Merge pull request #17353 from zmanuel/timer_hysteresis_multiframe_pr1

Use hysteresis for smoother physics update frequency
This commit is contained in:
Juan Linietsky 2018-05-07 19:27:32 -03:00 committed by GitHub
commit 633bbdb231
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 267 additions and 16 deletions

View File

@ -2652,6 +2652,14 @@ int _Engine::get_iterations_per_second() const {
return Engine::get_singleton()->get_iterations_per_second();
}
void _Engine::set_physics_jitter_fix(float p_threshold) {
Engine::get_singleton()->set_physics_jitter_fix(p_threshold);
}
float _Engine::get_physics_jitter_fix() const {
return Engine::get_singleton()->get_physics_jitter_fix();
}
void _Engine::set_target_fps(int p_fps) {
Engine::get_singleton()->set_target_fps(p_fps);
}
@ -2718,6 +2726,8 @@ void _Engine::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_iterations_per_second", "iterations_per_second"), &_Engine::set_iterations_per_second);
ClassDB::bind_method(D_METHOD("get_iterations_per_second"), &_Engine::get_iterations_per_second);
ClassDB::bind_method(D_METHOD("set_physics_jitter_fix", "physics_jitter_fix"), &_Engine::set_physics_jitter_fix);
ClassDB::bind_method(D_METHOD("get_physics_jitter_fix"), &_Engine::get_physics_jitter_fix);
ClassDB::bind_method(D_METHOD("set_target_fps", "target_fps"), &_Engine::set_target_fps);
ClassDB::bind_method(D_METHOD("get_target_fps"), &_Engine::get_target_fps);
@ -2743,6 +2753,7 @@ void _Engine::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::INT, "iterations_per_second"), "set_iterations_per_second", "get_iterations_per_second");
ADD_PROPERTY(PropertyInfo(Variant::INT, "target_fps"), "set_target_fps", "get_target_fps");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "time_scale"), "set_time_scale", "get_time_scale");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "physics_jitter_fix"), "set_physics_jitter_fix", "get_physics_jitter_fix");
}
_Engine *_Engine::singleton = NULL;

View File

@ -670,6 +670,9 @@ public:
void set_iterations_per_second(int p_ips);
int get_iterations_per_second() const;
void set_physics_jitter_fix(float p_threshold);
float get_physics_jitter_fix() const;
void set_target_fps(int p_fps);
int get_target_fps() const;

View File

@ -42,6 +42,16 @@ int Engine::get_iterations_per_second() const {
return ips;
}
void Engine::set_physics_jitter_fix(float p_threshold) {
if (p_threshold < 0)
p_threshold = 0;
physics_jitter_fix = p_threshold;
}
float Engine::get_physics_jitter_fix() const {
return physics_jitter_fix;
}
void Engine::set_target_fps(int p_fps) {
_target_fps = p_fps > 0 ? p_fps : 0;
}
@ -137,6 +147,7 @@ Engine::Engine() {
singleton = this;
frames_drawn = 0;
ips = 60;
physics_jitter_fix = 0.5;
_frame_delay = 0;
_fps = 1;
_target_fps = 0;

View File

@ -57,6 +57,7 @@ private:
float _frame_step;
int ips;
float physics_jitter_fix;
float _fps;
int _target_fps;
float _time_scale;
@ -79,6 +80,9 @@ public:
virtual void set_iterations_per_second(int p_ips);
virtual int get_iterations_per_second() const;
void set_physics_jitter_fix(float p_threshold);
float get_physics_jitter_fix() const;
virtual void set_target_fps(int p_fps);
virtual float get_target_fps() const;

View File

@ -955,6 +955,7 @@ Error Main::setup(const char *execpath, int argc, char *argv[], bool p_second_ph
}
Engine::get_singleton()->set_iterations_per_second(GLOBAL_DEF("physics/common/physics_fps", 60));
Engine::get_singleton()->set_physics_jitter_fix(GLOBAL_DEF("physics/common/physics_jitter_fix", 0.5));
Engine::get_singleton()->set_target_fps(GLOBAL_DEF("debug/settings/fps/force_fps", 0));
GLOBAL_DEF("debug/settings/stdout/print_fps", false);
@ -1228,6 +1229,229 @@ Error Main::setup2(Thread::ID p_main_tid_override) {
return OK;
}
// everything the main loop needs to know about frame timings
struct _FrameTime {
float animation_step; // time to advance animations for (argument to process())
int physics_steps; // number of times to iterate the physics engine
void clamp_animation(float min_animation_step, float max_animation_step) {
if (animation_step < min_animation_step) {
animation_step = min_animation_step;
} else if (animation_step > max_animation_step) {
animation_step = max_animation_step;
}
}
};
class _TimerSync {
// wall clock time measured on the main thread
uint64_t last_cpu_ticks_usec;
uint64_t current_cpu_ticks_usec;
// logical game time since last physics timestep
float time_accum;
// current difference between wall clock time and reported sum of animation_steps
float time_deficit;
// number of frames back for keeping accumulated physics steps roughly constant.
// value of 12 chosen because that is what is required to make 144 Hz monitors
// behave well with 60 Hz physics updates. The only worse commonly available refresh
// would be 85, requiring CONTROL_STEPS = 17.
static const int CONTROL_STEPS = 12;
// sum of physics steps done over the last (i+1) frames
int accumulated_physics_steps[CONTROL_STEPS];
// typical value for accumulated_physics_steps[i] is either this or this plus one
int typical_physics_steps[CONTROL_STEPS];
protected:
// returns the fraction of p_frame_slice required for the timer to overshoot
// before advance_core considers changing the physics_steps return from
// the typical values as defined by typical_physics_steps
float get_physics_jitter_fix() {
return Engine::get_singleton()->get_physics_jitter_fix();
}
// gets our best bet for the average number of physics steps per render frame
// return value: number of frames back this data is consistent
int get_average_physics_steps(float &p_min, float &p_max) {
p_min = typical_physics_steps[0];
p_max = p_min + 1;
for (int i = 1; i < CONTROL_STEPS; ++i) {
const float typical_lower = typical_physics_steps[i];
const float current_min = typical_lower / (i + 1);
if (current_min > p_max)
return i; // bail out of further restrictions would void the interval
else if (current_min > p_min)
p_min = current_min;
const float current_max = (typical_lower + 1) / (i + 1);
if (current_max < p_min)
return i;
else if (current_max < p_max)
p_max = current_max;
}
return CONTROL_STEPS;
}
// advance physics clock by p_animation_step, return appropriate number of steps to simulate
_FrameTime advance_core(float p_frame_slice, int p_iterations_per_second, float p_animation_step) {
_FrameTime ret;
ret.animation_step = p_animation_step;
// simple determination of number of physics iteration
time_accum += ret.animation_step;
ret.physics_steps = floor(time_accum * p_iterations_per_second);
int min_typical_steps = typical_physics_steps[0];
int max_typical_steps = min_typical_steps + 1;
// given the past recorded steps and typcial steps to match, calculate bounds for this
// step to be typical
bool update_typical = false;
for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
if (steps_left_to_match_typical > max_typical_steps ||
steps_left_to_match_typical + 1 < min_typical_steps) {
update_typical = true;
break;
}
if (steps_left_to_match_typical > min_typical_steps)
min_typical_steps = steps_left_to_match_typical;
if (steps_left_to_match_typical + 1 < max_typical_steps)
max_typical_steps = steps_left_to_match_typical + 1;
}
// try to keep it consistent with previous iterations
if (ret.physics_steps < min_typical_steps) {
const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix());
if (max_possible_steps < min_typical_steps) {
ret.physics_steps = max_possible_steps;
update_typical = true;
} else {
ret.physics_steps = min_typical_steps;
}
} else if (ret.physics_steps > max_typical_steps) {
const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix());
if (min_possible_steps > max_typical_steps) {
ret.physics_steps = min_possible_steps;
update_typical = true;
} else {
ret.physics_steps = max_typical_steps;
}
}
time_accum -= ret.physics_steps * p_frame_slice;
// keep track of accumulated step counts
for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
}
accumulated_physics_steps[0] = ret.physics_steps;
if (update_typical) {
for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
typical_physics_steps[i] = accumulated_physics_steps[i];
} else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
}
}
}
return ret;
}
// calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
_FrameTime advance_checked(float p_frame_slice, int p_iterations_per_second, float p_animation_step) {
if (fixed_fps != -1)
p_animation_step = 1.0 / fixed_fps;
// compensate for last deficit
p_animation_step += time_deficit;
_FrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_animation_step);
// we will do some clamping on ret.animation_step and need to sync those changes to time_accum,
// that's easiest if we just remember their fixed difference now
const double animation_minus_accum = ret.animation_step - time_accum;
// first, least important clamping: keep ret.animation_step consistent with typical_physics_steps.
// this smoothes out the animation steps and culls small but quick variations.
{
float min_average_physics_steps, max_average_physics_steps;
int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
if (consistent_steps > 3) {
ret.clamp_animation(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice);
}
}
// second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice;
ret.clamp_animation(p_animation_step - max_clock_deviation, p_animation_step + max_clock_deviation);
// last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and animation
ret.clamp_animation(animation_minus_accum, animation_minus_accum + p_frame_slice);
// restore time_accum
time_accum = ret.animation_step - animation_minus_accum;
// track deficit
time_deficit = p_animation_step - ret.animation_step;
return ret;
}
// determine wall clock step since last iteration
float get_cpu_animation_step() {
uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
last_cpu_ticks_usec = current_cpu_ticks_usec;
return cpu_ticks_elapsed / 1000000.0;
}
public:
explicit _TimerSync() :
last_cpu_ticks_usec(0),
current_cpu_ticks_usec(0),
time_accum(0),
time_deficit(0) {
for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
typical_physics_steps[i] = i;
accumulated_physics_steps[i] = i;
}
}
// start the clock
void init(uint64_t p_cpu_ticks_usec) {
current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
}
// set measured wall clock time
void set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
current_cpu_ticks_usec = p_cpu_ticks_usec;
}
// advance one frame, return timesteps to take
_FrameTime advance(float p_frame_slice, int p_iterations_per_second) {
float cpu_animation_step = get_cpu_animation_step();
return advance_checked(p_frame_slice, p_iterations_per_second, cpu_animation_step);
}
void before_start_render() {
VisualServer::get_singleton()->sync();
}
};
static _TimerSync _timer_sync;
bool Main::start() {
ERR_FAIL_COND_V(!_start_success, false);
@ -1242,6 +1466,8 @@ bool Main::start() {
String _export_preset;
bool export_debug = false;
_timer_sync.init(OS::get_singleton()->get_ticks_usec());
List<String> args = OS::get_singleton()->get_cmdline_args();
for (int i = 0; i < args.size(); i++) {
//parameters that do not have an argument to the right
@ -1707,7 +1933,6 @@ bool Main::start() {
uint64_t Main::last_ticks = 0;
uint64_t Main::target_ticks = 0;
float Main::time_accum = 0;
uint32_t Main::frames = 0;
uint32_t Main::frame = 0;
bool Main::force_redraw_requested = false;
@ -1720,14 +1945,15 @@ bool Main::iteration() {
uint64_t ticks = OS::get_singleton()->get_ticks_usec();
Engine::get_singleton()->_frame_ticks = ticks;
_timer_sync.set_cpu_ticks_usec(ticks);
uint64_t ticks_elapsed = ticks - last_ticks;
double step = (double)ticks_elapsed / 1000000.0;
if (fixed_fps != -1)
step = 1.0 / fixed_fps;
int physics_fps = Engine::get_singleton()->get_iterations_per_second();
float frame_slice = 1.0 / physics_fps;
float frame_slice = 1.0 / Engine::get_singleton()->get_iterations_per_second();
_FrameTime advance = _timer_sync.advance(frame_slice, physics_fps);
double step = advance.animation_step;
Engine::get_singleton()->_frame_step = step;
@ -1743,20 +1969,19 @@ bool Main::iteration() {
last_ticks = ticks;
if (fixed_fps == -1 && step > frame_slice * 8)
step = frame_slice * 8;
time_accum += step;
static const int max_physics_steps = 8;
if (fixed_fps == -1 && advance.physics_steps > max_physics_steps) {
step -= (advance.physics_steps - max_physics_steps) * frame_slice;
advance.physics_steps = max_physics_steps;
}
float time_scale = Engine::get_singleton()->get_time_scale();
bool exit = false;
int iters = 0;
Engine::get_singleton()->_in_physics = true;
while (time_accum > frame_slice) {
for (int iters = 0; iters < advance.physics_steps; ++iters) {
uint64_t physics_begin = OS::get_singleton()->get_ticks_usec();
@ -1778,12 +2003,10 @@ bool Main::iteration() {
Physics2DServer::get_singleton()->end_sync();
Physics2DServer::get_singleton()->step(frame_slice * time_scale);
time_accum -= frame_slice;
message_queue->flush();
physics_process_ticks = MAX(physics_process_ticks, OS::get_singleton()->get_ticks_usec() - physics_begin); // keep the largest one for reference
physics_process_max = MAX(OS::get_singleton()->get_ticks_usec() - physics_begin, physics_process_max);
iters++;
Engine::get_singleton()->_physics_frames++;
}
@ -1794,7 +2017,7 @@ bool Main::iteration() {
OS::get_singleton()->get_main_loop()->idle(step * time_scale);
message_queue->flush();
VisualServer::get_singleton()->sync(); //sync if still drawing from previous frames.
_timer_sync.before_start_render(); //sync if still drawing from previous frames.
if (OS::get_singleton()->can_draw() && !disable_render_loop) {

View File

@ -44,7 +44,6 @@ class Main {
static void print_help(const char *p_binary);
static uint64_t last_ticks;
static uint64_t target_ticks;
static float time_accum;
static uint32_t frames;
static uint32_t frame;
static bool force_redraw_requested;