, const int flags)
|
||||
{
|
||||
if (bmi2) {
|
||||
if (flags & HUF_flags_bmi2) {
|
||||
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
|
||||
|
@ -1061,28 +1118,23 @@ HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
|
|||
static size_t
|
||||
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable, const int bmi2)
|
||||
const HUF_CElt* CTable, const int flags)
|
||||
{
|
||||
(void)bmi2;
|
||||
(void)flags;
|
||||
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
|
||||
{
|
||||
return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
|
||||
}
|
||||
|
||||
size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
|
||||
{
|
||||
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
|
||||
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
|
||||
}
|
||||
|
||||
static size_t
|
||||
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable, int bmi2)
|
||||
const HUF_CElt* CTable, int flags)
|
||||
{
|
||||
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
|
@ -1096,7 +1148,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
|||
op += 6; /* jumpTable */
|
||||
|
||||
assert(op <= oend);
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
|
||||
if (cSize == 0 || cSize > 65535) return 0;
|
||||
MEM_writeLE16(ostart, (U16)cSize);
|
||||
op += cSize;
|
||||
|
@ -1104,7 +1156,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
|||
|
||||
ip += segmentSize;
|
||||
assert(op <= oend);
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
|
||||
if (cSize == 0 || cSize > 65535) return 0;
|
||||
MEM_writeLE16(ostart+2, (U16)cSize);
|
||||
op += cSize;
|
||||
|
@ -1112,7 +1164,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
|||
|
||||
ip += segmentSize;
|
||||
assert(op <= oend);
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
|
||||
if (cSize == 0 || cSize > 65535) return 0;
|
||||
MEM_writeLE16(ostart+4, (U16)cSize);
|
||||
op += cSize;
|
||||
|
@ -1121,7 +1173,7 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
|||
ip += segmentSize;
|
||||
assert(op <= oend);
|
||||
assert(ip <= iend);
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, flags) );
|
||||
if (cSize == 0 || cSize > 65535) return 0;
|
||||
op += cSize;
|
||||
}
|
||||
|
@ -1129,14 +1181,9 @@ HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
|||
return (size_t)(op-ostart);
|
||||
}
|
||||
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
|
||||
{
|
||||
return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
|
||||
}
|
||||
|
||||
size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
|
||||
{
|
||||
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
|
||||
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
|
||||
}
|
||||
|
||||
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
|
||||
|
@ -1144,11 +1191,11 @@ typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
|
|||
static size_t HUF_compressCTable_internal(
|
||||
BYTE* const ostart, BYTE* op, BYTE* const oend,
|
||||
const void* src, size_t srcSize,
|
||||
HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
|
||||
HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int flags)
|
||||
{
|
||||
size_t const cSize = (nbStreams==HUF_singleStream) ?
|
||||
HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
|
||||
HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
|
||||
HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags) :
|
||||
HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags);
|
||||
if (HUF_isError(cSize)) { return cSize; }
|
||||
if (cSize==0) { return 0; } /* uncompressible */
|
||||
op += cSize;
|
||||
|
@ -1171,6 +1218,79 @@ typedef struct {
|
|||
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
|
||||
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */
|
||||
|
||||
unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue)
|
||||
{
|
||||
unsigned cardinality = 0;
|
||||
unsigned i;
|
||||
|
||||
for (i = 0; i < maxSymbolValue + 1; i++) {
|
||||
if (count[i] != 0) cardinality += 1;
|
||||
}
|
||||
|
||||
return cardinality;
|
||||
}
|
||||
|
||||
unsigned HUF_minTableLog(unsigned symbolCardinality)
|
||||
{
|
||||
U32 minBitsSymbols = ZSTD_highbit32(symbolCardinality) + 1;
|
||||
return minBitsSymbols;
|
||||
}
|
||||
|
||||
unsigned HUF_optimalTableLog(
|
||||
unsigned maxTableLog,
|
||||
size_t srcSize,
|
||||
unsigned maxSymbolValue,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* table,
|
||||
const unsigned* count,
|
||||
int flags)
|
||||
{
|
||||
assert(srcSize > 1); /* Not supported, RLE should be used instead */
|
||||
assert(wkspSize >= sizeof(HUF_buildCTable_wksp_tables));
|
||||
|
||||
if (!(flags & HUF_flags_optimalDepth)) {
|
||||
/* cheap evaluation, based on FSE */
|
||||
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
|
||||
}
|
||||
|
||||
{ BYTE* dst = (BYTE*)workSpace + sizeof(HUF_WriteCTableWksp);
|
||||
size_t dstSize = wkspSize - sizeof(HUF_WriteCTableWksp);
|
||||
size_t maxBits, hSize, newSize;
|
||||
const unsigned symbolCardinality = HUF_cardinality(count, maxSymbolValue);
|
||||
const unsigned minTableLog = HUF_minTableLog(symbolCardinality);
|
||||
size_t optSize = ((size_t) ~0) - 1;
|
||||
unsigned optLog = maxTableLog, optLogGuess;
|
||||
|
||||
DEBUGLOG(6, "HUF_optimalTableLog: probing huf depth (srcSize=%zu)", srcSize);
|
||||
|
||||
/* Search until size increases */
|
||||
for (optLogGuess = minTableLog; optLogGuess <= maxTableLog; optLogGuess++) {
|
||||
DEBUGLOG(7, "checking for huffLog=%u", optLogGuess);
|
||||
maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize);
|
||||
if (ERR_isError(maxBits)) continue;
|
||||
|
||||
if (maxBits < optLogGuess && optLogGuess > minTableLog) break;
|
||||
|
||||
hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize);
|
||||
|
||||
if (ERR_isError(hSize)) continue;
|
||||
|
||||
newSize = HUF_estimateCompressedSize(table, count, maxSymbolValue) + hSize;
|
||||
|
||||
if (newSize > optSize + 1) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (newSize < optSize) {
|
||||
optSize = newSize;
|
||||
optLog = optLogGuess;
|
||||
}
|
||||
}
|
||||
assert(optLog <= HUF_TABLELOG_MAX);
|
||||
return optLog;
|
||||
}
|
||||
}
|
||||
|
||||
/* HUF_compress_internal() :
|
||||
* `workSpace_align4` must be aligned on 4-bytes boundaries,
|
||||
* and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
|
||||
|
@ -1180,14 +1300,14 @@ HUF_compress_internal (void* dst, size_t dstSize,
|
|||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
HUF_nbStreams_e nbStreams,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
|
||||
const int bmi2, unsigned suspectUncompressible)
|
||||
HUF_CElt* oldHufTable, HUF_repeat* repeat, int flags)
|
||||
{
|
||||
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
BYTE* op = ostart;
|
||||
|
||||
DEBUGLOG(5, "HUF_compress_internal (srcSize=%zu)", srcSize);
|
||||
HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
|
||||
|
||||
/* checks & inits */
|
||||
|
@ -1201,16 +1321,17 @@ HUF_compress_internal (void* dst, size_t dstSize,
|
|||
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
|
||||
|
||||
/* Heuristic : If old table is valid, use it for small inputs */
|
||||
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
|
||||
if ((flags & HUF_flags_preferRepeat) && repeat && *repeat == HUF_repeat_valid) {
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
nbStreams, oldHufTable, bmi2);
|
||||
nbStreams, oldHufTable, flags);
|
||||
}
|
||||
|
||||
/* If uncompressible data is suspected, do a smaller sampling first */
|
||||
DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
|
||||
if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
|
||||
if ((flags & HUF_flags_suspectUncompressible) && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
|
||||
size_t largestTotal = 0;
|
||||
DEBUGLOG(5, "input suspected incompressible : sampling to check");
|
||||
{ unsigned maxSymbolValueBegin = maxSymbolValue;
|
||||
CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
|
||||
largestTotal += largestBegin;
|
||||
|
@ -1227,6 +1348,7 @@ HUF_compress_internal (void* dst, size_t dstSize,
|
|||
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
|
||||
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
|
||||
}
|
||||
DEBUGLOG(6, "histogram detail completed (%zu symbols)", showU32(table->count, maxSymbolValue+1));
|
||||
|
||||
/* Check validity of previous table */
|
||||
if ( repeat
|
||||
|
@ -1235,19 +1357,20 @@ HUF_compress_internal (void* dst, size_t dstSize,
|
|||
*repeat = HUF_repeat_none;
|
||||
}
|
||||
/* Heuristic : use existing table for small inputs */
|
||||
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
|
||||
if ((flags & HUF_flags_preferRepeat) && repeat && *repeat != HUF_repeat_none) {
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
nbStreams, oldHufTable, bmi2);
|
||||
nbStreams, oldHufTable, flags);
|
||||
}
|
||||
|
||||
/* Build Huffman Tree */
|
||||
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
|
||||
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, &table->wksps, sizeof(table->wksps), table->CTable, table->count, flags);
|
||||
{ size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
|
||||
maxSymbolValue, huffLog,
|
||||
&table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
|
||||
CHECK_F(maxBits);
|
||||
huffLog = (U32)maxBits;
|
||||
DEBUGLOG(6, "bit distribution completed (%zu symbols)", showCTableBits(table->CTable + 1, maxSymbolValue+1));
|
||||
}
|
||||
/* Zero unused symbols in CTable, so we can check it for validity */
|
||||
{
|
||||
|
@ -1266,7 +1389,7 @@ HUF_compress_internal (void* dst, size_t dstSize,
|
|||
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
nbStreams, oldHufTable, bmi2);
|
||||
nbStreams, oldHufTable, flags);
|
||||
} }
|
||||
|
||||
/* Use the new huffman table */
|
||||
|
@ -1278,46 +1401,20 @@ HUF_compress_internal (void* dst, size_t dstSize,
|
|||
}
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
nbStreams, table->CTable, bmi2);
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, HUF_singleStream,
|
||||
workSpace, wkspSize,
|
||||
NULL, NULL, 0, 0 /*bmi2*/, 0);
|
||||
nbStreams, table->CTable, flags);
|
||||
}
|
||||
|
||||
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
|
||||
int bmi2, unsigned suspectUncompressible)
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
|
||||
{
|
||||
DEBUGLOG(5, "HUF_compress1X_repeat (srcSize = %zu)", srcSize);
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, HUF_singleStream,
|
||||
workSpace, wkspSize, hufTable,
|
||||
repeat, preferRepeat, bmi2, suspectUncompressible);
|
||||
}
|
||||
|
||||
/* HUF_compress4X_repeat():
|
||||
* compress input using 4 streams.
|
||||
* provide workspace to generate compression tables */
|
||||
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, HUF_fourStreams,
|
||||
workSpace, wkspSize,
|
||||
NULL, NULL, 0, 0 /*bmi2*/, 0);
|
||||
repeat, flags);
|
||||
}
|
||||
|
||||
/* HUF_compress4X_repeat():
|
||||
|
@ -1328,43 +1425,11 @@ size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
|
|||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
|
||||
{
|
||||
DEBUGLOG(5, "HUF_compress4X_repeat (srcSize = %zu)", srcSize);
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, HUF_fourStreams,
|
||||
workSpace, wkspSize,
|
||||
hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
|
||||
hufTable, repeat, flags);
|
||||
}
|
||||
|
||||
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
|
||||
/** HUF_buildCTable() :
|
||||
* @return : maxNbBits
|
||||
* Note : count is used before tree is written, so they can safely overlap
|
||||
*/
|
||||
size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
|
||||
{
|
||||
HUF_buildCTable_wksp_tables workspace;
|
||||
return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
|
||||
}
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
U64 workSpace[HUF_WORKSPACE_SIZE_U64];
|
||||
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
|
||||
}
|
||||
|
||||
size_t HUF_compress2 (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
U64 workSpace[HUF_WORKSPACE_SIZE_U64];
|
||||
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
|
||||
}
|
||||
|
||||
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
||||
{
|
||||
return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
|
||||
}
|
||||
#endif
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -23,6 +23,7 @@
|
|||
#ifdef ZSTD_MULTITHREAD
|
||||
# include "zstdmt_compress.h"
|
||||
#endif
|
||||
#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_NbCommonBytes */
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
|
@ -117,12 +118,13 @@ typedef struct {
|
|||
/** ZSTD_buildBlockEntropyStats() :
|
||||
* Builds entropy for the block.
|
||||
* @return : 0 on success or error code */
|
||||
size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
|
||||
const ZSTD_entropyCTables_t* prevEntropy,
|
||||
ZSTD_entropyCTables_t* nextEntropy,
|
||||
const ZSTD_CCtx_params* cctxParams,
|
||||
ZSTD_entropyCTablesMetadata_t* entropyMetadata,
|
||||
void* workspace, size_t wkspSize);
|
||||
size_t ZSTD_buildBlockEntropyStats(
|
||||
const seqStore_t* seqStorePtr,
|
||||
const ZSTD_entropyCTables_t* prevEntropy,
|
||||
ZSTD_entropyCTables_t* nextEntropy,
|
||||
const ZSTD_CCtx_params* cctxParams,
|
||||
ZSTD_entropyCTablesMetadata_t* entropyMetadata,
|
||||
void* workspace, size_t wkspSize);
|
||||
|
||||
/*********************************
|
||||
* Compression internals structs *
|
||||
|
@ -148,6 +150,12 @@ typedef struct {
|
|||
size_t capacity; /* The capacity starting from `seq` pointer */
|
||||
} rawSeqStore_t;
|
||||
|
||||
typedef struct {
|
||||
U32 idx; /* Index in array of ZSTD_Sequence */
|
||||
U32 posInSequence; /* Position within sequence at idx */
|
||||
size_t posInSrc; /* Number of bytes given by sequences provided so far */
|
||||
} ZSTD_sequencePosition;
|
||||
|
||||
UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
|
||||
|
||||
typedef struct {
|
||||
|
@ -218,8 +226,10 @@ struct ZSTD_matchState_t {
|
|||
U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
|
||||
|
||||
U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
|
||||
U16* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */
|
||||
BYTE* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */
|
||||
U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */
|
||||
U64 hashSalt; /* For row-based matchFinder: salts the hash for re-use of tag table */
|
||||
U32 hashSaltEntropy; /* For row-based matchFinder: collects entropy for salt generation */
|
||||
|
||||
U32* hashTable;
|
||||
U32* hashTable3;
|
||||
|
@ -234,6 +244,18 @@ struct ZSTD_matchState_t {
|
|||
const ZSTD_matchState_t* dictMatchState;
|
||||
ZSTD_compressionParameters cParams;
|
||||
const rawSeqStore_t* ldmSeqStore;
|
||||
|
||||
/* Controls prefetching in some dictMatchState matchfinders.
|
||||
* This behavior is controlled from the cctx ms.
|
||||
* This parameter has no effect in the cdict ms. */
|
||||
int prefetchCDictTables;
|
||||
|
||||
/* When == 0, lazy match finders insert every position.
|
||||
* When != 0, lazy match finders only insert positions they search.
|
||||
* This allows them to skip much faster over incompressible data,
|
||||
* at a small cost to compression ratio.
|
||||
*/
|
||||
int lazySkipping;
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
|
@ -330,6 +352,24 @@ struct ZSTD_CCtx_params_s {
|
|||
|
||||
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
|
||||
ZSTD_customMem customMem;
|
||||
|
||||
/* Controls prefetching in some dictMatchState matchfinders */
|
||||
ZSTD_paramSwitch_e prefetchCDictTables;
|
||||
|
||||
/* Controls whether zstd will fall back to an internal matchfinder
|
||||
* if the external matchfinder returns an error code. */
|
||||
int enableMatchFinderFallback;
|
||||
|
||||
/* Indicates whether an external matchfinder has been referenced.
|
||||
* Users can't set this externally.
|
||||
* It is set internally in ZSTD_registerSequenceProducer(). */
|
||||
int useSequenceProducer;
|
||||
|
||||
/* Adjust the max block size*/
|
||||
size_t maxBlockSize;
|
||||
|
||||
/* Controls repcode search in external sequence parsing */
|
||||
ZSTD_paramSwitch_e searchForExternalRepcodes;
|
||||
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
|
||||
|
||||
#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
|
||||
|
@ -361,6 +401,14 @@ typedef struct {
|
|||
ZSTD_entropyCTablesMetadata_t entropyMetadata;
|
||||
} ZSTD_blockSplitCtx;
|
||||
|
||||
/* Context for block-level external matchfinder API */
|
||||
typedef struct {
|
||||
void* mState;
|
||||
ZSTD_sequenceProducer_F* mFinder;
|
||||
ZSTD_Sequence* seqBuffer;
|
||||
size_t seqBufferCapacity;
|
||||
} ZSTD_externalMatchCtx;
|
||||
|
||||
struct ZSTD_CCtx_s {
|
||||
ZSTD_compressionStage_e stage;
|
||||
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
|
||||
|
@ -410,6 +458,7 @@ struct ZSTD_CCtx_s {
|
|||
|
||||
/* Stable in/out buffer verification */
|
||||
ZSTD_inBuffer expectedInBuffer;
|
||||
size_t stableIn_notConsumed; /* nb bytes within stable input buffer that are said to be consumed but are not */
|
||||
size_t expectedOutBufferSize;
|
||||
|
||||
/* Dictionary */
|
||||
|
@ -429,9 +478,13 @@ struct ZSTD_CCtx_s {
|
|||
|
||||
/* Workspace for block splitter */
|
||||
ZSTD_blockSplitCtx blockSplitCtx;
|
||||
|
||||
/* Workspace for external matchfinder */
|
||||
ZSTD_externalMatchCtx externalMatchCtx;
|
||||
};
|
||||
|
||||
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
|
||||
typedef enum { ZSTD_tfp_forCCtx, ZSTD_tfp_forCDict } ZSTD_tableFillPurpose_e;
|
||||
|
||||
typedef enum {
|
||||
ZSTD_noDict = 0,
|
||||
|
@ -453,7 +506,7 @@ typedef enum {
|
|||
* In this mode we take both the source size and the dictionary size
|
||||
* into account when selecting and adjusting the parameters.
|
||||
*/
|
||||
ZSTD_cpm_unknown = 3, /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
|
||||
ZSTD_cpm_unknown = 3 /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
|
||||
* We don't know what these parameters are for. We default to the legacy
|
||||
* behavior of taking both the source size and the dict size into account
|
||||
* when selecting and adjusting parameters.
|
||||
|
@ -512,9 +565,11 @@ MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
|
|||
/* ZSTD_noCompressBlock() :
|
||||
* Writes uncompressed block to dst buffer from given src.
|
||||
* Returns the size of the block */
|
||||
MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
|
||||
MEM_STATIC size_t
|
||||
ZSTD_noCompressBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
|
||||
{
|
||||
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
|
||||
DEBUGLOG(5, "ZSTD_noCompressBlock (srcSize=%zu, dstCapacity=%zu)", srcSize, dstCapacity);
|
||||
RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
|
||||
dstSize_tooSmall, "dst buf too small for uncompressed block");
|
||||
MEM_writeLE24(dst, cBlockHeader24);
|
||||
|
@ -522,7 +577,8 @@ MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const voi
|
|||
return ZSTD_blockHeaderSize + srcSize;
|
||||
}
|
||||
|
||||
MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
|
||||
MEM_STATIC size_t
|
||||
ZSTD_rleCompressBlock(void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
|
||||
{
|
||||
BYTE* const op = (BYTE*)dst;
|
||||
U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
|
||||
|
@ -541,7 +597,7 @@ MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
|
|||
{
|
||||
U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
|
||||
ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
|
||||
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
|
||||
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, (int)strat));
|
||||
return (srcSize >> minlog) + 2;
|
||||
}
|
||||
|
||||
|
@ -577,29 +633,27 @@ ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE con
|
|||
while (ip < iend) *op++ = *ip++;
|
||||
}
|
||||
|
||||
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
|
||||
#define STORE_REPCODE_1 STORE_REPCODE(1)
|
||||
#define STORE_REPCODE_2 STORE_REPCODE(2)
|
||||
#define STORE_REPCODE_3 STORE_REPCODE(3)
|
||||
#define STORE_REPCODE(r) (assert((r)>=1), assert((r)<=3), (r)-1)
|
||||
#define STORE_OFFSET(o) (assert((o)>0), o + ZSTD_REP_MOVE)
|
||||
#define STORED_IS_OFFSET(o) ((o) > ZSTD_REP_MOVE)
|
||||
#define STORED_IS_REPCODE(o) ((o) <= ZSTD_REP_MOVE)
|
||||
#define STORED_OFFSET(o) (assert(STORED_IS_OFFSET(o)), (o)-ZSTD_REP_MOVE)
|
||||
#define STORED_REPCODE(o) (assert(STORED_IS_REPCODE(o)), (o)+1) /* returns ID 1,2,3 */
|
||||
#define STORED_TO_OFFBASE(o) ((o)+1)
|
||||
#define OFFBASE_TO_STORED(o) ((o)-1)
|
||||
|
||||
#define REPCODE1_TO_OFFBASE REPCODE_TO_OFFBASE(1)
|
||||
#define REPCODE2_TO_OFFBASE REPCODE_TO_OFFBASE(2)
|
||||
#define REPCODE3_TO_OFFBASE REPCODE_TO_OFFBASE(3)
|
||||
#define REPCODE_TO_OFFBASE(r) (assert((r)>=1), assert((r)<=ZSTD_REP_NUM), (r)) /* accepts IDs 1,2,3 */
|
||||
#define OFFSET_TO_OFFBASE(o) (assert((o)>0), o + ZSTD_REP_NUM)
|
||||
#define OFFBASE_IS_OFFSET(o) ((o) > ZSTD_REP_NUM)
|
||||
#define OFFBASE_IS_REPCODE(o) ( 1 <= (o) && (o) <= ZSTD_REP_NUM)
|
||||
#define OFFBASE_TO_OFFSET(o) (assert(OFFBASE_IS_OFFSET(o)), (o) - ZSTD_REP_NUM)
|
||||
#define OFFBASE_TO_REPCODE(o) (assert(OFFBASE_IS_REPCODE(o)), (o)) /* returns ID 1,2,3 */
|
||||
|
||||
/*! ZSTD_storeSeq() :
|
||||
* Store a sequence (litlen, litPtr, offCode and matchLength) into seqStore_t.
|
||||
* @offBase_minus1 : Users should use employ macros STORE_REPCODE_X and STORE_OFFSET().
|
||||
* Store a sequence (litlen, litPtr, offBase and matchLength) into seqStore_t.
|
||||
* @offBase : Users should employ macros REPCODE_TO_OFFBASE() and OFFSET_TO_OFFBASE().
|
||||
* @matchLength : must be >= MINMATCH
|
||||
* Allowed to overread literals up to litLimit.
|
||||
* Allowed to over-read literals up to litLimit.
|
||||
*/
|
||||
HINT_INLINE UNUSED_ATTR void
|
||||
ZSTD_storeSeq(seqStore_t* seqStorePtr,
|
||||
size_t litLength, const BYTE* literals, const BYTE* litLimit,
|
||||
U32 offBase_minus1,
|
||||
U32 offBase,
|
||||
size_t matchLength)
|
||||
{
|
||||
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
|
||||
|
@ -608,8 +662,8 @@ ZSTD_storeSeq(seqStore_t* seqStorePtr,
|
|||
static const BYTE* g_start = NULL;
|
||||
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
|
||||
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
|
||||
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
|
||||
pos, (U32)litLength, (U32)matchLength, (U32)offBase_minus1);
|
||||
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offBase%7u",
|
||||
pos, (U32)litLength, (U32)matchLength, (U32)offBase);
|
||||
}
|
||||
#endif
|
||||
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
|
||||
|
@ -619,9 +673,9 @@ ZSTD_storeSeq(seqStore_t* seqStorePtr,
|
|||
assert(literals + litLength <= litLimit);
|
||||
if (litEnd <= litLimit_w) {
|
||||
/* Common case we can use wildcopy.
|
||||
* First copy 16 bytes, because literals are likely short.
|
||||
*/
|
||||
assert(WILDCOPY_OVERLENGTH >= 16);
|
||||
* First copy 16 bytes, because literals are likely short.
|
||||
*/
|
||||
ZSTD_STATIC_ASSERT(WILDCOPY_OVERLENGTH >= 16);
|
||||
ZSTD_copy16(seqStorePtr->lit, literals);
|
||||
if (litLength > 16) {
|
||||
ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
|
||||
|
@ -640,7 +694,7 @@ ZSTD_storeSeq(seqStore_t* seqStorePtr,
|
|||
seqStorePtr->sequences[0].litLength = (U16)litLength;
|
||||
|
||||
/* match offset */
|
||||
seqStorePtr->sequences[0].offBase = STORED_TO_OFFBASE(offBase_minus1);
|
||||
seqStorePtr->sequences[0].offBase = offBase;
|
||||
|
||||
/* match Length */
|
||||
assert(matchLength >= MINMATCH);
|
||||
|
@ -658,17 +712,17 @@ ZSTD_storeSeq(seqStore_t* seqStorePtr,
|
|||
|
||||
/* ZSTD_updateRep() :
|
||||
* updates in-place @rep (array of repeat offsets)
|
||||
* @offBase_minus1 : sum-type, with same numeric representation as ZSTD_storeSeq()
|
||||
* @offBase : sum-type, using numeric representation of ZSTD_storeSeq()
|
||||
*/
|
||||
MEM_STATIC void
|
||||
ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
|
||||
ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0)
|
||||
{
|
||||
if (STORED_IS_OFFSET(offBase_minus1)) { /* full offset */
|
||||
if (OFFBASE_IS_OFFSET(offBase)) { /* full offset */
|
||||
rep[2] = rep[1];
|
||||
rep[1] = rep[0];
|
||||
rep[0] = STORED_OFFSET(offBase_minus1);
|
||||
rep[0] = OFFBASE_TO_OFFSET(offBase);
|
||||
} else { /* repcode */
|
||||
U32 const repCode = STORED_REPCODE(offBase_minus1) - 1 + ll0;
|
||||
U32 const repCode = OFFBASE_TO_REPCODE(offBase) - 1 + ll0;
|
||||
if (repCode > 0) { /* note : if repCode==0, no change */
|
||||
U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
|
||||
rep[2] = (repCode >= 2) ? rep[1] : rep[2];
|
||||
|
@ -685,11 +739,11 @@ typedef struct repcodes_s {
|
|||
} repcodes_t;
|
||||
|
||||
MEM_STATIC repcodes_t
|
||||
ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
|
||||
ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0)
|
||||
{
|
||||
repcodes_t newReps;
|
||||
ZSTD_memcpy(&newReps, rep, sizeof(newReps));
|
||||
ZSTD_updateRep(newReps.rep, offBase_minus1, ll0);
|
||||
ZSTD_updateRep(newReps.rep, offBase, ll0);
|
||||
return newReps;
|
||||
}
|
||||
|
||||
|
@ -697,103 +751,6 @@ ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0
|
|||
/*-*************************************
|
||||
* Match length counter
|
||||
***************************************/
|
||||
static unsigned ZSTD_NbCommonBytes (size_t val)
|
||||
{
|
||||
if (MEM_isLittleEndian()) {
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
# if STATIC_BMI2
|
||||
return _tzcnt_u64(val) >> 3;
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward64(&r, (U64)val);
|
||||
return (unsigned)(r >> 3);
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (__builtin_ctzll((U64)val) >> 3);
|
||||
# else
|
||||
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
|
||||
0, 3, 1, 3, 1, 4, 2, 7,
|
||||
0, 2, 3, 6, 1, 5, 3, 5,
|
||||
1, 3, 4, 4, 2, 5, 6, 7,
|
||||
7, 0, 1, 2, 3, 3, 4, 6,
|
||||
2, 6, 5, 5, 3, 4, 5, 6,
|
||||
7, 1, 2, 4, 6, 4, 4, 5,
|
||||
7, 2, 6, 5, 7, 6, 7, 7 };
|
||||
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanForward(&r, (U32)val);
|
||||
return (unsigned)(r >> 3);
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return (__builtin_ctz((U32)val) >> 3);
|
||||
# else
|
||||
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
|
||||
3, 2, 2, 1, 3, 2, 0, 1,
|
||||
3, 3, 1, 2, 2, 2, 2, 0,
|
||||
3, 1, 2, 0, 1, 0, 1, 1 };
|
||||
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
||||
# endif
|
||||
}
|
||||
} else { /* Big Endian CPU */
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
# if STATIC_BMI2
|
||||
return _lzcnt_u64(val) >> 3;
|
||||
# else
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanReverse64(&r, (U64)val);
|
||||
return (unsigned)(r >> 3);
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# endif
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (__builtin_clzll(val) >> 3);
|
||||
# else
|
||||
unsigned r;
|
||||
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
|
||||
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
|
||||
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
|
||||
r += (!val);
|
||||
return r;
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
if (val != 0) {
|
||||
unsigned long r;
|
||||
_BitScanReverse(&r, (unsigned long)val);
|
||||
return (unsigned)(r >> 3);
|
||||
} else {
|
||||
/* Should not reach this code path */
|
||||
__assume(0);
|
||||
}
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return (__builtin_clz((U32)val) >> 3);
|
||||
# else
|
||||
unsigned r;
|
||||
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
|
||||
r += (!val);
|
||||
return r;
|
||||
# endif
|
||||
} }
|
||||
}
|
||||
|
||||
|
||||
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
|
||||
{
|
||||
const BYTE* const pStart = pIn;
|
||||
|
@ -839,32 +796,43 @@ ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
|
|||
* Hashes
|
||||
***************************************/
|
||||
static const U32 prime3bytes = 506832829U;
|
||||
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
|
||||
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
|
||||
static U32 ZSTD_hash3(U32 u, U32 h, U32 s) { assert(h <= 32); return (((u << (32-24)) * prime3bytes) ^ s) >> (32-h) ; }
|
||||
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h, 0); } /* only in zstd_opt.h */
|
||||
MEM_STATIC size_t ZSTD_hash3PtrS(const void* ptr, U32 h, U32 s) { return ZSTD_hash3(MEM_readLE32(ptr), h, s); }
|
||||
|
||||
static const U32 prime4bytes = 2654435761U;
|
||||
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
|
||||
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
|
||||
static U32 ZSTD_hash4(U32 u, U32 h, U32 s) { assert(h <= 32); return ((u * prime4bytes) ^ s) >> (32-h) ; }
|
||||
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_readLE32(ptr), h, 0); }
|
||||
static size_t ZSTD_hash4PtrS(const void* ptr, U32 h, U32 s) { return ZSTD_hash4(MEM_readLE32(ptr), h, s); }
|
||||
|
||||
static const U64 prime5bytes = 889523592379ULL;
|
||||
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
|
||||
static size_t ZSTD_hash5(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-40)) * prime5bytes) ^ s) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h, 0); }
|
||||
static size_t ZSTD_hash5PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash5(MEM_readLE64(p), h, s); }
|
||||
|
||||
static const U64 prime6bytes = 227718039650203ULL;
|
||||
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
|
||||
static size_t ZSTD_hash6(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-48)) * prime6bytes) ^ s) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h, 0); }
|
||||
static size_t ZSTD_hash6PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash6(MEM_readLE64(p), h, s); }
|
||||
|
||||
static const U64 prime7bytes = 58295818150454627ULL;
|
||||
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
|
||||
static size_t ZSTD_hash7(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-56)) * prime7bytes) ^ s) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h, 0); }
|
||||
static size_t ZSTD_hash7PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash7(MEM_readLE64(p), h, s); }
|
||||
|
||||
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
|
||||
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
|
||||
static size_t ZSTD_hash8(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u) * prime8bytes) ^ s) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h, 0); }
|
||||
static size_t ZSTD_hash8PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash8(MEM_readLE64(p), h, s); }
|
||||
|
||||
|
||||
MEM_STATIC FORCE_INLINE_ATTR
|
||||
size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
|
||||
{
|
||||
/* Although some of these hashes do support hBits up to 64, some do not.
|
||||
* To be on the safe side, always avoid hBits > 32. */
|
||||
assert(hBits <= 32);
|
||||
|
||||
switch(mls)
|
||||
{
|
||||
default:
|
||||
|
@ -876,6 +844,24 @@ size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
|
|||
}
|
||||
}
|
||||
|
||||
MEM_STATIC FORCE_INLINE_ATTR
|
||||
size_t ZSTD_hashPtrSalted(const void* p, U32 hBits, U32 mls, const U64 hashSalt) {
|
||||
/* Although some of these hashes do support hBits up to 64, some do not.
|
||||
* To be on the safe side, always avoid hBits > 32. */
|
||||
assert(hBits <= 32);
|
||||
|
||||
switch(mls)
|
||||
{
|
||||
default:
|
||||
case 4: return ZSTD_hash4PtrS(p, hBits, (U32)hashSalt);
|
||||
case 5: return ZSTD_hash5PtrS(p, hBits, hashSalt);
|
||||
case 6: return ZSTD_hash6PtrS(p, hBits, hashSalt);
|
||||
case 7: return ZSTD_hash7PtrS(p, hBits, hashSalt);
|
||||
case 8: return ZSTD_hash8PtrS(p, hBits, hashSalt);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/** ZSTD_ipow() :
|
||||
* Return base^exponent.
|
||||
*/
|
||||
|
@ -1223,10 +1209,15 @@ ZSTD_checkDictValidity(const ZSTD_window_t* window,
|
|||
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
|
||||
assert(blockEndIdx >= loadedDictEnd);
|
||||
|
||||
if (blockEndIdx > loadedDictEnd + maxDist) {
|
||||
if (blockEndIdx > loadedDictEnd + maxDist || loadedDictEnd != window->dictLimit) {
|
||||
/* On reaching window size, dictionaries are invalidated.
|
||||
* For simplification, if window size is reached anywhere within next block,
|
||||
* the dictionary is invalidated for the full block.
|
||||
*
|
||||
* We also have to invalidate the dictionary if ZSTD_window_update() has detected
|
||||
* non-contiguous segments, which means that loadedDictEnd != window->dictLimit.
|
||||
* loadedDictEnd may be 0, if forceWindow is true, but in that case we never use
|
||||
* dictMatchState, so setting it to NULL is not a problem.
|
||||
*/
|
||||
DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
|
||||
*loadedDictEndPtr = 0;
|
||||
|
@ -1358,6 +1349,42 @@ MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
|
|||
|
||||
#endif
|
||||
|
||||
/* Short Cache */
|
||||
|
||||
/* Normally, zstd matchfinders follow this flow:
|
||||
* 1. Compute hash at ip
|
||||
* 2. Load index from hashTable[hash]
|
||||
* 3. Check if *ip == *(base + index)
|
||||
* In dictionary compression, loading *(base + index) is often an L2 or even L3 miss.
|
||||
*
|
||||
* Short cache is an optimization which allows us to avoid step 3 most of the time
|
||||
* when the data doesn't actually match. With short cache, the flow becomes:
|
||||
* 1. Compute (hash, currentTag) at ip. currentTag is an 8-bit independent hash at ip.
|
||||
* 2. Load (index, matchTag) from hashTable[hash]. See ZSTD_writeTaggedIndex to understand how this works.
|
||||
* 3. Only if currentTag == matchTag, check *ip == *(base + index). Otherwise, continue.
|
||||
*
|
||||
* Currently, short cache is only implemented in CDict hashtables. Thus, its use is limited to
|
||||
* dictMatchState matchfinders.
|
||||
*/
|
||||
#define ZSTD_SHORT_CACHE_TAG_BITS 8
|
||||
#define ZSTD_SHORT_CACHE_TAG_MASK ((1u << ZSTD_SHORT_CACHE_TAG_BITS) - 1)
|
||||
|
||||
/* Helper function for ZSTD_fillHashTable and ZSTD_fillDoubleHashTable.
|
||||
* Unpacks hashAndTag into (hash, tag), then packs (index, tag) into hashTable[hash]. */
|
||||
MEM_STATIC void ZSTD_writeTaggedIndex(U32* const hashTable, size_t hashAndTag, U32 index) {
|
||||
size_t const hash = hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
U32 const tag = (U32)(hashAndTag & ZSTD_SHORT_CACHE_TAG_MASK);
|
||||
assert(index >> (32 - ZSTD_SHORT_CACHE_TAG_BITS) == 0);
|
||||
hashTable[hash] = (index << ZSTD_SHORT_CACHE_TAG_BITS) | tag;
|
||||
}
|
||||
|
||||
/* Helper function for short cache matchfinders.
|
||||
* Unpacks tag1 and tag2 from lower bits of packedTag1 and packedTag2, then checks if the tags match. */
|
||||
MEM_STATIC int ZSTD_comparePackedTags(size_t packedTag1, size_t packedTag2) {
|
||||
U32 const tag1 = packedTag1 & ZSTD_SHORT_CACHE_TAG_MASK;
|
||||
U32 const tag2 = packedTag2 & ZSTD_SHORT_CACHE_TAG_MASK;
|
||||
return tag1 == tag2;
|
||||
}
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
@ -1455,4 +1482,51 @@ U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
|
|||
*/
|
||||
void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
|
||||
|
||||
/* Returns 0 on success, and a ZSTD_error otherwise. This function scans through an array of
|
||||
* ZSTD_Sequence, storing the sequences it finds, until it reaches a block delimiter.
|
||||
* Note that the block delimiter must include the last literals of the block.
|
||||
*/
|
||||
size_t
|
||||
ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx,
|
||||
ZSTD_sequencePosition* seqPos,
|
||||
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
|
||||
const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch);
|
||||
|
||||
/* Returns the number of bytes to move the current read position back by.
|
||||
* Only non-zero if we ended up splitting a sequence.
|
||||
* Otherwise, it may return a ZSTD error if something went wrong.
|
||||
*
|
||||
* This function will attempt to scan through blockSize bytes
|
||||
* represented by the sequences in @inSeqs,
|
||||
* storing any (partial) sequences.
|
||||
*
|
||||
* Occasionally, we may want to change the actual number of bytes we consumed from inSeqs to
|
||||
* avoid splitting a match, or to avoid splitting a match such that it would produce a match
|
||||
* smaller than MINMATCH. In this case, we return the number of bytes that we didn't read from this block.
|
||||
*/
|
||||
size_t
|
||||
ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
|
||||
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
|
||||
const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch);
|
||||
|
||||
|
||||
/* ===============================================================
|
||||
* Deprecated definitions that are still used internally to avoid
|
||||
* deprecation warnings. These functions are exactly equivalent to
|
||||
* their public variants, but avoid the deprecation warnings.
|
||||
* =============================================================== */
|
||||
|
||||
size_t ZSTD_compressBegin_usingCDict_deprecated(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict);
|
||||
|
||||
size_t ZSTD_compressContinue_public(ZSTD_CCtx* cctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
size_t ZSTD_compressEnd_public(ZSTD_CCtx* cctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
size_t ZSTD_compressBlock_deprecated(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
#endif /* ZSTD_COMPRESS_H */
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -13,11 +13,36 @@
|
|||
***************************************/
|
||||
#include "zstd_compress_literals.h"
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Debug Traces
|
||||
****************************************************************/
|
||||
#if DEBUGLEVEL >= 2
|
||||
|
||||
static size_t showHexa(const void* src, size_t srcSize)
|
||||
{
|
||||
const BYTE* const ip = (const BYTE*)src;
|
||||
size_t u;
|
||||
for (u=0; u<srcSize; u++) {
|
||||
RAWLOG(5, " %02X", ip[u]); (void)ip;
|
||||
}
|
||||
RAWLOG(5, " \n");
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Literals compression - special cases
|
||||
****************************************************************/
|
||||
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
|
||||
|
||||
DEBUGLOG(5, "ZSTD_noCompressLiterals: srcSize=%zu, dstCapacity=%zu", srcSize, dstCapacity);
|
||||
|
||||
RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall, "");
|
||||
|
||||
switch(flSize)
|
||||
|
@ -36,16 +61,30 @@ size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src,
|
|||
}
|
||||
|
||||
ZSTD_memcpy(ostart + flSize, src, srcSize);
|
||||
DEBUGLOG(5, "Raw literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize));
|
||||
DEBUGLOG(5, "Raw (uncompressed) literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize));
|
||||
return srcSize + flSize;
|
||||
}
|
||||
|
||||
static int allBytesIdentical(const void* src, size_t srcSize)
|
||||
{
|
||||
assert(srcSize >= 1);
|
||||
assert(src != NULL);
|
||||
{ const BYTE b = ((const BYTE*)src)[0];
|
||||
size_t p;
|
||||
for (p=1; p<srcSize; p++) {
|
||||
if (((const BYTE*)src)[p] != b) return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
|
||||
|
||||
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
|
||||
assert(dstCapacity >= 4); (void)dstCapacity;
|
||||
assert(allBytesIdentical(src, srcSize));
|
||||
|
||||
switch(flSize)
|
||||
{
|
||||
|
@ -63,28 +102,51 @@ size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void*
|
|||
}
|
||||
|
||||
ostart[flSize] = *(const BYTE*)src;
|
||||
DEBUGLOG(5, "RLE literals: %u -> %u", (U32)srcSize, (U32)flSize + 1);
|
||||
DEBUGLOG(5, "RLE : Repeated Literal (%02X: %u times) -> %u bytes encoded", ((const BYTE*)src)[0], (U32)srcSize, (U32)flSize + 1);
|
||||
return flSize+1;
|
||||
}
|
||||
|
||||
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
|
||||
ZSTD_hufCTables_t* nextHuf,
|
||||
ZSTD_strategy strategy, int disableLiteralCompression,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
void* entropyWorkspace, size_t entropyWorkspaceSize,
|
||||
const int bmi2,
|
||||
unsigned suspectUncompressible)
|
||||
/* ZSTD_minLiteralsToCompress() :
|
||||
* returns minimal amount of literals
|
||||
* for literal compression to even be attempted.
|
||||
* Minimum is made tighter as compression strategy increases.
|
||||
*/
|
||||
static size_t
|
||||
ZSTD_minLiteralsToCompress(ZSTD_strategy strategy, HUF_repeat huf_repeat)
|
||||
{
|
||||
assert((int)strategy >= 0);
|
||||
assert((int)strategy <= 9);
|
||||
/* btultra2 : min 8 bytes;
|
||||
* then 2x larger for each successive compression strategy
|
||||
* max threshold 64 bytes */
|
||||
{ int const shift = MIN(9-(int)strategy, 3);
|
||||
size_t const mintc = (huf_repeat == HUF_repeat_valid) ? 6 : (size_t)8 << shift;
|
||||
DEBUGLOG(7, "minLiteralsToCompress = %zu", mintc);
|
||||
return mintc;
|
||||
}
|
||||
}
|
||||
|
||||
size_t ZSTD_compressLiterals (
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
void* entropyWorkspace, size_t entropyWorkspaceSize,
|
||||
const ZSTD_hufCTables_t* prevHuf,
|
||||
ZSTD_hufCTables_t* nextHuf,
|
||||
ZSTD_strategy strategy,
|
||||
int disableLiteralCompression,
|
||||
int suspectUncompressible,
|
||||
int bmi2)
|
||||
{
|
||||
size_t const minGain = ZSTD_minGain(srcSize, strategy);
|
||||
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
U32 singleStream = srcSize < 256;
|
||||
symbolEncodingType_e hType = set_compressed;
|
||||
size_t cLitSize;
|
||||
|
||||
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i srcSize=%u)",
|
||||
disableLiteralCompression, (U32)srcSize);
|
||||
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i, srcSize=%u, dstCapacity=%zu)",
|
||||
disableLiteralCompression, (U32)srcSize, dstCapacity);
|
||||
|
||||
DEBUGLOG(6, "Completed literals listing (%zu bytes)", showHexa(src, srcSize));
|
||||
|
||||
/* Prepare nextEntropy assuming reusing the existing table */
|
||||
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
|
||||
|
@ -92,40 +154,51 @@ size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
|
|||
if (disableLiteralCompression)
|
||||
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
||||
|
||||
/* small ? don't even attempt compression (speed opt) */
|
||||
# define COMPRESS_LITERALS_SIZE_MIN 63
|
||||
{ size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
|
||||
if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
||||
}
|
||||
/* if too small, don't even attempt compression (speed opt) */
|
||||
if (srcSize < ZSTD_minLiteralsToCompress(strategy, prevHuf->repeatMode))
|
||||
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
||||
|
||||
RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
|
||||
{ HUF_repeat repeat = prevHuf->repeatMode;
|
||||
int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
|
||||
int const flags = 0
|
||||
| (bmi2 ? HUF_flags_bmi2 : 0)
|
||||
| (strategy < ZSTD_lazy && srcSize <= 1024 ? HUF_flags_preferRepeat : 0)
|
||||
| (strategy >= HUF_OPTIMAL_DEPTH_THRESHOLD ? HUF_flags_optimalDepth : 0)
|
||||
| (suspectUncompressible ? HUF_flags_suspectUncompressible : 0);
|
||||
|
||||
typedef size_t (*huf_compress_f)(void*, size_t, const void*, size_t, unsigned, unsigned, void*, size_t, HUF_CElt*, HUF_repeat*, int);
|
||||
huf_compress_f huf_compress;
|
||||
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
|
||||
cLitSize = singleStream ?
|
||||
HUF_compress1X_repeat(
|
||||
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
|
||||
HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
|
||||
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2, suspectUncompressible) :
|
||||
HUF_compress4X_repeat(
|
||||
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
|
||||
HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
|
||||
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2, suspectUncompressible);
|
||||
huf_compress = singleStream ? HUF_compress1X_repeat : HUF_compress4X_repeat;
|
||||
cLitSize = huf_compress(ostart+lhSize, dstCapacity-lhSize,
|
||||
src, srcSize,
|
||||
HUF_SYMBOLVALUE_MAX, LitHufLog,
|
||||
entropyWorkspace, entropyWorkspaceSize,
|
||||
(HUF_CElt*)nextHuf->CTable,
|
||||
&repeat, flags);
|
||||
DEBUGLOG(5, "%zu literals compressed into %zu bytes (before header)", srcSize, cLitSize);
|
||||
if (repeat != HUF_repeat_none) {
|
||||
/* reused the existing table */
|
||||
DEBUGLOG(5, "Reusing previous huffman table");
|
||||
DEBUGLOG(5, "reusing statistics from previous huffman block");
|
||||
hType = set_repeat;
|
||||
}
|
||||
}
|
||||
|
||||
if ((cLitSize==0) || (cLitSize >= srcSize - minGain) || ERR_isError(cLitSize)) {
|
||||
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
|
||||
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
||||
}
|
||||
{ size_t const minGain = ZSTD_minGain(srcSize, strategy);
|
||||
if ((cLitSize==0) || (cLitSize >= srcSize - minGain) || ERR_isError(cLitSize)) {
|
||||
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
|
||||
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
||||
} }
|
||||
if (cLitSize==1) {
|
||||
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
|
||||
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
|
||||
}
|
||||
/* A return value of 1 signals that the alphabet consists of a single symbol.
|
||||
* However, in some rare circumstances, it could be the compressed size (a single byte).
|
||||
* For that outcome to have a chance to happen, it's necessary that `srcSize < 8`.
|
||||
* (it's also necessary to not generate statistics).
|
||||
* Therefore, in such a case, actively check that all bytes are identical. */
|
||||
if ((srcSize >= 8) || allBytesIdentical(src, srcSize)) {
|
||||
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
|
||||
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
|
||||
} }
|
||||
|
||||
if (hType == set_compressed) {
|
||||
/* using a newly constructed table */
|
||||
|
@ -136,16 +209,19 @@ size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
|
|||
switch(lhSize)
|
||||
{
|
||||
case 3: /* 2 - 2 - 10 - 10 */
|
||||
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
|
||||
if (!singleStream) assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
|
||||
{ U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
|
||||
MEM_writeLE24(ostart, lhc);
|
||||
break;
|
||||
}
|
||||
case 4: /* 2 - 2 - 14 - 14 */
|
||||
assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
|
||||
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
|
||||
MEM_writeLE32(ostart, lhc);
|
||||
break;
|
||||
}
|
||||
case 5: /* 2 - 2 - 18 - 18 */
|
||||
assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
|
||||
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
|
||||
MEM_writeLE32(ostart, lhc);
|
||||
ostart[4] = (BYTE)(cLitSize >> 10);
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -16,16 +16,24 @@
|
|||
|
||||
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
/* ZSTD_compressRleLiteralsBlock() :
|
||||
* Conditions :
|
||||
* - All bytes in @src are identical
|
||||
* - dstCapacity >= 4 */
|
||||
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
/* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
|
||||
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
|
||||
ZSTD_hufCTables_t* nextHuf,
|
||||
ZSTD_strategy strategy, int disableLiteralCompression,
|
||||
void* dst, size_t dstCapacity,
|
||||
/* ZSTD_compressLiterals():
|
||||
* @entropyWorkspace: must be aligned on 4-bytes boundaries
|
||||
* @entropyWorkspaceSize : must be >= HUF_WORKSPACE_SIZE
|
||||
* @suspectUncompressible: sampling checks, to potentially skip huffman coding
|
||||
*/
|
||||
size_t ZSTD_compressLiterals (void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
void* entropyWorkspace, size_t entropyWorkspaceSize,
|
||||
const int bmi2,
|
||||
unsigned suspectUncompressible);
|
||||
const ZSTD_hufCTables_t* prevHuf,
|
||||
ZSTD_hufCTables_t* nextHuf,
|
||||
ZSTD_strategy strategy, int disableLiteralCompression,
|
||||
int suspectUncompressible,
|
||||
int bmi2);
|
||||
|
||||
#endif /* ZSTD_COMPRESS_LITERALS_H */
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -58,7 +58,7 @@ static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
|
|||
{
|
||||
/* Heuristic: This should cover most blocks <= 16K and
|
||||
* start to fade out after 16K to about 32K depending on
|
||||
* comprssibility.
|
||||
* compressibility.
|
||||
*/
|
||||
return nbSeq >= 2048;
|
||||
}
|
||||
|
@ -166,7 +166,7 @@ ZSTD_selectEncodingType(
|
|||
if (mostFrequent == nbSeq) {
|
||||
*repeatMode = FSE_repeat_none;
|
||||
if (isDefaultAllowed && nbSeq <= 2) {
|
||||
/* Prefer set_basic over set_rle when there are 2 or less symbols,
|
||||
/* Prefer set_basic over set_rle when there are 2 or fewer symbols,
|
||||
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
|
||||
* If basic encoding isn't possible, always choose RLE.
|
||||
*/
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -36,13 +36,14 @@
|
|||
* If it is set_compressed, first sub-block's literals section will be Treeless_Literals_Block
|
||||
* and the following sub-blocks' literals sections will be Treeless_Literals_Block.
|
||||
* @return : compressed size of literals section of a sub-block
|
||||
* Or 0 if it unable to compress.
|
||||
* Or 0 if unable to compress.
|
||||
* Or error code */
|
||||
static size_t ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
|
||||
const ZSTD_hufCTablesMetadata_t* hufMetadata,
|
||||
const BYTE* literals, size_t litSize,
|
||||
void* dst, size_t dstSize,
|
||||
const int bmi2, int writeEntropy, int* entropyWritten)
|
||||
static size_t
|
||||
ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
|
||||
const ZSTD_hufCTablesMetadata_t* hufMetadata,
|
||||
const BYTE* literals, size_t litSize,
|
||||
void* dst, size_t dstSize,
|
||||
const int bmi2, int writeEntropy, int* entropyWritten)
|
||||
{
|
||||
size_t const header = writeEntropy ? 200 : 0;
|
||||
size_t const lhSize = 3 + (litSize >= (1 KB - header)) + (litSize >= (16 KB - header));
|
||||
|
@ -53,8 +54,6 @@ static size_t ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
|
|||
symbolEncodingType_e hType = writeEntropy ? hufMetadata->hType : set_repeat;
|
||||
size_t cLitSize = 0;
|
||||
|
||||
(void)bmi2; /* TODO bmi2... */
|
||||
|
||||
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (litSize=%zu, lhSize=%zu, writeEntropy=%d)", litSize, lhSize, writeEntropy);
|
||||
|
||||
*entropyWritten = 0;
|
||||
|
@ -76,9 +75,9 @@ static size_t ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
|
|||
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (hSize=%zu)", hufMetadata->hufDesSize);
|
||||
}
|
||||
|
||||
/* TODO bmi2 */
|
||||
{ const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, oend-op, literals, litSize, hufTable)
|
||||
: HUF_compress4X_usingCTable(op, oend-op, literals, litSize, hufTable);
|
||||
{ int const flags = bmi2 ? HUF_flags_bmi2 : 0;
|
||||
const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, oend-op, literals, litSize, hufTable, flags)
|
||||
: HUF_compress4X_usingCTable(op, oend-op, literals, litSize, hufTable, flags);
|
||||
op += cSize;
|
||||
cLitSize += cSize;
|
||||
if (cSize == 0 || ERR_isError(cSize)) {
|
||||
|
@ -126,7 +125,11 @@ static size_t ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
|
|||
return op-ostart;
|
||||
}
|
||||
|
||||
static size_t ZSTD_seqDecompressedSize(seqStore_t const* seqStore, const seqDef* sequences, size_t nbSeq, size_t litSize, int lastSequence) {
|
||||
static size_t
|
||||
ZSTD_seqDecompressedSize(seqStore_t const* seqStore,
|
||||
const seqDef* sequences, size_t nbSeq,
|
||||
size_t litSize, int lastSequence)
|
||||
{
|
||||
const seqDef* const sstart = sequences;
|
||||
const seqDef* const send = sequences + nbSeq;
|
||||
const seqDef* sp = sstart;
|
||||
|
@ -156,13 +159,14 @@ static size_t ZSTD_seqDecompressedSize(seqStore_t const* seqStore, const seqDef*
|
|||
* @return : compressed size of sequences section of a sub-block
|
||||
* Or 0 if it is unable to compress
|
||||
* Or error code. */
|
||||
static size_t ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
|
||||
const ZSTD_fseCTablesMetadata_t* fseMetadata,
|
||||
const seqDef* sequences, size_t nbSeq,
|
||||
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
|
||||
const ZSTD_CCtx_params* cctxParams,
|
||||
void* dst, size_t dstCapacity,
|
||||
const int bmi2, int writeEntropy, int* entropyWritten)
|
||||
static size_t
|
||||
ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
|
||||
const ZSTD_fseCTablesMetadata_t* fseMetadata,
|
||||
const seqDef* sequences, size_t nbSeq,
|
||||
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
|
||||
const ZSTD_CCtx_params* cctxParams,
|
||||
void* dst, size_t dstCapacity,
|
||||
const int bmi2, int writeEntropy, int* entropyWritten)
|
||||
{
|
||||
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
|
@ -539,7 +543,7 @@ static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
|
|||
repcodes_t rep;
|
||||
ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
|
||||
for (seq = sstart; seq < sp; ++seq) {
|
||||
ZSTD_updateRep(rep.rep, seq->offBase - 1, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
|
||||
ZSTD_updateRep(rep.rep, seq->offBase, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
|
||||
}
|
||||
ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -14,7 +14,9 @@
|
|||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
|
||||
#include "../common/zstd_internal.h"
|
||||
#include "../common/portability_macros.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
|
@ -44,8 +46,9 @@ extern "C" {
|
|||
***************************************/
|
||||
typedef enum {
|
||||
ZSTD_cwksp_alloc_objects,
|
||||
ZSTD_cwksp_alloc_buffers,
|
||||
ZSTD_cwksp_alloc_aligned
|
||||
ZSTD_cwksp_alloc_aligned_init_once,
|
||||
ZSTD_cwksp_alloc_aligned,
|
||||
ZSTD_cwksp_alloc_buffers
|
||||
} ZSTD_cwksp_alloc_phase_e;
|
||||
|
||||
/**
|
||||
|
@ -98,8 +101,8 @@ typedef enum {
|
|||
*
|
||||
* Workspace Layout:
|
||||
*
|
||||
* [ ... workspace ... ]
|
||||
* [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
|
||||
* [ ... workspace ... ]
|
||||
* [objects][tables ->] free space [<- buffers][<- aligned][<- init once]
|
||||
*
|
||||
* The various objects that live in the workspace are divided into the
|
||||
* following categories, and are allocated separately:
|
||||
|
@ -123,9 +126,18 @@ typedef enum {
|
|||
* uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
|
||||
* Their sizes depend on the cparams. These tables are 64-byte aligned.
|
||||
*
|
||||
* - Aligned: these buffers are used for various purposes that require 4 byte
|
||||
* alignment, but don't require any initialization before they're used. These
|
||||
* buffers are each aligned to 64 bytes.
|
||||
* - Init once: these buffers require to be initialized at least once before
|
||||
* use. They should be used when we want to skip memory initialization
|
||||
* while not triggering memory checkers (like Valgrind) when reading from
|
||||
* from this memory without writing to it first.
|
||||
* These buffers should be used carefully as they might contain data
|
||||
* from previous compressions.
|
||||
* Buffers are aligned to 64 bytes.
|
||||
*
|
||||
* - Aligned: these buffers don't require any initialization before they're
|
||||
* used. The user of the buffer should make sure they write into a buffer
|
||||
* location before reading from it.
|
||||
* Buffers are aligned to 64 bytes.
|
||||
*
|
||||
* - Buffers: these buffers are used for various purposes that don't require
|
||||
* any alignment or initialization before they're used. This means they can
|
||||
|
@ -137,8 +149,9 @@ typedef enum {
|
|||
* correctly packed into the workspace buffer. That order is:
|
||||
*
|
||||
* 1. Objects
|
||||
* 2. Buffers
|
||||
* 3. Aligned/Tables
|
||||
* 2. Init once / Tables
|
||||
* 3. Aligned / Tables
|
||||
* 4. Buffers / Tables
|
||||
*
|
||||
* Attempts to reserve objects of different types out of order will fail.
|
||||
*/
|
||||
|
@ -150,6 +163,7 @@ typedef struct {
|
|||
void* tableEnd;
|
||||
void* tableValidEnd;
|
||||
void* allocStart;
|
||||
void* initOnceStart;
|
||||
|
||||
BYTE allocFailed;
|
||||
int workspaceOversizedDuration;
|
||||
|
@ -162,6 +176,7 @@ typedef struct {
|
|||
***************************************/
|
||||
|
||||
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
|
||||
MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws);
|
||||
|
||||
MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
|
||||
(void)ws;
|
||||
|
@ -171,6 +186,20 @@ MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
|
|||
assert(ws->tableEnd <= ws->allocStart);
|
||||
assert(ws->tableValidEnd <= ws->allocStart);
|
||||
assert(ws->allocStart <= ws->workspaceEnd);
|
||||
assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws));
|
||||
assert(ws->workspace <= ws->initOnceStart);
|
||||
#if ZSTD_MEMORY_SANITIZER
|
||||
{
|
||||
intptr_t const offset = __msan_test_shadow(ws->initOnceStart,
|
||||
(U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart);
|
||||
#if defined(ZSTD_MSAN_PRINT)
|
||||
if(offset!=-1) {
|
||||
__msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32);
|
||||
}
|
||||
#endif
|
||||
assert(offset==-1);
|
||||
};
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -217,14 +246,10 @@ MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
|
|||
* for internal purposes (currently only alignment).
|
||||
*/
|
||||
MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
|
||||
/* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
|
||||
* to align the beginning of tables section, as well as another n_2=[0, 63] bytes
|
||||
* to align the beginning of the aligned section.
|
||||
*
|
||||
* n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
|
||||
* aligneds being sized in multiples of 64 bytes.
|
||||
/* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES
|
||||
* bytes to align the beginning of tables section and end of buffers;
|
||||
*/
|
||||
size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES;
|
||||
size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2;
|
||||
return slackSpace;
|
||||
}
|
||||
|
||||
|
@ -237,10 +262,18 @@ MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignByt
|
|||
size_t const alignBytesMask = alignBytes - 1;
|
||||
size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
|
||||
assert((alignBytes & alignBytesMask) == 0);
|
||||
assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES);
|
||||
assert(bytes < alignBytes);
|
||||
return bytes;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the initial value for allocStart which is used to determine the position from
|
||||
* which we can allocate from the end of the workspace.
|
||||
*/
|
||||
MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws) {
|
||||
return (void*)((size_t)ws->workspaceEnd & ~(ZSTD_CWKSP_ALIGNMENT_BYTES-1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Internal function. Do not use directly.
|
||||
* Reserves the given number of bytes within the aligned/buffer segment of the wksp,
|
||||
|
@ -281,27 +314,16 @@ ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase
|
|||
{
|
||||
assert(phase >= ws->phase);
|
||||
if (phase > ws->phase) {
|
||||
/* Going from allocating objects to allocating buffers */
|
||||
if (ws->phase < ZSTD_cwksp_alloc_buffers &&
|
||||
phase >= ZSTD_cwksp_alloc_buffers) {
|
||||
/* Going from allocating objects to allocating initOnce / tables */
|
||||
if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once &&
|
||||
phase >= ZSTD_cwksp_alloc_aligned_init_once) {
|
||||
ws->tableValidEnd = ws->objectEnd;
|
||||
}
|
||||
ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
|
||||
|
||||
/* Going from allocating buffers to allocating aligneds/tables */
|
||||
if (ws->phase < ZSTD_cwksp_alloc_aligned &&
|
||||
phase >= ZSTD_cwksp_alloc_aligned) {
|
||||
{ /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */
|
||||
size_t const bytesToAlign =
|
||||
ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES);
|
||||
DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign);
|
||||
ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */
|
||||
RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign),
|
||||
memory_allocation, "aligned phase - alignment initial allocation failed!");
|
||||
}
|
||||
{ /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
|
||||
void* const alloc = ws->objectEnd;
|
||||
void *const alloc = ws->objectEnd;
|
||||
size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
|
||||
void* const objectEnd = (BYTE*)alloc + bytesToAlign;
|
||||
void *const objectEnd = (BYTE *) alloc + bytesToAlign;
|
||||
DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
|
||||
RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
|
||||
"table phase - alignment initial allocation failed!");
|
||||
|
@ -309,7 +331,9 @@ ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase
|
|||
ws->tableEnd = objectEnd; /* table area starts being empty */
|
||||
if (ws->tableValidEnd < ws->tableEnd) {
|
||||
ws->tableValidEnd = ws->tableEnd;
|
||||
} } }
|
||||
}
|
||||
}
|
||||
}
|
||||
ws->phase = phase;
|
||||
ZSTD_cwksp_assert_internal_consistency(ws);
|
||||
}
|
||||
|
@ -321,7 +345,7 @@ ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase
|
|||
*/
|
||||
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
|
||||
{
|
||||
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
|
||||
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -348,7 +372,9 @@ ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase
|
|||
if (alloc) {
|
||||
alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
|
||||
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
|
||||
__asan_unpoison_memory_region(alloc, bytes);
|
||||
/* We need to keep the redzone poisoned while unpoisoning the bytes that
|
||||
* are actually allocated. */
|
||||
__asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -364,6 +390,36 @@ MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
|
|||
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
|
||||
* This memory has been initialized at least once in the past.
|
||||
* This doesn't mean it has been initialized this time, and it might contain data from previous
|
||||
* operations.
|
||||
* The main usage is for algorithms that might need read access into uninitialized memory.
|
||||
* The algorithm must maintain safety under these conditions and must make sure it doesn't
|
||||
* leak any of the past data (directly or in side channels).
|
||||
*/
|
||||
MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes)
|
||||
{
|
||||
size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES);
|
||||
void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once);
|
||||
assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
|
||||
if(ptr && ptr < ws->initOnceStart) {
|
||||
/* We assume the memory following the current allocation is either:
|
||||
* 1. Not usable as initOnce memory (end of workspace)
|
||||
* 2. Another initOnce buffer that has been allocated before (and so was previously memset)
|
||||
* 3. An ASAN redzone, in which case we don't want to write on it
|
||||
* For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart.
|
||||
* Note that we assume here that MSAN and ASAN cannot run in the same time. */
|
||||
ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes));
|
||||
ws->initOnceStart = ptr;
|
||||
}
|
||||
#if ZSTD_MEMORY_SANITIZER
|
||||
assert(__msan_test_shadow(ptr, bytes) == -1);
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
|
||||
*/
|
||||
|
@ -382,13 +438,17 @@ MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
|
|||
*/
|
||||
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
|
||||
{
|
||||
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
|
||||
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once;
|
||||
void* alloc;
|
||||
void* end;
|
||||
void* top;
|
||||
|
||||
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
|
||||
return NULL;
|
||||
/* We can only start allocating tables after we are done reserving space for objects at the
|
||||
* start of the workspace */
|
||||
if(ws->phase < phase) {
|
||||
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
alloc = ws->tableEnd;
|
||||
end = (BYTE *)alloc + bytes;
|
||||
|
@ -467,11 +527,19 @@ MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
|
|||
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
|
||||
/* To validate that the table re-use logic is sound, and that we don't
|
||||
* access table space that we haven't cleaned, we re-"poison" the table
|
||||
* space every time we mark it dirty. */
|
||||
* space every time we mark it dirty.
|
||||
* Since tableValidEnd space and initOnce space may overlap we don't poison
|
||||
* the initOnce portion as it break its promise. This means that this poisoning
|
||||
* check isn't always applied fully. */
|
||||
{
|
||||
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
|
||||
assert(__msan_test_shadow(ws->objectEnd, size) == -1);
|
||||
__msan_poison(ws->objectEnd, size);
|
||||
if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
|
||||
__msan_poison(ws->objectEnd, size);
|
||||
} else {
|
||||
assert(ws->initOnceStart >= ws->objectEnd);
|
||||
__msan_poison(ws->objectEnd, (BYTE*)ws->initOnceStart - (BYTE*)ws->objectEnd);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -499,7 +567,7 @@ MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
|
|||
assert(ws->tableValidEnd >= ws->objectEnd);
|
||||
assert(ws->tableValidEnd <= ws->allocStart);
|
||||
if (ws->tableValidEnd < ws->tableEnd) {
|
||||
ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
|
||||
ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd));
|
||||
}
|
||||
ZSTD_cwksp_mark_tables_clean(ws);
|
||||
}
|
||||
|
@ -536,11 +604,14 @@ MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
|
|||
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
|
||||
/* To validate that the context re-use logic is sound, and that we don't
|
||||
* access stuff that this compression hasn't initialized, we re-"poison"
|
||||
* the workspace (or at least the non-static, non-table parts of it)
|
||||
* every time we start a new compression. */
|
||||
* the workspace except for the areas in which we expect memory re-use
|
||||
* without initialization (objects, valid tables area and init once
|
||||
* memory). */
|
||||
{
|
||||
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd;
|
||||
__msan_poison(ws->tableValidEnd, size);
|
||||
if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
|
||||
size_t size = (BYTE*)ws->initOnceStart - (BYTE*)ws->tableValidEnd;
|
||||
__msan_poison(ws->tableValidEnd, size);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -556,10 +627,10 @@ MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
|
|||
#endif
|
||||
|
||||
ws->tableEnd = ws->objectEnd;
|
||||
ws->allocStart = ws->workspaceEnd;
|
||||
ws->allocStart = ZSTD_cwksp_initialAllocStart(ws);
|
||||
ws->allocFailed = 0;
|
||||
if (ws->phase > ZSTD_cwksp_alloc_buffers) {
|
||||
ws->phase = ZSTD_cwksp_alloc_buffers;
|
||||
if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) {
|
||||
ws->phase = ZSTD_cwksp_alloc_aligned_init_once;
|
||||
}
|
||||
ZSTD_cwksp_assert_internal_consistency(ws);
|
||||
}
|
||||
|
@ -576,6 +647,7 @@ MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_c
|
|||
ws->workspaceEnd = (BYTE*)start + size;
|
||||
ws->objectEnd = ws->workspace;
|
||||
ws->tableValidEnd = ws->objectEnd;
|
||||
ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
|
||||
ws->phase = ZSTD_cwksp_alloc_objects;
|
||||
ws->isStatic = isStatic;
|
||||
ZSTD_cwksp_clear(ws);
|
||||
|
@ -628,17 +700,11 @@ MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
|
|||
* Returns if the estimated space needed for a wksp is within an acceptable limit of the
|
||||
* actual amount of space used.
|
||||
*/
|
||||
MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws,
|
||||
size_t const estimatedSpace, int resizedWorkspace) {
|
||||
if (resizedWorkspace) {
|
||||
/* Resized/newly allocated wksp should have exact bounds */
|
||||
return ZSTD_cwksp_used(ws) == estimatedSpace;
|
||||
} else {
|
||||
/* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes
|
||||
* than estimatedSpace. See the comments in zstd_cwksp.h for details.
|
||||
*/
|
||||
return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63);
|
||||
}
|
||||
MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) {
|
||||
/* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice
|
||||
* the alignment bytes difference between estimation and actual usage */
|
||||
return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) &&
|
||||
ZSTD_cwksp_used(ws) <= estimatedSpace;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -11,8 +11,43 @@
|
|||
#include "zstd_compress_internal.h"
|
||||
#include "zstd_double_fast.h"
|
||||
|
||||
static void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
|
||||
{
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32* const hashLarge = ms->hashTable;
|
||||
U32 const hBitsL = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
U32 const mls = cParams->minMatch;
|
||||
U32* const hashSmall = ms->chainTable;
|
||||
U32 const hBitsS = cParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* ip = base + ms->nextToUpdate;
|
||||
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
||||
const U32 fastHashFillStep = 3;
|
||||
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
|
||||
/* Always insert every fastHashFillStep position into the hash tables.
|
||||
* Insert the other positions into the large hash table if their entry
|
||||
* is empty.
|
||||
*/
|
||||
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
|
||||
U32 const curr = (U32)(ip - base);
|
||||
U32 i;
|
||||
for (i = 0; i < fastHashFillStep; ++i) {
|
||||
size_t const smHashAndTag = ZSTD_hashPtr(ip + i, hBitsS, mls);
|
||||
size_t const lgHashAndTag = ZSTD_hashPtr(ip + i, hBitsL, 8);
|
||||
if (i == 0) {
|
||||
ZSTD_writeTaggedIndex(hashSmall, smHashAndTag, curr + i);
|
||||
}
|
||||
if (i == 0 || hashLarge[lgHashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) {
|
||||
ZSTD_writeTaggedIndex(hashLarge, lgHashAndTag, curr + i);
|
||||
}
|
||||
/* Only load extra positions for ZSTD_dtlm_full */
|
||||
if (dtlm == ZSTD_dtlm_fast)
|
||||
break;
|
||||
} }
|
||||
}
|
||||
|
||||
static void ZSTD_fillDoubleHashTableForCCtx(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
|
||||
{
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
|
@ -43,7 +78,19 @@ void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
|
|||
/* Only load extra positions for ZSTD_dtlm_full */
|
||||
if (dtlm == ZSTD_dtlm_fast)
|
||||
break;
|
||||
} }
|
||||
} }
|
||||
}
|
||||
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
|
||||
const void* const end,
|
||||
ZSTD_dictTableLoadMethod_e dtlm,
|
||||
ZSTD_tableFillPurpose_e tfp)
|
||||
{
|
||||
if (tfp == ZSTD_tfp_forCDict) {
|
||||
ZSTD_fillDoubleHashTableForCDict(ms, end, dtlm);
|
||||
} else {
|
||||
ZSTD_fillDoubleHashTableForCCtx(ms, end, dtlm);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -67,7 +114,7 @@ size_t ZSTD_compressBlock_doubleFast_noDict_generic(
|
|||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
U32 offsetSaved = 0;
|
||||
U32 offsetSaved1 = 0, offsetSaved2 = 0;
|
||||
|
||||
size_t mLength;
|
||||
U32 offset;
|
||||
|
@ -100,8 +147,8 @@ size_t ZSTD_compressBlock_doubleFast_noDict_generic(
|
|||
U32 const current = (U32)(ip - base);
|
||||
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog);
|
||||
U32 const maxRep = current - windowLow;
|
||||
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
|
||||
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
|
||||
if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
|
||||
if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
|
||||
}
|
||||
|
||||
/* Outer Loop: one iteration per match found and stored */
|
||||
|
@ -131,7 +178,7 @@ size_t ZSTD_compressBlock_doubleFast_noDict_generic(
|
|||
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
|
||||
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
|
||||
goto _match_stored;
|
||||
}
|
||||
|
||||
|
@ -175,9 +222,13 @@ size_t ZSTD_compressBlock_doubleFast_noDict_generic(
|
|||
} while (ip1 <= ilimit);
|
||||
|
||||
_cleanup:
|
||||
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
|
||||
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
|
||||
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
|
||||
|
||||
/* save reps for next block */
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved1;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return (size_t)(iend - anchor);
|
||||
|
@ -217,7 +268,7 @@ _match_found: /* requires ip, offset, mLength */
|
|||
hashLong[hl1] = (U32)(ip1 - base);
|
||||
}
|
||||
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
|
||||
|
||||
_match_stored:
|
||||
/* match found */
|
||||
|
@ -243,7 +294,7 @@ _match_stored:
|
|||
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, rLength);
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
continue; /* faster when present ... (?) */
|
||||
|
@ -275,7 +326,6 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
U32 offsetSaved = 0;
|
||||
|
||||
const ZSTD_matchState_t* const dms = ms->dictMatchState;
|
||||
const ZSTD_compressionParameters* const dictCParams = &dms->cParams;
|
||||
|
@ -286,8 +336,8 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
const BYTE* const dictStart = dictBase + dictStartIndex;
|
||||
const BYTE* const dictEnd = dms->window.nextSrc;
|
||||
const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase);
|
||||
const U32 dictHBitsL = dictCParams->hashLog;
|
||||
const U32 dictHBitsS = dictCParams->chainLog;
|
||||
const U32 dictHBitsL = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
const U32 dictHBitsS = dictCParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
|
||||
|
||||
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic");
|
||||
|
@ -295,6 +345,13 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
/* if a dictionary is attached, it must be within window range */
|
||||
assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
|
||||
|
||||
if (ms->prefetchCDictTables) {
|
||||
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
|
||||
size_t const chainTableBytes = (((size_t)1) << dictCParams->chainLog) * sizeof(U32);
|
||||
PREFETCH_AREA(dictHashLong, hashTableBytes)
|
||||
PREFETCH_AREA(dictHashSmall, chainTableBytes)
|
||||
}
|
||||
|
||||
/* init */
|
||||
ip += (dictAndPrefixLength == 0);
|
||||
|
||||
|
@ -309,8 +366,12 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
U32 offset;
|
||||
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
|
||||
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
|
||||
size_t const dictHL = ZSTD_hashPtr(ip, dictHBitsL, 8);
|
||||
size_t const dictHS = ZSTD_hashPtr(ip, dictHBitsS, mls);
|
||||
size_t const dictHashAndTagL = ZSTD_hashPtr(ip, dictHBitsL, 8);
|
||||
size_t const dictHashAndTagS = ZSTD_hashPtr(ip, dictHBitsS, mls);
|
||||
U32 const dictMatchIndexAndTagL = dictHashLong[dictHashAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS];
|
||||
U32 const dictMatchIndexAndTagS = dictHashSmall[dictHashAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS];
|
||||
int const dictTagsMatchL = ZSTD_comparePackedTags(dictMatchIndexAndTagL, dictHashAndTagL);
|
||||
int const dictTagsMatchS = ZSTD_comparePackedTags(dictMatchIndexAndTagS, dictHashAndTagS);
|
||||
U32 const curr = (U32)(ip-base);
|
||||
U32 const matchIndexL = hashLong[h2];
|
||||
U32 matchIndexS = hashSmall[h];
|
||||
|
@ -328,7 +389,7 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
|
||||
goto _match_stored;
|
||||
}
|
||||
|
||||
|
@ -340,9 +401,9 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
||||
goto _match_found;
|
||||
}
|
||||
} else {
|
||||
} else if (dictTagsMatchL) {
|
||||
/* check dictMatchState long match */
|
||||
U32 const dictMatchIndexL = dictHashLong[dictHL];
|
||||
U32 const dictMatchIndexL = dictMatchIndexAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
|
||||
assert(dictMatchL < dictEnd);
|
||||
|
||||
|
@ -358,9 +419,9 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
if (MEM_read32(match) == MEM_read32(ip)) {
|
||||
goto _search_next_long;
|
||||
}
|
||||
} else {
|
||||
} else if (dictTagsMatchS) {
|
||||
/* check dictMatchState short match */
|
||||
U32 const dictMatchIndexS = dictHashSmall[dictHS];
|
||||
U32 const dictMatchIndexS = dictMatchIndexAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
match = dictBase + dictMatchIndexS;
|
||||
matchIndexS = dictMatchIndexS + dictIndexDelta;
|
||||
|
||||
|
@ -375,10 +436,11 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
|
|||
continue;
|
||||
|
||||
_search_next_long:
|
||||
|
||||
{ size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
||||
size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
|
||||
size_t const dictHashAndTagL3 = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
|
||||
U32 const matchIndexL3 = hashLong[hl3];
|
||||
U32 const dictMatchIndexAndTagL3 = dictHashLong[dictHashAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS];
|
||||
int const dictTagsMatchL3 = ZSTD_comparePackedTags(dictMatchIndexAndTagL3, dictHashAndTagL3);
|
||||
const BYTE* matchL3 = base + matchIndexL3;
|
||||
hashLong[hl3] = curr + 1;
|
||||
|
||||
|
@ -391,9 +453,9 @@ _search_next_long:
|
|||
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
|
||||
goto _match_found;
|
||||
}
|
||||
} else {
|
||||
} else if (dictTagsMatchL3) {
|
||||
/* check dict long +1 match */
|
||||
U32 const dictMatchIndexL3 = dictHashLong[dictHLNext];
|
||||
U32 const dictMatchIndexL3 = dictMatchIndexAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
|
||||
assert(dictMatchL3 < dictEnd);
|
||||
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
|
||||
|
@ -419,7 +481,7 @@ _match_found:
|
|||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
|
||||
|
||||
_match_stored:
|
||||
/* match found */
|
||||
|
@ -448,7 +510,7 @@ _match_stored:
|
|||
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
|
||||
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
|
||||
ip += repLength2;
|
||||
|
@ -461,8 +523,8 @@ _match_stored:
|
|||
} /* while (ip < ilimit) */
|
||||
|
||||
/* save reps for next block */
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
rep[0] = offset_1;
|
||||
rep[1] = offset_2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return (size_t)(iend - anchor);
|
||||
|
@ -585,7 +647,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
|
|||
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
|
||||
} else {
|
||||
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
|
||||
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
|
||||
|
@ -596,7 +658,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
|
|||
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
|
||||
|
||||
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
|
||||
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
||||
|
@ -621,7 +683,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
|
|||
}
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
|
||||
|
||||
} else {
|
||||
ip += ((ip-anchor) >> kSearchStrength) + 1;
|
||||
|
@ -653,7 +715,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
|
|||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
|
||||
ip += repLength2;
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -19,7 +19,8 @@ extern "C" {
|
|||
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
|
||||
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
|
||||
ZSTD_tableFillPurpose_e tfp);
|
||||
size_t ZSTD_compressBlock_doubleFast(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -11,8 +11,42 @@
|
|||
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
|
||||
#include "zstd_fast.h"
|
||||
|
||||
static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
|
||||
const void* const end,
|
||||
ZSTD_dictTableLoadMethod_e dtlm)
|
||||
{
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32* const hashTable = ms->hashTable;
|
||||
U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
U32 const mls = cParams->minMatch;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* ip = base + ms->nextToUpdate;
|
||||
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
||||
const U32 fastHashFillStep = 3;
|
||||
|
||||
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
||||
/* Currently, we always use ZSTD_dtlm_full for filling CDict tables.
|
||||
* Feel free to remove this assert if there's a good reason! */
|
||||
assert(dtlm == ZSTD_dtlm_full);
|
||||
|
||||
/* Always insert every fastHashFillStep position into the hash table.
|
||||
* Insert the other positions if their hash entry is empty.
|
||||
*/
|
||||
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
|
||||
U32 const curr = (U32)(ip - base);
|
||||
{ size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls);
|
||||
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); }
|
||||
|
||||
if (dtlm == ZSTD_dtlm_fast) continue;
|
||||
/* Only load extra positions for ZSTD_dtlm_full */
|
||||
{ U32 p;
|
||||
for (p = 1; p < fastHashFillStep; ++p) {
|
||||
size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls);
|
||||
if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */
|
||||
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p);
|
||||
} } } }
|
||||
}
|
||||
|
||||
static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
|
||||
const void* const end,
|
||||
ZSTD_dictTableLoadMethod_e dtlm)
|
||||
{
|
||||
|
@ -25,6 +59,10 @@ void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
|||
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
||||
const U32 fastHashFillStep = 3;
|
||||
|
||||
/* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables.
|
||||
* Feel free to remove this assert if there's a good reason! */
|
||||
assert(dtlm == ZSTD_dtlm_fast);
|
||||
|
||||
/* Always insert every fastHashFillStep position into the hash table.
|
||||
* Insert the other positions if their hash entry is empty.
|
||||
*/
|
||||
|
@ -42,6 +80,18 @@ void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
|||
} } } }
|
||||
}
|
||||
|
||||
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
||||
const void* const end,
|
||||
ZSTD_dictTableLoadMethod_e dtlm,
|
||||
ZSTD_tableFillPurpose_e tfp)
|
||||
{
|
||||
if (tfp == ZSTD_tfp_forCDict) {
|
||||
ZSTD_fillHashTableForCDict(ms, end, dtlm);
|
||||
} else {
|
||||
ZSTD_fillHashTableForCCtx(ms, end, dtlm);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* If you squint hard enough (and ignore repcodes), the search operation at any
|
||||
|
@ -117,7 +167,7 @@ ZSTD_compressBlock_fast_noDict_generic(
|
|||
|
||||
U32 rep_offset1 = rep[0];
|
||||
U32 rep_offset2 = rep[1];
|
||||
U32 offsetSaved = 0;
|
||||
U32 offsetSaved1 = 0, offsetSaved2 = 0;
|
||||
|
||||
size_t hash0; /* hash for ip0 */
|
||||
size_t hash1; /* hash for ip1 */
|
||||
|
@ -141,8 +191,8 @@ ZSTD_compressBlock_fast_noDict_generic(
|
|||
{ U32 const curr = (U32)(ip0 - base);
|
||||
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
|
||||
U32 const maxRep = curr - windowLow;
|
||||
if (rep_offset2 > maxRep) offsetSaved = rep_offset2, rep_offset2 = 0;
|
||||
if (rep_offset1 > maxRep) offsetSaved = rep_offset1, rep_offset1 = 0;
|
||||
if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0;
|
||||
if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0;
|
||||
}
|
||||
|
||||
/* start each op */
|
||||
|
@ -180,8 +230,14 @@ _start: /* Requires: ip0 */
|
|||
mLength = ip0[-1] == match0[-1];
|
||||
ip0 -= mLength;
|
||||
match0 -= mLength;
|
||||
offcode = STORE_REPCODE_1;
|
||||
offcode = REPCODE1_TO_OFFBASE;
|
||||
mLength += 4;
|
||||
|
||||
/* First write next hash table entry; we've already calculated it.
|
||||
* This write is known to be safe because the ip1 is before the
|
||||
* repcode (ip2). */
|
||||
hashTable[hash1] = (U32)(ip1 - base);
|
||||
|
||||
goto _match;
|
||||
}
|
||||
|
||||
|
@ -195,6 +251,12 @@ _start: /* Requires: ip0 */
|
|||
/* check match at ip[0] */
|
||||
if (MEM_read32(ip0) == mval) {
|
||||
/* found a match! */
|
||||
|
||||
/* First write next hash table entry; we've already calculated it.
|
||||
* This write is known to be safe because the ip1 == ip0 + 1, so
|
||||
* we know we will resume searching after ip1 */
|
||||
hashTable[hash1] = (U32)(ip1 - base);
|
||||
|
||||
goto _offset;
|
||||
}
|
||||
|
||||
|
@ -224,6 +286,21 @@ _start: /* Requires: ip0 */
|
|||
/* check match at ip[0] */
|
||||
if (MEM_read32(ip0) == mval) {
|
||||
/* found a match! */
|
||||
|
||||
/* first write next hash table entry; we've already calculated it */
|
||||
if (step <= 4) {
|
||||
/* We need to avoid writing an index into the hash table >= the
|
||||
* position at which we will pick up our searching after we've
|
||||
* taken this match.
|
||||
*
|
||||
* The minimum possible match has length 4, so the earliest ip0
|
||||
* can be after we take this match will be the current ip0 + 4.
|
||||
* ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely
|
||||
* write this position.
|
||||
*/
|
||||
hashTable[hash1] = (U32)(ip1 - base);
|
||||
}
|
||||
|
||||
goto _offset;
|
||||
}
|
||||
|
||||
|
@ -254,9 +331,24 @@ _cleanup:
|
|||
* However, it seems to be a meaningful performance hit to try to search
|
||||
* them. So let's not. */
|
||||
|
||||
/* When the repcodes are outside of the prefix, we set them to zero before the loop.
|
||||
* When the offsets are still zero, we need to restore them after the block to have a correct
|
||||
* repcode history. If only one offset was invalid, it is easy. The tricky case is when both
|
||||
* offsets were invalid. We need to figure out which offset to refill with.
|
||||
* - If both offsets are zero they are in the same order.
|
||||
* - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`.
|
||||
* - If only one is zero, we need to decide which offset to restore.
|
||||
* - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1.
|
||||
* - It is impossible for rep_offset2 to be non-zero.
|
||||
*
|
||||
* So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then
|
||||
* set rep[0] = rep_offset1 and rep[1] = offsetSaved1.
|
||||
*/
|
||||
offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2;
|
||||
|
||||
/* save reps for next block */
|
||||
rep[0] = rep_offset1 ? rep_offset1 : offsetSaved;
|
||||
rep[1] = rep_offset2 ? rep_offset2 : offsetSaved;
|
||||
rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1;
|
||||
rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return (size_t)(iend - anchor);
|
||||
|
@ -267,7 +359,7 @@ _offset: /* Requires: ip0, idx */
|
|||
match0 = base + idx;
|
||||
rep_offset2 = rep_offset1;
|
||||
rep_offset1 = (U32)(ip0-match0);
|
||||
offcode = STORE_OFFSET(rep_offset1);
|
||||
offcode = OFFSET_TO_OFFBASE(rep_offset1);
|
||||
mLength = 4;
|
||||
|
||||
/* Count the backwards match length. */
|
||||
|
@ -287,11 +379,6 @@ _match: /* Requires: ip0, match0, offcode */
|
|||
ip0 += mLength;
|
||||
anchor = ip0;
|
||||
|
||||
/* write next hash table entry */
|
||||
if (ip1 < ip0) {
|
||||
hashTable[hash1] = (U32)(ip1 - base);
|
||||
}
|
||||
|
||||
/* Fill table and check for immediate repcode. */
|
||||
if (ip0 <= ilimit) {
|
||||
/* Fill Table */
|
||||
|
@ -306,7 +393,7 @@ _match: /* Requires: ip0, match0, offcode */
|
|||
{ U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
|
||||
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
|
||||
ip0 += rLength;
|
||||
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, STORE_REPCODE_1, rLength);
|
||||
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
|
||||
anchor = ip0;
|
||||
continue; /* faster when present (confirmed on gcc-8) ... (?) */
|
||||
} } }
|
||||
|
@ -380,14 +467,14 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
|
|||
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* ip0 = istart;
|
||||
const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */
|
||||
const BYTE* anchor = istart;
|
||||
const U32 prefixStartIndex = ms->window.dictLimit;
|
||||
const BYTE* const prefixStart = base + prefixStartIndex;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
U32 offsetSaved = 0;
|
||||
|
||||
const ZSTD_matchState_t* const dms = ms->dictMatchState;
|
||||
const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
|
||||
|
@ -397,13 +484,13 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
|
|||
const BYTE* const dictStart = dictBase + dictStartIndex;
|
||||
const BYTE* const dictEnd = dms->window.nextSrc;
|
||||
const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
|
||||
const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
|
||||
const U32 dictHLog = dictCParams->hashLog;
|
||||
const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart);
|
||||
const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
|
||||
/* if a dictionary is still attached, it necessarily means that
|
||||
* it is within window size. So we just check it. */
|
||||
const U32 maxDistance = 1U << cParams->windowLog;
|
||||
const U32 endIndex = (U32)((size_t)(ip - base) + srcSize);
|
||||
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
|
||||
assert(endIndex - prefixStartIndex <= maxDistance);
|
||||
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
|
||||
|
||||
|
@ -413,106 +500,155 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
|
|||
* when translating a dict index into a local index */
|
||||
assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
|
||||
|
||||
if (ms->prefetchCDictTables) {
|
||||
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
|
||||
PREFETCH_AREA(dictHashTable, hashTableBytes)
|
||||
}
|
||||
|
||||
/* init */
|
||||
DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
|
||||
ip += (dictAndPrefixLength == 0);
|
||||
ip0 += (dictAndPrefixLength == 0);
|
||||
/* dictMatchState repCode checks don't currently handle repCode == 0
|
||||
* disabling. */
|
||||
assert(offset_1 <= dictAndPrefixLength);
|
||||
assert(offset_2 <= dictAndPrefixLength);
|
||||
|
||||
/* Main Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
|
||||
/* Outer search loop */
|
||||
assert(stepSize >= 1);
|
||||
while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */
|
||||
size_t mLength;
|
||||
size_t const h = ZSTD_hashPtr(ip, hlog, mls);
|
||||
U32 const curr = (U32)(ip-base);
|
||||
U32 const matchIndex = hashTable[h];
|
||||
const BYTE* match = base + matchIndex;
|
||||
const U32 repIndex = curr + 1 - offset_1;
|
||||
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
|
||||
dictBase + (repIndex - dictIndexDelta) :
|
||||
base + repIndex;
|
||||
hashTable[h] = curr; /* update hash table */
|
||||
size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls);
|
||||
|
||||
if ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, mLength);
|
||||
} else if ( (matchIndex <= prefixStartIndex) ) {
|
||||
size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
|
||||
U32 const dictMatchIndex = dictHashTable[dictHash];
|
||||
const BYTE* dictMatch = dictBase + dictMatchIndex;
|
||||
if (dictMatchIndex <= dictStartIndex ||
|
||||
MEM_read32(dictMatch) != MEM_read32(ip)) {
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
} else {
|
||||
/* found a dict match */
|
||||
U32 const offset = (U32)(curr-dictMatchIndex-dictIndexDelta);
|
||||
mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
|
||||
while (((ip>anchor) & (dictMatch>dictStart))
|
||||
&& (ip[-1] == dictMatch[-1])) {
|
||||
ip--; dictMatch--; mLength++;
|
||||
size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls);
|
||||
U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS];
|
||||
int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0);
|
||||
|
||||
U32 matchIndex = hashTable[hash0];
|
||||
U32 curr = (U32)(ip0 - base);
|
||||
size_t step = stepSize;
|
||||
const size_t kStepIncr = 1 << kSearchStrength;
|
||||
const BYTE* nextStep = ip0 + kStepIncr;
|
||||
|
||||
/* Inner search loop */
|
||||
while (1) {
|
||||
const BYTE* match = base + matchIndex;
|
||||
const U32 repIndex = curr + 1 - offset_1;
|
||||
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
|
||||
dictBase + (repIndex - dictIndexDelta) :
|
||||
base + repIndex;
|
||||
const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls);
|
||||
size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls);
|
||||
hashTable[hash0] = curr; /* update hash table */
|
||||
|
||||
if (((U32) ((prefixStartIndex - 1) - repIndex) >=
|
||||
3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) {
|
||||
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip0++;
|
||||
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
|
||||
break;
|
||||
}
|
||||
|
||||
if (dictTagsMatch) {
|
||||
/* Found a possible dict match */
|
||||
const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
|
||||
const BYTE* dictMatch = dictBase + dictMatchIndex;
|
||||
if (dictMatchIndex > dictStartIndex &&
|
||||
MEM_read32(dictMatch) == MEM_read32(ip0)) {
|
||||
/* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */
|
||||
if (matchIndex <= prefixStartIndex) {
|
||||
U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta);
|
||||
mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4;
|
||||
while (((ip0 > anchor) & (dictMatch > dictStart))
|
||||
&& (ip0[-1] == dictMatch[-1])) {
|
||||
ip0--;
|
||||
dictMatch--;
|
||||
mLength++;
|
||||
} /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) {
|
||||
/* found a regular match */
|
||||
U32 const offset = (U32) (ip0 - match);
|
||||
mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4;
|
||||
while (((ip0 > anchor) & (match > prefixStart))
|
||||
&& (ip0[-1] == match[-1])) {
|
||||
ip0--;
|
||||
match--;
|
||||
mLength++;
|
||||
} /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
|
||||
break;
|
||||
}
|
||||
} else if (MEM_read32(match) != MEM_read32(ip)) {
|
||||
/* it's not a match, and we're not going to check the dictionary */
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
} else {
|
||||
/* found a regular match */
|
||||
U32 const offset = (U32)(ip-match);
|
||||
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
|
||||
while (((ip>anchor) & (match>prefixStart))
|
||||
&& (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
}
|
||||
|
||||
/* Prepare for next iteration */
|
||||
dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS];
|
||||
dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1);
|
||||
matchIndex = hashTable[hash1];
|
||||
|
||||
if (ip1 >= nextStep) {
|
||||
step++;
|
||||
nextStep += kStepIncr;
|
||||
}
|
||||
ip0 = ip1;
|
||||
ip1 = ip1 + step;
|
||||
if (ip1 > ilimit) goto _cleanup;
|
||||
|
||||
curr = (U32)(ip0 - base);
|
||||
hash0 = hash1;
|
||||
} /* end inner search loop */
|
||||
|
||||
/* match found */
|
||||
ip += mLength;
|
||||
anchor = ip;
|
||||
assert(mLength);
|
||||
ip0 += mLength;
|
||||
anchor = ip0;
|
||||
|
||||
if (ip <= ilimit) {
|
||||
if (ip0 <= ilimit) {
|
||||
/* Fill Table */
|
||||
assert(base+curr+2 > istart); /* check base overflow */
|
||||
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
|
||||
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
|
||||
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
|
||||
|
||||
/* check immediate repcode */
|
||||
while (ip <= ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
while (ip0 <= ilimit) {
|
||||
U32 const current2 = (U32)(ip0-base);
|
||||
U32 const repIndex2 = current2 - offset_2;
|
||||
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
|
||||
dictBase - dictIndexDelta + repIndex2 :
|
||||
base + repIndex2;
|
||||
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip0))) {
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, repLength2);
|
||||
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
|
||||
ip += repLength2;
|
||||
anchor = ip;
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
|
||||
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2;
|
||||
ip0 += repLength2;
|
||||
anchor = ip0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Prepare for next iteration */
|
||||
assert(ip0 == anchor);
|
||||
ip1 = ip0 + stepSize;
|
||||
}
|
||||
|
||||
_cleanup:
|
||||
/* save reps for next block */
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
rep[0] = offset_1;
|
||||
rep[1] = offset_2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return (size_t)(iend - anchor);
|
||||
|
@ -553,11 +689,10 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
|
|||
U32* const hashTable = ms->hashTable;
|
||||
U32 const hlog = cParams->hashLog;
|
||||
/* support stepSize of 0 */
|
||||
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
|
||||
size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* const dictBase = ms->window.dictBase;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
|
||||
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
|
||||
|
@ -570,6 +705,28 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
|
|||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - 8;
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
U32 offsetSaved1 = 0, offsetSaved2 = 0;
|
||||
|
||||
const BYTE* ip0 = istart;
|
||||
const BYTE* ip1;
|
||||
const BYTE* ip2;
|
||||
const BYTE* ip3;
|
||||
U32 current0;
|
||||
|
||||
|
||||
size_t hash0; /* hash for ip0 */
|
||||
size_t hash1; /* hash for ip1 */
|
||||
U32 idx; /* match idx for ip0 */
|
||||
const BYTE* idxBase; /* base pointer for idx */
|
||||
|
||||
U32 offcode;
|
||||
const BYTE* match0;
|
||||
size_t mLength;
|
||||
const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */
|
||||
|
||||
size_t step;
|
||||
const BYTE* nextStep;
|
||||
const size_t kStepIncr = (1 << (kSearchStrength - 1));
|
||||
|
||||
(void)hasStep; /* not currently specialized on whether it's accelerated */
|
||||
|
||||
|
@ -579,75 +736,202 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
|
|||
if (prefixStartIndex == dictStartIndex)
|
||||
return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
|
||||
|
||||
/* Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
|
||||
const size_t h = ZSTD_hashPtr(ip, hlog, mls);
|
||||
const U32 matchIndex = hashTable[h];
|
||||
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* match = matchBase + matchIndex;
|
||||
const U32 curr = (U32)(ip-base);
|
||||
const U32 repIndex = curr + 1 - offset_1;
|
||||
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* const repMatch = repBase + repIndex;
|
||||
hashTable[h] = curr; /* update hash table */
|
||||
DEBUGLOG(7, "offset_1 = %u , curr = %u", offset_1, curr);
|
||||
{ U32 const curr = (U32)(ip0 - base);
|
||||
U32 const maxRep = curr - dictStartIndex;
|
||||
if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0;
|
||||
if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0;
|
||||
}
|
||||
|
||||
if ( ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */
|
||||
& (offset_1 <= curr+1 - dictStartIndex) ) /* note: we are searching at curr+1 */
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const rLength = ZSTD_count_2segments(ip+1 +4, repMatch +4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_REPCODE_1, rLength);
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
} else {
|
||||
if ( (matchIndex < dictStartIndex) ||
|
||||
(MEM_read32(match) != MEM_read32(ip)) ) {
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
/* start each op */
|
||||
_start: /* Requires: ip0 */
|
||||
|
||||
step = stepSize;
|
||||
nextStep = ip0 + kStepIncr;
|
||||
|
||||
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
|
||||
ip1 = ip0 + 1;
|
||||
ip2 = ip0 + step;
|
||||
ip3 = ip2 + 1;
|
||||
|
||||
if (ip3 >= ilimit) {
|
||||
goto _cleanup;
|
||||
}
|
||||
|
||||
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
|
||||
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
|
||||
|
||||
idx = hashTable[hash0];
|
||||
idxBase = idx < prefixStartIndex ? dictBase : base;
|
||||
|
||||
do {
|
||||
{ /* load repcode match for ip[2] */
|
||||
U32 const current2 = (U32)(ip2 - base);
|
||||
U32 const repIndex = current2 - offset_1;
|
||||
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
|
||||
U32 rval;
|
||||
if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */
|
||||
& (offset_1 > 0) ) {
|
||||
rval = MEM_read32(repBase + repIndex);
|
||||
} else {
|
||||
rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */
|
||||
}
|
||||
{ const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
|
||||
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
|
||||
U32 const offset = curr - matchIndex;
|
||||
size_t mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
|
||||
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
offset_2 = offset_1; offset_1 = offset; /* update offset history */
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, STORE_OFFSET(offset), mLength);
|
||||
ip += mLength;
|
||||
anchor = ip;
|
||||
|
||||
/* write back hash table entry */
|
||||
current0 = (U32)(ip0 - base);
|
||||
hashTable[hash0] = current0;
|
||||
|
||||
/* check repcode at ip[2] */
|
||||
if (MEM_read32(ip2) == rval) {
|
||||
ip0 = ip2;
|
||||
match0 = repBase + repIndex;
|
||||
matchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
assert((match0 != prefixStart) & (match0 != dictStart));
|
||||
mLength = ip0[-1] == match0[-1];
|
||||
ip0 -= mLength;
|
||||
match0 -= mLength;
|
||||
offcode = REPCODE1_TO_OFFBASE;
|
||||
mLength += 4;
|
||||
goto _match;
|
||||
} }
|
||||
|
||||
if (ip <= ilimit) {
|
||||
/* Fill Table */
|
||||
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2;
|
||||
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
|
||||
/* check immediate repcode */
|
||||
while (ip <= ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
U32 const repIndex2 = current2 - offset_2;
|
||||
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 <= curr - dictStartIndex)) /* intentional overflow */
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, STORE_REPCODE_1, repLength2);
|
||||
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
|
||||
ip += repLength2;
|
||||
anchor = ip;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
} } }
|
||||
{ /* load match for ip[0] */
|
||||
U32 const mval = idx >= dictStartIndex ?
|
||||
MEM_read32(idxBase + idx) :
|
||||
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
|
||||
|
||||
/* check match at ip[0] */
|
||||
if (MEM_read32(ip0) == mval) {
|
||||
/* found a match! */
|
||||
goto _offset;
|
||||
} }
|
||||
|
||||
/* lookup ip[1] */
|
||||
idx = hashTable[hash1];
|
||||
idxBase = idx < prefixStartIndex ? dictBase : base;
|
||||
|
||||
/* hash ip[2] */
|
||||
hash0 = hash1;
|
||||
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
|
||||
|
||||
/* advance to next positions */
|
||||
ip0 = ip1;
|
||||
ip1 = ip2;
|
||||
ip2 = ip3;
|
||||
|
||||
/* write back hash table entry */
|
||||
current0 = (U32)(ip0 - base);
|
||||
hashTable[hash0] = current0;
|
||||
|
||||
{ /* load match for ip[0] */
|
||||
U32 const mval = idx >= dictStartIndex ?
|
||||
MEM_read32(idxBase + idx) :
|
||||
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
|
||||
|
||||
/* check match at ip[0] */
|
||||
if (MEM_read32(ip0) == mval) {
|
||||
/* found a match! */
|
||||
goto _offset;
|
||||
} }
|
||||
|
||||
/* lookup ip[1] */
|
||||
idx = hashTable[hash1];
|
||||
idxBase = idx < prefixStartIndex ? dictBase : base;
|
||||
|
||||
/* hash ip[2] */
|
||||
hash0 = hash1;
|
||||
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
|
||||
|
||||
/* advance to next positions */
|
||||
ip0 = ip1;
|
||||
ip1 = ip2;
|
||||
ip2 = ip0 + step;
|
||||
ip3 = ip1 + step;
|
||||
|
||||
/* calculate step */
|
||||
if (ip2 >= nextStep) {
|
||||
step++;
|
||||
PREFETCH_L1(ip1 + 64);
|
||||
PREFETCH_L1(ip1 + 128);
|
||||
nextStep += kStepIncr;
|
||||
}
|
||||
} while (ip3 < ilimit);
|
||||
|
||||
_cleanup:
|
||||
/* Note that there are probably still a couple positions we could search.
|
||||
* However, it seems to be a meaningful performance hit to try to search
|
||||
* them. So let's not. */
|
||||
|
||||
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
|
||||
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
|
||||
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
|
||||
|
||||
/* save reps for next block */
|
||||
rep[0] = offset_1;
|
||||
rep[1] = offset_2;
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved1;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return (size_t)(iend - anchor);
|
||||
|
||||
_offset: /* Requires: ip0, idx, idxBase */
|
||||
|
||||
/* Compute the offset code. */
|
||||
{ U32 const offset = current0 - idx;
|
||||
const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart;
|
||||
matchEnd = idx < prefixStartIndex ? dictEnd : iend;
|
||||
match0 = idxBase + idx;
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
offcode = OFFSET_TO_OFFBASE(offset);
|
||||
mLength = 4;
|
||||
|
||||
/* Count the backwards match length. */
|
||||
while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) {
|
||||
ip0--;
|
||||
match0--;
|
||||
mLength++;
|
||||
} }
|
||||
|
||||
_match: /* Requires: ip0, match0, offcode, matchEnd */
|
||||
|
||||
/* Count the forward length. */
|
||||
assert(matchEnd != 0);
|
||||
mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart);
|
||||
|
||||
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
|
||||
|
||||
ip0 += mLength;
|
||||
anchor = ip0;
|
||||
|
||||
/* write next hash table entry */
|
||||
if (ip1 < ip0) {
|
||||
hashTable[hash1] = (U32)(ip1 - base);
|
||||
}
|
||||
|
||||
/* Fill table and check for immediate repcode. */
|
||||
if (ip0 <= ilimit) {
|
||||
/* Fill Table */
|
||||
assert(base+current0+2 > istart); /* check base overflow */
|
||||
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
|
||||
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
|
||||
|
||||
while (ip0 <= ilimit) {
|
||||
U32 const repIndex2 = (U32)(ip0-base) - offset_2;
|
||||
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0)) /* intentional underflow */
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip0)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
|
||||
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
|
||||
ip0 += repLength2;
|
||||
anchor = ip0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
} }
|
||||
|
||||
goto _start;
|
||||
}
|
||||
|
||||
ZSTD_GEN_FAST_FN(extDict, 4, 0)
|
||||
|
@ -660,6 +944,7 @@ size_t ZSTD_compressBlock_fast_extDict(
|
|||
void const* src, size_t srcSize)
|
||||
{
|
||||
U32 const mls = ms->cParams.minMatch;
|
||||
assert(ms->dictMatchState == NULL);
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -19,7 +19,8 @@ extern "C" {
|
|||
#include "zstd_compress_internal.h"
|
||||
|
||||
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
|
||||
ZSTD_tableFillPurpose_e tfp);
|
||||
size_t ZSTD_compressBlock_fast(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -25,6 +25,8 @@ extern "C" {
|
|||
*/
|
||||
#define ZSTD_LAZY_DDSS_BUCKET_LOG 2
|
||||
|
||||
#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */
|
||||
|
||||
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
|
||||
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip);
|
||||
|
||||
|
@ -116,7 +118,7 @@ size_t ZSTD_compressBlock_lazy2_extDict_row(
|
|||
size_t ZSTD_compressBlock_btlazy2_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -242,11 +242,11 @@ static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
|
|||
switch(ms->cParams.strategy)
|
||||
{
|
||||
case ZSTD_fast:
|
||||
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
|
||||
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
|
||||
break;
|
||||
|
||||
case ZSTD_dfast:
|
||||
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
|
||||
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
|
||||
break;
|
||||
|
||||
case ZSTD_greedy:
|
||||
|
@ -549,7 +549,7 @@ size_t ZSTD_ldm_generateSequences(
|
|||
* the window through early invalidation.
|
||||
* TODO: * Test the chunk size.
|
||||
* * Try invalidation after the sequence generation and test the
|
||||
* the offset against maxDist directly.
|
||||
* offset against maxDist directly.
|
||||
*
|
||||
* NOTE: Because of dictionaries + sequence splitting we MUST make sure
|
||||
* that any offset used is valid at the END of the sequence, since it may
|
||||
|
@ -711,7 +711,7 @@ size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
|
|||
rep[0] = sequence.offset;
|
||||
/* Store the sequence */
|
||||
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
|
||||
STORE_OFFSET(sequence.offset),
|
||||
OFFSET_TO_OFFBASE(sequence.offset),
|
||||
sequence.matchLength);
|
||||
ip += sequence.matchLength;
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -16,7 +16,7 @@
|
|||
#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
|
||||
#define ZSTD_MAX_PRICE (1<<30)
|
||||
|
||||
#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
|
||||
#define ZSTD_PREDEF_THRESHOLD 8 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
|
||||
|
||||
|
||||
/*-*************************************
|
||||
|
@ -26,27 +26,35 @@
|
|||
#if 0 /* approximation at bit level (for tests) */
|
||||
# define BITCOST_ACCURACY 0
|
||||
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
|
||||
# define WEIGHT(stat, opt) ((void)opt, ZSTD_bitWeight(stat))
|
||||
# define WEIGHT(stat, opt) ((void)(opt), ZSTD_bitWeight(stat))
|
||||
#elif 0 /* fractional bit accuracy (for tests) */
|
||||
# define BITCOST_ACCURACY 8
|
||||
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
|
||||
# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
|
||||
# define WEIGHT(stat,opt) ((void)(opt), ZSTD_fracWeight(stat))
|
||||
#else /* opt==approx, ultra==accurate */
|
||||
# define BITCOST_ACCURACY 8
|
||||
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
|
||||
# define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
|
||||
# define WEIGHT(stat,opt) ((opt) ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
|
||||
#endif
|
||||
|
||||
/* ZSTD_bitWeight() :
|
||||
* provide estimated "cost" of a stat in full bits only */
|
||||
MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
|
||||
{
|
||||
return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
|
||||
}
|
||||
|
||||
/* ZSTD_fracWeight() :
|
||||
* provide fractional-bit "cost" of a stat,
|
||||
* using linear interpolation approximation */
|
||||
MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
|
||||
{
|
||||
U32 const stat = rawStat + 1;
|
||||
U32 const hb = ZSTD_highbit32(stat);
|
||||
U32 const BWeight = hb * BITCOST_MULTIPLIER;
|
||||
/* Fweight was meant for "Fractional weight"
|
||||
* but it's effectively a value between 1 and 2
|
||||
* using fixed point arithmetic */
|
||||
U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb;
|
||||
U32 const weight = BWeight + FWeight;
|
||||
assert(hb + BITCOST_ACCURACY < 31);
|
||||
|
@ -57,7 +65,7 @@ MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
|
|||
/* debugging function,
|
||||
* @return price in bytes as fractional value
|
||||
* for debug messages only */
|
||||
MEM_STATIC double ZSTD_fCost(U32 price)
|
||||
MEM_STATIC double ZSTD_fCost(int price)
|
||||
{
|
||||
return (double)price / (BITCOST_MULTIPLIER*8);
|
||||
}
|
||||
|
@ -88,20 +96,26 @@ static U32 sum_u32(const unsigned table[], size_t nbElts)
|
|||
return total;
|
||||
}
|
||||
|
||||
static U32 ZSTD_downscaleStats(unsigned* table, U32 lastEltIndex, U32 shift)
|
||||
typedef enum { base_0possible=0, base_1guaranteed=1 } base_directive_e;
|
||||
|
||||
static U32
|
||||
ZSTD_downscaleStats(unsigned* table, U32 lastEltIndex, U32 shift, base_directive_e base1)
|
||||
{
|
||||
U32 s, sum=0;
|
||||
DEBUGLOG(5, "ZSTD_downscaleStats (nbElts=%u, shift=%u)", (unsigned)lastEltIndex+1, (unsigned)shift);
|
||||
DEBUGLOG(5, "ZSTD_downscaleStats (nbElts=%u, shift=%u)",
|
||||
(unsigned)lastEltIndex+1, (unsigned)shift );
|
||||
assert(shift < 30);
|
||||
for (s=0; s<lastEltIndex+1; s++) {
|
||||
table[s] = 1 + (table[s] >> shift);
|
||||
sum += table[s];
|
||||
unsigned const base = base1 ? 1 : (table[s]>0);
|
||||
unsigned const newStat = base + (table[s] >> shift);
|
||||
sum += newStat;
|
||||
table[s] = newStat;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
/* ZSTD_scaleStats() :
|
||||
* reduce all elements in table is sum too large
|
||||
* reduce all elt frequencies in table if sum too large
|
||||
* return the resulting sum of elements */
|
||||
static U32 ZSTD_scaleStats(unsigned* table, U32 lastEltIndex, U32 logTarget)
|
||||
{
|
||||
|
@ -110,7 +124,7 @@ static U32 ZSTD_scaleStats(unsigned* table, U32 lastEltIndex, U32 logTarget)
|
|||
DEBUGLOG(5, "ZSTD_scaleStats (nbElts=%u, target=%u)", (unsigned)lastEltIndex+1, (unsigned)logTarget);
|
||||
assert(logTarget < 30);
|
||||
if (factor <= 1) return prevsum;
|
||||
return ZSTD_downscaleStats(table, lastEltIndex, ZSTD_highbit32(factor));
|
||||
return ZSTD_downscaleStats(table, lastEltIndex, ZSTD_highbit32(factor), base_1guaranteed);
|
||||
}
|
||||
|
||||
/* ZSTD_rescaleFreqs() :
|
||||
|
@ -129,18 +143,22 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
|
|||
DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
|
||||
optPtr->priceType = zop_dynamic;
|
||||
|
||||
if (optPtr->litLengthSum == 0) { /* first block : init */
|
||||
if (srcSize <= ZSTD_PREDEF_THRESHOLD) { /* heuristic */
|
||||
DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef");
|
||||
if (optPtr->litLengthSum == 0) { /* no literals stats collected -> first block assumed -> init */
|
||||
|
||||
/* heuristic: use pre-defined stats for too small inputs */
|
||||
if (srcSize <= ZSTD_PREDEF_THRESHOLD) {
|
||||
DEBUGLOG(5, "srcSize <= %i : use predefined stats", ZSTD_PREDEF_THRESHOLD);
|
||||
optPtr->priceType = zop_predef;
|
||||
}
|
||||
|
||||
assert(optPtr->symbolCosts != NULL);
|
||||
if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
|
||||
/* huffman table presumed generated by dictionary */
|
||||
|
||||
/* huffman stats covering the full value set : table presumed generated by dictionary */
|
||||
optPtr->priceType = zop_dynamic;
|
||||
|
||||
if (compressedLiterals) {
|
||||
/* generate literals statistics from huffman table */
|
||||
unsigned lit;
|
||||
assert(optPtr->litFreq != NULL);
|
||||
optPtr->litSum = 0;
|
||||
|
@ -188,13 +206,14 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
|
|||
optPtr->offCodeSum += optPtr->offCodeFreq[of];
|
||||
} }
|
||||
|
||||
} else { /* not a dictionary */
|
||||
} else { /* first block, no dictionary */
|
||||
|
||||
assert(optPtr->litFreq != NULL);
|
||||
if (compressedLiterals) {
|
||||
/* base initial cost of literals on direct frequency within src */
|
||||
unsigned lit = MaxLit;
|
||||
HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */
|
||||
optPtr->litSum = ZSTD_downscaleStats(optPtr->litFreq, MaxLit, 8);
|
||||
optPtr->litSum = ZSTD_downscaleStats(optPtr->litFreq, MaxLit, 8, base_0possible);
|
||||
}
|
||||
|
||||
{ unsigned const baseLLfreqs[MaxLL+1] = {
|
||||
|
@ -224,10 +243,9 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
|
|||
optPtr->offCodeSum = sum_u32(baseOFCfreqs, MaxOff+1);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
} else { /* new block : re-use previous statistics, scaled down */
|
||||
} else { /* new block : scale down accumulated statistics */
|
||||
|
||||
if (compressedLiterals)
|
||||
optPtr->litSum = ZSTD_scaleStats(optPtr->litFreq, MaxLit, 12);
|
||||
|
@ -255,11 +273,14 @@ static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
|
|||
return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */
|
||||
|
||||
/* dynamic statistics */
|
||||
{ U32 price = litLength * optPtr->litSumBasePrice;
|
||||
{ U32 price = optPtr->litSumBasePrice * litLength;
|
||||
U32 const litPriceMax = optPtr->litSumBasePrice - BITCOST_MULTIPLIER;
|
||||
U32 u;
|
||||
assert(optPtr->litSumBasePrice >= BITCOST_MULTIPLIER);
|
||||
for (u=0; u < litLength; u++) {
|
||||
assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice); /* literal cost should never be negative */
|
||||
price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
|
||||
U32 litPrice = WEIGHT(optPtr->litFreq[literals[u]], optLevel);
|
||||
if (UNLIKELY(litPrice > litPriceMax)) litPrice = litPriceMax;
|
||||
price -= litPrice;
|
||||
}
|
||||
return price;
|
||||
}
|
||||
|
@ -272,10 +293,11 @@ static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optP
|
|||
assert(litLength <= ZSTD_BLOCKSIZE_MAX);
|
||||
if (optPtr->priceType == zop_predef)
|
||||
return WEIGHT(litLength, optLevel);
|
||||
/* We can't compute the litLength price for sizes >= ZSTD_BLOCKSIZE_MAX
|
||||
* because it isn't representable in the zstd format. So instead just
|
||||
* call it 1 bit more than ZSTD_BLOCKSIZE_MAX - 1. In this case the block
|
||||
* would be all literals.
|
||||
|
||||
/* ZSTD_LLcode() can't compute litLength price for sizes >= ZSTD_BLOCKSIZE_MAX
|
||||
* because it isn't representable in the zstd format.
|
||||
* So instead just pretend it would cost 1 bit more than ZSTD_BLOCKSIZE_MAX - 1.
|
||||
* In such a case, the block would be all literals.
|
||||
*/
|
||||
if (litLength == ZSTD_BLOCKSIZE_MAX)
|
||||
return BITCOST_MULTIPLIER + ZSTD_litLengthPrice(ZSTD_BLOCKSIZE_MAX - 1, optPtr, optLevel);
|
||||
|
@ -289,24 +311,25 @@ static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optP
|
|||
}
|
||||
|
||||
/* ZSTD_getMatchPrice() :
|
||||
* Provides the cost of the match part (offset + matchLength) of a sequence
|
||||
* Provides the cost of the match part (offset + matchLength) of a sequence.
|
||||
* Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
|
||||
* @offcode : expects a scale where 0,1,2 are repcodes 1-3, and 3+ are real_offsets+2
|
||||
* @offBase : sumtype, representing an offset or a repcode, and using numeric representation of ZSTD_storeSeq()
|
||||
* @optLevel: when <2, favors small offset for decompression speed (improved cache efficiency)
|
||||
*/
|
||||
FORCE_INLINE_TEMPLATE U32
|
||||
ZSTD_getMatchPrice(U32 const offcode,
|
||||
ZSTD_getMatchPrice(U32 const offBase,
|
||||
U32 const matchLength,
|
||||
const optState_t* const optPtr,
|
||||
int const optLevel)
|
||||
{
|
||||
U32 price;
|
||||
U32 const offCode = ZSTD_highbit32(STORED_TO_OFFBASE(offcode));
|
||||
U32 const offCode = ZSTD_highbit32(offBase);
|
||||
U32 const mlBase = matchLength - MINMATCH;
|
||||
assert(matchLength >= MINMATCH);
|
||||
|
||||
if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */
|
||||
return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);
|
||||
if (optPtr->priceType == zop_predef) /* fixed scheme, does not use statistics */
|
||||
return WEIGHT(mlBase, optLevel)
|
||||
+ ((16 + offCode) * BITCOST_MULTIPLIER); /* emulated offset cost */
|
||||
|
||||
/* dynamic statistics */
|
||||
price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
|
||||
|
@ -325,10 +348,10 @@ ZSTD_getMatchPrice(U32 const offcode,
|
|||
}
|
||||
|
||||
/* ZSTD_updateStats() :
|
||||
* assumption : literals + litLengtn <= iend */
|
||||
* assumption : literals + litLength <= iend */
|
||||
static void ZSTD_updateStats(optState_t* const optPtr,
|
||||
U32 litLength, const BYTE* literals,
|
||||
U32 offsetCode, U32 matchLength)
|
||||
U32 offBase, U32 matchLength)
|
||||
{
|
||||
/* literals */
|
||||
if (ZSTD_compressedLiterals(optPtr)) {
|
||||
|
@ -344,8 +367,8 @@ static void ZSTD_updateStats(optState_t* const optPtr,
|
|||
optPtr->litLengthSum++;
|
||||
}
|
||||
|
||||
/* offset code : expected to follow storeSeq() numeric representation */
|
||||
{ U32 const offCode = ZSTD_highbit32(STORED_TO_OFFBASE(offsetCode));
|
||||
/* offset code : follows storeSeq() numeric representation */
|
||||
{ U32 const offCode = ZSTD_highbit32(offBase);
|
||||
assert(offCode <= MaxOff);
|
||||
optPtr->offCodeFreq[offCode]++;
|
||||
optPtr->offCodeSum++;
|
||||
|
@ -552,16 +575,17 @@ void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
|
|||
ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
|
||||
}
|
||||
|
||||
FORCE_INLINE_TEMPLATE
|
||||
U32 ZSTD_insertBtAndGetAllMatches (
|
||||
ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
|
||||
ZSTD_matchState_t* ms,
|
||||
U32* nextToUpdate3,
|
||||
const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
|
||||
const U32 rep[ZSTD_REP_NUM],
|
||||
U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
|
||||
const U32 lengthToBeat,
|
||||
U32 const mls /* template */)
|
||||
FORCE_INLINE_TEMPLATE U32
|
||||
ZSTD_insertBtAndGetAllMatches (
|
||||
ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
|
||||
ZSTD_matchState_t* ms,
|
||||
U32* nextToUpdate3,
|
||||
const BYTE* const ip, const BYTE* const iLimit,
|
||||
const ZSTD_dictMode_e dictMode,
|
||||
const U32 rep[ZSTD_REP_NUM],
|
||||
const U32 ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
|
||||
const U32 lengthToBeat,
|
||||
const U32 mls /* template */)
|
||||
{
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
|
||||
|
@ -644,7 +668,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
|
|||
DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
|
||||
repCode, ll0, repOffset, repLen);
|
||||
bestLength = repLen;
|
||||
matches[mnum].off = STORE_REPCODE(repCode - ll0 + 1); /* expect value between 1 and 3 */
|
||||
matches[mnum].off = REPCODE_TO_OFFBASE(repCode - ll0 + 1); /* expect value between 1 and 3 */
|
||||
matches[mnum].len = (U32)repLen;
|
||||
mnum++;
|
||||
if ( (repLen > sufficient_len)
|
||||
|
@ -673,7 +697,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
|
|||
bestLength = mlen;
|
||||
assert(curr > matchIndex3);
|
||||
assert(mnum==0); /* no prior solution */
|
||||
matches[0].off = STORE_OFFSET(curr - matchIndex3);
|
||||
matches[0].off = OFFSET_TO_OFFBASE(curr - matchIndex3);
|
||||
matches[0].len = (U32)mlen;
|
||||
mnum = 1;
|
||||
if ( (mlen > sufficient_len) |
|
||||
|
@ -706,13 +730,13 @@ U32 ZSTD_insertBtAndGetAllMatches (
|
|||
}
|
||||
|
||||
if (matchLength > bestLength) {
|
||||
DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
|
||||
(U32)matchLength, curr - matchIndex, STORE_OFFSET(curr - matchIndex));
|
||||
DEBUGLOG(8, "found match of length %u at distance %u (offBase=%u)",
|
||||
(U32)matchLength, curr - matchIndex, OFFSET_TO_OFFBASE(curr - matchIndex));
|
||||
assert(matchEndIdx > matchIndex);
|
||||
if (matchLength > matchEndIdx - matchIndex)
|
||||
matchEndIdx = matchIndex + (U32)matchLength;
|
||||
bestLength = matchLength;
|
||||
matches[mnum].off = STORE_OFFSET(curr - matchIndex);
|
||||
matches[mnum].off = OFFSET_TO_OFFBASE(curr - matchIndex);
|
||||
matches[mnum].len = (U32)matchLength;
|
||||
mnum++;
|
||||
if ( (matchLength > ZSTD_OPT_NUM)
|
||||
|
@ -754,12 +778,12 @@ U32 ZSTD_insertBtAndGetAllMatches (
|
|||
|
||||
if (matchLength > bestLength) {
|
||||
matchIndex = dictMatchIndex + dmsIndexDelta;
|
||||
DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
|
||||
(U32)matchLength, curr - matchIndex, STORE_OFFSET(curr - matchIndex));
|
||||
DEBUGLOG(8, "found dms match of length %u at distance %u (offBase=%u)",
|
||||
(U32)matchLength, curr - matchIndex, OFFSET_TO_OFFBASE(curr - matchIndex));
|
||||
if (matchLength > matchEndIdx - matchIndex)
|
||||
matchEndIdx = matchIndex + (U32)matchLength;
|
||||
bestLength = matchLength;
|
||||
matches[mnum].off = STORE_OFFSET(curr - matchIndex);
|
||||
matches[mnum].off = OFFSET_TO_OFFBASE(curr - matchIndex);
|
||||
matches[mnum].len = (U32)matchLength;
|
||||
mnum++;
|
||||
if ( (matchLength > ZSTD_OPT_NUM)
|
||||
|
@ -960,7 +984,7 @@ static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
|
|||
const ZSTD_optLdm_t* optLdm, U32 currPosInBlock)
|
||||
{
|
||||
U32 const posDiff = currPosInBlock - optLdm->startPosInBlock;
|
||||
/* Note: ZSTD_match_t actually contains offCode and matchLength (before subtracting MINMATCH) */
|
||||
/* Note: ZSTD_match_t actually contains offBase and matchLength (before subtracting MINMATCH) */
|
||||
U32 const candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff;
|
||||
|
||||
/* Ensure that current block position is not outside of the match */
|
||||
|
@ -971,11 +995,11 @@ static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
|
|||
}
|
||||
|
||||
if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) {
|
||||
U32 const candidateOffCode = STORE_OFFSET(optLdm->offset);
|
||||
DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offCode: %u matchLength %u) at block position=%u",
|
||||
candidateOffCode, candidateMatchLength, currPosInBlock);
|
||||
U32 const candidateOffBase = OFFSET_TO_OFFBASE(optLdm->offset);
|
||||
DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offBase: %u matchLength %u) at block position=%u",
|
||||
candidateOffBase, candidateMatchLength, currPosInBlock);
|
||||
matches[*nbMatches].len = candidateMatchLength;
|
||||
matches[*nbMatches].off = candidateOffCode;
|
||||
matches[*nbMatches].off = candidateOffBase;
|
||||
(*nbMatches)++;
|
||||
}
|
||||
}
|
||||
|
@ -1062,6 +1086,8 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
|
|||
ZSTD_optimal_t lastSequence;
|
||||
ZSTD_optLdm_t optLdm;
|
||||
|
||||
ZSTD_memset(&lastSequence, 0, sizeof(ZSTD_optimal_t));
|
||||
|
||||
optLdm.seqStore = ms->ldmSeqStore ? *ms->ldmSeqStore : kNullRawSeqStore;
|
||||
optLdm.endPosInBlock = optLdm.startPosInBlock = optLdm.offset = 0;
|
||||
ZSTD_opt_getNextMatchAndUpdateSeqStore(&optLdm, (U32)(ip-istart), (U32)(iend-ip));
|
||||
|
@ -1098,14 +1124,14 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
|
|||
|
||||
/* large match -> immediate encoding */
|
||||
{ U32 const maxML = matches[nbMatches-1].len;
|
||||
U32 const maxOffcode = matches[nbMatches-1].off;
|
||||
DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
|
||||
nbMatches, maxML, maxOffcode, (U32)(ip-prefixStart));
|
||||
U32 const maxOffBase = matches[nbMatches-1].off;
|
||||
DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffBase=%u at cPos=%u => start new series",
|
||||
nbMatches, maxML, maxOffBase, (U32)(ip-prefixStart));
|
||||
|
||||
if (maxML > sufficient_len) {
|
||||
lastSequence.litlen = litlen;
|
||||
lastSequence.mlen = maxML;
|
||||
lastSequence.off = maxOffcode;
|
||||
lastSequence.off = maxOffBase;
|
||||
DEBUGLOG(6, "large match (%u>%u), immediate encoding",
|
||||
maxML, sufficient_len);
|
||||
cur = 0;
|
||||
|
@ -1122,15 +1148,15 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
|
|||
opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */
|
||||
}
|
||||
for (matchNb = 0; matchNb < nbMatches; matchNb++) {
|
||||
U32 const offcode = matches[matchNb].off;
|
||||
U32 const offBase = matches[matchNb].off;
|
||||
U32 const end = matches[matchNb].len;
|
||||
for ( ; pos <= end ; pos++ ) {
|
||||
U32 const matchPrice = ZSTD_getMatchPrice(offcode, pos, optStatePtr, optLevel);
|
||||
U32 const matchPrice = ZSTD_getMatchPrice(offBase, pos, optStatePtr, optLevel);
|
||||
U32 const sequencePrice = literalsPrice + matchPrice;
|
||||
DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
|
||||
pos, ZSTD_fCost(sequencePrice));
|
||||
pos, ZSTD_fCost((int)sequencePrice));
|
||||
opt[pos].mlen = pos;
|
||||
opt[pos].off = offcode;
|
||||
opt[pos].off = offBase;
|
||||
opt[pos].litlen = litlen;
|
||||
opt[pos].price = (int)sequencePrice;
|
||||
} }
|
||||
|
@ -1230,7 +1256,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
|
|||
U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
|
||||
U32 mlen;
|
||||
|
||||
DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u",
|
||||
DEBUGLOG(7, "testing match %u => offBase=%4u, mlen=%2u, llen=%2u",
|
||||
matchNb, matches[matchNb].off, lastML, litlen);
|
||||
|
||||
for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */
|
||||
|
@ -1296,7 +1322,7 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
|
|||
for (storePos=storeStart; storePos <= storeEnd; storePos++) {
|
||||
U32 const llen = opt[storePos].litlen;
|
||||
U32 const mlen = opt[storePos].mlen;
|
||||
U32 const offCode = opt[storePos].off;
|
||||
U32 const offBase = opt[storePos].off;
|
||||
U32 const advance = llen + mlen;
|
||||
DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u",
|
||||
anchor - istart, (unsigned)llen, (unsigned)mlen);
|
||||
|
@ -1308,8 +1334,8 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
|
|||
}
|
||||
|
||||
assert(anchor + llen <= iend);
|
||||
ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
|
||||
ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen);
|
||||
ZSTD_updateStats(optStatePtr, llen, anchor, offBase, mlen);
|
||||
ZSTD_storeSeq(seqStore, llen, anchor, iend, offBase, mlen);
|
||||
anchor += advance;
|
||||
ip = anchor;
|
||||
} }
|
||||
|
@ -1349,7 +1375,7 @@ size_t ZSTD_compressBlock_btopt(
|
|||
/* ZSTD_initStats_ultra():
|
||||
* make a first compression pass, just to seed stats with more accurate starting values.
|
||||
* only works on first block, with no dictionary and no ldm.
|
||||
* this function cannot error, hence its contract must be respected.
|
||||
* this function cannot error out, its narrow contract must be respected.
|
||||
*/
|
||||
static void
|
||||
ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
|
||||
|
@ -1368,7 +1394,7 @@ ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
|
|||
|
||||
ZSTD_compressBlock_opt2(ms, seqStore, tmpRep, src, srcSize, ZSTD_noDict); /* generate stats into ms->opt*/
|
||||
|
||||
/* invalidate first scan from history */
|
||||
/* invalidate first scan from history, only keep entropy stats */
|
||||
ZSTD_resetSeqStore(seqStore);
|
||||
ms->window.base -= srcSize;
|
||||
ms->window.dictLimit += (U32)srcSize;
|
||||
|
@ -1392,20 +1418,20 @@ size_t ZSTD_compressBlock_btultra2(
|
|||
U32 const curr = (U32)((const BYTE*)src - ms->window.base);
|
||||
DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize);
|
||||
|
||||
/* 2-pass strategy:
|
||||
/* 2-passes strategy:
|
||||
* this strategy makes a first pass over first block to collect statistics
|
||||
* and seed next round's statistics with it.
|
||||
* After 1st pass, function forgets everything, and starts a new block.
|
||||
* in order to seed next round's statistics with it.
|
||||
* After 1st pass, function forgets history, and starts a new block.
|
||||
* Consequently, this can only work if no data has been previously loaded in tables,
|
||||
* aka, no dictionary, no prefix, no ldm preprocessing.
|
||||
* The compression ratio gain is generally small (~0.5% on first block),
|
||||
* the cost is 2x cpu time on first block. */
|
||||
** the cost is 2x cpu time on first block. */
|
||||
assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
|
||||
if ( (ms->opt.litLengthSum==0) /* first block */
|
||||
&& (seqStore->sequences == seqStore->sequencesStart) /* no ldm */
|
||||
&& (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */
|
||||
&& (curr == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */
|
||||
&& (srcSize > ZSTD_PREDEF_THRESHOLD)
|
||||
&& (curr == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */
|
||||
&& (srcSize > ZSTD_PREDEF_THRESHOLD) /* input large enough to not employ default stats */
|
||||
) {
|
||||
ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -20,6 +20,7 @@
|
|||
|
||||
|
||||
/* ====== Dependencies ====== */
|
||||
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
|
||||
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
|
||||
#include "../common/mem.h" /* MEM_STATIC */
|
||||
#include "../common/pool.h" /* threadpool */
|
||||
|
@ -266,11 +267,11 @@ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
|
|||
* 1 buffer for input loading
|
||||
* 1 buffer for "next input" when submitting current one
|
||||
* 1 buffer stuck in queue */
|
||||
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
|
||||
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3)
|
||||
|
||||
/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
|
||||
* So we only need one seq buffer per worker. */
|
||||
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
|
||||
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers)
|
||||
|
||||
/* ===== Seq Pool Wrapper ====== */
|
||||
|
||||
|
@ -719,7 +720,7 @@ static void ZSTDMT_compressionJob(void* jobDescription)
|
|||
ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
|
||||
|
||||
if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
|
||||
size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
|
||||
size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
|
||||
if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
|
||||
DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
|
||||
ZSTD_invalidateRepCodes(cctx);
|
||||
|
@ -737,7 +738,7 @@ static void ZSTDMT_compressionJob(void* jobDescription)
|
|||
DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
|
||||
assert(job->cSize == 0);
|
||||
for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
|
||||
size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
|
||||
size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize);
|
||||
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
|
||||
ip += chunkSize;
|
||||
op += cSize; assert(op < oend);
|
||||
|
@ -757,8 +758,8 @@ static void ZSTDMT_compressionJob(void* jobDescription)
|
|||
size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
|
||||
size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
|
||||
size_t const cSize = (job->lastJob) ?
|
||||
ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) :
|
||||
ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
|
||||
ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) :
|
||||
ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize);
|
||||
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
|
||||
lastCBlockSize = cSize;
|
||||
} }
|
||||
|
@ -1734,7 +1735,7 @@ findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
|
|||
}
|
||||
} else {
|
||||
/* We have enough bytes buffered to initialize the hash,
|
||||
* and are have processed enough bytes to find a sync point.
|
||||
* and have processed enough bytes to find a sync point.
|
||||
* Start scanning at the beginning of the input.
|
||||
*/
|
||||
assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
|
||||
|
@ -1761,17 +1762,24 @@ findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
|
|||
* then a block will be emitted anyways, but this is okay, since if we
|
||||
* are already synchronized we will remain synchronized.
|
||||
*/
|
||||
assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
|
||||
for (; pos < syncPoint.toLoad; ++pos) {
|
||||
BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
|
||||
assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
|
||||
/* This assert is very expensive, and Debian compiles with asserts enabled.
|
||||
* So disable it for now. We can get similar coverage by checking it at the
|
||||
* beginning & end of the loop.
|
||||
* assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
|
||||
*/
|
||||
hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
|
||||
assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
|
||||
if ((hash & hitMask) == hitMask) {
|
||||
syncPoint.toLoad = pos + 1;
|
||||
syncPoint.flush = 1;
|
||||
++pos; /* for assert */
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
|
||||
return syncPoint;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -30,14 +30,14 @@
|
|||
* TODO: Support Windows calling convention.
|
||||
*/
|
||||
|
||||
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
|
||||
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
|
||||
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop)
|
||||
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
|
||||
.global HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
|
||||
.global HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
|
||||
.global _HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
|
||||
.global _HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
|
||||
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_fast_asm_loop)
|
||||
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_fast_asm_loop)
|
||||
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_fast_asm_loop)
|
||||
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_fast_asm_loop)
|
||||
.global HUF_decompress4X1_usingDTable_internal_fast_asm_loop
|
||||
.global HUF_decompress4X2_usingDTable_internal_fast_asm_loop
|
||||
.global _HUF_decompress4X1_usingDTable_internal_fast_asm_loop
|
||||
.global _HUF_decompress4X2_usingDTable_internal_fast_asm_loop
|
||||
.text
|
||||
|
||||
/* Sets up register mappings for clarity.
|
||||
|
@ -95,8 +95,9 @@ ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop)
|
|||
/* Define both _HUF_* & HUF_* symbols because MacOS
|
||||
* C symbols are prefixed with '_' & Linux symbols aren't.
|
||||
*/
|
||||
_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
|
||||
HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
|
||||
_HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
|
||||
HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
|
||||
ZSTD_CET_ENDBRANCH
|
||||
/* Save all registers - even if they are callee saved for simplicity. */
|
||||
push %rax
|
||||
push %rbx
|
||||
|
@ -350,8 +351,9 @@ HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
|
|||
pop %rax
|
||||
ret
|
||||
|
||||
_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
|
||||
HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
|
||||
_HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
|
||||
HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
|
||||
ZSTD_CET_ENDBRANCH
|
||||
/* Save all registers - even if they are callee saved for simplicity. */
|
||||
push %rax
|
||||
push %rbx
|
||||
|
@ -427,41 +429,30 @@ HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
|
|||
/* r15 = (ip0 - ilimit) / 7 */
|
||||
movq %rdx, %r15
|
||||
|
||||
movabsq $-3689348814741910323, %rdx
|
||||
movq 8(%rsp), %rax /* rax = oend0 */
|
||||
subq %op0, %rax /* rax = oend0 - op0 */
|
||||
mulq %rdx
|
||||
shrq $3, %rdx /* rdx = rax / 10 */
|
||||
/* r15 = min(r15, min(oend0 - op0, oend1 - op1, oend2 - op2, oend3 - op3) / 10) */
|
||||
movq 8(%rsp), %rax /* rax = oend0 */
|
||||
subq %op0, %rax /* rax = oend0 - op0 */
|
||||
movq 16(%rsp), %rdx /* rdx = oend1 */
|
||||
subq %op1, %rdx /* rdx = oend1 - op1 */
|
||||
|
||||
/* r15 = min(%rdx, %r15) */
|
||||
cmpq %rdx, %r15
|
||||
cmova %rdx, %r15
|
||||
cmpq %rax, %rdx
|
||||
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
|
||||
|
||||
movabsq $-3689348814741910323, %rdx
|
||||
movq 16(%rsp), %rax /* rax = oend1 */
|
||||
subq %op1, %rax /* rax = oend1 - op1 */
|
||||
mulq %rdx
|
||||
shrq $3, %rdx /* rdx = rax / 10 */
|
||||
|
||||
/* r15 = min(%rdx, %r15) */
|
||||
cmpq %rdx, %r15
|
||||
cmova %rdx, %r15
|
||||
|
||||
movabsq $-3689348814741910323, %rdx
|
||||
movq 24(%rsp), %rax /* rax = oend2 */
|
||||
subq %op2, %rax /* rax = oend2 - op2 */
|
||||
mulq %rdx
|
||||
shrq $3, %rdx /* rdx = rax / 10 */
|
||||
|
||||
/* r15 = min(%rdx, %r15) */
|
||||
cmpq %rdx, %r15
|
||||
cmova %rdx, %r15
|
||||
cmpq %rax, %rdx
|
||||
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
|
||||
|
||||
movabsq $-3689348814741910323, %rdx
|
||||
movq 32(%rsp), %rax /* rax = oend3 */
|
||||
subq %op3, %rax /* rax = oend3 - op3 */
|
||||
|
||||
cmpq %rax, %rdx
|
||||
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
|
||||
|
||||
movabsq $-3689348814741910323, %rax
|
||||
mulq %rdx
|
||||
shrq $3, %rdx /* rdx = rax / 10 */
|
||||
shrq $3, %rdx /* rdx = rdx / 10 */
|
||||
|
||||
/* r15 = min(%rdx, %r15) */
|
||||
cmpq %rdx, %r15
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -14,12 +14,12 @@
|
|||
/*-*******************************************************
|
||||
* Dependencies
|
||||
*********************************************************/
|
||||
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
|
||||
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
|
||||
#include "../common/cpu.h" /* bmi2 */
|
||||
#include "../common/mem.h" /* low level memory routines */
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "../common/fse.h"
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "../common/huf.h"
|
||||
#include "zstd_decompress_internal.h"
|
||||
#include "zstd_ddict.h"
|
||||
|
@ -134,7 +134,7 @@ static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
|
|||
ZSTD_memcpy(internalBuffer, dict, dictSize);
|
||||
}
|
||||
ddict->dictSize = dictSize;
|
||||
ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
|
||||
ddict->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */
|
||||
|
||||
/* parse dictionary content */
|
||||
FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , "");
|
||||
|
@ -240,5 +240,5 @@ size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
|
|||
unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
|
||||
{
|
||||
if (ddict==NULL) return 0;
|
||||
return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
|
||||
return ddict->dictID;
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -55,17 +55,18 @@
|
|||
/*-*******************************************************
|
||||
* Dependencies
|
||||
*********************************************************/
|
||||
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
|
||||
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
|
||||
#include "../common/mem.h" /* low level memory routines */
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "../common/fse.h"
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "../common/huf.h"
|
||||
#include "../common/xxhash.h" /* XXH64_reset, XXH64_update, XXH64_digest, XXH64 */
|
||||
#include "../common/zstd_internal.h" /* blockProperties_t */
|
||||
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
|
||||
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
|
||||
#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */
|
||||
#include "../common/bits.h" /* ZSTD_highbit32 */
|
||||
|
||||
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
|
||||
# include "../legacy/zstd_legacy.h"
|
||||
|
@ -78,11 +79,11 @@
|
|||
*************************************/
|
||||
|
||||
#define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4
|
||||
#define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float.
|
||||
* Currently, that means a 0.75 load factor.
|
||||
* So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded
|
||||
* the load factor of the ddict hash set.
|
||||
*/
|
||||
#define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float.
|
||||
* Currently, that means a 0.75 load factor.
|
||||
* So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded
|
||||
* the load factor of the ddict hash set.
|
||||
*/
|
||||
|
||||
#define DDICT_HASHSET_TABLE_BASE_SIZE 64
|
||||
#define DDICT_HASHSET_RESIZE_FACTOR 2
|
||||
|
@ -243,6 +244,7 @@ static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx)
|
|||
dctx->outBufferMode = ZSTD_bm_buffered;
|
||||
dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum;
|
||||
dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict;
|
||||
dctx->disableHufAsm = 0;
|
||||
}
|
||||
|
||||
static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
|
||||
|
@ -438,16 +440,40 @@ size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
|
|||
* note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless
|
||||
* @return : 0, `zfhPtr` is correctly filled,
|
||||
* >0, `srcSize` is too small, value is wanted `srcSize` amount,
|
||||
* or an error code, which can be tested using ZSTD_isError() */
|
||||
** or an error code, which can be tested using ZSTD_isError() */
|
||||
size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
size_t const minInputSize = ZSTD_startingInputLength(format);
|
||||
|
||||
ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */
|
||||
if (srcSize < minInputSize) return minInputSize;
|
||||
RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter");
|
||||
DEBUGLOG(5, "ZSTD_getFrameHeader_advanced: minInputSize = %zu, srcSize = %zu", minInputSize, srcSize);
|
||||
|
||||
if (srcSize > 0) {
|
||||
/* note : technically could be considered an assert(), since it's an invalid entry */
|
||||
RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter : src==NULL, but srcSize>0");
|
||||
}
|
||||
if (srcSize < minInputSize) {
|
||||
if (srcSize > 0 && format != ZSTD_f_zstd1_magicless) {
|
||||
/* when receiving less than @minInputSize bytes,
|
||||
* control these bytes at least correspond to a supported magic number
|
||||
* in order to error out early if they don't.
|
||||
**/
|
||||
size_t const toCopy = MIN(4, srcSize);
|
||||
unsigned char hbuf[4]; MEM_writeLE32(hbuf, ZSTD_MAGICNUMBER);
|
||||
assert(src != NULL);
|
||||
ZSTD_memcpy(hbuf, src, toCopy);
|
||||
if ( MEM_readLE32(hbuf) != ZSTD_MAGICNUMBER ) {
|
||||
/* not a zstd frame : let's check if it's a skippable frame */
|
||||
MEM_writeLE32(hbuf, ZSTD_MAGIC_SKIPPABLE_START);
|
||||
ZSTD_memcpy(hbuf, src, toCopy);
|
||||
if ((MEM_readLE32(hbuf) & ZSTD_MAGIC_SKIPPABLE_MASK) != ZSTD_MAGIC_SKIPPABLE_START) {
|
||||
RETURN_ERROR(prefix_unknown,
|
||||
"first bytes don't correspond to any supported magic number");
|
||||
} } }
|
||||
return minInputSize;
|
||||
}
|
||||
|
||||
ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzers may not understand that zfhPtr will be read only if return value is zero, since they are 2 different signals */
|
||||
if ( (format != ZSTD_f_zstd1_magicless)
|
||||
&& (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) {
|
||||
if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
|
||||
|
@ -563,49 +589,52 @@ static size_t readSkippableFrameSize(void const* src, size_t srcSize)
|
|||
sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE);
|
||||
RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32,
|
||||
frameParameter_unsupported, "");
|
||||
{
|
||||
size_t const skippableSize = skippableHeaderSize + sizeU32;
|
||||
{ size_t const skippableSize = skippableHeaderSize + sizeU32;
|
||||
RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, "");
|
||||
return skippableSize;
|
||||
}
|
||||
}
|
||||
|
||||
/*! ZSTD_readSkippableFrame() :
|
||||
* Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
|
||||
* Retrieves content of a skippable frame, and writes it to dst buffer.
|
||||
*
|
||||
* The parameter magicVariant will receive the magicVariant that was supplied when the frame was written,
|
||||
* i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested
|
||||
* in the magicVariant.
|
||||
*
|
||||
* Returns an error if destination buffer is not large enough, or if the frame is not skippable.
|
||||
* Returns an error if destination buffer is not large enough, or if this is not a valid skippable frame.
|
||||
*
|
||||
* @return : number of bytes written or a ZSTD error.
|
||||
*/
|
||||
ZSTDLIB_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant,
|
||||
const void* src, size_t srcSize)
|
||||
size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity,
|
||||
unsigned* magicVariant, /* optional, can be NULL */
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
U32 const magicNumber = MEM_readLE32(src);
|
||||
size_t skippableFrameSize = readSkippableFrameSize(src, srcSize);
|
||||
size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE;
|
||||
RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, "");
|
||||
|
||||
/* check input validity */
|
||||
RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, "");
|
||||
RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, "");
|
||||
RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, "");
|
||||
{ U32 const magicNumber = MEM_readLE32(src);
|
||||
size_t skippableFrameSize = readSkippableFrameSize(src, srcSize);
|
||||
size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE;
|
||||
|
||||
/* deliver payload */
|
||||
if (skippableContentSize > 0 && dst != NULL)
|
||||
ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize);
|
||||
if (magicVariant != NULL)
|
||||
*magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START;
|
||||
return skippableContentSize;
|
||||
/* check input validity */
|
||||
RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, "");
|
||||
RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, "");
|
||||
RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, "");
|
||||
|
||||
/* deliver payload */
|
||||
if (skippableContentSize > 0 && dst != NULL)
|
||||
ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize);
|
||||
if (magicVariant != NULL)
|
||||
*magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START;
|
||||
return skippableContentSize;
|
||||
}
|
||||
}
|
||||
|
||||
/** ZSTD_findDecompressedSize() :
|
||||
* compatible with legacy mode
|
||||
* `srcSize` must be the exact length of some number of ZSTD compressed and/or
|
||||
* skippable frames
|
||||
* @return : decompressed size of the frames contained */
|
||||
* note: compatible with legacy mode
|
||||
* @return : decompressed size of the frames contained */
|
||||
unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
|
||||
{
|
||||
unsigned long long totalDstSize = 0;
|
||||
|
@ -615,9 +644,7 @@ unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
|
|||
|
||||
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
|
||||
size_t const skippableSize = readSkippableFrameSize(src, srcSize);
|
||||
if (ZSTD_isError(skippableSize)) {
|
||||
return ZSTD_CONTENTSIZE_ERROR;
|
||||
}
|
||||
if (ZSTD_isError(skippableSize)) return ZSTD_CONTENTSIZE_ERROR;
|
||||
assert(skippableSize <= srcSize);
|
||||
|
||||
src = (const BYTE *)src + skippableSize;
|
||||
|
@ -625,17 +652,17 @@ unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
|
|||
continue;
|
||||
}
|
||||
|
||||
{ unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
|
||||
if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret;
|
||||
{ unsigned long long const fcs = ZSTD_getFrameContentSize(src, srcSize);
|
||||
if (fcs >= ZSTD_CONTENTSIZE_ERROR) return fcs;
|
||||
|
||||
/* check for overflow */
|
||||
if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR;
|
||||
totalDstSize += ret;
|
||||
if (totalDstSize + fcs < totalDstSize)
|
||||
return ZSTD_CONTENTSIZE_ERROR; /* check for overflow */
|
||||
totalDstSize += fcs;
|
||||
}
|
||||
/* skip to next frame */
|
||||
{ size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
|
||||
if (ZSTD_isError(frameSrcSize)) {
|
||||
return ZSTD_CONTENTSIZE_ERROR;
|
||||
}
|
||||
if (ZSTD_isError(frameSrcSize)) return ZSTD_CONTENTSIZE_ERROR;
|
||||
assert(frameSrcSize <= srcSize);
|
||||
|
||||
src = (const BYTE *)src + frameSrcSize;
|
||||
srcSize -= frameSrcSize;
|
||||
|
@ -757,10 +784,11 @@ static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize
|
|||
ip += 4;
|
||||
}
|
||||
|
||||
frameSizeInfo.nbBlocks = nbBlocks;
|
||||
frameSizeInfo.compressedSize = (size_t)(ip - ipstart);
|
||||
frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN)
|
||||
? zfh.frameContentSize
|
||||
: nbBlocks * zfh.blockSizeMax;
|
||||
: (unsigned long long)nbBlocks * zfh.blockSizeMax;
|
||||
return frameSizeInfo;
|
||||
}
|
||||
}
|
||||
|
@ -800,6 +828,48 @@ unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize)
|
|||
return bound;
|
||||
}
|
||||
|
||||
size_t ZSTD_decompressionMargin(void const* src, size_t srcSize)
|
||||
{
|
||||
size_t margin = 0;
|
||||
unsigned maxBlockSize = 0;
|
||||
|
||||
/* Iterate over each frame */
|
||||
while (srcSize > 0) {
|
||||
ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
|
||||
size_t const compressedSize = frameSizeInfo.compressedSize;
|
||||
unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
|
||||
ZSTD_frameHeader zfh;
|
||||
|
||||
FORWARD_IF_ERROR(ZSTD_getFrameHeader(&zfh, src, srcSize), "");
|
||||
if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR)
|
||||
return ERROR(corruption_detected);
|
||||
|
||||
if (zfh.frameType == ZSTD_frame) {
|
||||
/* Add the frame header to our margin */
|
||||
margin += zfh.headerSize;
|
||||
/* Add the checksum to our margin */
|
||||
margin += zfh.checksumFlag ? 4 : 0;
|
||||
/* Add 3 bytes per block */
|
||||
margin += 3 * frameSizeInfo.nbBlocks;
|
||||
|
||||
/* Compute the max block size */
|
||||
maxBlockSize = MAX(maxBlockSize, zfh.blockSizeMax);
|
||||
} else {
|
||||
assert(zfh.frameType == ZSTD_skippableFrame);
|
||||
/* Add the entire skippable frame size to our margin. */
|
||||
margin += compressedSize;
|
||||
}
|
||||
|
||||
assert(srcSize >= compressedSize);
|
||||
src = (const BYTE*)src + compressedSize;
|
||||
srcSize -= compressedSize;
|
||||
}
|
||||
|
||||
/* Add the max block size back to the margin. */
|
||||
margin += maxBlockSize;
|
||||
|
||||
return margin;
|
||||
}
|
||||
|
||||
/*-*************************************************************
|
||||
* Frame decoding
|
||||
|
@ -825,7 +895,7 @@ static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity,
|
|||
if (srcSize == 0) return 0;
|
||||
RETURN_ERROR(dstBuffer_null, "");
|
||||
}
|
||||
ZSTD_memcpy(dst, src, srcSize);
|
||||
ZSTD_memmove(dst, src, srcSize);
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
|
@ -903,6 +973,7 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
|
|||
|
||||
/* Loop on each block */
|
||||
while (1) {
|
||||
BYTE* oBlockEnd = oend;
|
||||
size_t decodedSize;
|
||||
blockProperties_t blockProperties;
|
||||
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties);
|
||||
|
@ -912,16 +983,34 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
|
|||
remainingSrcSize -= ZSTD_blockHeaderSize;
|
||||
RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, "");
|
||||
|
||||
if (ip >= op && ip < oBlockEnd) {
|
||||
/* We are decompressing in-place. Limit the output pointer so that we
|
||||
* don't overwrite the block that we are currently reading. This will
|
||||
* fail decompression if the input & output pointers aren't spaced
|
||||
* far enough apart.
|
||||
*
|
||||
* This is important to set, even when the pointers are far enough
|
||||
* apart, because ZSTD_decompressBlock_internal() can decide to store
|
||||
* literals in the output buffer, after the block it is decompressing.
|
||||
* Since we don't want anything to overwrite our input, we have to tell
|
||||
* ZSTD_decompressBlock_internal to never write past ip.
|
||||
*
|
||||
* See ZSTD_allocateLiteralsBuffer() for reference.
|
||||
*/
|
||||
oBlockEnd = op + (ip - op);
|
||||
}
|
||||
|
||||
switch(blockProperties.blockType)
|
||||
{
|
||||
case bt_compressed:
|
||||
decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1, not_streaming);
|
||||
decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oBlockEnd-op), ip, cBlockSize, /* frame */ 1, not_streaming);
|
||||
break;
|
||||
case bt_raw :
|
||||
/* Use oend instead of oBlockEnd because this function is safe to overlap. It uses memmove. */
|
||||
decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize);
|
||||
break;
|
||||
case bt_rle :
|
||||
decodedSize = ZSTD_setRleBlock(op, (size_t)(oend-op), *ip, blockProperties.origSize);
|
||||
decodedSize = ZSTD_setRleBlock(op, (size_t)(oBlockEnd-op), *ip, blockProperties.origSize);
|
||||
break;
|
||||
case bt_reserved :
|
||||
default:
|
||||
|
@ -956,6 +1045,7 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
|
|||
}
|
||||
ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0);
|
||||
/* Allow caller to get size read */
|
||||
DEBUGLOG(4, "ZSTD_decompressFrame: decompressed frame of size %zi, consuming %zi bytes of input", op-ostart, ip - (const BYTE*)*srcPtr);
|
||||
*srcPtr = ip;
|
||||
*srcSizePtr = remainingSrcSize;
|
||||
return (size_t)(op-ostart);
|
||||
|
@ -1002,17 +1092,18 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
|
|||
}
|
||||
#endif
|
||||
|
||||
{ U32 const magicNumber = MEM_readLE32(src);
|
||||
DEBUGLOG(4, "reading magic number %08X (expecting %08X)",
|
||||
(unsigned)magicNumber, ZSTD_MAGICNUMBER);
|
||||
if (srcSize >= 4) {
|
||||
U32 const magicNumber = MEM_readLE32(src);
|
||||
DEBUGLOG(5, "reading magic number %08X", (unsigned)magicNumber);
|
||||
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
|
||||
/* skippable frame detected : skip it */
|
||||
size_t const skippableSize = readSkippableFrameSize(src, srcSize);
|
||||
FORWARD_IF_ERROR(skippableSize, "readSkippableFrameSize failed");
|
||||
FORWARD_IF_ERROR(skippableSize, "invalid skippable frame");
|
||||
assert(skippableSize <= srcSize);
|
||||
|
||||
src = (const BYTE *)src + skippableSize;
|
||||
srcSize -= skippableSize;
|
||||
continue;
|
||||
continue; /* check next frame */
|
||||
} }
|
||||
|
||||
if (ddict) {
|
||||
|
@ -1108,8 +1199,8 @@ size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t sr
|
|||
size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
|
||||
|
||||
/**
|
||||
* Similar to ZSTD_nextSrcSizeToDecompress(), but when when a block input can be streamed,
|
||||
* we allow taking a partial block as the input. Currently only raw uncompressed blocks can
|
||||
* Similar to ZSTD_nextSrcSizeToDecompress(), but when a block input can be streamed, we
|
||||
* allow taking a partial block as the input. Currently only raw uncompressed blocks can
|
||||
* be streamed.
|
||||
*
|
||||
* For blocks that can be streamed, this allows us to reduce the latency until we produce
|
||||
|
@ -1309,7 +1400,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
|
|||
|
||||
default:
|
||||
assert(0); /* impossible */
|
||||
RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */
|
||||
RETURN_ERROR(GENERIC, "impossible to reach"); /* some compilers require default to do something */
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1350,11 +1441,11 @@ ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
|
|||
/* in minimal huffman, we always use X1 variants */
|
||||
size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable,
|
||||
dictPtr, dictEnd - dictPtr,
|
||||
workspace, workspaceSize);
|
||||
workspace, workspaceSize, /* flags */ 0);
|
||||
#else
|
||||
size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable,
|
||||
dictPtr, (size_t)(dictEnd - dictPtr),
|
||||
workspace, workspaceSize);
|
||||
workspace, workspaceSize, /* flags */ 0);
|
||||
#endif
|
||||
RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, "");
|
||||
dictPtr += hSize;
|
||||
|
@ -1453,7 +1544,7 @@ size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
|
|||
dctx->prefixStart = NULL;
|
||||
dctx->virtualStart = NULL;
|
||||
dctx->dictEnd = NULL;
|
||||
dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
|
||||
dctx->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */
|
||||
dctx->litEntropy = dctx->fseEntropy = 0;
|
||||
dctx->dictID = 0;
|
||||
dctx->bType = bt_reserved;
|
||||
|
@ -1515,7 +1606,7 @@ unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
|
|||
* This could for one of the following reasons :
|
||||
* - The frame does not require a dictionary (most common case).
|
||||
* - The frame was built with dictID intentionally removed.
|
||||
* Needed dictionary is a hidden information.
|
||||
* Needed dictionary is a hidden piece of information.
|
||||
* Note : this use case also happens when using a non-conformant dictionary.
|
||||
* - `srcSize` is too small, and as a result, frame header could not be decoded.
|
||||
* Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`.
|
||||
|
@ -1524,7 +1615,7 @@ unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
|
|||
* ZSTD_getFrameHeader(), which will provide a more precise error code. */
|
||||
unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize)
|
||||
{
|
||||
ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 };
|
||||
ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0, 0, 0 };
|
||||
size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize);
|
||||
if (ZSTD_isError(hError)) return 0;
|
||||
return zfp.dictID;
|
||||
|
@ -1631,7 +1722,9 @@ size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t di
|
|||
size_t ZSTD_initDStream(ZSTD_DStream* zds)
|
||||
{
|
||||
DEBUGLOG(4, "ZSTD_initDStream");
|
||||
return ZSTD_initDStream_usingDDict(zds, NULL);
|
||||
FORWARD_IF_ERROR(ZSTD_DCtx_reset(zds, ZSTD_reset_session_only), "");
|
||||
FORWARD_IF_ERROR(ZSTD_DCtx_refDDict(zds, NULL), "");
|
||||
return ZSTD_startingInputLength(zds->format);
|
||||
}
|
||||
|
||||
/* ZSTD_initDStream_usingDDict() :
|
||||
|
@ -1639,6 +1732,7 @@ size_t ZSTD_initDStream(ZSTD_DStream* zds)
|
|||
* this function cannot fail */
|
||||
size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
|
||||
{
|
||||
DEBUGLOG(4, "ZSTD_initDStream_usingDDict");
|
||||
FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , "");
|
||||
FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , "");
|
||||
return ZSTD_startingInputLength(dctx->format);
|
||||
|
@ -1649,6 +1743,7 @@ size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
|
|||
* this function cannot fail */
|
||||
size_t ZSTD_resetDStream(ZSTD_DStream* dctx)
|
||||
{
|
||||
DEBUGLOG(4, "ZSTD_resetDStream");
|
||||
FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), "");
|
||||
return ZSTD_startingInputLength(dctx->format);
|
||||
}
|
||||
|
@ -1720,6 +1815,11 @@ ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam)
|
|||
bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict;
|
||||
bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts;
|
||||
return bounds;
|
||||
case ZSTD_d_disableHuffmanAssembly:
|
||||
bounds.lowerBound = 0;
|
||||
bounds.upperBound = 1;
|
||||
return bounds;
|
||||
|
||||
default:;
|
||||
}
|
||||
bounds.error = ERROR(parameter_unsupported);
|
||||
|
@ -1760,6 +1860,9 @@ size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value
|
|||
case ZSTD_d_refMultipleDDicts:
|
||||
*value = (int)dctx->refMultipleDDicts;
|
||||
return 0;
|
||||
case ZSTD_d_disableHuffmanAssembly:
|
||||
*value = (int)dctx->disableHufAsm;
|
||||
return 0;
|
||||
default:;
|
||||
}
|
||||
RETURN_ERROR(parameter_unsupported, "");
|
||||
|
@ -1793,6 +1896,10 @@ size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value
|
|||
}
|
||||
dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value;
|
||||
return 0;
|
||||
case ZSTD_d_disableHuffmanAssembly:
|
||||
CHECK_DBOUNDS(ZSTD_d_disableHuffmanAssembly, value);
|
||||
dctx->disableHufAsm = value != 0;
|
||||
return 0;
|
||||
default:;
|
||||
}
|
||||
RETURN_ERROR(parameter_unsupported, "");
|
||||
|
@ -1980,7 +2087,6 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
if (zds->refMultipleDDicts && zds->ddictSet) {
|
||||
ZSTD_DCtx_selectFrameDDict(zds);
|
||||
}
|
||||
DEBUGLOG(5, "header size : %u", (U32)hSize);
|
||||
if (ZSTD_isError(hSize)) {
|
||||
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
|
||||
U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart);
|
||||
|
@ -2012,6 +2118,11 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
zds->lhSize += remainingInput;
|
||||
}
|
||||
input->pos = input->size;
|
||||
/* check first few bytes */
|
||||
FORWARD_IF_ERROR(
|
||||
ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format),
|
||||
"First few bytes detected incorrect" );
|
||||
/* return hint input size */
|
||||
return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
|
||||
}
|
||||
assert(ip != NULL);
|
||||
|
@ -2029,8 +2140,9 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds));
|
||||
if (ZSTD_isError(decompressedSize)) return decompressedSize;
|
||||
DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
|
||||
assert(istart != NULL);
|
||||
ip = istart + cSize;
|
||||
op += decompressedSize;
|
||||
op = op ? op + decompressedSize : op; /* can occur if frameContentSize = 0 (empty frame) */
|
||||
zds->expected = 0;
|
||||
zds->streamStage = zdss_init;
|
||||
someMoreWork = 0;
|
||||
|
@ -2114,6 +2226,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
}
|
||||
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
|
||||
FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), "");
|
||||
assert(ip != NULL);
|
||||
ip += neededInSize;
|
||||
/* Function modifies the stage so we must break */
|
||||
break;
|
||||
|
@ -2128,7 +2241,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
int const isSkipFrame = ZSTD_isSkipFrame(zds);
|
||||
size_t loadedSize;
|
||||
/* At this point we shouldn't be decompressing a block that we can stream. */
|
||||
assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, iend - ip));
|
||||
assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip)));
|
||||
if (isSkipFrame) {
|
||||
loadedSize = MIN(toLoad, (size_t)(iend-ip));
|
||||
} else {
|
||||
|
@ -2137,8 +2250,11 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
"should never happen");
|
||||
loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip));
|
||||
}
|
||||
ip += loadedSize;
|
||||
zds->inPos += loadedSize;
|
||||
if (loadedSize != 0) {
|
||||
/* ip may be NULL */
|
||||
ip += loadedSize;
|
||||
zds->inPos += loadedSize;
|
||||
}
|
||||
if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
|
||||
|
||||
/* decode loaded input */
|
||||
|
@ -2148,14 +2264,17 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
break;
|
||||
}
|
||||
case zdss_flush:
|
||||
{ size_t const toFlushSize = zds->outEnd - zds->outStart;
|
||||
{
|
||||
size_t const toFlushSize = zds->outEnd - zds->outStart;
|
||||
size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize);
|
||||
op += flushedSize;
|
||||
|
||||
op = op ? op + flushedSize : op;
|
||||
|
||||
zds->outStart += flushedSize;
|
||||
if (flushedSize == toFlushSize) { /* flush completed */
|
||||
zds->streamStage = zdss_read;
|
||||
if ( (zds->outBuffSize < zds->fParams.frameContentSize)
|
||||
&& (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) {
|
||||
&& (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) {
|
||||
DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)",
|
||||
(int)(zds->outBuffSize - zds->outStart),
|
||||
(U32)zds->fParams.blockSizeMax);
|
||||
|
@ -2169,7 +2288,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
|
||||
default:
|
||||
assert(0); /* impossible */
|
||||
RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */
|
||||
RETURN_ERROR(GENERIC, "impossible to reach"); /* some compilers require default to do something */
|
||||
} }
|
||||
|
||||
/* result */
|
||||
|
@ -2182,8 +2301,8 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
|
|||
if ((ip==istart) && (op==ostart)) { /* no forward progress */
|
||||
zds->noForwardProgress ++;
|
||||
if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) {
|
||||
RETURN_ERROR_IF(op==oend, dstSize_tooSmall, "");
|
||||
RETURN_ERROR_IF(ip==iend, srcSize_wrong, "");
|
||||
RETURN_ERROR_IF(op==oend, noForwardProgress_destFull, "");
|
||||
RETURN_ERROR_IF(ip==iend, noForwardProgress_inputEmpty, "");
|
||||
assert(0);
|
||||
}
|
||||
} else {
|
||||
|
@ -2220,11 +2339,17 @@ size_t ZSTD_decompressStream_simpleArgs (
|
|||
void* dst, size_t dstCapacity, size_t* dstPos,
|
||||
const void* src, size_t srcSize, size_t* srcPos)
|
||||
{
|
||||
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
|
||||
ZSTD_inBuffer input = { src, srcSize, *srcPos };
|
||||
/* ZSTD_compress_generic() will check validity of dstPos and srcPos */
|
||||
size_t const cErr = ZSTD_decompressStream(dctx, &output, &input);
|
||||
*dstPos = output.pos;
|
||||
*srcPos = input.pos;
|
||||
return cErr;
|
||||
ZSTD_outBuffer output;
|
||||
ZSTD_inBuffer input;
|
||||
output.dst = dst;
|
||||
output.size = dstCapacity;
|
||||
output.pos = *dstPos;
|
||||
input.src = src;
|
||||
input.size = srcSize;
|
||||
input.pos = *srcPos;
|
||||
{ size_t const cErr = ZSTD_decompressStream(dctx, &output, &input);
|
||||
*dstPos = output.pos;
|
||||
*srcPos = input.pos;
|
||||
return cErr;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -20,12 +20,12 @@
|
|||
#include "../common/mem.h" /* low level memory routines */
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "../common/fse.h"
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "../common/huf.h"
|
||||
#include "../common/zstd_internal.h"
|
||||
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
|
||||
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
|
||||
#include "zstd_decompress_block.h"
|
||||
#include "../common/bits.h" /* ZSTD_highbit32 */
|
||||
|
||||
/*_*******************************************************
|
||||
* Macros
|
||||
|
@ -89,7 +89,7 @@ static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const
|
|||
dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
|
||||
}
|
||||
else {
|
||||
/* initially this will be stored entirely in dst during huffman decoding, it will partially shifted to litExtraBuffer after */
|
||||
/* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
|
||||
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
|
||||
dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
|
||||
}
|
||||
|
@ -134,13 +134,16 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|||
ZSTD_FALLTHROUGH;
|
||||
|
||||
case set_compressed:
|
||||
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
|
||||
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3");
|
||||
{ size_t lhSize, litSize, litCSize;
|
||||
U32 singleStream=0;
|
||||
U32 const lhlCode = (istart[0] >> 2) & 3;
|
||||
U32 const lhc = MEM_readLE32(istart);
|
||||
size_t hufSuccess;
|
||||
size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
|
||||
int const flags = 0
|
||||
| (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
|
||||
| (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
|
||||
switch(lhlCode)
|
||||
{
|
||||
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
|
||||
|
@ -165,6 +168,10 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|||
}
|
||||
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
|
||||
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
|
||||
if (!singleStream)
|
||||
RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
|
||||
"Not enough literals (%zu) for the 4-streams mode (min %u)",
|
||||
litSize, MIN_LITERALS_FOR_4_STREAMS);
|
||||
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
|
||||
RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
|
||||
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
|
||||
|
@ -176,13 +183,14 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|||
|
||||
if (litEncType==set_repeat) {
|
||||
if (singleStream) {
|
||||
hufSuccess = HUF_decompress1X_usingDTable_bmi2(
|
||||
hufSuccess = HUF_decompress1X_usingDTable(
|
||||
dctx->litBuffer, litSize, istart+lhSize, litCSize,
|
||||
dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
|
||||
dctx->HUFptr, flags);
|
||||
} else {
|
||||
hufSuccess = HUF_decompress4X_usingDTable_bmi2(
|
||||
assert(litSize >= MIN_LITERALS_FOR_4_STREAMS);
|
||||
hufSuccess = HUF_decompress4X_usingDTable(
|
||||
dctx->litBuffer, litSize, istart+lhSize, litCSize,
|
||||
dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
|
||||
dctx->HUFptr, flags);
|
||||
}
|
||||
} else {
|
||||
if (singleStream) {
|
||||
|
@ -190,18 +198,18 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|||
hufSuccess = HUF_decompress1X_DCtx_wksp(
|
||||
dctx->entropy.hufTable, dctx->litBuffer, litSize,
|
||||
istart+lhSize, litCSize, dctx->workspace,
|
||||
sizeof(dctx->workspace));
|
||||
sizeof(dctx->workspace), flags);
|
||||
#else
|
||||
hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
|
||||
hufSuccess = HUF_decompress1X1_DCtx_wksp(
|
||||
dctx->entropy.hufTable, dctx->litBuffer, litSize,
|
||||
istart+lhSize, litCSize, dctx->workspace,
|
||||
sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
|
||||
sizeof(dctx->workspace), flags);
|
||||
#endif
|
||||
} else {
|
||||
hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
|
||||
hufSuccess = HUF_decompress4X_hufOnly_wksp(
|
||||
dctx->entropy.hufTable, dctx->litBuffer, litSize,
|
||||
istart+lhSize, litCSize, dctx->workspace,
|
||||
sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
|
||||
sizeof(dctx->workspace), flags);
|
||||
}
|
||||
}
|
||||
if (dctx->litBufferLocation == ZSTD_split)
|
||||
|
@ -237,6 +245,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|||
break;
|
||||
case 3:
|
||||
lhSize = 3;
|
||||
RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3");
|
||||
litSize = MEM_readLE24(istart) >> 4;
|
||||
break;
|
||||
}
|
||||
|
@ -279,12 +288,13 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|||
break;
|
||||
case 1:
|
||||
lhSize = 2;
|
||||
RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3");
|
||||
litSize = MEM_readLE16(istart) >> 4;
|
||||
break;
|
||||
case 3:
|
||||
lhSize = 3;
|
||||
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4");
|
||||
litSize = MEM_readLE24(istart) >> 4;
|
||||
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
|
||||
break;
|
||||
}
|
||||
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
|
||||
|
@ -506,14 +516,15 @@ void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
|
|||
for (i = 8; i < n; i += 8) {
|
||||
MEM_write64(spread + pos + i, sv);
|
||||
}
|
||||
pos += n;
|
||||
assert(n>=0);
|
||||
pos += (size_t)n;
|
||||
}
|
||||
}
|
||||
/* Now we spread those positions across the table.
|
||||
* The benefit of doing it in two stages is that we avoid the the
|
||||
* The benefit of doing it in two stages is that we avoid the
|
||||
* variable size inner loop, which caused lots of branch misses.
|
||||
* Now we can run through all the positions without any branch misses.
|
||||
* We unroll the loop twice, since that is what emperically worked best.
|
||||
* We unroll the loop twice, since that is what empirically worked best.
|
||||
*/
|
||||
{
|
||||
size_t position = 0;
|
||||
|
@ -540,7 +551,7 @@ void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
|
|||
for (i=0; i<n; i++) {
|
||||
tableDecode[position].baseValue = s;
|
||||
position = (position + step) & tableMask;
|
||||
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
|
||||
while (UNLIKELY(position > highThreshold)) position = (position + step) & tableMask; /* lowprob area */
|
||||
} }
|
||||
assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
|
||||
}
|
||||
|
@ -551,7 +562,7 @@ void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
|
|||
for (u=0; u<tableSize; u++) {
|
||||
U32 const symbol = tableDecode[u].baseValue;
|
||||
U32 const nextState = symbolNext[symbol]++;
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
|
||||
tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
|
||||
assert(nbAdditionalBits[symbol] < 255);
|
||||
tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
|
||||
|
@ -964,6 +975,11 @@ size_t ZSTD_execSequence(BYTE* op,
|
|||
|
||||
assert(op != NULL /* Precondition */);
|
||||
assert(oend_w < oend /* No underflow */);
|
||||
|
||||
#if defined(__aarch64__)
|
||||
/* prefetch sequence starting from match that will be used for copy later */
|
||||
PREFETCH_L1(match);
|
||||
#endif
|
||||
/* Handle edge cases in a slow path:
|
||||
* - Read beyond end of literals
|
||||
* - Match end is within WILDCOPY_OVERLIMIT of oend
|
||||
|
@ -1154,7 +1170,7 @@ ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16
|
|||
}
|
||||
|
||||
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
|
||||
* offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
|
||||
* offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32
|
||||
* bits before reloading. This value is the maximum number of bytes we read
|
||||
* after reloading when we are decoding long offsets.
|
||||
*/
|
||||
|
@ -1169,9 +1185,27 @@ FORCE_INLINE_TEMPLATE seq_t
|
|||
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
|
||||
{
|
||||
seq_t seq;
|
||||
/*
|
||||
* ZSTD_seqSymbol is a structure with a total of 64 bits wide. So it can be
|
||||
* loaded in one operation and extracted its fields by simply shifting or
|
||||
* bit-extracting on aarch64.
|
||||
* GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
|
||||
* operations that cause performance drop. This can be avoided by using this
|
||||
* ZSTD_memcpy hack.
|
||||
*/
|
||||
#if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__))
|
||||
ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS;
|
||||
ZSTD_seqSymbol* const llDInfo = &llDInfoS;
|
||||
ZSTD_seqSymbol* const mlDInfo = &mlDInfoS;
|
||||
ZSTD_seqSymbol* const ofDInfo = &ofDInfoS;
|
||||
ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol));
|
||||
ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol));
|
||||
ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol));
|
||||
#else
|
||||
const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
|
||||
const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
|
||||
const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
|
||||
#endif
|
||||
seq.matchLength = mlDInfo->baseValue;
|
||||
seq.litLength = llDInfo->baseValue;
|
||||
{ U32 const ofBase = ofDInfo->baseValue;
|
||||
|
@ -1186,28 +1220,31 @@ ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
|
|||
U32 const llnbBits = llDInfo->nbBits;
|
||||
U32 const mlnbBits = mlDInfo->nbBits;
|
||||
U32 const ofnbBits = ofDInfo->nbBits;
|
||||
|
||||
assert(llBits <= MaxLLBits);
|
||||
assert(mlBits <= MaxMLBits);
|
||||
assert(ofBits <= MaxOff);
|
||||
/*
|
||||
* As gcc has better branch and block analyzers, sometimes it is only
|
||||
* valuable to mark likelyness for clang, it gives around 3-4% of
|
||||
* valuable to mark likeliness for clang, it gives around 3-4% of
|
||||
* performance.
|
||||
*/
|
||||
|
||||
/* sequence */
|
||||
{ size_t offset;
|
||||
#if defined(__clang__)
|
||||
if (LIKELY(ofBits > 1)) {
|
||||
#else
|
||||
if (ofBits > 1) {
|
||||
#endif
|
||||
ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
|
||||
ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
|
||||
assert(ofBits <= MaxOff);
|
||||
ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
|
||||
ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
|
||||
if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
|
||||
U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
|
||||
/* Always read extra bits, this keeps the logic simple,
|
||||
* avoids branches, and avoids accidentally reading 0 bits.
|
||||
*/
|
||||
U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32;
|
||||
offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
|
||||
BIT_reloadDStream(&seqState->DStream);
|
||||
if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
|
||||
assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
|
||||
offset += BIT_readBitsFast(&seqState->DStream, extraBits);
|
||||
} else {
|
||||
offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
|
||||
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
|
||||
|
@ -1232,11 +1269,7 @@ ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
|
|||
seq.offset = offset;
|
||||
}
|
||||
|
||||
#if defined(__clang__)
|
||||
if (UNLIKELY(mlBits > 0))
|
||||
#else
|
||||
if (mlBits > 0)
|
||||
#endif
|
||||
seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
|
||||
|
||||
if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
|
||||
|
@ -1246,11 +1279,7 @@ ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
|
|||
/* Ensure there are enough bits to read the rest of data in 64-bit mode. */
|
||||
ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
|
||||
|
||||
#if defined(__clang__)
|
||||
if (UNLIKELY(llBits > 0))
|
||||
#else
|
||||
if (llBits > 0)
|
||||
#endif
|
||||
seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
|
||||
|
||||
if (MEM_32bits())
|
||||
|
@ -1552,7 +1581,7 @@ ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
|
|||
const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
|
||||
const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
|
||||
const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
|
||||
DEBUGLOG(5, "ZSTD_decompressSequences_body");
|
||||
DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
|
||||
(void)frame;
|
||||
|
||||
/* Regen sequences */
|
||||
|
@ -1945,34 +1974,79 @@ ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
|
|||
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
|
||||
|
||||
|
||||
/**
|
||||
* @returns The total size of the history referenceable by zstd, including
|
||||
* both the prefix and the extDict. At @p op any offset larger than this
|
||||
* is invalid.
|
||||
*/
|
||||
static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart)
|
||||
{
|
||||
return (size_t)(op - virtualStart);
|
||||
}
|
||||
|
||||
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
|
||||
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
|
||||
/* ZSTD_getLongOffsetsShare() :
|
||||
typedef struct {
|
||||
unsigned longOffsetShare;
|
||||
unsigned maxNbAdditionalBits;
|
||||
} ZSTD_OffsetInfo;
|
||||
|
||||
/* ZSTD_getOffsetInfo() :
|
||||
* condition : offTable must be valid
|
||||
* @return : "share" of long offsets (arbitrarily defined as > (1<<23))
|
||||
* compared to maximum possible of (1<<OffFSELog) */
|
||||
static unsigned
|
||||
ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
|
||||
* compared to maximum possible of (1<<OffFSELog),
|
||||
* as well as the maximum number additional bits required.
|
||||
*/
|
||||
static ZSTD_OffsetInfo
|
||||
ZSTD_getOffsetInfo(const ZSTD_seqSymbol* offTable, int nbSeq)
|
||||
{
|
||||
const void* ptr = offTable;
|
||||
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
|
||||
const ZSTD_seqSymbol* table = offTable + 1;
|
||||
U32 const max = 1 << tableLog;
|
||||
U32 u, total = 0;
|
||||
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
|
||||
ZSTD_OffsetInfo info = {0, 0};
|
||||
/* If nbSeq == 0, then the offTable is uninitialized, but we have
|
||||
* no sequences, so both values should be 0.
|
||||
*/
|
||||
if (nbSeq != 0) {
|
||||
const void* ptr = offTable;
|
||||
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
|
||||
const ZSTD_seqSymbol* table = offTable + 1;
|
||||
U32 const max = 1 << tableLog;
|
||||
U32 u;
|
||||
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
|
||||
|
||||
assert(max <= (1 << OffFSELog)); /* max not too large */
|
||||
for (u=0; u<max; u++) {
|
||||
if (table[u].nbAdditionalBits > 22) total += 1;
|
||||
assert(max <= (1 << OffFSELog)); /* max not too large */
|
||||
for (u=0; u<max; u++) {
|
||||
info.maxNbAdditionalBits = MAX(info.maxNbAdditionalBits, table[u].nbAdditionalBits);
|
||||
if (table[u].nbAdditionalBits > 22) info.longOffsetShare += 1;
|
||||
}
|
||||
|
||||
assert(tableLog <= OffFSELog);
|
||||
info.longOffsetShare <<= (OffFSELog - tableLog); /* scale to OffFSELog */
|
||||
}
|
||||
|
||||
assert(tableLog <= OffFSELog);
|
||||
total <<= (OffFSELog - tableLog); /* scale to OffFSELog */
|
||||
|
||||
return total;
|
||||
return info;
|
||||
}
|
||||
|
||||
/**
|
||||
* @returns The maximum offset we can decode in one read of our bitstream, without
|
||||
* reloading more bits in the middle of the offset bits read. Any offsets larger
|
||||
* than this must use the long offset decoder.
|
||||
*/
|
||||
static size_t ZSTD_maxShortOffset(void)
|
||||
{
|
||||
if (MEM_64bits()) {
|
||||
/* We can decode any offset without reloading bits.
|
||||
* This might change if the max window size grows.
|
||||
*/
|
||||
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
|
||||
return (size_t)-1;
|
||||
} else {
|
||||
/* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1.
|
||||
* This offBase would require STREAM_ACCUMULATOR_MIN extra bits.
|
||||
* Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset.
|
||||
*/
|
||||
size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1;
|
||||
size_t const maxOffset = maxOffbase - ZSTD_REP_NUM;
|
||||
assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN);
|
||||
return maxOffset;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
size_t
|
||||
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
|
||||
|
@ -1980,20 +2054,21 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
|
|||
const void* src, size_t srcSize, const int frame, const streaming_operation streaming)
|
||||
{ /* blockType == blockCompressed */
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
/* isLongOffset must be true if there are long offsets.
|
||||
* Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
|
||||
* We don't expect that to be the case in 64-bit mode.
|
||||
* In block mode, window size is not known, so we have to be conservative.
|
||||
* (note: but it could be evaluated from current-lowLimit)
|
||||
*/
|
||||
ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
|
||||
DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
|
||||
|
||||
RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
|
||||
/* Note : the wording of the specification
|
||||
* allows compressed block to be sized exactly ZSTD_BLOCKSIZE_MAX.
|
||||
* This generally does not happen, as it makes little sense,
|
||||
* since an uncompressed block would feature same size and have no decompression cost.
|
||||
* Also, note that decoder from reference libzstd before < v1.5.4
|
||||
* would consider this edge case as an error.
|
||||
* As a consequence, avoid generating compressed blocks of size ZSTD_BLOCKSIZE_MAX
|
||||
* for broader compatibility with the deployed ecosystem of zstd decoders */
|
||||
RETURN_ERROR_IF(srcSize > ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
|
||||
|
||||
/* Decode literals section */
|
||||
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
|
||||
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
|
||||
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize);
|
||||
if (ZSTD_isError(litCSize)) return litCSize;
|
||||
ip += litCSize;
|
||||
srcSize -= litCSize;
|
||||
|
@ -2001,6 +2076,23 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
|
|||
|
||||
/* Build Decoding Tables */
|
||||
{
|
||||
/* Compute the maximum block size, which must also work when !frame and fParams are unset.
|
||||
* Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
|
||||
*/
|
||||
size_t const blockSizeMax = MIN(dstCapacity, (frame ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX));
|
||||
size_t const totalHistorySize = ZSTD_totalHistorySize((BYTE*)dst + blockSizeMax, (BYTE const*)dctx->virtualStart);
|
||||
/* isLongOffset must be true if there are long offsets.
|
||||
* Offsets are long if they are larger than ZSTD_maxShortOffset().
|
||||
* We don't expect that to be the case in 64-bit mode.
|
||||
*
|
||||
* We check here to see if our history is large enough to allow long offsets.
|
||||
* If it isn't, then we can't possible have (valid) long offsets. If the offset
|
||||
* is invalid, then it is okay to read it incorrectly.
|
||||
*
|
||||
* If isLongOffsets is true, then we will later check our decoding table to see
|
||||
* if it is even possible to generate long offsets.
|
||||
*/
|
||||
ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset()));
|
||||
/* These macros control at build-time which decompressor implementation
|
||||
* we use. If neither is defined, we do some inspection and dispatch at
|
||||
* runtime.
|
||||
|
@ -2008,6 +2100,11 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
|
|||
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
|
||||
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
|
||||
int usePrefetchDecoder = dctx->ddictIsCold;
|
||||
#else
|
||||
/* Set to 1 to avoid computing offset info if we don't need to.
|
||||
* Otherwise this value is ignored.
|
||||
*/
|
||||
int usePrefetchDecoder = 1;
|
||||
#endif
|
||||
int nbSeq;
|
||||
size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
|
||||
|
@ -2015,28 +2112,42 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
|
|||
ip += seqHSize;
|
||||
srcSize -= seqHSize;
|
||||
|
||||
RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
|
||||
RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
|
||||
RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall,
|
||||
"invalid dst");
|
||||
|
||||
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
|
||||
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
|
||||
if ( !usePrefetchDecoder
|
||||
&& (!frame || (dctx->fParams.windowSize > (1<<24)))
|
||||
&& (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */
|
||||
U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
|
||||
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
|
||||
usePrefetchDecoder = (shareLongOffsets >= minShare);
|
||||
/* If we could potentially have long offsets, or we might want to use the prefetch decoder,
|
||||
* compute information about the share of long offsets, and the maximum nbAdditionalBits.
|
||||
* NOTE: could probably use a larger nbSeq limit
|
||||
*/
|
||||
if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) {
|
||||
ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq);
|
||||
if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) {
|
||||
/* If isLongOffset, but the maximum number of additional bits that we see in our table is small
|
||||
* enough, then we know it is impossible to have too long an offset in this block, so we can
|
||||
* use the regular offset decoder.
|
||||
*/
|
||||
isLongOffset = ZSTD_lo_isRegularOffset;
|
||||
}
|
||||
if (!usePrefetchDecoder) {
|
||||
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
|
||||
usePrefetchDecoder = (info.longOffsetShare >= minShare);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
dctx->ddictIsCold = 0;
|
||||
|
||||
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
|
||||
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
|
||||
if (usePrefetchDecoder)
|
||||
if (usePrefetchDecoder) {
|
||||
#else
|
||||
(void)usePrefetchDecoder;
|
||||
{
|
||||
#endif
|
||||
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
|
||||
return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
|
||||
/* else */
|
||||
|
@ -2060,9 +2171,9 @@ void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
|
|||
}
|
||||
|
||||
|
||||
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize)
|
||||
size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
size_t dSize;
|
||||
ZSTD_checkContinuity(dctx, dst, dstCapacity);
|
||||
|
@ -2070,3 +2181,12 @@ size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
|
|||
dctx->previousDstEnd = (char*)dst + dSize;
|
||||
return dSize;
|
||||
}
|
||||
|
||||
|
||||
/* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */
|
||||
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize);
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -64,5 +64,10 @@ void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
|
|||
unsigned tableLog, void* wksp, size_t wkspSize,
|
||||
int bmi2);
|
||||
|
||||
/* Internal definition of ZSTD_decompressBlock() to avoid deprecation warnings. */
|
||||
size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
|
||||
#endif /* ZSTD_DEC_BLOCK_H */
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -75,12 +75,13 @@ static UNUSED_ATTR const U32 ML_base[MaxML+1] = {
|
|||
|
||||
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64))
|
||||
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32))
|
||||
#define ZSTD_HUFFDTABLE_CAPACITY_LOG 12
|
||||
|
||||
typedef struct {
|
||||
ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
|
||||
ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
|
||||
ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
|
||||
HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
|
||||
HUF_DTable hufTable[HUF_DTABLE_SIZE(ZSTD_HUFFDTABLE_CAPACITY_LOG)]; /* can accommodate HUF_decompress4X */
|
||||
U32 rep[ZSTD_REP_NUM];
|
||||
U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32];
|
||||
} ZSTD_entropyDTables_t;
|
||||
|
@ -164,6 +165,7 @@ struct ZSTD_DCtx_s
|
|||
ZSTD_dictUses_e dictUses;
|
||||
ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */
|
||||
ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */
|
||||
int disableHufAsm;
|
||||
|
||||
/* streaming */
|
||||
ZSTD_dStreamStage streamStage;
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) Yann Collet, Facebook, Inc.
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
|
@ -20,19 +20,31 @@ extern "C" {
|
|||
|
||||
|
||||
/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
|
||||
#ifndef ZSTDERRORLIB_VISIBILITY
|
||||
# if defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
# define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default")))
|
||||
#ifndef ZSTDERRORLIB_VISIBLE
|
||||
/* Backwards compatibility with old macro name */
|
||||
# ifdef ZSTDERRORLIB_VISIBILITY
|
||||
# define ZSTDERRORLIB_VISIBLE ZSTDERRORLIB_VISIBILITY
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
# define ZSTDERRORLIB_VISIBLE __attribute__ ((visibility ("default")))
|
||||
# else
|
||||
# define ZSTDERRORLIB_VISIBILITY
|
||||
# define ZSTDERRORLIB_VISIBLE
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef ZSTDERRORLIB_HIDDEN
|
||||
# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
|
||||
# define ZSTDERRORLIB_HIDDEN __attribute__ ((visibility ("hidden")))
|
||||
# else
|
||||
# define ZSTDERRORLIB_HIDDEN
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
|
||||
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY
|
||||
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBLE
|
||||
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
|
||||
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
|
||||
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
|
||||
#else
|
||||
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
|
||||
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBLE
|
||||
#endif
|
||||
|
||||
/*-*********************************************
|
||||
|
@ -58,14 +70,17 @@ typedef enum {
|
|||
ZSTD_error_frameParameter_windowTooLarge = 16,
|
||||
ZSTD_error_corruption_detected = 20,
|
||||
ZSTD_error_checksum_wrong = 22,
|
||||
ZSTD_error_literals_headerWrong = 24,
|
||||
ZSTD_error_dictionary_corrupted = 30,
|
||||
ZSTD_error_dictionary_wrong = 32,
|
||||
ZSTD_error_dictionaryCreation_failed = 34,
|
||||
ZSTD_error_parameter_unsupported = 40,
|
||||
ZSTD_error_parameter_combination_unsupported = 41,
|
||||
ZSTD_error_parameter_outOfBound = 42,
|
||||
ZSTD_error_tableLog_tooLarge = 44,
|
||||
ZSTD_error_maxSymbolValue_tooLarge = 46,
|
||||
ZSTD_error_maxSymbolValue_tooSmall = 48,
|
||||
ZSTD_error_stabilityCondition_notRespected = 50,
|
||||
ZSTD_error_stage_wrong = 60,
|
||||
ZSTD_error_init_missing = 62,
|
||||
ZSTD_error_memory_allocation = 64,
|
||||
|
@ -73,11 +88,15 @@ typedef enum {
|
|||
ZSTD_error_dstSize_tooSmall = 70,
|
||||
ZSTD_error_srcSize_wrong = 72,
|
||||
ZSTD_error_dstBuffer_null = 74,
|
||||
ZSTD_error_noForwardProgress_destFull = 80,
|
||||
ZSTD_error_noForwardProgress_inputEmpty = 82,
|
||||
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
|
||||
ZSTD_error_frameIndex_tooLarge = 100,
|
||||
ZSTD_error_seekableIO = 102,
|
||||
ZSTD_error_dstBuffer_wrong = 104,
|
||||
ZSTD_error_srcBuffer_wrong = 105,
|
||||
ZSTD_error_sequenceProducer_failed = 106,
|
||||
ZSTD_error_externalSequences_invalid = 107,
|
||||
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
|
||||
} ZSTD_ErrorCode;
|
||||
|
||||
|
|
Loading…
Reference in New Issue