parent
b3cf4c73fc
commit
68fbb8f8ac
|
@ -1,63 +0,0 @@
|
|||
Import('env')
|
||||
|
||||
|
||||
webp_sources = [
|
||||
"webp/mux/muxedit.c",
|
||||
"webp/mux/muxread.c",
|
||||
"webp/mux/muxinternal.c",
|
||||
"webp/mux/demux.c",
|
||||
"webp/enc/tree.c",
|
||||
"webp/enc/analysis.c",
|
||||
"webp/enc/backward_references.c",
|
||||
"webp/enc/alpha.c",
|
||||
"webp/enc/picture.c",
|
||||
"webp/enc/frame.c",
|
||||
"webp/enc/webpenc.c",
|
||||
"webp/enc/cost.c",
|
||||
"webp/enc/filter.c",
|
||||
"webp/enc/vp8l.c",
|
||||
"webp/enc/quant.c",
|
||||
"webp/enc/histogram.c",
|
||||
"webp/enc/syntax.c",
|
||||
"webp/enc/config.c",
|
||||
"webp/enc/layer.c",
|
||||
"webp/enc/iterator.c",
|
||||
"webp/dsp/dec_sse2.c",
|
||||
"webp/dsp/upsampling_sse2.c",
|
||||
"webp/dsp/dec_neon.c",
|
||||
"webp/dsp/enc.c",
|
||||
"webp/dsp/enc_sse2.c",
|
||||
"webp/dsp/upsampling.c",
|
||||
"webp/dsp/lossless.c",
|
||||
"webp/dsp/cpu.c",
|
||||
"webp/dsp/dec.c",
|
||||
"webp/dsp/yuv.c",
|
||||
"webp/utils/bit_reader.c",
|
||||
"webp/utils/filters.c",
|
||||
"webp/utils/bit_writer.c",
|
||||
"webp/utils/thread.c",
|
||||
"webp/utils/quant_levels.c",
|
||||
"webp/utils/color_cache.c",
|
||||
"webp/utils/rescaler.c",
|
||||
"webp/utils/utils.c",
|
||||
"webp/utils/huffman.c",
|
||||
"webp/utils/huffman_encode.c",
|
||||
"webp/dec/tree.c",
|
||||
"webp/dec/alpha.c",
|
||||
"webp/dec/frame.c",
|
||||
"webp/dec/vp8l.c",
|
||||
"webp/dec/vp8.c",
|
||||
"webp/dec/quant.c",
|
||||
"webp/dec/webp.c",
|
||||
"webp/dec/buffer.c",
|
||||
"webp/dec/io.c",
|
||||
"webp/dec/layer.c",
|
||||
"webp/dec/idec.c",
|
||||
"webp/image_loader_webp.cpp"
|
||||
]
|
||||
|
||||
env.drivers_sources+=webp_sources
|
||||
|
||||
#env.add_source_files(env.drivers_sources, webp_sources)
|
||||
|
||||
Export('env')
|
|
@ -1,140 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Alpha-plane decompression.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "./vp8i.h"
|
||||
#include "./vp8li.h"
|
||||
#include "../utils/filters.h"
|
||||
#include "../utils/quant_levels.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// TODO(skal): move to dsp/ ?
|
||||
static void CopyPlane(const uint8_t* src, int src_stride,
|
||||
uint8_t* dst, int dst_stride, int width, int height) {
|
||||
while (height-- > 0) {
|
||||
memcpy(dst, src, width);
|
||||
src += src_stride;
|
||||
dst += dst_stride;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Decodes the compressed data 'data' of size 'data_size' into the 'output'.
|
||||
// The 'output' buffer should be pre-allocated and must be of the same
|
||||
// dimension 'height'x'stride', as that of the image.
|
||||
//
|
||||
// Returns 1 on successfully decoding the compressed alpha and
|
||||
// 0 if either:
|
||||
// error in bit-stream header (invalid compression mode or filter), or
|
||||
// error returned by appropriate compression method.
|
||||
|
||||
static int DecodeAlpha(const uint8_t* data, size_t data_size,
|
||||
int width, int height, int stride, uint8_t* output) {
|
||||
uint8_t* decoded_data = NULL;
|
||||
const size_t decoded_size = height * width;
|
||||
uint8_t* unfiltered_data = NULL;
|
||||
WEBP_FILTER_TYPE filter;
|
||||
int pre_processing;
|
||||
int rsrv;
|
||||
int ok = 0;
|
||||
int method;
|
||||
|
||||
assert(width > 0 && height > 0 && stride >= width);
|
||||
assert(data != NULL && output != NULL);
|
||||
|
||||
if (data_size <= ALPHA_HEADER_LEN) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
method = (data[0] >> 0) & 0x03;
|
||||
filter = (data[0] >> 2) & 0x03;
|
||||
pre_processing = (data[0] >> 4) & 0x03;
|
||||
rsrv = (data[0] >> 6) & 0x03;
|
||||
if (method < ALPHA_NO_COMPRESSION ||
|
||||
method > ALPHA_LOSSLESS_COMPRESSION ||
|
||||
filter >= WEBP_FILTER_LAST ||
|
||||
pre_processing > ALPHA_PREPROCESSED_LEVELS ||
|
||||
rsrv != 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (method == ALPHA_NO_COMPRESSION) {
|
||||
ok = (data_size >= decoded_size);
|
||||
decoded_data = (uint8_t*)data + ALPHA_HEADER_LEN;
|
||||
} else {
|
||||
decoded_data = (uint8_t*)malloc(decoded_size);
|
||||
if (decoded_data == NULL) return 0;
|
||||
ok = VP8LDecodeAlphaImageStream(width, height,
|
||||
data + ALPHA_HEADER_LEN,
|
||||
data_size - ALPHA_HEADER_LEN,
|
||||
decoded_data);
|
||||
}
|
||||
|
||||
if (ok) {
|
||||
WebPFilterFunc unfilter_func = WebPUnfilters[filter];
|
||||
if (unfilter_func != NULL) {
|
||||
unfiltered_data = (uint8_t*)malloc(decoded_size);
|
||||
if (unfiltered_data == NULL) {
|
||||
ok = 0;
|
||||
goto Error;
|
||||
}
|
||||
// TODO(vikas): Implement on-the-fly decoding & filter mechanism to decode
|
||||
// and apply filter per image-row.
|
||||
unfilter_func(decoded_data, width, height, 1, width, unfiltered_data);
|
||||
// Construct raw_data (height x stride) from alpha data (height x width).
|
||||
CopyPlane(unfiltered_data, width, output, stride, width, height);
|
||||
free(unfiltered_data);
|
||||
} else {
|
||||
// Construct raw_data (height x stride) from alpha data (height x width).
|
||||
CopyPlane(decoded_data, width, output, stride, width, height);
|
||||
}
|
||||
if (pre_processing == ALPHA_PREPROCESSED_LEVELS) {
|
||||
ok = DequantizeLevels(decoded_data, width, height);
|
||||
}
|
||||
}
|
||||
|
||||
Error:
|
||||
if (method != ALPHA_NO_COMPRESSION) {
|
||||
free(decoded_data);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
const uint8_t* VP8DecompressAlphaRows(VP8Decoder* const dec,
|
||||
int row, int num_rows) {
|
||||
const int stride = dec->pic_hdr_.width_;
|
||||
|
||||
if (row < 0 || num_rows < 0 || row + num_rows > dec->pic_hdr_.height_) {
|
||||
return NULL; // sanity check.
|
||||
}
|
||||
|
||||
if (row == 0) {
|
||||
// Decode everything during the first call.
|
||||
if (!DecodeAlpha(dec->alpha_data_, (size_t)dec->alpha_data_size_,
|
||||
dec->pic_hdr_.width_, dec->pic_hdr_.height_, stride,
|
||||
dec->alpha_plane_)) {
|
||||
return NULL; // Error.
|
||||
}
|
||||
}
|
||||
|
||||
// Return a pointer to the current decoded row.
|
||||
return dec->alpha_plane_ + row * stride;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,215 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Everything about WebPDecBuffer
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./vp8i.h"
|
||||
#include "./webpi.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPDecBuffer
|
||||
|
||||
// Number of bytes per pixel for the different color-spaces.
|
||||
static const int kModeBpp[MODE_LAST] = {
|
||||
3, 4, 3, 4, 4, 2, 2,
|
||||
4, 4, 4, 2, // pre-multiplied modes
|
||||
1, 1 };
|
||||
|
||||
// Check that webp_csp_mode is within the bounds of WEBP_CSP_MODE.
|
||||
// Convert to an integer to handle both the unsigned/signed enum cases
|
||||
// without the need for casting to remove type limit warnings.
|
||||
static int IsValidColorspace(int webp_csp_mode) {
|
||||
return (webp_csp_mode >= MODE_RGB && webp_csp_mode < MODE_LAST);
|
||||
}
|
||||
|
||||
static VP8StatusCode CheckDecBuffer(const WebPDecBuffer* const buffer) {
|
||||
int ok = 1;
|
||||
const WEBP_CSP_MODE mode = buffer->colorspace;
|
||||
const int width = buffer->width;
|
||||
const int height = buffer->height;
|
||||
if (!IsValidColorspace(mode)) {
|
||||
ok = 0;
|
||||
} else if (!WebPIsRGBMode(mode)) { // YUV checks
|
||||
const WebPYUVABuffer* const buf = &buffer->u.YUVA;
|
||||
const uint64_t y_size = (uint64_t)buf->y_stride * height;
|
||||
const uint64_t u_size = (uint64_t)buf->u_stride * ((height + 1) / 2);
|
||||
const uint64_t v_size = (uint64_t)buf->v_stride * ((height + 1) / 2);
|
||||
const uint64_t a_size = (uint64_t)buf->a_stride * height;
|
||||
ok &= (y_size <= buf->y_size);
|
||||
ok &= (u_size <= buf->u_size);
|
||||
ok &= (v_size <= buf->v_size);
|
||||
ok &= (buf->y_stride >= width);
|
||||
ok &= (buf->u_stride >= (width + 1) / 2);
|
||||
ok &= (buf->v_stride >= (width + 1) / 2);
|
||||
ok &= (buf->y != NULL);
|
||||
ok &= (buf->u != NULL);
|
||||
ok &= (buf->v != NULL);
|
||||
if (mode == MODE_YUVA) {
|
||||
ok &= (buf->a_stride >= width);
|
||||
ok &= (a_size <= buf->a_size);
|
||||
ok &= (buf->a != NULL);
|
||||
}
|
||||
} else { // RGB checks
|
||||
const WebPRGBABuffer* const buf = &buffer->u.RGBA;
|
||||
const uint64_t size = (uint64_t)buf->stride * height;
|
||||
ok &= (size <= buf->size);
|
||||
ok &= (buf->stride >= width * kModeBpp[mode]);
|
||||
ok &= (buf->rgba != NULL);
|
||||
}
|
||||
return ok ? VP8_STATUS_OK : VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
|
||||
static VP8StatusCode AllocateBuffer(WebPDecBuffer* const buffer) {
|
||||
const int w = buffer->width;
|
||||
const int h = buffer->height;
|
||||
const WEBP_CSP_MODE mode = buffer->colorspace;
|
||||
|
||||
if (w <= 0 || h <= 0 || !IsValidColorspace(mode)) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
|
||||
if (!buffer->is_external_memory && buffer->private_memory == NULL) {
|
||||
uint8_t* output;
|
||||
int uv_stride = 0, a_stride = 0;
|
||||
uint64_t uv_size = 0, a_size = 0, total_size;
|
||||
// We need memory and it hasn't been allocated yet.
|
||||
// => initialize output buffer, now that dimensions are known.
|
||||
const int stride = w * kModeBpp[mode];
|
||||
const uint64_t size = (uint64_t)stride * h;
|
||||
|
||||
if (!WebPIsRGBMode(mode)) {
|
||||
uv_stride = (w + 1) / 2;
|
||||
uv_size = (uint64_t)uv_stride * ((h + 1) / 2);
|
||||
if (mode == MODE_YUVA) {
|
||||
a_stride = w;
|
||||
a_size = (uint64_t)a_stride * h;
|
||||
}
|
||||
}
|
||||
total_size = size + 2 * uv_size + a_size;
|
||||
|
||||
// Security/sanity checks
|
||||
output = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*output));
|
||||
if (output == NULL) {
|
||||
return VP8_STATUS_OUT_OF_MEMORY;
|
||||
}
|
||||
buffer->private_memory = output;
|
||||
|
||||
if (!WebPIsRGBMode(mode)) { // YUVA initialization
|
||||
WebPYUVABuffer* const buf = &buffer->u.YUVA;
|
||||
buf->y = output;
|
||||
buf->y_stride = stride;
|
||||
buf->y_size = (size_t)size;
|
||||
buf->u = output + size;
|
||||
buf->u_stride = uv_stride;
|
||||
buf->u_size = (size_t)uv_size;
|
||||
buf->v = output + size + uv_size;
|
||||
buf->v_stride = uv_stride;
|
||||
buf->v_size = (size_t)uv_size;
|
||||
if (mode == MODE_YUVA) {
|
||||
buf->a = output + size + 2 * uv_size;
|
||||
}
|
||||
buf->a_size = (size_t)a_size;
|
||||
buf->a_stride = a_stride;
|
||||
} else { // RGBA initialization
|
||||
WebPRGBABuffer* const buf = &buffer->u.RGBA;
|
||||
buf->rgba = output;
|
||||
buf->stride = stride;
|
||||
buf->size = (size_t)size;
|
||||
}
|
||||
}
|
||||
return CheckDecBuffer(buffer);
|
||||
}
|
||||
|
||||
VP8StatusCode WebPAllocateDecBuffer(int w, int h,
|
||||
const WebPDecoderOptions* const options,
|
||||
WebPDecBuffer* const out) {
|
||||
if (out == NULL || w <= 0 || h <= 0) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
if (options != NULL) { // First, apply options if there is any.
|
||||
if (options->use_cropping) {
|
||||
const int cw = options->crop_width;
|
||||
const int ch = options->crop_height;
|
||||
const int x = options->crop_left & ~1;
|
||||
const int y = options->crop_top & ~1;
|
||||
if (x < 0 || y < 0 || cw <= 0 || ch <= 0 || x + cw > w || y + ch > h) {
|
||||
return VP8_STATUS_INVALID_PARAM; // out of frame boundary.
|
||||
}
|
||||
w = cw;
|
||||
h = ch;
|
||||
}
|
||||
if (options->use_scaling) {
|
||||
if (options->scaled_width <= 0 || options->scaled_height <= 0) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
w = options->scaled_width;
|
||||
h = options->scaled_height;
|
||||
}
|
||||
}
|
||||
out->width = w;
|
||||
out->height = h;
|
||||
|
||||
// Then, allocate buffer for real
|
||||
return AllocateBuffer(out);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// constructors / destructors
|
||||
|
||||
int WebPInitDecBufferInternal(WebPDecBuffer* buffer, int version) {
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) {
|
||||
return 0; // version mismatch
|
||||
}
|
||||
if (buffer == NULL) return 0;
|
||||
memset(buffer, 0, sizeof(*buffer));
|
||||
return 1;
|
||||
}
|
||||
|
||||
void WebPFreeDecBuffer(WebPDecBuffer* buffer) {
|
||||
if (buffer != NULL) {
|
||||
if (!buffer->is_external_memory)
|
||||
free(buffer->private_memory);
|
||||
buffer->private_memory = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void WebPCopyDecBuffer(const WebPDecBuffer* const src,
|
||||
WebPDecBuffer* const dst) {
|
||||
if (src != NULL && dst != NULL) {
|
||||
*dst = *src;
|
||||
if (src->private_memory != NULL) {
|
||||
dst->is_external_memory = 1; // dst buffer doesn't own the memory.
|
||||
dst->private_memory = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy and transfer ownership from src to dst (beware of parameter order!)
|
||||
void WebPGrabDecBuffer(WebPDecBuffer* const src, WebPDecBuffer* const dst) {
|
||||
if (src != NULL && dst != NULL) {
|
||||
*dst = *src;
|
||||
if (src->private_memory != NULL) {
|
||||
src->is_external_memory = 1; // src relinquishes ownership
|
||||
src->private_memory = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,182 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Low-level API for VP8 decoder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_WEBP_DECODE_VP8_H_
|
||||
#define WEBP_WEBP_DECODE_VP8_H_
|
||||
|
||||
#include "../decode.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Lower-level API
|
||||
//
|
||||
// These functions provide fine-grained control of the decoding process.
|
||||
// The call flow should resemble:
|
||||
//
|
||||
// VP8Io io;
|
||||
// VP8InitIo(&io);
|
||||
// io.data = data;
|
||||
// io.data_size = size;
|
||||
// /* customize io's functions (setup()/put()/teardown()) if needed. */
|
||||
//
|
||||
// VP8Decoder* dec = VP8New();
|
||||
// bool ok = VP8Decode(dec);
|
||||
// if (!ok) printf("Error: %s\n", VP8StatusMessage(dec));
|
||||
// VP8Delete(dec);
|
||||
// return ok;
|
||||
|
||||
// Input / Output
|
||||
typedef struct VP8Io VP8Io;
|
||||
typedef int (*VP8IoPutHook)(const VP8Io* io);
|
||||
typedef int (*VP8IoSetupHook)(VP8Io* io);
|
||||
typedef void (*VP8IoTeardownHook)(const VP8Io* io);
|
||||
|
||||
struct VP8Io {
|
||||
// set by VP8GetHeaders()
|
||||
int width, height; // picture dimensions, in pixels (invariable).
|
||||
// These are the original, uncropped dimensions.
|
||||
// The actual area passed to put() is stored
|
||||
// in mb_w / mb_h fields.
|
||||
|
||||
// set before calling put()
|
||||
int mb_y; // position of the current rows (in pixels)
|
||||
int mb_w; // number of columns in the sample
|
||||
int mb_h; // number of rows in the sample
|
||||
const uint8_t* y, *u, *v; // rows to copy (in yuv420 format)
|
||||
int y_stride; // row stride for luma
|
||||
int uv_stride; // row stride for chroma
|
||||
|
||||
void* opaque; // user data
|
||||
|
||||
// called when fresh samples are available. Currently, samples are in
|
||||
// YUV420 format, and can be up to width x 24 in size (depending on the
|
||||
// in-loop filtering level, e.g.). Should return false in case of error
|
||||
// or abort request. The actual size of the area to update is mb_w x mb_h
|
||||
// in size, taking cropping into account.
|
||||
VP8IoPutHook put;
|
||||
|
||||
// called just before starting to decode the blocks.
|
||||
// Must return false in case of setup error, true otherwise. If false is
|
||||
// returned, teardown() will NOT be called. But if the setup succeeded
|
||||
// and true is returned, then teardown() will always be called afterward.
|
||||
VP8IoSetupHook setup;
|
||||
|
||||
// Called just after block decoding is finished (or when an error occurred
|
||||
// during put()). Is NOT called if setup() failed.
|
||||
VP8IoTeardownHook teardown;
|
||||
|
||||
// this is a recommendation for the user-side yuv->rgb converter. This flag
|
||||
// is set when calling setup() hook and can be overwritten by it. It then
|
||||
// can be taken into consideration during the put() method.
|
||||
int fancy_upsampling;
|
||||
|
||||
// Input buffer.
|
||||
size_t data_size;
|
||||
const uint8_t* data;
|
||||
|
||||
// If true, in-loop filtering will not be performed even if present in the
|
||||
// bitstream. Switching off filtering may speed up decoding at the expense
|
||||
// of more visible blocking. Note that output will also be non-compliant
|
||||
// with the VP8 specifications.
|
||||
int bypass_filtering;
|
||||
|
||||
// Cropping parameters.
|
||||
int use_cropping;
|
||||
int crop_left, crop_right, crop_top, crop_bottom;
|
||||
|
||||
// Scaling parameters.
|
||||
int use_scaling;
|
||||
int scaled_width, scaled_height;
|
||||
|
||||
// If non NULL, pointer to the alpha data (if present) corresponding to the
|
||||
// start of the current row (That is: it is pre-offset by mb_y and takes
|
||||
// cropping into account).
|
||||
const uint8_t* a;
|
||||
};
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
int VP8InitIoInternal(VP8Io* const, int);
|
||||
|
||||
// Set the custom IO function pointers and user-data. The setter for IO hooks
|
||||
// should be called before initiating incremental decoding. Returns true if
|
||||
// WebPIDecoder object is successfully modified, false otherwise.
|
||||
int WebPISetIOHooks(WebPIDecoder* const idec,
|
||||
VP8IoPutHook put,
|
||||
VP8IoSetupHook setup,
|
||||
VP8IoTeardownHook teardown,
|
||||
void* user_data);
|
||||
|
||||
// Main decoding object. This is an opaque structure.
|
||||
typedef struct VP8Decoder VP8Decoder;
|
||||
|
||||
// Create a new decoder object.
|
||||
VP8Decoder* VP8New(void);
|
||||
|
||||
// Must be called to make sure 'io' is initialized properly.
|
||||
// Returns false in case of version mismatch. Upon such failure, no other
|
||||
// decoding function should be called (VP8Decode, VP8GetHeaders, ...)
|
||||
static WEBP_INLINE int VP8InitIo(VP8Io* const io) {
|
||||
return VP8InitIoInternal(io, WEBP_DECODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Start decoding a new picture. Returns true if ok.
|
||||
int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io);
|
||||
|
||||
// Decode a picture. Will call VP8GetHeaders() if it wasn't done already.
|
||||
// Returns false in case of error.
|
||||
int VP8Decode(VP8Decoder* const dec, VP8Io* const io);
|
||||
|
||||
// Return current status of the decoder:
|
||||
VP8StatusCode VP8Status(VP8Decoder* const dec);
|
||||
|
||||
// return readable string corresponding to the last status.
|
||||
const char* VP8StatusMessage(VP8Decoder* const dec);
|
||||
|
||||
// Resets the decoder in its initial state, reclaiming memory.
|
||||
// Not a mandatory call between calls to VP8Decode().
|
||||
void VP8Clear(VP8Decoder* const dec);
|
||||
|
||||
// Destroy the decoder object.
|
||||
void VP8Delete(VP8Decoder* const dec);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Miscellaneous VP8/VP8L bitstream probing functions.
|
||||
|
||||
// Returns true if the next 3 bytes in data contain the VP8 signature.
|
||||
WEBP_EXTERN(int) VP8CheckSignature(const uint8_t* const data, size_t data_size);
|
||||
|
||||
// Validates the VP8 data-header and retrieves basic header information viz
|
||||
// width and height. Returns 0 in case of formatting error. *width/*height
|
||||
// can be passed NULL.
|
||||
WEBP_EXTERN(int) VP8GetInfo(
|
||||
const uint8_t* data,
|
||||
size_t data_size, // data available so far
|
||||
size_t chunk_size, // total data size expected in the chunk
|
||||
int* const width, int* const height);
|
||||
|
||||
// Returns true if the next byte(s) in data is a VP8L signature.
|
||||
WEBP_EXTERN(int) VP8LCheckSignature(const uint8_t* const data, size_t size);
|
||||
|
||||
// Validates the VP8L data-header and retrieves basic header information viz
|
||||
// width, height and alpha. Returns 0 in case of formatting error.
|
||||
// width/height/has_alpha can be passed NULL.
|
||||
WEBP_EXTERN(int) VP8LGetInfo(
|
||||
const uint8_t* data, size_t data_size, // data available so far
|
||||
int* const width, int* const height, int* const has_alpha);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_WEBP_DECODE_VP8_H_ */
|
|
@ -1,679 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Frame-reconstruction function. Memory allocation.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "./vp8i.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ALIGN_MASK (32 - 1)
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Filtering
|
||||
|
||||
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
|
||||
// for caching, given a filtering level.
|
||||
// Simple filter: up to 2 luma samples are read and 1 is written.
|
||||
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
|
||||
// U/V, so it's 8 samples total (because of the 2x upsampling).
|
||||
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
|
||||
|
||||
static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) {
|
||||
if (keyframe) {
|
||||
return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
|
||||
} else {
|
||||
return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
|
||||
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
||||
const int y_bps = dec->cache_y_stride_;
|
||||
VP8FInfo* const f_info = ctx->f_info_ + mb_x;
|
||||
uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16;
|
||||
const int level = f_info->f_level_;
|
||||
const int ilevel = f_info->f_ilevel_;
|
||||
const int limit = 2 * level + ilevel;
|
||||
if (level == 0) {
|
||||
return;
|
||||
}
|
||||
if (dec->filter_type_ == 1) { // simple
|
||||
if (mb_x > 0) {
|
||||
VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
|
||||
}
|
||||
if (f_info->f_inner_) {
|
||||
VP8SimpleHFilter16i(y_dst, y_bps, limit);
|
||||
}
|
||||
if (mb_y > 0) {
|
||||
VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
|
||||
}
|
||||
if (f_info->f_inner_) {
|
||||
VP8SimpleVFilter16i(y_dst, y_bps, limit);
|
||||
}
|
||||
} else { // complex
|
||||
const int uv_bps = dec->cache_uv_stride_;
|
||||
uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
|
||||
uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
|
||||
const int hev_thresh =
|
||||
hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
|
||||
if (mb_x > 0) {
|
||||
VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
|
||||
VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
|
||||
}
|
||||
if (f_info->f_inner_) {
|
||||
VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
|
||||
VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
|
||||
}
|
||||
if (mb_y > 0) {
|
||||
VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
|
||||
VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
|
||||
}
|
||||
if (f_info->f_inner_) {
|
||||
VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
|
||||
VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Filter the decoded macroblock row (if needed)
|
||||
static void FilterRow(const VP8Decoder* const dec) {
|
||||
int mb_x;
|
||||
const int mb_y = dec->thread_ctx_.mb_y_;
|
||||
assert(dec->thread_ctx_.filter_row_);
|
||||
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
|
||||
DoFilter(dec, mb_x, mb_y);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
void VP8StoreBlock(VP8Decoder* const dec) {
|
||||
if (dec->filter_type_ > 0) {
|
||||
VP8FInfo* const info = dec->f_info_ + dec->mb_x_;
|
||||
const int skip = dec->mb_info_[dec->mb_x_].skip_;
|
||||
int level = dec->filter_levels_[dec->segment_];
|
||||
if (dec->filter_hdr_.use_lf_delta_) {
|
||||
// TODO(skal): only CURRENT is handled for now.
|
||||
level += dec->filter_hdr_.ref_lf_delta_[0];
|
||||
if (dec->is_i4x4_) {
|
||||
level += dec->filter_hdr_.mode_lf_delta_[0];
|
||||
}
|
||||
}
|
||||
level = (level < 0) ? 0 : (level > 63) ? 63 : level;
|
||||
info->f_level_ = level;
|
||||
|
||||
if (dec->filter_hdr_.sharpness_ > 0) {
|
||||
if (dec->filter_hdr_.sharpness_ > 4) {
|
||||
level >>= 2;
|
||||
} else {
|
||||
level >>= 1;
|
||||
}
|
||||
if (level > 9 - dec->filter_hdr_.sharpness_) {
|
||||
level = 9 - dec->filter_hdr_.sharpness_;
|
||||
}
|
||||
}
|
||||
|
||||
info->f_ilevel_ = (level < 1) ? 1 : level;
|
||||
info->f_inner_ = (!skip || dec->is_i4x4_);
|
||||
}
|
||||
{
|
||||
// Transfer samples to row cache
|
||||
int y;
|
||||
const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_;
|
||||
const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_;
|
||||
uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16 + y_offset;
|
||||
uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset;
|
||||
uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset;
|
||||
for (y = 0; y < 16; ++y) {
|
||||
memcpy(ydst + y * dec->cache_y_stride_,
|
||||
dec->yuv_b_ + Y_OFF + y * BPS, 16);
|
||||
}
|
||||
for (y = 0; y < 8; ++y) {
|
||||
memcpy(udst + y * dec->cache_uv_stride_,
|
||||
dec->yuv_b_ + U_OFF + y * BPS, 8);
|
||||
memcpy(vdst + y * dec->cache_uv_stride_,
|
||||
dec->yuv_b_ + V_OFF + y * BPS, 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// This function is called after a row of macroblocks is finished decoding.
|
||||
// It also takes into account the following restrictions:
|
||||
// * In case of in-loop filtering, we must hold off sending some of the bottom
|
||||
// pixels as they are yet unfiltered. They will be when the next macroblock
|
||||
// row is decoded. Meanwhile, we must preserve them by rotating them in the
|
||||
// cache area. This doesn't hold for the very bottom row of the uncropped
|
||||
// picture of course.
|
||||
// * we must clip the remaining pixels against the cropping area. The VP8Io
|
||||
// struct must have the following fields set correctly before calling put():
|
||||
|
||||
#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
|
||||
|
||||
// Finalize and transmit a complete row. Return false in case of user-abort.
|
||||
static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
|
||||
int ok = 1;
|
||||
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
||||
const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
|
||||
const int ysize = extra_y_rows * dec->cache_y_stride_;
|
||||
const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
|
||||
const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_;
|
||||
const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_;
|
||||
uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
|
||||
uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
|
||||
uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
|
||||
const int first_row = (ctx->mb_y_ == 0);
|
||||
const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1);
|
||||
int y_start = MACROBLOCK_VPOS(ctx->mb_y_);
|
||||
int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1);
|
||||
|
||||
if (ctx->filter_row_) {
|
||||
FilterRow(dec);
|
||||
}
|
||||
|
||||
if (io->put) {
|
||||
if (!first_row) {
|
||||
y_start -= extra_y_rows;
|
||||
io->y = ydst;
|
||||
io->u = udst;
|
||||
io->v = vdst;
|
||||
} else {
|
||||
io->y = dec->cache_y_ + y_offset;
|
||||
io->u = dec->cache_u_ + uv_offset;
|
||||
io->v = dec->cache_v_ + uv_offset;
|
||||
}
|
||||
|
||||
if (!last_row) {
|
||||
y_end -= extra_y_rows;
|
||||
}
|
||||
if (y_end > io->crop_bottom) {
|
||||
y_end = io->crop_bottom; // make sure we don't overflow on last row.
|
||||
}
|
||||
io->a = NULL;
|
||||
if (dec->alpha_data_ != NULL && y_start < y_end) {
|
||||
// TODO(skal): several things to correct here:
|
||||
// * testing presence of alpha with dec->alpha_data_ is not a good idea
|
||||
// * we're actually decompressing the full plane only once. It should be
|
||||
// more obvious from signature.
|
||||
// * we could free alpha_data_ right after this call, but we don't own.
|
||||
io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
|
||||
if (io->a == NULL) {
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"Could not decode alpha data.");
|
||||
}
|
||||
}
|
||||
if (y_start < io->crop_top) {
|
||||
const int delta_y = io->crop_top - y_start;
|
||||
y_start = io->crop_top;
|
||||
assert(!(delta_y & 1));
|
||||
io->y += dec->cache_y_stride_ * delta_y;
|
||||
io->u += dec->cache_uv_stride_ * (delta_y >> 1);
|
||||
io->v += dec->cache_uv_stride_ * (delta_y >> 1);
|
||||
if (io->a != NULL) {
|
||||
io->a += io->width * delta_y;
|
||||
}
|
||||
}
|
||||
if (y_start < y_end) {
|
||||
io->y += io->crop_left;
|
||||
io->u += io->crop_left >> 1;
|
||||
io->v += io->crop_left >> 1;
|
||||
if (io->a != NULL) {
|
||||
io->a += io->crop_left;
|
||||
}
|
||||
io->mb_y = y_start - io->crop_top;
|
||||
io->mb_w = io->crop_right - io->crop_left;
|
||||
io->mb_h = y_end - y_start;
|
||||
ok = io->put(io);
|
||||
}
|
||||
}
|
||||
// rotate top samples if needed
|
||||
if (ctx->id_ + 1 == dec->num_caches_) {
|
||||
if (!last_row) {
|
||||
memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
|
||||
memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
|
||||
memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
|
||||
}
|
||||
}
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
#undef MACROBLOCK_VPOS
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
|
||||
int ok = 1;
|
||||
VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
||||
if (!dec->use_threads_) {
|
||||
// ctx->id_ and ctx->f_info_ are already set
|
||||
ctx->mb_y_ = dec->mb_y_;
|
||||
ctx->filter_row_ = dec->filter_row_;
|
||||
ok = FinishRow(dec, io);
|
||||
} else {
|
||||
WebPWorker* const worker = &dec->worker_;
|
||||
// Finish previous job *before* updating context
|
||||
ok &= WebPWorkerSync(worker);
|
||||
assert(worker->status_ == OK);
|
||||
if (ok) { // spawn a new deblocking/output job
|
||||
ctx->io_ = *io;
|
||||
ctx->id_ = dec->cache_id_;
|
||||
ctx->mb_y_ = dec->mb_y_;
|
||||
ctx->filter_row_ = dec->filter_row_;
|
||||
if (ctx->filter_row_) { // just swap filter info
|
||||
VP8FInfo* const tmp = ctx->f_info_;
|
||||
ctx->f_info_ = dec->f_info_;
|
||||
dec->f_info_ = tmp;
|
||||
}
|
||||
WebPWorkerLaunch(worker);
|
||||
if (++dec->cache_id_ == dec->num_caches_) {
|
||||
dec->cache_id_ = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Finish setting up the decoding parameter once user's setup() is called.
|
||||
|
||||
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
|
||||
// Call setup() first. This may trigger additional decoding features on 'io'.
|
||||
// Note: Afterward, we must call teardown() not matter what.
|
||||
if (io->setup && !io->setup(io)) {
|
||||
VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
|
||||
return dec->status_;
|
||||
}
|
||||
|
||||
// Disable filtering per user request
|
||||
if (io->bypass_filtering) {
|
||||
dec->filter_type_ = 0;
|
||||
}
|
||||
// TODO(skal): filter type / strength / sharpness forcing
|
||||
|
||||
// Define the area where we can skip in-loop filtering, in case of cropping.
|
||||
//
|
||||
// 'Simple' filter reads two luma samples outside of the macroblock and
|
||||
// and filters one. It doesn't filter the chroma samples. Hence, we can
|
||||
// avoid doing the in-loop filtering before crop_top/crop_left position.
|
||||
// For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
|
||||
// Means: there's a dependency chain that goes all the way up to the
|
||||
// top-left corner of the picture (MB #0). We must filter all the previous
|
||||
// macroblocks.
|
||||
// TODO(skal): add an 'approximate_decoding' option, that won't produce
|
||||
// a 1:1 bit-exactness for complex filtering?
|
||||
{
|
||||
const int extra_pixels = kFilterExtraRows[dec->filter_type_];
|
||||
if (dec->filter_type_ == 2) {
|
||||
// For complex filter, we need to preserve the dependency chain.
|
||||
dec->tl_mb_x_ = 0;
|
||||
dec->tl_mb_y_ = 0;
|
||||
} else {
|
||||
// For simple filter, we can filter only the cropped region.
|
||||
// We include 'extra_pixels' on the other side of the boundary, since
|
||||
// vertical or horizontal filtering of the previous macroblock can
|
||||
// modify some abutting pixels.
|
||||
dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
|
||||
dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
|
||||
if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
|
||||
if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
|
||||
}
|
||||
// We need some 'extra' pixels on the right/bottom.
|
||||
dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
|
||||
dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
|
||||
if (dec->br_mb_x_ > dec->mb_w_) {
|
||||
dec->br_mb_x_ = dec->mb_w_;
|
||||
}
|
||||
if (dec->br_mb_y_ > dec->mb_h_) {
|
||||
dec->br_mb_y_ = dec->mb_h_;
|
||||
}
|
||||
}
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
|
||||
int ok = 1;
|
||||
if (dec->use_threads_) {
|
||||
ok = WebPWorkerSync(&dec->worker_);
|
||||
}
|
||||
|
||||
if (io->teardown) {
|
||||
io->teardown(io);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
|
||||
//
|
||||
// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
|
||||
// immediately, and needs to wait for first few rows of the next macroblock to
|
||||
// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
|
||||
// on strength).
|
||||
// With two threads, the vertical positions of the rows being decoded are:
|
||||
// Decode: [ 0..15][16..31][32..47][48..63][64..79][...
|
||||
// Deblock: [ 0..11][12..27][28..43][44..59][...
|
||||
// If we use two threads and two caches of 16 pixels, the sequence would be:
|
||||
// Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
|
||||
// Deblock: [ 0..11][12..27!!][-4..11][12..27][...
|
||||
// The problem occurs during row [12..15!!] that both the decoding and
|
||||
// deblocking threads are writing simultaneously.
|
||||
// With 3 cache lines, one get a safe write pattern:
|
||||
// Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
|
||||
// Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28...
|
||||
// Note that multi-threaded output _without_ deblocking can make use of two
|
||||
// cache lines of 16 pixels only, since there's no lagging behind. The decoding
|
||||
// and output process have non-concurrent writing:
|
||||
// Decode: [ 0..15][16..31][ 0..15][16..31][...
|
||||
// io->put: [ 0..15][16..31][ 0..15][...
|
||||
|
||||
#define MT_CACHE_LINES 3
|
||||
#define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
|
||||
|
||||
// Initialize multi/single-thread worker
|
||||
static int InitThreadContext(VP8Decoder* const dec) {
|
||||
dec->cache_id_ = 0;
|
||||
if (dec->use_threads_) {
|
||||
WebPWorker* const worker = &dec->worker_;
|
||||
if (!WebPWorkerReset(worker)) {
|
||||
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
|
||||
"thread initialization failed.");
|
||||
}
|
||||
worker->data1 = dec;
|
||||
worker->data2 = (void*)&dec->thread_ctx_.io_;
|
||||
worker->hook = (WebPWorkerHook)FinishRow;
|
||||
dec->num_caches_ =
|
||||
(dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
|
||||
} else {
|
||||
dec->num_caches_ = ST_CACHE_LINES;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
#undef MT_CACHE_LINES
|
||||
#undef ST_CACHE_LINES
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Memory setup
|
||||
|
||||
static int AllocateMemory(VP8Decoder* const dec) {
|
||||
const int num_caches = dec->num_caches_;
|
||||
const int mb_w = dec->mb_w_;
|
||||
// Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
|
||||
const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
|
||||
const size_t top_size = (16 + 8 + 8) * mb_w;
|
||||
const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
|
||||
const size_t f_info_size =
|
||||
(dec->filter_type_ > 0) ?
|
||||
mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo)
|
||||
: 0;
|
||||
const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
|
||||
const size_t coeffs_size = 384 * sizeof(*dec->coeffs_);
|
||||
const size_t cache_height = (16 * num_caches
|
||||
+ kFilterExtraRows[dec->filter_type_]) * 3 / 2;
|
||||
const size_t cache_size = top_size * cache_height;
|
||||
// alpha_size is the only one that scales as width x height.
|
||||
const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
|
||||
(uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
|
||||
const uint64_t needed = (uint64_t)intra_pred_mode_size
|
||||
+ top_size + mb_info_size + f_info_size
|
||||
+ yuv_size + coeffs_size
|
||||
+ cache_size + alpha_size + ALIGN_MASK;
|
||||
uint8_t* mem;
|
||||
|
||||
if (needed != (size_t)needed) return 0; // check for overflow
|
||||
if (needed > dec->mem_size_) {
|
||||
free(dec->mem_);
|
||||
dec->mem_size_ = 0;
|
||||
dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
|
||||
if (dec->mem_ == NULL) {
|
||||
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
|
||||
"no memory during frame initialization.");
|
||||
}
|
||||
// down-cast is ok, thanks to WebPSafeAlloc() above.
|
||||
dec->mem_size_ = (size_t)needed;
|
||||
}
|
||||
|
||||
mem = (uint8_t*)dec->mem_;
|
||||
dec->intra_t_ = (uint8_t*)mem;
|
||||
mem += intra_pred_mode_size;
|
||||
|
||||
dec->y_t_ = (uint8_t*)mem;
|
||||
mem += 16 * mb_w;
|
||||
dec->u_t_ = (uint8_t*)mem;
|
||||
mem += 8 * mb_w;
|
||||
dec->v_t_ = (uint8_t*)mem;
|
||||
mem += 8 * mb_w;
|
||||
|
||||
dec->mb_info_ = ((VP8MB*)mem) + 1;
|
||||
mem += mb_info_size;
|
||||
|
||||
dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
|
||||
mem += f_info_size;
|
||||
dec->thread_ctx_.id_ = 0;
|
||||
dec->thread_ctx_.f_info_ = dec->f_info_;
|
||||
if (dec->use_threads_) {
|
||||
// secondary cache line. The deblocking process need to make use of the
|
||||
// filtering strength from previous macroblock row, while the new ones
|
||||
// are being decoded in parallel. We'll just swap the pointers.
|
||||
dec->thread_ctx_.f_info_ += mb_w;
|
||||
}
|
||||
|
||||
mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
|
||||
assert((yuv_size & ALIGN_MASK) == 0);
|
||||
dec->yuv_b_ = (uint8_t*)mem;
|
||||
mem += yuv_size;
|
||||
|
||||
dec->coeffs_ = (int16_t*)mem;
|
||||
mem += coeffs_size;
|
||||
|
||||
dec->cache_y_stride_ = 16 * mb_w;
|
||||
dec->cache_uv_stride_ = 8 * mb_w;
|
||||
{
|
||||
const int extra_rows = kFilterExtraRows[dec->filter_type_];
|
||||
const int extra_y = extra_rows * dec->cache_y_stride_;
|
||||
const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
|
||||
dec->cache_y_ = ((uint8_t*)mem) + extra_y;
|
||||
dec->cache_u_ = dec->cache_y_
|
||||
+ 16 * num_caches * dec->cache_y_stride_ + extra_uv;
|
||||
dec->cache_v_ = dec->cache_u_
|
||||
+ 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
|
||||
dec->cache_id_ = 0;
|
||||
}
|
||||
mem += cache_size;
|
||||
|
||||
// alpha plane
|
||||
dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
|
||||
mem += alpha_size;
|
||||
|
||||
// note: left-info is initialized once for all.
|
||||
memset(dec->mb_info_ - 1, 0, mb_info_size);
|
||||
|
||||
// initialize top
|
||||
memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void InitIo(VP8Decoder* const dec, VP8Io* io) {
|
||||
// prepare 'io'
|
||||
io->mb_y = 0;
|
||||
io->y = dec->cache_y_;
|
||||
io->u = dec->cache_u_;
|
||||
io->v = dec->cache_v_;
|
||||
io->y_stride = dec->cache_y_stride_;
|
||||
io->uv_stride = dec->cache_uv_stride_;
|
||||
io->a = NULL;
|
||||
}
|
||||
|
||||
int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
|
||||
if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
|
||||
if (!AllocateMemory(dec)) return 0;
|
||||
InitIo(dec, io);
|
||||
VP8DspInit(); // Init critical function pointers and look-up tables.
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main reconstruction function.
|
||||
|
||||
static const int kScan[16] = {
|
||||
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
|
||||
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
|
||||
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
|
||||
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
|
||||
};
|
||||
|
||||
static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) {
|
||||
if (mode == B_DC_PRED) {
|
||||
if (dec->mb_x_ == 0) {
|
||||
return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
|
||||
} else {
|
||||
return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
|
||||
}
|
||||
}
|
||||
return mode;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) {
|
||||
*(uint32_t*)dst = *(uint32_t*)src;
|
||||
}
|
||||
|
||||
void VP8ReconstructBlock(VP8Decoder* const dec) {
|
||||
uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
|
||||
uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
|
||||
uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
|
||||
|
||||
// Rotate in the left samples from previously decoded block. We move four
|
||||
// pixels at a time for alignment reason, and because of in-loop filter.
|
||||
if (dec->mb_x_ > 0) {
|
||||
int j;
|
||||
for (j = -1; j < 16; ++j) {
|
||||
Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
|
||||
}
|
||||
for (j = -1; j < 8; ++j) {
|
||||
Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
|
||||
Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
|
||||
}
|
||||
} else {
|
||||
int j;
|
||||
for (j = 0; j < 16; ++j) {
|
||||
y_dst[j * BPS - 1] = 129;
|
||||
}
|
||||
for (j = 0; j < 8; ++j) {
|
||||
u_dst[j * BPS - 1] = 129;
|
||||
v_dst[j * BPS - 1] = 129;
|
||||
}
|
||||
// Init top-left sample on left column too
|
||||
if (dec->mb_y_ > 0) {
|
||||
y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
|
||||
}
|
||||
}
|
||||
{
|
||||
// bring top samples into the cache
|
||||
uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
|
||||
uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
|
||||
uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
|
||||
const int16_t* coeffs = dec->coeffs_;
|
||||
int n;
|
||||
|
||||
if (dec->mb_y_ > 0) {
|
||||
memcpy(y_dst - BPS, top_y, 16);
|
||||
memcpy(u_dst - BPS, top_u, 8);
|
||||
memcpy(v_dst - BPS, top_v, 8);
|
||||
} else if (dec->mb_x_ == 0) {
|
||||
// we only need to do this init once at block (0,0).
|
||||
// Afterward, it remains valid for the whole topmost row.
|
||||
memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
|
||||
memset(u_dst - BPS - 1, 127, 8 + 1);
|
||||
memset(v_dst - BPS - 1, 127, 8 + 1);
|
||||
}
|
||||
|
||||
// predict and add residuals
|
||||
|
||||
if (dec->is_i4x4_) { // 4x4
|
||||
uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
|
||||
|
||||
if (dec->mb_y_ > 0) {
|
||||
if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border
|
||||
top_right[0] = top_y[15] * 0x01010101u;
|
||||
} else {
|
||||
memcpy(top_right, top_y + 16, sizeof(*top_right));
|
||||
}
|
||||
}
|
||||
// replicate the top-right pixels below
|
||||
top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
|
||||
|
||||
// predict and add residues for all 4x4 blocks in turn.
|
||||
for (n = 0; n < 16; n++) {
|
||||
uint8_t* const dst = y_dst + kScan[n];
|
||||
VP8PredLuma4[dec->imodes_[n]](dst);
|
||||
if (dec->non_zero_ac_ & (1 << n)) {
|
||||
VP8Transform(coeffs + n * 16, dst, 0);
|
||||
} else if (dec->non_zero_ & (1 << n)) { // only DC is present
|
||||
VP8TransformDC(coeffs + n * 16, dst);
|
||||
}
|
||||
}
|
||||
} else { // 16x16
|
||||
const int pred_func = CheckMode(dec, dec->imodes_[0]);
|
||||
VP8PredLuma16[pred_func](y_dst);
|
||||
if (dec->non_zero_) {
|
||||
for (n = 0; n < 16; n++) {
|
||||
uint8_t* const dst = y_dst + kScan[n];
|
||||
if (dec->non_zero_ac_ & (1 << n)) {
|
||||
VP8Transform(coeffs + n * 16, dst, 0);
|
||||
} else if (dec->non_zero_ & (1 << n)) { // only DC is present
|
||||
VP8TransformDC(coeffs + n * 16, dst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
// Chroma
|
||||
const int pred_func = CheckMode(dec, dec->uvmode_);
|
||||
VP8PredChroma8[pred_func](u_dst);
|
||||
VP8PredChroma8[pred_func](v_dst);
|
||||
|
||||
if (dec->non_zero_ & 0x0f0000) { // chroma-U
|
||||
const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
|
||||
if (dec->non_zero_ac_ & 0x0f0000) {
|
||||
VP8TransformUV(u_coeffs, u_dst);
|
||||
} else {
|
||||
VP8TransformDCUV(u_coeffs, u_dst);
|
||||
}
|
||||
}
|
||||
if (dec->non_zero_ & 0xf00000) { // chroma-V
|
||||
const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
|
||||
if (dec->non_zero_ac_ & 0xf00000) {
|
||||
VP8TransformUV(v_coeffs, v_dst);
|
||||
} else {
|
||||
VP8TransformDCUV(v_coeffs, v_dst);
|
||||
}
|
||||
}
|
||||
|
||||
// stash away top samples for next block
|
||||
if (dec->mb_y_ < dec->mb_h_ - 1) {
|
||||
memcpy(top_y, y_dst + 15 * BPS, 16);
|
||||
memcpy(top_u, u_dst + 7 * BPS, 8);
|
||||
memcpy(top_v, v_dst + 7 * BPS, 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,785 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Incremental decoding
|
||||
//
|
||||
// Author: somnath@google.com (Somnath Banerjee)
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./webpi.h"
|
||||
#include "./vp8i.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// In append mode, buffer allocations increase as multiples of this value.
|
||||
// Needs to be a power of 2.
|
||||
#define CHUNK_SIZE 4096
|
||||
#define MAX_MB_SIZE 4096
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Data structures for memory and states
|
||||
|
||||
// Decoding states. State normally flows like HEADER->PARTS0->DATA->DONE.
|
||||
// If there is any error the decoder goes into state ERROR.
|
||||
typedef enum {
|
||||
STATE_PRE_VP8, // All data before that of the first VP8 chunk.
|
||||
STATE_VP8_FRAME_HEADER, // For VP8 Frame header (within VP8 chunk).
|
||||
STATE_VP8_PARTS0,
|
||||
STATE_VP8_DATA,
|
||||
STATE_VP8L_HEADER,
|
||||
STATE_VP8L_DATA,
|
||||
STATE_DONE,
|
||||
STATE_ERROR
|
||||
} DecState;
|
||||
|
||||
// Operating state for the MemBuffer
|
||||
typedef enum {
|
||||
MEM_MODE_NONE = 0,
|
||||
MEM_MODE_APPEND,
|
||||
MEM_MODE_MAP
|
||||
} MemBufferMode;
|
||||
|
||||
// storage for partition #0 and partial data (in a rolling fashion)
|
||||
typedef struct {
|
||||
MemBufferMode mode_; // Operation mode
|
||||
size_t start_; // start location of the data to be decoded
|
||||
size_t end_; // end location
|
||||
size_t buf_size_; // size of the allocated buffer
|
||||
uint8_t* buf_; // We don't own this buffer in case WebPIUpdate()
|
||||
|
||||
size_t part0_size_; // size of partition #0
|
||||
const uint8_t* part0_buf_; // buffer to store partition #0
|
||||
} MemBuffer;
|
||||
|
||||
struct WebPIDecoder {
|
||||
DecState state_; // current decoding state
|
||||
WebPDecParams params_; // Params to store output info
|
||||
int is_lossless_; // for down-casting 'dec_'.
|
||||
void* dec_; // either a VP8Decoder or a VP8LDecoder instance
|
||||
VP8Io io_;
|
||||
|
||||
MemBuffer mem_; // input memory buffer.
|
||||
WebPDecBuffer output_; // output buffer (when no external one is supplied)
|
||||
size_t chunk_size_; // Compressed VP8/VP8L size extracted from Header.
|
||||
};
|
||||
|
||||
// MB context to restore in case VP8DecodeMB() fails
|
||||
typedef struct {
|
||||
VP8MB left_;
|
||||
VP8MB info_;
|
||||
uint8_t intra_t_[4];
|
||||
uint8_t intra_l_[4];
|
||||
VP8BitReader br_;
|
||||
VP8BitReader token_br_;
|
||||
} MBContext;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MemBuffer: incoming data handling
|
||||
|
||||
static void RemapBitReader(VP8BitReader* const br, ptrdiff_t offset) {
|
||||
if (br->buf_ != NULL) {
|
||||
br->buf_ += offset;
|
||||
br->buf_end_ += offset;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE size_t MemDataSize(const MemBuffer* mem) {
|
||||
return (mem->end_ - mem->start_);
|
||||
}
|
||||
|
||||
static void DoRemap(WebPIDecoder* const idec, ptrdiff_t offset) {
|
||||
MemBuffer* const mem = &idec->mem_;
|
||||
const uint8_t* const new_base = mem->buf_ + mem->start_;
|
||||
// note: for VP8, setting up idec->io_ is only really needed at the beginning
|
||||
// of the decoding, till partition #0 is complete.
|
||||
idec->io_.data = new_base;
|
||||
idec->io_.data_size = MemDataSize(mem);
|
||||
|
||||
if (idec->dec_ != NULL) {
|
||||
if (!idec->is_lossless_) {
|
||||
VP8Decoder* const dec = (VP8Decoder*)idec->dec_;
|
||||
const int last_part = dec->num_parts_ - 1;
|
||||
if (offset != 0) {
|
||||
int p;
|
||||
for (p = 0; p <= last_part; ++p) {
|
||||
RemapBitReader(dec->parts_ + p, offset);
|
||||
}
|
||||
// Remap partition #0 data pointer to new offset, but only in MAP
|
||||
// mode (in APPEND mode, partition #0 is copied into a fixed memory).
|
||||
if (mem->mode_ == MEM_MODE_MAP) {
|
||||
RemapBitReader(&dec->br_, offset);
|
||||
}
|
||||
}
|
||||
assert(last_part >= 0);
|
||||
dec->parts_[last_part].buf_end_ = mem->buf_ + mem->end_;
|
||||
} else { // Resize lossless bitreader
|
||||
VP8LDecoder* const dec = (VP8LDecoder*)idec->dec_;
|
||||
VP8LBitReaderSetBuffer(&dec->br_, new_base, MemDataSize(mem));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Appends data to the end of MemBuffer->buf_. It expands the allocated memory
|
||||
// size if required and also updates VP8BitReader's if new memory is allocated.
|
||||
static int AppendToMemBuffer(WebPIDecoder* const idec,
|
||||
const uint8_t* const data, size_t data_size) {
|
||||
MemBuffer* const mem = &idec->mem_;
|
||||
const uint8_t* const old_base = mem->buf_ + mem->start_;
|
||||
assert(mem->mode_ == MEM_MODE_APPEND);
|
||||
if (data_size > MAX_CHUNK_PAYLOAD) {
|
||||
// security safeguard: trying to allocate more than what the format
|
||||
// allows for a chunk should be considered a smoke smell.
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (mem->end_ + data_size > mem->buf_size_) { // Need some free memory
|
||||
const size_t current_size = MemDataSize(mem);
|
||||
const uint64_t new_size = (uint64_t)current_size + data_size;
|
||||
const uint64_t extra_size = (new_size + CHUNK_SIZE - 1) & ~(CHUNK_SIZE - 1);
|
||||
uint8_t* const new_buf =
|
||||
(uint8_t*)WebPSafeMalloc(extra_size, sizeof(*new_buf));
|
||||
if (new_buf == NULL) return 0;
|
||||
memcpy(new_buf, old_base, current_size);
|
||||
free(mem->buf_);
|
||||
mem->buf_ = new_buf;
|
||||
mem->buf_size_ = (size_t)extra_size;
|
||||
mem->start_ = 0;
|
||||
mem->end_ = current_size;
|
||||
}
|
||||
|
||||
memcpy(mem->buf_ + mem->end_, data, data_size);
|
||||
mem->end_ += data_size;
|
||||
assert(mem->end_ <= mem->buf_size_);
|
||||
|
||||
DoRemap(idec, mem->buf_ + mem->start_ - old_base);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int RemapMemBuffer(WebPIDecoder* const idec,
|
||||
const uint8_t* const data, size_t data_size) {
|
||||
MemBuffer* const mem = &idec->mem_;
|
||||
const uint8_t* const old_base = mem->buf_ + mem->start_;
|
||||
assert(mem->mode_ == MEM_MODE_MAP);
|
||||
|
||||
if (data_size < mem->buf_size_) return 0; // can't remap to a shorter buffer!
|
||||
|
||||
mem->buf_ = (uint8_t*)data;
|
||||
mem->end_ = mem->buf_size_ = data_size;
|
||||
|
||||
DoRemap(idec, mem->buf_ + mem->start_ - old_base);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void InitMemBuffer(MemBuffer* const mem) {
|
||||
mem->mode_ = MEM_MODE_NONE;
|
||||
mem->buf_ = NULL;
|
||||
mem->buf_size_ = 0;
|
||||
mem->part0_buf_ = NULL;
|
||||
mem->part0_size_ = 0;
|
||||
}
|
||||
|
||||
static void ClearMemBuffer(MemBuffer* const mem) {
|
||||
assert(mem);
|
||||
if (mem->mode_ == MEM_MODE_APPEND) {
|
||||
free(mem->buf_);
|
||||
free((void*)mem->part0_buf_);
|
||||
}
|
||||
}
|
||||
|
||||
static int CheckMemBufferMode(MemBuffer* const mem, MemBufferMode expected) {
|
||||
if (mem->mode_ == MEM_MODE_NONE) {
|
||||
mem->mode_ = expected; // switch to the expected mode
|
||||
} else if (mem->mode_ != expected) {
|
||||
return 0; // we mixed the modes => error
|
||||
}
|
||||
assert(mem->mode_ == expected); // mode is ok
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Macroblock-decoding contexts
|
||||
|
||||
static void SaveContext(const VP8Decoder* dec, const VP8BitReader* token_br,
|
||||
MBContext* const context) {
|
||||
const VP8BitReader* const br = &dec->br_;
|
||||
const VP8MB* const left = dec->mb_info_ - 1;
|
||||
const VP8MB* const info = dec->mb_info_ + dec->mb_x_;
|
||||
|
||||
context->left_ = *left;
|
||||
context->info_ = *info;
|
||||
context->br_ = *br;
|
||||
context->token_br_ = *token_br;
|
||||
memcpy(context->intra_t_, dec->intra_t_ + 4 * dec->mb_x_, 4);
|
||||
memcpy(context->intra_l_, dec->intra_l_, 4);
|
||||
}
|
||||
|
||||
static void RestoreContext(const MBContext* context, VP8Decoder* const dec,
|
||||
VP8BitReader* const token_br) {
|
||||
VP8BitReader* const br = &dec->br_;
|
||||
VP8MB* const left = dec->mb_info_ - 1;
|
||||
VP8MB* const info = dec->mb_info_ + dec->mb_x_;
|
||||
|
||||
*left = context->left_;
|
||||
*info = context->info_;
|
||||
*br = context->br_;
|
||||
*token_br = context->token_br_;
|
||||
memcpy(dec->intra_t_ + 4 * dec->mb_x_, context->intra_t_, 4);
|
||||
memcpy(dec->intra_l_, context->intra_l_, 4);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static VP8StatusCode IDecError(WebPIDecoder* const idec, VP8StatusCode error) {
|
||||
if (idec->state_ == STATE_VP8_DATA) {
|
||||
VP8Io* const io = &idec->io_;
|
||||
if (io->teardown) {
|
||||
io->teardown(io);
|
||||
}
|
||||
}
|
||||
idec->state_ = STATE_ERROR;
|
||||
return error;
|
||||
}
|
||||
|
||||
static void ChangeState(WebPIDecoder* const idec, DecState new_state,
|
||||
size_t consumed_bytes) {
|
||||
MemBuffer* const mem = &idec->mem_;
|
||||
idec->state_ = new_state;
|
||||
mem->start_ += consumed_bytes;
|
||||
assert(mem->start_ <= mem->end_);
|
||||
idec->io_.data = mem->buf_ + mem->start_;
|
||||
idec->io_.data_size = MemDataSize(mem);
|
||||
}
|
||||
|
||||
// Headers
|
||||
static VP8StatusCode DecodeWebPHeaders(WebPIDecoder* const idec) {
|
||||
MemBuffer* const mem = &idec->mem_;
|
||||
const uint8_t* data = mem->buf_ + mem->start_;
|
||||
size_t curr_size = MemDataSize(mem);
|
||||
VP8StatusCode status;
|
||||
WebPHeaderStructure headers;
|
||||
|
||||
headers.data = data;
|
||||
headers.data_size = curr_size;
|
||||
status = WebPParseHeaders(&headers);
|
||||
if (status == VP8_STATUS_NOT_ENOUGH_DATA) {
|
||||
return VP8_STATUS_SUSPENDED; // We haven't found a VP8 chunk yet.
|
||||
} else if (status != VP8_STATUS_OK) {
|
||||
return IDecError(idec, status);
|
||||
}
|
||||
|
||||
idec->chunk_size_ = headers.compressed_size;
|
||||
idec->is_lossless_ = headers.is_lossless;
|
||||
if (!idec->is_lossless_) {
|
||||
VP8Decoder* const dec = VP8New();
|
||||
if (dec == NULL) {
|
||||
return VP8_STATUS_OUT_OF_MEMORY;
|
||||
}
|
||||
idec->dec_ = dec;
|
||||
#ifdef WEBP_USE_THREAD
|
||||
dec->use_threads_ = (idec->params_.options != NULL) &&
|
||||
(idec->params_.options->use_threads > 0);
|
||||
#else
|
||||
dec->use_threads_ = 0;
|
||||
#endif
|
||||
dec->alpha_data_ = headers.alpha_data;
|
||||
dec->alpha_data_size_ = headers.alpha_data_size;
|
||||
ChangeState(idec, STATE_VP8_FRAME_HEADER, headers.offset);
|
||||
} else {
|
||||
VP8LDecoder* const dec = VP8LNew();
|
||||
if (dec == NULL) {
|
||||
return VP8_STATUS_OUT_OF_MEMORY;
|
||||
}
|
||||
idec->dec_ = dec;
|
||||
ChangeState(idec, STATE_VP8L_HEADER, headers.offset);
|
||||
}
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
static VP8StatusCode DecodeVP8FrameHeader(WebPIDecoder* const idec) {
|
||||
const uint8_t* data = idec->mem_.buf_ + idec->mem_.start_;
|
||||
const size_t curr_size = MemDataSize(&idec->mem_);
|
||||
uint32_t bits;
|
||||
|
||||
if (curr_size < VP8_FRAME_HEADER_SIZE) {
|
||||
// Not enough data bytes to extract VP8 Frame Header.
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
if (!VP8GetInfo(data, curr_size, idec->chunk_size_, NULL, NULL)) {
|
||||
return IDecError(idec, VP8_STATUS_BITSTREAM_ERROR);
|
||||
}
|
||||
|
||||
bits = data[0] | (data[1] << 8) | (data[2] << 16);
|
||||
idec->mem_.part0_size_ = (bits >> 5) + VP8_FRAME_HEADER_SIZE;
|
||||
|
||||
idec->io_.data = data;
|
||||
idec->io_.data_size = curr_size;
|
||||
idec->state_ = STATE_VP8_PARTS0;
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
// Partition #0
|
||||
static int CopyParts0Data(WebPIDecoder* const idec) {
|
||||
VP8Decoder* const dec = (VP8Decoder*)idec->dec_;
|
||||
VP8BitReader* const br = &dec->br_;
|
||||
const size_t psize = br->buf_end_ - br->buf_;
|
||||
MemBuffer* const mem = &idec->mem_;
|
||||
assert(!idec->is_lossless_);
|
||||
assert(mem->part0_buf_ == NULL);
|
||||
assert(psize > 0);
|
||||
assert(psize <= mem->part0_size_); // Format limit: no need for runtime check
|
||||
if (mem->mode_ == MEM_MODE_APPEND) {
|
||||
// We copy and grab ownership of the partition #0 data.
|
||||
uint8_t* const part0_buf = (uint8_t*)malloc(psize);
|
||||
if (part0_buf == NULL) {
|
||||
return 0;
|
||||
}
|
||||
memcpy(part0_buf, br->buf_, psize);
|
||||
mem->part0_buf_ = part0_buf;
|
||||
br->buf_ = part0_buf;
|
||||
br->buf_end_ = part0_buf + psize;
|
||||
} else {
|
||||
// Else: just keep pointers to the partition #0's data in dec_->br_.
|
||||
}
|
||||
mem->start_ += psize;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static VP8StatusCode DecodePartition0(WebPIDecoder* const idec) {
|
||||
VP8Decoder* const dec = (VP8Decoder*)idec->dec_;
|
||||
VP8Io* const io = &idec->io_;
|
||||
const WebPDecParams* const params = &idec->params_;
|
||||
WebPDecBuffer* const output = params->output;
|
||||
|
||||
// Wait till we have enough data for the whole partition #0
|
||||
if (MemDataSize(&idec->mem_) < idec->mem_.part0_size_) {
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
|
||||
if (!VP8GetHeaders(dec, io)) {
|
||||
const VP8StatusCode status = dec->status_;
|
||||
if (status == VP8_STATUS_SUSPENDED ||
|
||||
status == VP8_STATUS_NOT_ENOUGH_DATA) {
|
||||
// treating NOT_ENOUGH_DATA as SUSPENDED state
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
return IDecError(idec, status);
|
||||
}
|
||||
|
||||
// Allocate/Verify output buffer now
|
||||
dec->status_ = WebPAllocateDecBuffer(io->width, io->height, params->options,
|
||||
output);
|
||||
if (dec->status_ != VP8_STATUS_OK) {
|
||||
return IDecError(idec, dec->status_);
|
||||
}
|
||||
|
||||
if (!CopyParts0Data(idec)) {
|
||||
return IDecError(idec, VP8_STATUS_OUT_OF_MEMORY);
|
||||
}
|
||||
|
||||
// Finish setting up the decoding parameters. Will call io->setup().
|
||||
if (VP8EnterCritical(dec, io) != VP8_STATUS_OK) {
|
||||
return IDecError(idec, dec->status_);
|
||||
}
|
||||
|
||||
// Note: past this point, teardown() must always be called
|
||||
// in case of error.
|
||||
idec->state_ = STATE_VP8_DATA;
|
||||
// Allocate memory and prepare everything.
|
||||
if (!VP8InitFrame(dec, io)) {
|
||||
return IDecError(idec, dec->status_);
|
||||
}
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
// Remaining partitions
|
||||
static VP8StatusCode DecodeRemaining(WebPIDecoder* const idec) {
|
||||
VP8Decoder* const dec = (VP8Decoder*)idec->dec_;
|
||||
VP8Io* const io = &idec->io_;
|
||||
|
||||
assert(dec->ready_);
|
||||
|
||||
for (; dec->mb_y_ < dec->mb_h_; ++dec->mb_y_) {
|
||||
VP8BitReader* token_br = &dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)];
|
||||
if (dec->mb_x_ == 0) {
|
||||
VP8InitScanline(dec);
|
||||
}
|
||||
for (; dec->mb_x_ < dec->mb_w_; dec->mb_x_++) {
|
||||
MBContext context;
|
||||
SaveContext(dec, token_br, &context);
|
||||
|
||||
if (!VP8DecodeMB(dec, token_br)) {
|
||||
RestoreContext(&context, dec, token_br);
|
||||
// We shouldn't fail when MAX_MB data was available
|
||||
if (dec->num_parts_ == 1 && MemDataSize(&idec->mem_) > MAX_MB_SIZE) {
|
||||
return IDecError(idec, VP8_STATUS_BITSTREAM_ERROR);
|
||||
}
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
VP8ReconstructBlock(dec);
|
||||
// Store data and save block's filtering params
|
||||
VP8StoreBlock(dec);
|
||||
|
||||
// Release buffer only if there is only one partition
|
||||
if (dec->num_parts_ == 1) {
|
||||
idec->mem_.start_ = token_br->buf_ - idec->mem_.buf_;
|
||||
assert(idec->mem_.start_ <= idec->mem_.end_);
|
||||
}
|
||||
}
|
||||
if (!VP8ProcessRow(dec, io)) {
|
||||
return IDecError(idec, VP8_STATUS_USER_ABORT);
|
||||
}
|
||||
dec->mb_x_ = 0;
|
||||
}
|
||||
// Synchronize the thread and check for errors.
|
||||
if (!VP8ExitCritical(dec, io)) {
|
||||
return IDecError(idec, VP8_STATUS_USER_ABORT);
|
||||
}
|
||||
dec->ready_ = 0;
|
||||
idec->state_ = STATE_DONE;
|
||||
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
static int ErrorStatusLossless(WebPIDecoder* const idec, VP8StatusCode status) {
|
||||
if (status == VP8_STATUS_SUSPENDED || status == VP8_STATUS_NOT_ENOUGH_DATA) {
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
return IDecError(idec, status);
|
||||
}
|
||||
|
||||
static VP8StatusCode DecodeVP8LHeader(WebPIDecoder* const idec) {
|
||||
VP8Io* const io = &idec->io_;
|
||||
VP8LDecoder* const dec = (VP8LDecoder*)idec->dec_;
|
||||
const WebPDecParams* const params = &idec->params_;
|
||||
WebPDecBuffer* const output = params->output;
|
||||
size_t curr_size = MemDataSize(&idec->mem_);
|
||||
assert(idec->is_lossless_);
|
||||
|
||||
// Wait until there's enough data for decoding header.
|
||||
if (curr_size < (idec->chunk_size_ >> 3)) {
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
if (!VP8LDecodeHeader(dec, io)) {
|
||||
return ErrorStatusLossless(idec, dec->status_);
|
||||
}
|
||||
// Allocate/verify output buffer now.
|
||||
dec->status_ = WebPAllocateDecBuffer(io->width, io->height, params->options,
|
||||
output);
|
||||
if (dec->status_ != VP8_STATUS_OK) {
|
||||
return IDecError(idec, dec->status_);
|
||||
}
|
||||
|
||||
idec->state_ = STATE_VP8L_DATA;
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
static VP8StatusCode DecodeVP8LData(WebPIDecoder* const idec) {
|
||||
VP8LDecoder* const dec = (VP8LDecoder*)idec->dec_;
|
||||
const size_t curr_size = MemDataSize(&idec->mem_);
|
||||
assert(idec->is_lossless_);
|
||||
|
||||
// At present Lossless decoder can't decode image incrementally. So wait till
|
||||
// all the image data is aggregated before image can be decoded.
|
||||
if (curr_size < idec->chunk_size_) {
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
|
||||
if (!VP8LDecodeImage(dec)) {
|
||||
return ErrorStatusLossless(idec, dec->status_);
|
||||
}
|
||||
|
||||
idec->state_ = STATE_DONE;
|
||||
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
// Main decoding loop
|
||||
static VP8StatusCode IDecode(WebPIDecoder* idec) {
|
||||
VP8StatusCode status = VP8_STATUS_SUSPENDED;
|
||||
|
||||
if (idec->state_ == STATE_PRE_VP8) {
|
||||
status = DecodeWebPHeaders(idec);
|
||||
} else {
|
||||
if (idec->dec_ == NULL) {
|
||||
return VP8_STATUS_SUSPENDED; // can't continue if we have no decoder.
|
||||
}
|
||||
}
|
||||
if (idec->state_ == STATE_VP8_FRAME_HEADER) {
|
||||
status = DecodeVP8FrameHeader(idec);
|
||||
}
|
||||
if (idec->state_ == STATE_VP8_PARTS0) {
|
||||
status = DecodePartition0(idec);
|
||||
}
|
||||
if (idec->state_ == STATE_VP8_DATA) {
|
||||
status = DecodeRemaining(idec);
|
||||
}
|
||||
if (idec->state_ == STATE_VP8L_HEADER) {
|
||||
status = DecodeVP8LHeader(idec);
|
||||
}
|
||||
if (idec->state_ == STATE_VP8L_DATA) {
|
||||
status = DecodeVP8LData(idec);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Public functions
|
||||
|
||||
WebPIDecoder* WebPINewDecoder(WebPDecBuffer* output_buffer) {
|
||||
WebPIDecoder* idec = (WebPIDecoder*)calloc(1, sizeof(*idec));
|
||||
if (idec == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
idec->state_ = STATE_PRE_VP8;
|
||||
idec->chunk_size_ = 0;
|
||||
|
||||
InitMemBuffer(&idec->mem_);
|
||||
WebPInitDecBuffer(&idec->output_);
|
||||
VP8InitIo(&idec->io_);
|
||||
|
||||
WebPResetDecParams(&idec->params_);
|
||||
idec->params_.output = output_buffer ? output_buffer : &idec->output_;
|
||||
WebPInitCustomIo(&idec->params_, &idec->io_); // Plug the I/O functions.
|
||||
|
||||
return idec;
|
||||
}
|
||||
|
||||
WebPIDecoder* WebPIDecode(const uint8_t* data, size_t data_size,
|
||||
WebPDecoderConfig* config) {
|
||||
WebPIDecoder* idec;
|
||||
|
||||
// Parse the bitstream's features, if requested:
|
||||
if (data != NULL && data_size > 0 && config != NULL) {
|
||||
if (WebPGetFeatures(data, data_size, &config->input) != VP8_STATUS_OK) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
// Create an instance of the incremental decoder
|
||||
idec = WebPINewDecoder(config ? &config->output : NULL);
|
||||
if (idec == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
// Finish initialization
|
||||
if (config != NULL) {
|
||||
idec->params_.options = &config->options;
|
||||
}
|
||||
return idec;
|
||||
}
|
||||
|
||||
void WebPIDelete(WebPIDecoder* idec) {
|
||||
if (idec == NULL) return;
|
||||
if (idec->dec_ != NULL) {
|
||||
if (!idec->is_lossless_) {
|
||||
VP8Delete(idec->dec_);
|
||||
} else {
|
||||
VP8LDelete(idec->dec_);
|
||||
}
|
||||
}
|
||||
ClearMemBuffer(&idec->mem_);
|
||||
WebPFreeDecBuffer(&idec->output_);
|
||||
free(idec);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Wrapper toward WebPINewDecoder
|
||||
|
||||
WebPIDecoder* WebPINewRGB(WEBP_CSP_MODE mode, uint8_t* output_buffer,
|
||||
size_t output_buffer_size, int output_stride) {
|
||||
WebPIDecoder* idec;
|
||||
if (mode >= MODE_YUV) return NULL;
|
||||
idec = WebPINewDecoder(NULL);
|
||||
if (idec == NULL) return NULL;
|
||||
idec->output_.colorspace = mode;
|
||||
idec->output_.is_external_memory = 1;
|
||||
idec->output_.u.RGBA.rgba = output_buffer;
|
||||
idec->output_.u.RGBA.stride = output_stride;
|
||||
idec->output_.u.RGBA.size = output_buffer_size;
|
||||
return idec;
|
||||
}
|
||||
|
||||
WebPIDecoder* WebPINewYUVA(uint8_t* luma, size_t luma_size, int luma_stride,
|
||||
uint8_t* u, size_t u_size, int u_stride,
|
||||
uint8_t* v, size_t v_size, int v_stride,
|
||||
uint8_t* a, size_t a_size, int a_stride) {
|
||||
WebPIDecoder* const idec = WebPINewDecoder(NULL);
|
||||
if (idec == NULL) return NULL;
|
||||
idec->output_.colorspace = (a == NULL) ? MODE_YUV : MODE_YUVA;
|
||||
idec->output_.is_external_memory = 1;
|
||||
idec->output_.u.YUVA.y = luma;
|
||||
idec->output_.u.YUVA.y_stride = luma_stride;
|
||||
idec->output_.u.YUVA.y_size = luma_size;
|
||||
idec->output_.u.YUVA.u = u;
|
||||
idec->output_.u.YUVA.u_stride = u_stride;
|
||||
idec->output_.u.YUVA.u_size = u_size;
|
||||
idec->output_.u.YUVA.v = v;
|
||||
idec->output_.u.YUVA.v_stride = v_stride;
|
||||
idec->output_.u.YUVA.v_size = v_size;
|
||||
idec->output_.u.YUVA.a = a;
|
||||
idec->output_.u.YUVA.a_stride = a_stride;
|
||||
idec->output_.u.YUVA.a_size = a_size;
|
||||
return idec;
|
||||
}
|
||||
|
||||
WebPIDecoder* WebPINewYUV(uint8_t* luma, size_t luma_size, int luma_stride,
|
||||
uint8_t* u, size_t u_size, int u_stride,
|
||||
uint8_t* v, size_t v_size, int v_stride) {
|
||||
return WebPINewYUVA(luma, luma_size, luma_stride,
|
||||
u, u_size, u_stride,
|
||||
v, v_size, v_stride,
|
||||
NULL, 0, 0);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static VP8StatusCode IDecCheckStatus(const WebPIDecoder* const idec) {
|
||||
assert(idec);
|
||||
if (idec->state_ == STATE_ERROR) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR;
|
||||
}
|
||||
if (idec->state_ == STATE_DONE) {
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
return VP8_STATUS_SUSPENDED;
|
||||
}
|
||||
|
||||
VP8StatusCode WebPIAppend(WebPIDecoder* idec,
|
||||
const uint8_t* data, size_t data_size) {
|
||||
VP8StatusCode status;
|
||||
if (idec == NULL || data == NULL) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
status = IDecCheckStatus(idec);
|
||||
if (status != VP8_STATUS_SUSPENDED) {
|
||||
return status;
|
||||
}
|
||||
// Check mixed calls between RemapMemBuffer and AppendToMemBuffer.
|
||||
if (!CheckMemBufferMode(&idec->mem_, MEM_MODE_APPEND)) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
// Append data to memory buffer
|
||||
if (!AppendToMemBuffer(idec, data, data_size)) {
|
||||
return VP8_STATUS_OUT_OF_MEMORY;
|
||||
}
|
||||
return IDecode(idec);
|
||||
}
|
||||
|
||||
VP8StatusCode WebPIUpdate(WebPIDecoder* idec,
|
||||
const uint8_t* data, size_t data_size) {
|
||||
VP8StatusCode status;
|
||||
if (idec == NULL || data == NULL) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
status = IDecCheckStatus(idec);
|
||||
if (status != VP8_STATUS_SUSPENDED) {
|
||||
return status;
|
||||
}
|
||||
// Check mixed calls between RemapMemBuffer and AppendToMemBuffer.
|
||||
if (!CheckMemBufferMode(&idec->mem_, MEM_MODE_MAP)) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
// Make the memory buffer point to the new buffer
|
||||
if (!RemapMemBuffer(idec, data, data_size)) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
return IDecode(idec);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static const WebPDecBuffer* GetOutputBuffer(const WebPIDecoder* const idec) {
|
||||
if (idec == NULL || idec->dec_ == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (idec->state_ <= STATE_VP8_PARTS0) {
|
||||
return NULL;
|
||||
}
|
||||
return idec->params_.output;
|
||||
}
|
||||
|
||||
const WebPDecBuffer* WebPIDecodedArea(const WebPIDecoder* idec,
|
||||
int* left, int* top,
|
||||
int* width, int* height) {
|
||||
const WebPDecBuffer* const src = GetOutputBuffer(idec);
|
||||
if (left != NULL) *left = 0;
|
||||
if (top != NULL) *top = 0;
|
||||
// TODO(skal): later include handling of rotations.
|
||||
if (src) {
|
||||
if (width != NULL) *width = src->width;
|
||||
if (height != NULL) *height = idec->params_.last_y;
|
||||
} else {
|
||||
if (width != NULL) *width = 0;
|
||||
if (height != NULL) *height = 0;
|
||||
}
|
||||
return src;
|
||||
}
|
||||
|
||||
uint8_t* WebPIDecGetRGB(const WebPIDecoder* idec, int* last_y,
|
||||
int* width, int* height, int* stride) {
|
||||
const WebPDecBuffer* const src = GetOutputBuffer(idec);
|
||||
if (src == NULL) return NULL;
|
||||
if (src->colorspace >= MODE_YUV) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (last_y != NULL) *last_y = idec->params_.last_y;
|
||||
if (width != NULL) *width = src->width;
|
||||
if (height != NULL) *height = src->height;
|
||||
if (stride != NULL) *stride = src->u.RGBA.stride;
|
||||
|
||||
return src->u.RGBA.rgba;
|
||||
}
|
||||
|
||||
uint8_t* WebPIDecGetYUVA(const WebPIDecoder* idec, int* last_y,
|
||||
uint8_t** u, uint8_t** v, uint8_t** a,
|
||||
int* width, int* height,
|
||||
int* stride, int* uv_stride, int* a_stride) {
|
||||
const WebPDecBuffer* const src = GetOutputBuffer(idec);
|
||||
if (src == NULL) return NULL;
|
||||
if (src->colorspace < MODE_YUV) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (last_y != NULL) *last_y = idec->params_.last_y;
|
||||
if (u != NULL) *u = src->u.YUVA.u;
|
||||
if (v != NULL) *v = src->u.YUVA.v;
|
||||
if (a != NULL) *a = src->u.YUVA.a;
|
||||
if (width != NULL) *width = src->width;
|
||||
if (height != NULL) *height = src->height;
|
||||
if (stride != NULL) *stride = src->u.YUVA.y_stride;
|
||||
if (uv_stride != NULL) *uv_stride = src->u.YUVA.u_stride;
|
||||
if (a_stride != NULL) *a_stride = src->u.YUVA.a_stride;
|
||||
|
||||
return src->u.YUVA.y;
|
||||
}
|
||||
|
||||
int WebPISetIOHooks(WebPIDecoder* const idec,
|
||||
VP8IoPutHook put,
|
||||
VP8IoSetupHook setup,
|
||||
VP8IoTeardownHook teardown,
|
||||
void* user_data) {
|
||||
if (idec == NULL || idec->state_ > STATE_PRE_VP8) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
idec->io_.put = put;
|
||||
idec->io_.setup = setup;
|
||||
idec->io_.teardown = teardown;
|
||||
idec->io_.opaque = user_data;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,633 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// functions for sample output.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "../dec/vp8i.h"
|
||||
#include "./webpi.h"
|
||||
#include "../dsp/dsp.h"
|
||||
#include "../dsp/yuv.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main YUV<->RGB conversion functions
|
||||
|
||||
static int EmitYUV(const VP8Io* const io, WebPDecParams* const p) {
|
||||
WebPDecBuffer* output = p->output;
|
||||
const WebPYUVABuffer* const buf = &output->u.YUVA;
|
||||
uint8_t* const y_dst = buf->y + io->mb_y * buf->y_stride;
|
||||
uint8_t* const u_dst = buf->u + (io->mb_y >> 1) * buf->u_stride;
|
||||
uint8_t* const v_dst = buf->v + (io->mb_y >> 1) * buf->v_stride;
|
||||
const int mb_w = io->mb_w;
|
||||
const int mb_h = io->mb_h;
|
||||
const int uv_w = (mb_w + 1) / 2;
|
||||
const int uv_h = (mb_h + 1) / 2;
|
||||
int j;
|
||||
for (j = 0; j < mb_h; ++j) {
|
||||
memcpy(y_dst + j * buf->y_stride, io->y + j * io->y_stride, mb_w);
|
||||
}
|
||||
for (j = 0; j < uv_h; ++j) {
|
||||
memcpy(u_dst + j * buf->u_stride, io->u + j * io->uv_stride, uv_w);
|
||||
memcpy(v_dst + j * buf->v_stride, io->v + j * io->uv_stride, uv_w);
|
||||
}
|
||||
return io->mb_h;
|
||||
}
|
||||
|
||||
// Point-sampling U/V sampler.
|
||||
static int EmitSampledRGB(const VP8Io* const io, WebPDecParams* const p) {
|
||||
WebPDecBuffer* output = p->output;
|
||||
const WebPRGBABuffer* const buf = &output->u.RGBA;
|
||||
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
|
||||
const uint8_t* y_src = io->y;
|
||||
const uint8_t* u_src = io->u;
|
||||
const uint8_t* v_src = io->v;
|
||||
const WebPSampleLinePairFunc sample = WebPSamplers[output->colorspace];
|
||||
const int mb_w = io->mb_w;
|
||||
const int last = io->mb_h - 1;
|
||||
int j;
|
||||
for (j = 0; j < last; j += 2) {
|
||||
sample(y_src, y_src + io->y_stride, u_src, v_src,
|
||||
dst, dst + buf->stride, mb_w);
|
||||
y_src += 2 * io->y_stride;
|
||||
u_src += io->uv_stride;
|
||||
v_src += io->uv_stride;
|
||||
dst += 2 * buf->stride;
|
||||
}
|
||||
if (j == last) { // Just do the last line twice
|
||||
sample(y_src, y_src, u_src, v_src, dst, dst, mb_w);
|
||||
}
|
||||
return io->mb_h;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// YUV444 -> RGB conversion
|
||||
|
||||
#if 0 // TODO(skal): this is for future rescaling.
|
||||
static int EmitRGB(const VP8Io* const io, WebPDecParams* const p) {
|
||||
WebPDecBuffer* output = p->output;
|
||||
const WebPRGBABuffer* const buf = &output->u.RGBA;
|
||||
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
|
||||
const uint8_t* y_src = io->y;
|
||||
const uint8_t* u_src = io->u;
|
||||
const uint8_t* v_src = io->v;
|
||||
const WebPYUV444Converter convert = WebPYUV444Converters[output->colorspace];
|
||||
const int mb_w = io->mb_w;
|
||||
const int last = io->mb_h;
|
||||
int j;
|
||||
for (j = 0; j < last; ++j) {
|
||||
convert(y_src, u_src, v_src, dst, mb_w);
|
||||
y_src += io->y_stride;
|
||||
u_src += io->uv_stride;
|
||||
v_src += io->uv_stride;
|
||||
dst += buf->stride;
|
||||
}
|
||||
return io->mb_h;
|
||||
}
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Fancy upsampling
|
||||
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) {
|
||||
int num_lines_out = io->mb_h; // a priori guess
|
||||
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
|
||||
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
|
||||
WebPUpsampleLinePairFunc upsample = WebPUpsamplers[p->output->colorspace];
|
||||
const uint8_t* cur_y = io->y;
|
||||
const uint8_t* cur_u = io->u;
|
||||
const uint8_t* cur_v = io->v;
|
||||
const uint8_t* top_u = p->tmp_u;
|
||||
const uint8_t* top_v = p->tmp_v;
|
||||
int y = io->mb_y;
|
||||
const int y_end = io->mb_y + io->mb_h;
|
||||
const int mb_w = io->mb_w;
|
||||
const int uv_w = (mb_w + 1) / 2;
|
||||
|
||||
if (y == 0) {
|
||||
// First line is special cased. We mirror the u/v samples at boundary.
|
||||
upsample(NULL, cur_y, cur_u, cur_v, cur_u, cur_v, NULL, dst, mb_w);
|
||||
} else {
|
||||
// We can finish the left-over line from previous call.
|
||||
upsample(p->tmp_y, cur_y, top_u, top_v, cur_u, cur_v,
|
||||
dst - buf->stride, dst, mb_w);
|
||||
++num_lines_out;
|
||||
}
|
||||
// Loop over each output pairs of row.
|
||||
for (; y + 2 < y_end; y += 2) {
|
||||
top_u = cur_u;
|
||||
top_v = cur_v;
|
||||
cur_u += io->uv_stride;
|
||||
cur_v += io->uv_stride;
|
||||
dst += 2 * buf->stride;
|
||||
cur_y += 2 * io->y_stride;
|
||||
upsample(cur_y - io->y_stride, cur_y,
|
||||
top_u, top_v, cur_u, cur_v,
|
||||
dst - buf->stride, dst, mb_w);
|
||||
}
|
||||
// move to last row
|
||||
cur_y += io->y_stride;
|
||||
if (io->crop_top + y_end < io->crop_bottom) {
|
||||
// Save the unfinished samples for next call (as we're not done yet).
|
||||
memcpy(p->tmp_y, cur_y, mb_w * sizeof(*p->tmp_y));
|
||||
memcpy(p->tmp_u, cur_u, uv_w * sizeof(*p->tmp_u));
|
||||
memcpy(p->tmp_v, cur_v, uv_w * sizeof(*p->tmp_v));
|
||||
// The fancy upsampler leaves a row unfinished behind
|
||||
// (except for the very last row)
|
||||
num_lines_out--;
|
||||
} else {
|
||||
// Process the very last row of even-sized picture
|
||||
if (!(y_end & 1)) {
|
||||
upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v,
|
||||
dst + buf->stride, NULL, mb_w);
|
||||
}
|
||||
}
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
#endif /* FANCY_UPSAMPLING */
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static int EmitAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const uint8_t* alpha = io->a;
|
||||
const WebPYUVABuffer* const buf = &p->output->u.YUVA;
|
||||
const int mb_w = io->mb_w;
|
||||
const int mb_h = io->mb_h;
|
||||
uint8_t* dst = buf->a + io->mb_y * buf->a_stride;
|
||||
int j;
|
||||
|
||||
if (alpha != NULL) {
|
||||
for (j = 0; j < mb_h; ++j) {
|
||||
memcpy(dst, alpha, mb_w * sizeof(*dst));
|
||||
alpha += io->width;
|
||||
dst += buf->a_stride;
|
||||
}
|
||||
} else if (buf->a != NULL) {
|
||||
// the user requested alpha, but there is none, set it to opaque.
|
||||
for (j = 0; j < mb_h; ++j) {
|
||||
memset(dst, 0xff, mb_w * sizeof(*dst));
|
||||
dst += buf->a_stride;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int GetAlphaSourceRow(const VP8Io* const io,
|
||||
const uint8_t** alpha, int* const num_rows) {
|
||||
int start_y = io->mb_y;
|
||||
*num_rows = io->mb_h;
|
||||
|
||||
// Compensate for the 1-line delay of the fancy upscaler.
|
||||
// This is similar to EmitFancyRGB().
|
||||
if (io->fancy_upsampling) {
|
||||
if (start_y == 0) {
|
||||
// We don't process the last row yet. It'll be done during the next call.
|
||||
--*num_rows;
|
||||
} else {
|
||||
--start_y;
|
||||
// Fortunately, *alpha data is persistent, so we can go back
|
||||
// one row and finish alpha blending, now that the fancy upscaler
|
||||
// completed the YUV->RGB interpolation.
|
||||
*alpha -= io->width;
|
||||
}
|
||||
if (io->crop_top + io->mb_y + io->mb_h == io->crop_bottom) {
|
||||
// If it's the very last call, we process all the remaining rows!
|
||||
*num_rows = io->crop_bottom - io->crop_top - start_y;
|
||||
}
|
||||
}
|
||||
return start_y;
|
||||
}
|
||||
|
||||
static int EmitAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const uint8_t* alpha = io->a;
|
||||
if (alpha != NULL) {
|
||||
const int mb_w = io->mb_w;
|
||||
const WEBP_CSP_MODE colorspace = p->output->colorspace;
|
||||
const int alpha_first =
|
||||
(colorspace == MODE_ARGB || colorspace == MODE_Argb);
|
||||
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
|
||||
int num_rows;
|
||||
const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows);
|
||||
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
|
||||
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
|
||||
uint32_t alpha_mask = 0xff;
|
||||
int i, j;
|
||||
|
||||
for (j = 0; j < num_rows; ++j) {
|
||||
for (i = 0; i < mb_w; ++i) {
|
||||
const uint32_t alpha_value = alpha[i];
|
||||
dst[4 * i] = alpha_value;
|
||||
alpha_mask &= alpha_value;
|
||||
}
|
||||
alpha += io->width;
|
||||
dst += buf->stride;
|
||||
}
|
||||
// alpha_mask is < 0xff if there's non-trivial alpha to premultiply with.
|
||||
if (alpha_mask != 0xff && WebPIsPremultipliedMode(colorspace)) {
|
||||
WebPApplyAlphaMultiply(base_rgba, alpha_first,
|
||||
mb_w, num_rows, buf->stride);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int EmitAlphaRGBA4444(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const uint8_t* alpha = io->a;
|
||||
if (alpha != NULL) {
|
||||
const int mb_w = io->mb_w;
|
||||
const WEBP_CSP_MODE colorspace = p->output->colorspace;
|
||||
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
|
||||
int num_rows;
|
||||
const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows);
|
||||
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
|
||||
uint8_t* alpha_dst = base_rgba + 1;
|
||||
uint32_t alpha_mask = 0x0f;
|
||||
int i, j;
|
||||
|
||||
for (j = 0; j < num_rows; ++j) {
|
||||
for (i = 0; i < mb_w; ++i) {
|
||||
// Fill in the alpha value (converted to 4 bits).
|
||||
const uint32_t alpha_value = alpha[i] >> 4;
|
||||
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value;
|
||||
alpha_mask &= alpha_value;
|
||||
}
|
||||
alpha += io->width;
|
||||
alpha_dst += buf->stride;
|
||||
}
|
||||
if (alpha_mask != 0x0f && WebPIsPremultipliedMode(colorspace)) {
|
||||
WebPApplyAlphaMultiply4444(base_rgba, mb_w, num_rows, buf->stride);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// YUV rescaling (no final RGB conversion needed)
|
||||
|
||||
static int Rescale(const uint8_t* src, int src_stride,
|
||||
int new_lines, WebPRescaler* const wrk) {
|
||||
int num_lines_out = 0;
|
||||
while (new_lines > 0) { // import new contributions of source rows.
|
||||
const int lines_in = WebPRescalerImport(wrk, new_lines, src, src_stride);
|
||||
src += lines_in * src_stride;
|
||||
new_lines -= lines_in;
|
||||
num_lines_out += WebPRescalerExport(wrk); // emit output row(s)
|
||||
}
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
static int EmitRescaledYUV(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const int mb_h = io->mb_h;
|
||||
const int uv_mb_h = (mb_h + 1) >> 1;
|
||||
const int num_lines_out = Rescale(io->y, io->y_stride, mb_h, &p->scaler_y);
|
||||
Rescale(io->u, io->uv_stride, uv_mb_h, &p->scaler_u);
|
||||
Rescale(io->v, io->uv_stride, uv_mb_h, &p->scaler_v);
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
static int EmitRescaledAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
|
||||
if (io->a != NULL) {
|
||||
Rescale(io->a, io->width, io->mb_h, &p->scaler_a);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int InitYUVRescaler(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const int has_alpha = WebPIsAlphaMode(p->output->colorspace);
|
||||
const WebPYUVABuffer* const buf = &p->output->u.YUVA;
|
||||
const int out_width = io->scaled_width;
|
||||
const int out_height = io->scaled_height;
|
||||
const int uv_out_width = (out_width + 1) >> 1;
|
||||
const int uv_out_height = (out_height + 1) >> 1;
|
||||
const int uv_in_width = (io->mb_w + 1) >> 1;
|
||||
const int uv_in_height = (io->mb_h + 1) >> 1;
|
||||
const size_t work_size = 2 * out_width; // scratch memory for luma rescaler
|
||||
const size_t uv_work_size = 2 * uv_out_width; // and for each u/v ones
|
||||
size_t tmp_size;
|
||||
int32_t* work;
|
||||
|
||||
tmp_size = work_size + 2 * uv_work_size;
|
||||
if (has_alpha) {
|
||||
tmp_size += work_size;
|
||||
}
|
||||
p->memory = calloc(1, tmp_size * sizeof(*work));
|
||||
if (p->memory == NULL) {
|
||||
return 0; // memory error
|
||||
}
|
||||
work = (int32_t*)p->memory;
|
||||
WebPRescalerInit(&p->scaler_y, io->mb_w, io->mb_h,
|
||||
buf->y, out_width, out_height, buf->y_stride, 1,
|
||||
io->mb_w, out_width, io->mb_h, out_height,
|
||||
work);
|
||||
WebPRescalerInit(&p->scaler_u, uv_in_width, uv_in_height,
|
||||
buf->u, uv_out_width, uv_out_height, buf->u_stride, 1,
|
||||
uv_in_width, uv_out_width,
|
||||
uv_in_height, uv_out_height,
|
||||
work + work_size);
|
||||
WebPRescalerInit(&p->scaler_v, uv_in_width, uv_in_height,
|
||||
buf->v, uv_out_width, uv_out_height, buf->v_stride, 1,
|
||||
uv_in_width, uv_out_width,
|
||||
uv_in_height, uv_out_height,
|
||||
work + work_size + uv_work_size);
|
||||
p->emit = EmitRescaledYUV;
|
||||
|
||||
if (has_alpha) {
|
||||
WebPRescalerInit(&p->scaler_a, io->mb_w, io->mb_h,
|
||||
buf->a, out_width, out_height, buf->a_stride, 1,
|
||||
io->mb_w, out_width, io->mb_h, out_height,
|
||||
work + work_size + 2 * uv_work_size);
|
||||
p->emit_alpha = EmitRescaledAlphaYUV;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RGBA rescaling
|
||||
|
||||
static int ExportRGB(WebPDecParams* const p, int y_pos) {
|
||||
const WebPYUV444Converter convert =
|
||||
WebPYUV444Converters[p->output->colorspace];
|
||||
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
|
||||
uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride;
|
||||
int num_lines_out = 0;
|
||||
// For RGB rescaling, because of the YUV420, current scan position
|
||||
// U/V can be +1/-1 line from the Y one. Hence the double test.
|
||||
while (WebPRescalerHasPendingOutput(&p->scaler_y) &&
|
||||
WebPRescalerHasPendingOutput(&p->scaler_u)) {
|
||||
assert(p->last_y + y_pos + num_lines_out < p->output->height);
|
||||
assert(p->scaler_u.y_accum == p->scaler_v.y_accum);
|
||||
WebPRescalerExportRow(&p->scaler_y);
|
||||
WebPRescalerExportRow(&p->scaler_u);
|
||||
WebPRescalerExportRow(&p->scaler_v);
|
||||
convert(p->scaler_y.dst, p->scaler_u.dst, p->scaler_v.dst,
|
||||
dst, p->scaler_y.dst_width);
|
||||
dst += buf->stride;
|
||||
++num_lines_out;
|
||||
}
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
static int EmitRescaledRGB(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const int mb_h = io->mb_h;
|
||||
const int uv_mb_h = (mb_h + 1) >> 1;
|
||||
int j = 0, uv_j = 0;
|
||||
int num_lines_out = 0;
|
||||
while (j < mb_h) {
|
||||
const int y_lines_in =
|
||||
WebPRescalerImport(&p->scaler_y, mb_h - j,
|
||||
io->y + j * io->y_stride, io->y_stride);
|
||||
const int u_lines_in =
|
||||
WebPRescalerImport(&p->scaler_u, uv_mb_h - uv_j,
|
||||
io->u + uv_j * io->uv_stride, io->uv_stride);
|
||||
const int v_lines_in =
|
||||
WebPRescalerImport(&p->scaler_v, uv_mb_h - uv_j,
|
||||
io->v + uv_j * io->uv_stride, io->uv_stride);
|
||||
(void)v_lines_in; // remove a gcc warning
|
||||
assert(u_lines_in == v_lines_in);
|
||||
j += y_lines_in;
|
||||
uv_j += u_lines_in;
|
||||
num_lines_out += ExportRGB(p, num_lines_out);
|
||||
}
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
static int ExportAlpha(WebPDecParams* const p, int y_pos) {
|
||||
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
|
||||
uint8_t* const base_rgba = buf->rgba + (p->last_y + y_pos) * buf->stride;
|
||||
const WEBP_CSP_MODE colorspace = p->output->colorspace;
|
||||
const int alpha_first =
|
||||
(colorspace == MODE_ARGB || colorspace == MODE_Argb);
|
||||
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
|
||||
int num_lines_out = 0;
|
||||
const int is_premult_alpha = WebPIsPremultipliedMode(colorspace);
|
||||
uint32_t alpha_mask = 0xff;
|
||||
const int width = p->scaler_a.dst_width;
|
||||
|
||||
while (WebPRescalerHasPendingOutput(&p->scaler_a)) {
|
||||
int i;
|
||||
assert(p->last_y + y_pos + num_lines_out < p->output->height);
|
||||
WebPRescalerExportRow(&p->scaler_a);
|
||||
for (i = 0; i < width; ++i) {
|
||||
const uint32_t alpha_value = p->scaler_a.dst[i];
|
||||
dst[4 * i] = alpha_value;
|
||||
alpha_mask &= alpha_value;
|
||||
}
|
||||
dst += buf->stride;
|
||||
++num_lines_out;
|
||||
}
|
||||
if (is_premult_alpha && alpha_mask != 0xff) {
|
||||
WebPApplyAlphaMultiply(base_rgba, alpha_first,
|
||||
width, num_lines_out, buf->stride);
|
||||
}
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
static int ExportAlphaRGBA4444(WebPDecParams* const p, int y_pos) {
|
||||
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
|
||||
uint8_t* const base_rgba = buf->rgba + (p->last_y + y_pos) * buf->stride;
|
||||
uint8_t* alpha_dst = base_rgba + 1;
|
||||
int num_lines_out = 0;
|
||||
const WEBP_CSP_MODE colorspace = p->output->colorspace;
|
||||
const int width = p->scaler_a.dst_width;
|
||||
const int is_premult_alpha = WebPIsPremultipliedMode(colorspace);
|
||||
uint32_t alpha_mask = 0x0f;
|
||||
|
||||
while (WebPRescalerHasPendingOutput(&p->scaler_a)) {
|
||||
int i;
|
||||
assert(p->last_y + y_pos + num_lines_out < p->output->height);
|
||||
WebPRescalerExportRow(&p->scaler_a);
|
||||
for (i = 0; i < width; ++i) {
|
||||
// Fill in the alpha value (converted to 4 bits).
|
||||
const uint32_t alpha_value = p->scaler_a.dst[i] >> 4;
|
||||
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value;
|
||||
alpha_mask &= alpha_value;
|
||||
}
|
||||
alpha_dst += buf->stride;
|
||||
++num_lines_out;
|
||||
}
|
||||
if (is_premult_alpha && alpha_mask != 0x0f) {
|
||||
WebPApplyAlphaMultiply4444(base_rgba, width, num_lines_out, buf->stride);
|
||||
}
|
||||
return num_lines_out;
|
||||
}
|
||||
|
||||
static int EmitRescaledAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
|
||||
if (io->a != NULL) {
|
||||
WebPRescaler* const scaler = &p->scaler_a;
|
||||
int j = 0;
|
||||
int pos = 0;
|
||||
while (j < io->mb_h) {
|
||||
j += WebPRescalerImport(scaler, io->mb_h - j,
|
||||
io->a + j * io->width, io->width);
|
||||
pos += p->emit_alpha_row(p, pos);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int InitRGBRescaler(const VP8Io* const io, WebPDecParams* const p) {
|
||||
const int has_alpha = WebPIsAlphaMode(p->output->colorspace);
|
||||
const int out_width = io->scaled_width;
|
||||
const int out_height = io->scaled_height;
|
||||
const int uv_in_width = (io->mb_w + 1) >> 1;
|
||||
const int uv_in_height = (io->mb_h + 1) >> 1;
|
||||
const size_t work_size = 2 * out_width; // scratch memory for one rescaler
|
||||
int32_t* work; // rescalers work area
|
||||
uint8_t* tmp; // tmp storage for scaled YUV444 samples before RGB conversion
|
||||
size_t tmp_size1, tmp_size2;
|
||||
|
||||
tmp_size1 = 3 * work_size;
|
||||
tmp_size2 = 3 * out_width;
|
||||
if (has_alpha) {
|
||||
tmp_size1 += work_size;
|
||||
tmp_size2 += out_width;
|
||||
}
|
||||
p->memory = calloc(1, tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp));
|
||||
if (p->memory == NULL) {
|
||||
return 0; // memory error
|
||||
}
|
||||
work = (int32_t*)p->memory;
|
||||
tmp = (uint8_t*)(work + tmp_size1);
|
||||
WebPRescalerInit(&p->scaler_y, io->mb_w, io->mb_h,
|
||||
tmp + 0 * out_width, out_width, out_height, 0, 1,
|
||||
io->mb_w, out_width, io->mb_h, out_height,
|
||||
work + 0 * work_size);
|
||||
WebPRescalerInit(&p->scaler_u, uv_in_width, uv_in_height,
|
||||
tmp + 1 * out_width, out_width, out_height, 0, 1,
|
||||
io->mb_w, 2 * out_width, io->mb_h, 2 * out_height,
|
||||
work + 1 * work_size);
|
||||
WebPRescalerInit(&p->scaler_v, uv_in_width, uv_in_height,
|
||||
tmp + 2 * out_width, out_width, out_height, 0, 1,
|
||||
io->mb_w, 2 * out_width, io->mb_h, 2 * out_height,
|
||||
work + 2 * work_size);
|
||||
p->emit = EmitRescaledRGB;
|
||||
|
||||
if (has_alpha) {
|
||||
WebPRescalerInit(&p->scaler_a, io->mb_w, io->mb_h,
|
||||
tmp + 3 * out_width, out_width, out_height, 0, 1,
|
||||
io->mb_w, out_width, io->mb_h, out_height,
|
||||
work + 3 * work_size);
|
||||
p->emit_alpha = EmitRescaledAlphaRGB;
|
||||
if (p->output->colorspace == MODE_RGBA_4444 ||
|
||||
p->output->colorspace == MODE_rgbA_4444) {
|
||||
p->emit_alpha_row = ExportAlphaRGBA4444;
|
||||
} else {
|
||||
p->emit_alpha_row = ExportAlpha;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Default custom functions
|
||||
|
||||
static int CustomSetup(VP8Io* io) {
|
||||
WebPDecParams* const p = (WebPDecParams*)io->opaque;
|
||||
const WEBP_CSP_MODE colorspace = p->output->colorspace;
|
||||
const int is_rgb = WebPIsRGBMode(colorspace);
|
||||
const int is_alpha = WebPIsAlphaMode(colorspace);
|
||||
|
||||
p->memory = NULL;
|
||||
p->emit = NULL;
|
||||
p->emit_alpha = NULL;
|
||||
p->emit_alpha_row = NULL;
|
||||
if (!WebPIoInitFromOptions(p->options, io, is_alpha ? MODE_YUV : MODE_YUVA)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (io->use_scaling) {
|
||||
const int ok = is_rgb ? InitRGBRescaler(io, p) : InitYUVRescaler(io, p);
|
||||
if (!ok) {
|
||||
return 0; // memory error
|
||||
}
|
||||
} else {
|
||||
if (is_rgb) {
|
||||
p->emit = EmitSampledRGB; // default
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
if (io->fancy_upsampling) {
|
||||
const int uv_width = (io->mb_w + 1) >> 1;
|
||||
p->memory = malloc(io->mb_w + 2 * uv_width);
|
||||
if (p->memory == NULL) {
|
||||
return 0; // memory error.
|
||||
}
|
||||
p->tmp_y = (uint8_t*)p->memory;
|
||||
p->tmp_u = p->tmp_y + io->mb_w;
|
||||
p->tmp_v = p->tmp_u + uv_width;
|
||||
p->emit = EmitFancyRGB;
|
||||
WebPInitUpsamplers();
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
p->emit = EmitYUV;
|
||||
}
|
||||
if (is_alpha) { // need transparency output
|
||||
if (WebPIsPremultipliedMode(colorspace)) WebPInitPremultiply();
|
||||
p->emit_alpha =
|
||||
(colorspace == MODE_RGBA_4444 || colorspace == MODE_rgbA_4444) ?
|
||||
EmitAlphaRGBA4444
|
||||
: is_rgb ? EmitAlphaRGB
|
||||
: EmitAlphaYUV;
|
||||
}
|
||||
}
|
||||
|
||||
if (is_rgb) {
|
||||
VP8YUVInit();
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static int CustomPut(const VP8Io* io) {
|
||||
WebPDecParams* const p = (WebPDecParams*)io->opaque;
|
||||
const int mb_w = io->mb_w;
|
||||
const int mb_h = io->mb_h;
|
||||
int num_lines_out;
|
||||
assert(!(io->mb_y & 1));
|
||||
|
||||
if (mb_w <= 0 || mb_h <= 0) {
|
||||
return 0;
|
||||
}
|
||||
num_lines_out = p->emit(io, p);
|
||||
if (p->emit_alpha) {
|
||||
p->emit_alpha(io, p);
|
||||
}
|
||||
p->last_y += num_lines_out;
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static void CustomTeardown(const VP8Io* io) {
|
||||
WebPDecParams* const p = (WebPDecParams*)io->opaque;
|
||||
free(p->memory);
|
||||
p->memory = NULL;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main entry point
|
||||
|
||||
void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io) {
|
||||
io->put = CustomPut;
|
||||
io->setup = CustomSetup;
|
||||
io->teardown = CustomTeardown;
|
||||
io->opaque = params;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,35 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Enhancement layer (for YUV444/422)
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./vp8i.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int VP8DecodeLayer(VP8Decoder* const dec) {
|
||||
assert(dec);
|
||||
assert(dec->layer_data_size_ > 0);
|
||||
(void)dec;
|
||||
|
||||
// TODO: handle enhancement layer here.
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,113 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Quantizer initialization
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "./vp8i.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static WEBP_INLINE int clip(int v, int M) {
|
||||
return v < 0 ? 0 : v > M ? M : v;
|
||||
}
|
||||
|
||||
// Paragraph 14.1
|
||||
static const uint8_t kDcTable[128] = {
|
||||
4, 5, 6, 7, 8, 9, 10, 10,
|
||||
11, 12, 13, 14, 15, 16, 17, 17,
|
||||
18, 19, 20, 20, 21, 21, 22, 22,
|
||||
23, 23, 24, 25, 25, 26, 27, 28,
|
||||
29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 37, 38, 39, 40, 41, 42, 43,
|
||||
44, 45, 46, 46, 47, 48, 49, 50,
|
||||
51, 52, 53, 54, 55, 56, 57, 58,
|
||||
59, 60, 61, 62, 63, 64, 65, 66,
|
||||
67, 68, 69, 70, 71, 72, 73, 74,
|
||||
75, 76, 76, 77, 78, 79, 80, 81,
|
||||
82, 83, 84, 85, 86, 87, 88, 89,
|
||||
91, 93, 95, 96, 98, 100, 101, 102,
|
||||
104, 106, 108, 110, 112, 114, 116, 118,
|
||||
122, 124, 126, 128, 130, 132, 134, 136,
|
||||
138, 140, 143, 145, 148, 151, 154, 157
|
||||
};
|
||||
|
||||
static const uint16_t kAcTable[128] = {
|
||||
4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17, 18, 19,
|
||||
20, 21, 22, 23, 24, 25, 26, 27,
|
||||
28, 29, 30, 31, 32, 33, 34, 35,
|
||||
36, 37, 38, 39, 40, 41, 42, 43,
|
||||
44, 45, 46, 47, 48, 49, 50, 51,
|
||||
52, 53, 54, 55, 56, 57, 58, 60,
|
||||
62, 64, 66, 68, 70, 72, 74, 76,
|
||||
78, 80, 82, 84, 86, 88, 90, 92,
|
||||
94, 96, 98, 100, 102, 104, 106, 108,
|
||||
110, 112, 114, 116, 119, 122, 125, 128,
|
||||
131, 134, 137, 140, 143, 146, 149, 152,
|
||||
155, 158, 161, 164, 167, 170, 173, 177,
|
||||
181, 185, 189, 193, 197, 201, 205, 209,
|
||||
213, 217, 221, 225, 229, 234, 239, 245,
|
||||
249, 254, 259, 264, 269, 274, 279, 284
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Paragraph 9.6
|
||||
|
||||
void VP8ParseQuant(VP8Decoder* const dec) {
|
||||
VP8BitReader* const br = &dec->br_;
|
||||
const int base_q0 = VP8GetValue(br, 7);
|
||||
const int dqy1_dc = VP8Get(br) ? VP8GetSignedValue(br, 4) : 0;
|
||||
const int dqy2_dc = VP8Get(br) ? VP8GetSignedValue(br, 4) : 0;
|
||||
const int dqy2_ac = VP8Get(br) ? VP8GetSignedValue(br, 4) : 0;
|
||||
const int dquv_dc = VP8Get(br) ? VP8GetSignedValue(br, 4) : 0;
|
||||
const int dquv_ac = VP8Get(br) ? VP8GetSignedValue(br, 4) : 0;
|
||||
|
||||
const VP8SegmentHeader* const hdr = &dec->segment_hdr_;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
|
||||
int q;
|
||||
if (hdr->use_segment_) {
|
||||
q = hdr->quantizer_[i];
|
||||
if (!hdr->absolute_delta_) {
|
||||
q += base_q0;
|
||||
}
|
||||
} else {
|
||||
if (i > 0) {
|
||||
dec->dqm_[i] = dec->dqm_[0];
|
||||
continue;
|
||||
} else {
|
||||
q = base_q0;
|
||||
}
|
||||
}
|
||||
{
|
||||
VP8QuantMatrix* const m = &dec->dqm_[i];
|
||||
m->y1_mat_[0] = kDcTable[clip(q + dqy1_dc, 127)];
|
||||
m->y1_mat_[1] = kAcTable[clip(q + 0, 127)];
|
||||
|
||||
m->y2_mat_[0] = kDcTable[clip(q + dqy2_dc, 127)] * 2;
|
||||
// For all x in [0..284], x*155/100 is bitwise equal to (x*101581) >> 16.
|
||||
// The smallest precision for that is '(x*6349) >> 12' but 16 is a good
|
||||
// word size.
|
||||
m->y2_mat_[1] = (kAcTable[clip(q + dqy2_ac, 127)] * 101581) >> 16;
|
||||
if (m->y2_mat_[1] < 8) m->y2_mat_[1] = 8;
|
||||
|
||||
m->uv_mat_[0] = kDcTable[clip(q + dquv_dc, 117)];
|
||||
m->uv_mat_[1] = kAcTable[clip(q + dquv_ac, 127)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,589 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Coding trees and probas
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "vp8i.h"
|
||||
|
||||
#define USE_GENERIC_TREE
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef USE_GENERIC_TREE
|
||||
static const int8_t kYModesIntra4[18] = {
|
||||
-B_DC_PRED, 1,
|
||||
-B_TM_PRED, 2,
|
||||
-B_VE_PRED, 3,
|
||||
4, 6,
|
||||
-B_HE_PRED, 5,
|
||||
-B_RD_PRED, -B_VR_PRED,
|
||||
-B_LD_PRED, 7,
|
||||
-B_VL_PRED, 8,
|
||||
-B_HD_PRED, -B_HU_PRED
|
||||
};
|
||||
#endif
|
||||
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
|
||||
// inter prediction modes
|
||||
enum {
|
||||
LEFT4 = 0, ABOVE4 = 1, ZERO4 = 2, NEW4 = 3,
|
||||
NEARESTMV, NEARMV, ZEROMV, NEWMV, SPLITMV };
|
||||
|
||||
static const int8_t kYModesInter[8] = {
|
||||
-DC_PRED, 1,
|
||||
2, 3,
|
||||
-V_PRED, -H_PRED,
|
||||
-TM_PRED, -B_PRED
|
||||
};
|
||||
|
||||
static const int8_t kMBSplit[6] = {
|
||||
-3, 1,
|
||||
-2, 2,
|
||||
-0, -1
|
||||
};
|
||||
|
||||
static const int8_t kMVRef[8] = {
|
||||
-ZEROMV, 1,
|
||||
-NEARESTMV, 2,
|
||||
-NEARMV, 3,
|
||||
-NEWMV, -SPLITMV
|
||||
};
|
||||
|
||||
static const int8_t kMVRef4[6] = {
|
||||
-LEFT4, 1,
|
||||
-ABOVE4, 2,
|
||||
-ZERO4, -NEW4
|
||||
};
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Default probabilities
|
||||
|
||||
// Inter
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
static const uint8_t kYModeProbaInter0[4] = { 112, 86, 140, 37 };
|
||||
static const uint8_t kUVModeProbaInter0[3] = { 162, 101, 204 };
|
||||
static const uint8_t kMVProba0[2][NUM_MV_PROBAS] = {
|
||||
{ 162, 128, 225, 146, 172, 147, 214, 39,
|
||||
156, 128, 129, 132, 75, 145, 178, 206,
|
||||
239, 254, 254 },
|
||||
{ 164, 128, 204, 170, 119, 235, 140, 230,
|
||||
228, 128, 130, 130, 74, 148, 180, 203,
|
||||
236, 254, 254 }
|
||||
};
|
||||
#endif
|
||||
|
||||
// Paragraph 13.5
|
||||
static const uint8_t
|
||||
CoeffsProba0[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS] = {
|
||||
// genereated using vp8_default_coef_probs() in entropy.c:129
|
||||
{ { { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128 },
|
||||
{ 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128 },
|
||||
{ 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128 },
|
||||
{ 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128 },
|
||||
{ 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128 },
|
||||
},
|
||||
{ { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128 },
|
||||
{ 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128 },
|
||||
{ 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128 },
|
||||
},
|
||||
{ { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128 },
|
||||
{ 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128 },
|
||||
{ 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128 },
|
||||
{ 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128 },
|
||||
{ 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128 },
|
||||
{ 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128 },
|
||||
{ 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
},
|
||||
{ { { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62 },
|
||||
{ 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1 },
|
||||
{ 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128 }
|
||||
},
|
||||
{ { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128 },
|
||||
{ 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128 },
|
||||
{ 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128 },
|
||||
{ 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128 },
|
||||
{ 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128 },
|
||||
{ 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128 },
|
||||
{ 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128 },
|
||||
{ 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128 },
|
||||
{ 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128 },
|
||||
{ 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128 },
|
||||
{ 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128 },
|
||||
{ 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128 },
|
||||
{ 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128 },
|
||||
{ 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
},
|
||||
{ { { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128 },
|
||||
{ 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128 },
|
||||
{ 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128 }
|
||||
},
|
||||
{ { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128 },
|
||||
{ 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128 },
|
||||
{ 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128 },
|
||||
{ 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128 },
|
||||
{ 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128 },
|
||||
{ 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128 },
|
||||
{ 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
},
|
||||
{ { { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255 },
|
||||
{ 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128 },
|
||||
{ 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128 }
|
||||
},
|
||||
{ { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128 },
|
||||
{ 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128 },
|
||||
{ 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128 },
|
||||
{ 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128 },
|
||||
{ 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128 },
|
||||
{ 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128 },
|
||||
{ 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128 },
|
||||
{ 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128 },
|
||||
{ 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128 },
|
||||
{ 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128 },
|
||||
{ 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128 },
|
||||
{ 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128 },
|
||||
{ 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Paragraph 11.5
|
||||
static const uint8_t kBModesProba[NUM_BMODES][NUM_BMODES][NUM_BMODES - 1] = {
|
||||
{ { 231, 120, 48, 89, 115, 113, 120, 152, 112 },
|
||||
{ 152, 179, 64, 126, 170, 118, 46, 70, 95 },
|
||||
{ 175, 69, 143, 80, 85, 82, 72, 155, 103 },
|
||||
{ 56, 58, 10, 171, 218, 189, 17, 13, 152 },
|
||||
{ 114, 26, 17, 163, 44, 195, 21, 10, 173 },
|
||||
{ 121, 24, 80, 195, 26, 62, 44, 64, 85 },
|
||||
{ 144, 71, 10, 38, 171, 213, 144, 34, 26 },
|
||||
{ 170, 46, 55, 19, 136, 160, 33, 206, 71 },
|
||||
{ 63, 20, 8, 114, 114, 208, 12, 9, 226 },
|
||||
{ 81, 40, 11, 96, 182, 84, 29, 16, 36 } },
|
||||
{ { 134, 183, 89, 137, 98, 101, 106, 165, 148 },
|
||||
{ 72, 187, 100, 130, 157, 111, 32, 75, 80 },
|
||||
{ 66, 102, 167, 99, 74, 62, 40, 234, 128 },
|
||||
{ 41, 53, 9, 178, 241, 141, 26, 8, 107 },
|
||||
{ 74, 43, 26, 146, 73, 166, 49, 23, 157 },
|
||||
{ 65, 38, 105, 160, 51, 52, 31, 115, 128 },
|
||||
{ 104, 79, 12, 27, 217, 255, 87, 17, 7 },
|
||||
{ 87, 68, 71, 44, 114, 51, 15, 186, 23 },
|
||||
{ 47, 41, 14, 110, 182, 183, 21, 17, 194 },
|
||||
{ 66, 45, 25, 102, 197, 189, 23, 18, 22 } },
|
||||
{ { 88, 88, 147, 150, 42, 46, 45, 196, 205 },
|
||||
{ 43, 97, 183, 117, 85, 38, 35, 179, 61 },
|
||||
{ 39, 53, 200, 87, 26, 21, 43, 232, 171 },
|
||||
{ 56, 34, 51, 104, 114, 102, 29, 93, 77 },
|
||||
{ 39, 28, 85, 171, 58, 165, 90, 98, 64 },
|
||||
{ 34, 22, 116, 206, 23, 34, 43, 166, 73 },
|
||||
{ 107, 54, 32, 26, 51, 1, 81, 43, 31 },
|
||||
{ 68, 25, 106, 22, 64, 171, 36, 225, 114 },
|
||||
{ 34, 19, 21, 102, 132, 188, 16, 76, 124 },
|
||||
{ 62, 18, 78, 95, 85, 57, 50, 48, 51 } },
|
||||
{ { 193, 101, 35, 159, 215, 111, 89, 46, 111 },
|
||||
{ 60, 148, 31, 172, 219, 228, 21, 18, 111 },
|
||||
{ 112, 113, 77, 85, 179, 255, 38, 120, 114 },
|
||||
{ 40, 42, 1, 196, 245, 209, 10, 25, 109 },
|
||||
{ 88, 43, 29, 140, 166, 213, 37, 43, 154 },
|
||||
{ 61, 63, 30, 155, 67, 45, 68, 1, 209 },
|
||||
{ 100, 80, 8, 43, 154, 1, 51, 26, 71 },
|
||||
{ 142, 78, 78, 16, 255, 128, 34, 197, 171 },
|
||||
{ 41, 40, 5, 102, 211, 183, 4, 1, 221 },
|
||||
{ 51, 50, 17, 168, 209, 192, 23, 25, 82 } },
|
||||
{ { 138, 31, 36, 171, 27, 166, 38, 44, 229 },
|
||||
{ 67, 87, 58, 169, 82, 115, 26, 59, 179 },
|
||||
{ 63, 59, 90, 180, 59, 166, 93, 73, 154 },
|
||||
{ 40, 40, 21, 116, 143, 209, 34, 39, 175 },
|
||||
{ 47, 15, 16, 183, 34, 223, 49, 45, 183 },
|
||||
{ 46, 17, 33, 183, 6, 98, 15, 32, 183 },
|
||||
{ 57, 46, 22, 24, 128, 1, 54, 17, 37 },
|
||||
{ 65, 32, 73, 115, 28, 128, 23, 128, 205 },
|
||||
{ 40, 3, 9, 115, 51, 192, 18, 6, 223 },
|
||||
{ 87, 37, 9, 115, 59, 77, 64, 21, 47 } },
|
||||
{ { 104, 55, 44, 218, 9, 54, 53, 130, 226 },
|
||||
{ 64, 90, 70, 205, 40, 41, 23, 26, 57 },
|
||||
{ 54, 57, 112, 184, 5, 41, 38, 166, 213 },
|
||||
{ 30, 34, 26, 133, 152, 116, 10, 32, 134 },
|
||||
{ 39, 19, 53, 221, 26, 114, 32, 73, 255 },
|
||||
{ 31, 9, 65, 234, 2, 15, 1, 118, 73 },
|
||||
{ 75, 32, 12, 51, 192, 255, 160, 43, 51 },
|
||||
{ 88, 31, 35, 67, 102, 85, 55, 186, 85 },
|
||||
{ 56, 21, 23, 111, 59, 205, 45, 37, 192 },
|
||||
{ 55, 38, 70, 124, 73, 102, 1, 34, 98 } },
|
||||
{ { 125, 98, 42, 88, 104, 85, 117, 175, 82 },
|
||||
{ 95, 84, 53, 89, 128, 100, 113, 101, 45 },
|
||||
{ 75, 79, 123, 47, 51, 128, 81, 171, 1 },
|
||||
{ 57, 17, 5, 71, 102, 57, 53, 41, 49 },
|
||||
{ 38, 33, 13, 121, 57, 73, 26, 1, 85 },
|
||||
{ 41, 10, 67, 138, 77, 110, 90, 47, 114 },
|
||||
{ 115, 21, 2, 10, 102, 255, 166, 23, 6 },
|
||||
{ 101, 29, 16, 10, 85, 128, 101, 196, 26 },
|
||||
{ 57, 18, 10, 102, 102, 213, 34, 20, 43 },
|
||||
{ 117, 20, 15, 36, 163, 128, 68, 1, 26 } },
|
||||
{ { 102, 61, 71, 37, 34, 53, 31, 243, 192 },
|
||||
{ 69, 60, 71, 38, 73, 119, 28, 222, 37 },
|
||||
{ 68, 45, 128, 34, 1, 47, 11, 245, 171 },
|
||||
{ 62, 17, 19, 70, 146, 85, 55, 62, 70 },
|
||||
{ 37, 43, 37, 154, 100, 163, 85, 160, 1 },
|
||||
{ 63, 9, 92, 136, 28, 64, 32, 201, 85 },
|
||||
{ 75, 15, 9, 9, 64, 255, 184, 119, 16 },
|
||||
{ 86, 6, 28, 5, 64, 255, 25, 248, 1 },
|
||||
{ 56, 8, 17, 132, 137, 255, 55, 116, 128 },
|
||||
{ 58, 15, 20, 82, 135, 57, 26, 121, 40 } },
|
||||
{ { 164, 50, 31, 137, 154, 133, 25, 35, 218 },
|
||||
{ 51, 103, 44, 131, 131, 123, 31, 6, 158 },
|
||||
{ 86, 40, 64, 135, 148, 224, 45, 183, 128 },
|
||||
{ 22, 26, 17, 131, 240, 154, 14, 1, 209 },
|
||||
{ 45, 16, 21, 91, 64, 222, 7, 1, 197 },
|
||||
{ 56, 21, 39, 155, 60, 138, 23, 102, 213 },
|
||||
{ 83, 12, 13, 54, 192, 255, 68, 47, 28 },
|
||||
{ 85, 26, 85, 85, 128, 128, 32, 146, 171 },
|
||||
{ 18, 11, 7, 63, 144, 171, 4, 4, 246 },
|
||||
{ 35, 27, 10, 146, 174, 171, 12, 26, 128 } },
|
||||
{ { 190, 80, 35, 99, 180, 80, 126, 54, 45 },
|
||||
{ 85, 126, 47, 87, 176, 51, 41, 20, 32 },
|
||||
{ 101, 75, 128, 139, 118, 146, 116, 128, 85 },
|
||||
{ 56, 41, 15, 176, 236, 85, 37, 9, 62 },
|
||||
{ 71, 30, 17, 119, 118, 255, 17, 18, 138 },
|
||||
{ 101, 38, 60, 138, 55, 70, 43, 26, 142 },
|
||||
{ 146, 36, 19, 30, 171, 255, 97, 27, 20 },
|
||||
{ 138, 45, 61, 62, 219, 1, 81, 188, 64 },
|
||||
{ 32, 41, 20, 117, 151, 142, 20, 21, 163 },
|
||||
{ 112, 19, 12, 61, 195, 128, 48, 4, 24 } }
|
||||
};
|
||||
|
||||
void VP8ResetProba(VP8Proba* const proba) {
|
||||
memset(proba->segments_, 255u, sizeof(proba->segments_));
|
||||
memcpy(proba->coeffs_, CoeffsProba0, sizeof(CoeffsProba0));
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
memcpy(proba->mv_, kMVProba0, sizeof(kMVProba0));
|
||||
memcpy(proba->ymode_, kYModeProbaInter0, sizeof(kYModeProbaInter0));
|
||||
memcpy(proba->uvmode_, kUVModeProbaInter0, sizeof(kUVModeProbaInter0));
|
||||
#endif
|
||||
}
|
||||
|
||||
void VP8ParseIntraMode(VP8BitReader* const br, VP8Decoder* const dec) {
|
||||
uint8_t* const top = dec->intra_t_ + 4 * dec->mb_x_;
|
||||
uint8_t* const left = dec->intra_l_;
|
||||
// Hardcoded 16x16 intra-mode decision tree.
|
||||
dec->is_i4x4_ = !VP8GetBit(br, 145); // decide for B_PRED first
|
||||
if (!dec->is_i4x4_) {
|
||||
const int ymode =
|
||||
VP8GetBit(br, 156) ? (VP8GetBit(br, 128) ? TM_PRED : H_PRED)
|
||||
: (VP8GetBit(br, 163) ? V_PRED : DC_PRED);
|
||||
dec->imodes_[0] = ymode;
|
||||
memset(top, ymode, 4 * sizeof(top[0]));
|
||||
memset(left, ymode, 4 * sizeof(left[0]));
|
||||
} else {
|
||||
uint8_t* modes = dec->imodes_;
|
||||
int y;
|
||||
for (y = 0; y < 4; ++y) {
|
||||
int ymode = left[y];
|
||||
int x;
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const uint8_t* const prob = kBModesProba[top[x]][ymode];
|
||||
#ifdef USE_GENERIC_TREE
|
||||
// Generic tree-parsing
|
||||
int i = 0;
|
||||
do {
|
||||
i = kYModesIntra4[2 * i + VP8GetBit(br, prob[i])];
|
||||
} while (i > 0);
|
||||
ymode = -i;
|
||||
#else
|
||||
// Hardcoded tree parsing
|
||||
ymode = !VP8GetBit(br, prob[0]) ? B_DC_PRED :
|
||||
!VP8GetBit(br, prob[1]) ? B_TM_PRED :
|
||||
!VP8GetBit(br, prob[2]) ? B_VE_PRED :
|
||||
!VP8GetBit(br, prob[3]) ?
|
||||
(!VP8GetBit(br, prob[4]) ? B_HE_PRED :
|
||||
(!VP8GetBit(br, prob[5]) ? B_RD_PRED : B_VR_PRED)) :
|
||||
(!VP8GetBit(br, prob[6]) ? B_LD_PRED :
|
||||
(!VP8GetBit(br, prob[7]) ? B_VL_PRED :
|
||||
(!VP8GetBit(br, prob[8]) ? B_HD_PRED : B_HU_PRED)));
|
||||
#endif // USE_GENERIC_TREE
|
||||
top[x] = ymode;
|
||||
*modes++ = ymode;
|
||||
}
|
||||
left[y] = ymode;
|
||||
}
|
||||
}
|
||||
// Hardcoded UVMode decision tree
|
||||
dec->uvmode_ = !VP8GetBit(br, 142) ? DC_PRED
|
||||
: !VP8GetBit(br, 114) ? V_PRED
|
||||
: VP8GetBit(br, 183) ? TM_PRED : H_PRED;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Paragraph 13
|
||||
|
||||
static const uint8_t
|
||||
CoeffsUpdateProba[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS] = {
|
||||
{ { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
},
|
||||
{ { { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255 },
|
||||
{ 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
},
|
||||
{ { { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
},
|
||||
{ { { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
static const uint8_t MVUpdateProba[2][NUM_MV_PROBAS] = {
|
||||
{ 237, 246, 253, 253, 254, 254, 254, 254,
|
||||
254, 254, 254, 254, 254, 254, 250, 250,
|
||||
252, 254, 254 },
|
||||
{ 231, 243, 245, 253, 254, 254, 254, 254,
|
||||
254, 254, 254, 254, 254, 254, 251, 251,
|
||||
254, 254, 254 }
|
||||
};
|
||||
#endif
|
||||
|
||||
// Paragraph 9.9
|
||||
void VP8ParseProba(VP8BitReader* const br, VP8Decoder* const dec) {
|
||||
VP8Proba* const proba = &dec->proba_;
|
||||
int t, b, c, p;
|
||||
for (t = 0; t < NUM_TYPES; ++t) {
|
||||
for (b = 0; b < NUM_BANDS; ++b) {
|
||||
for (c = 0; c < NUM_CTX; ++c) {
|
||||
for (p = 0; p < NUM_PROBAS; ++p) {
|
||||
if (VP8GetBit(br, CoeffsUpdateProba[t][b][c][p])) {
|
||||
proba->coeffs_[t][b][c][p] = VP8GetValue(br, 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
dec->use_skip_proba_ = VP8Get(br);
|
||||
if (dec->use_skip_proba_) {
|
||||
dec->skip_p_ = VP8GetValue(br, 8);
|
||||
}
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
if (!dec->frm_hdr_.key_frame_) {
|
||||
int i;
|
||||
dec->intra_p_ = VP8GetValue(br, 8);
|
||||
dec->last_p_ = VP8GetValue(br, 8);
|
||||
dec->golden_p_ = VP8GetValue(br, 8);
|
||||
if (VP8Get(br)) { // update y-mode
|
||||
for (i = 0; i < 4; ++i) {
|
||||
proba->ymode_[i] = VP8GetValue(br, 8);
|
||||
}
|
||||
}
|
||||
if (VP8Get(br)) { // update uv-mode
|
||||
for (i = 0; i < 3; ++i) {
|
||||
proba->uvmode_[i] = VP8GetValue(br, 8);
|
||||
}
|
||||
}
|
||||
// update MV
|
||||
for (i = 0; i < 2; ++i) {
|
||||
int k;
|
||||
for (k = 0; k < NUM_MV_PROBAS; ++k) {
|
||||
if (VP8GetBit(br, MVUpdateProba[i][k])) {
|
||||
const int v = VP8GetValue(br, 7);
|
||||
proba->mv_[i][k] = v ? v << 1 : 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,787 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// main entry for the decoder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./vp8i.h"
|
||||
#include "./vp8li.h"
|
||||
#include "./webpi.h"
|
||||
#include "../utils/bit_reader.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int WebPGetDecoderVersion(void) {
|
||||
return (DEC_MAJ_VERSION << 16) | (DEC_MIN_VERSION << 8) | DEC_REV_VERSION;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8Decoder
|
||||
|
||||
static void SetOk(VP8Decoder* const dec) {
|
||||
dec->status_ = VP8_STATUS_OK;
|
||||
dec->error_msg_ = "OK";
|
||||
}
|
||||
|
||||
int VP8InitIoInternal(VP8Io* const io, int version) {
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) {
|
||||
return 0; // mismatch error
|
||||
}
|
||||
if (io != NULL) {
|
||||
memset(io, 0, sizeof(*io));
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
VP8Decoder* VP8New(void) {
|
||||
VP8Decoder* const dec = (VP8Decoder*)calloc(1, sizeof(*dec));
|
||||
if (dec != NULL) {
|
||||
SetOk(dec);
|
||||
WebPWorkerInit(&dec->worker_);
|
||||
dec->ready_ = 0;
|
||||
dec->num_parts_ = 1;
|
||||
}
|
||||
return dec;
|
||||
}
|
||||
|
||||
VP8StatusCode VP8Status(VP8Decoder* const dec) {
|
||||
if (!dec) return VP8_STATUS_INVALID_PARAM;
|
||||
return dec->status_;
|
||||
}
|
||||
|
||||
const char* VP8StatusMessage(VP8Decoder* const dec) {
|
||||
if (dec == NULL) return "no object";
|
||||
if (!dec->error_msg_) return "OK";
|
||||
return dec->error_msg_;
|
||||
}
|
||||
|
||||
void VP8Delete(VP8Decoder* const dec) {
|
||||
if (dec != NULL) {
|
||||
VP8Clear(dec);
|
||||
free(dec);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8SetError(VP8Decoder* const dec,
|
||||
VP8StatusCode error, const char* const msg) {
|
||||
// TODO This check would be unnecessary if alpha decompression was separated
|
||||
// from VP8ProcessRow/FinishRow. This avoids setting 'dec->status_' to
|
||||
// something other than VP8_STATUS_BITSTREAM_ERROR on alpha decompression
|
||||
// failure.
|
||||
if (dec->status_ == VP8_STATUS_OK) {
|
||||
dec->status_ = error;
|
||||
dec->error_msg_ = msg;
|
||||
dec->ready_ = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int VP8CheckSignature(const uint8_t* const data, size_t data_size) {
|
||||
return (data_size >= 3 &&
|
||||
data[0] == 0x9d && data[1] == 0x01 && data[2] == 0x2a);
|
||||
}
|
||||
|
||||
int VP8GetInfo(const uint8_t* data, size_t data_size, size_t chunk_size,
|
||||
int* const width, int* const height) {
|
||||
if (data == NULL || data_size < VP8_FRAME_HEADER_SIZE) {
|
||||
return 0; // not enough data
|
||||
}
|
||||
// check signature
|
||||
if (!VP8CheckSignature(data + 3, data_size - 3)) {
|
||||
return 0; // Wrong signature.
|
||||
} else {
|
||||
const uint32_t bits = data[0] | (data[1] << 8) | (data[2] << 16);
|
||||
const int key_frame = !(bits & 1);
|
||||
const int w = ((data[7] << 8) | data[6]) & 0x3fff;
|
||||
const int h = ((data[9] << 8) | data[8]) & 0x3fff;
|
||||
|
||||
if (!key_frame) { // Not a keyframe.
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (((bits >> 1) & 7) > 3) {
|
||||
return 0; // unknown profile
|
||||
}
|
||||
if (!((bits >> 4) & 1)) {
|
||||
return 0; // first frame is invisible!
|
||||
}
|
||||
if (((bits >> 5)) >= chunk_size) { // partition_length
|
||||
return 0; // inconsistent size information.
|
||||
}
|
||||
|
||||
if (width) {
|
||||
*width = w;
|
||||
}
|
||||
if (height) {
|
||||
*height = h;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Header parsing
|
||||
|
||||
static void ResetSegmentHeader(VP8SegmentHeader* const hdr) {
|
||||
assert(hdr != NULL);
|
||||
hdr->use_segment_ = 0;
|
||||
hdr->update_map_ = 0;
|
||||
hdr->absolute_delta_ = 1;
|
||||
memset(hdr->quantizer_, 0, sizeof(hdr->quantizer_));
|
||||
memset(hdr->filter_strength_, 0, sizeof(hdr->filter_strength_));
|
||||
}
|
||||
|
||||
// Paragraph 9.3
|
||||
static int ParseSegmentHeader(VP8BitReader* br,
|
||||
VP8SegmentHeader* hdr, VP8Proba* proba) {
|
||||
assert(br != NULL);
|
||||
assert(hdr != NULL);
|
||||
hdr->use_segment_ = VP8Get(br);
|
||||
if (hdr->use_segment_) {
|
||||
hdr->update_map_ = VP8Get(br);
|
||||
if (VP8Get(br)) { // update data
|
||||
int s;
|
||||
hdr->absolute_delta_ = VP8Get(br);
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
||||
hdr->quantizer_[s] = VP8Get(br) ? VP8GetSignedValue(br, 7) : 0;
|
||||
}
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
||||
hdr->filter_strength_[s] = VP8Get(br) ? VP8GetSignedValue(br, 6) : 0;
|
||||
}
|
||||
}
|
||||
if (hdr->update_map_) {
|
||||
int s;
|
||||
for (s = 0; s < MB_FEATURE_TREE_PROBS; ++s) {
|
||||
proba->segments_[s] = VP8Get(br) ? VP8GetValue(br, 8) : 255u;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
hdr->update_map_ = 0;
|
||||
}
|
||||
return !br->eof_;
|
||||
}
|
||||
|
||||
// Paragraph 9.5
|
||||
// This function returns VP8_STATUS_SUSPENDED if we don't have all the
|
||||
// necessary data in 'buf'.
|
||||
// This case is not necessarily an error (for incremental decoding).
|
||||
// Still, no bitreader is ever initialized to make it possible to read
|
||||
// unavailable memory.
|
||||
// If we don't even have the partitions' sizes, than VP8_STATUS_NOT_ENOUGH_DATA
|
||||
// is returned, and this is an unrecoverable error.
|
||||
// If the partitions were positioned ok, VP8_STATUS_OK is returned.
|
||||
static VP8StatusCode ParsePartitions(VP8Decoder* const dec,
|
||||
const uint8_t* buf, size_t size) {
|
||||
VP8BitReader* const br = &dec->br_;
|
||||
const uint8_t* sz = buf;
|
||||
const uint8_t* buf_end = buf + size;
|
||||
const uint8_t* part_start;
|
||||
int last_part;
|
||||
int p;
|
||||
|
||||
dec->num_parts_ = 1 << VP8GetValue(br, 2);
|
||||
last_part = dec->num_parts_ - 1;
|
||||
part_start = buf + last_part * 3;
|
||||
if (buf_end < part_start) {
|
||||
// we can't even read the sizes with sz[]! That's a failure.
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
}
|
||||
for (p = 0; p < last_part; ++p) {
|
||||
const uint32_t psize = sz[0] | (sz[1] << 8) | (sz[2] << 16);
|
||||
const uint8_t* part_end = part_start + psize;
|
||||
if (part_end > buf_end) part_end = buf_end;
|
||||
VP8InitBitReader(dec->parts_ + p, part_start, part_end);
|
||||
part_start = part_end;
|
||||
sz += 3;
|
||||
}
|
||||
VP8InitBitReader(dec->parts_ + last_part, part_start, buf_end);
|
||||
return (part_start < buf_end) ? VP8_STATUS_OK :
|
||||
VP8_STATUS_SUSPENDED; // Init is ok, but there's not enough data
|
||||
}
|
||||
|
||||
// Paragraph 9.4
|
||||
static int ParseFilterHeader(VP8BitReader* br, VP8Decoder* const dec) {
|
||||
VP8FilterHeader* const hdr = &dec->filter_hdr_;
|
||||
hdr->simple_ = VP8Get(br);
|
||||
hdr->level_ = VP8GetValue(br, 6);
|
||||
hdr->sharpness_ = VP8GetValue(br, 3);
|
||||
hdr->use_lf_delta_ = VP8Get(br);
|
||||
if (hdr->use_lf_delta_) {
|
||||
if (VP8Get(br)) { // update lf-delta?
|
||||
int i;
|
||||
for (i = 0; i < NUM_REF_LF_DELTAS; ++i) {
|
||||
if (VP8Get(br)) {
|
||||
hdr->ref_lf_delta_[i] = VP8GetSignedValue(br, 6);
|
||||
}
|
||||
}
|
||||
for (i = 0; i < NUM_MODE_LF_DELTAS; ++i) {
|
||||
if (VP8Get(br)) {
|
||||
hdr->mode_lf_delta_[i] = VP8GetSignedValue(br, 6);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
dec->filter_type_ = (hdr->level_ == 0) ? 0 : hdr->simple_ ? 1 : 2;
|
||||
if (dec->filter_type_ > 0) { // precompute filter levels per segment
|
||||
if (dec->segment_hdr_.use_segment_) {
|
||||
int s;
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
||||
int strength = dec->segment_hdr_.filter_strength_[s];
|
||||
if (!dec->segment_hdr_.absolute_delta_) {
|
||||
strength += hdr->level_;
|
||||
}
|
||||
dec->filter_levels_[s] = strength;
|
||||
}
|
||||
} else {
|
||||
dec->filter_levels_[0] = hdr->level_;
|
||||
}
|
||||
}
|
||||
return !br->eof_;
|
||||
}
|
||||
|
||||
// Topmost call
|
||||
int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) {
|
||||
const uint8_t* buf;
|
||||
size_t buf_size;
|
||||
VP8FrameHeader* frm_hdr;
|
||||
VP8PictureHeader* pic_hdr;
|
||||
VP8BitReader* br;
|
||||
VP8StatusCode status;
|
||||
WebPHeaderStructure headers;
|
||||
|
||||
if (dec == NULL) {
|
||||
return 0;
|
||||
}
|
||||
SetOk(dec);
|
||||
if (io == NULL) {
|
||||
return VP8SetError(dec, VP8_STATUS_INVALID_PARAM,
|
||||
"null VP8Io passed to VP8GetHeaders()");
|
||||
}
|
||||
|
||||
// Process Pre-VP8 chunks.
|
||||
headers.data = io->data;
|
||||
headers.data_size = io->data_size;
|
||||
status = WebPParseHeaders(&headers);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return VP8SetError(dec, status, "Incorrect/incomplete header.");
|
||||
}
|
||||
if (headers.is_lossless) {
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"Unexpected lossless format encountered.");
|
||||
}
|
||||
|
||||
if (dec->alpha_data_ == NULL) {
|
||||
assert(dec->alpha_data_size_ == 0);
|
||||
// We have NOT set alpha data yet. Set it now.
|
||||
// (This is to ensure that dec->alpha_data_ is NOT reset to NULL if
|
||||
// WebPParseHeaders() is called more than once, as in incremental decoding
|
||||
// case.)
|
||||
dec->alpha_data_ = headers.alpha_data;
|
||||
dec->alpha_data_size_ = headers.alpha_data_size;
|
||||
}
|
||||
|
||||
// Process the VP8 frame header.
|
||||
buf = headers.data + headers.offset;
|
||||
buf_size = headers.data_size - headers.offset;
|
||||
assert(headers.data_size >= headers.offset); // WebPParseHeaders' guarantee
|
||||
if (buf_size < 4) {
|
||||
return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
|
||||
"Truncated header.");
|
||||
}
|
||||
|
||||
// Paragraph 9.1
|
||||
{
|
||||
const uint32_t bits = buf[0] | (buf[1] << 8) | (buf[2] << 16);
|
||||
frm_hdr = &dec->frm_hdr_;
|
||||
frm_hdr->key_frame_ = !(bits & 1);
|
||||
frm_hdr->profile_ = (bits >> 1) & 7;
|
||||
frm_hdr->show_ = (bits >> 4) & 1;
|
||||
frm_hdr->partition_length_ = (bits >> 5);
|
||||
if (frm_hdr->profile_ > 3)
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"Incorrect keyframe parameters.");
|
||||
if (!frm_hdr->show_)
|
||||
return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE,
|
||||
"Frame not displayable.");
|
||||
buf += 3;
|
||||
buf_size -= 3;
|
||||
}
|
||||
|
||||
pic_hdr = &dec->pic_hdr_;
|
||||
if (frm_hdr->key_frame_) {
|
||||
// Paragraph 9.2
|
||||
if (buf_size < 7) {
|
||||
return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
|
||||
"cannot parse picture header");
|
||||
}
|
||||
if (!VP8CheckSignature(buf, buf_size)) {
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"Bad code word");
|
||||
}
|
||||
pic_hdr->width_ = ((buf[4] << 8) | buf[3]) & 0x3fff;
|
||||
pic_hdr->xscale_ = buf[4] >> 6; // ratio: 1, 5/4 5/3 or 2
|
||||
pic_hdr->height_ = ((buf[6] << 8) | buf[5]) & 0x3fff;
|
||||
pic_hdr->yscale_ = buf[6] >> 6;
|
||||
buf += 7;
|
||||
buf_size -= 7;
|
||||
|
||||
dec->mb_w_ = (pic_hdr->width_ + 15) >> 4;
|
||||
dec->mb_h_ = (pic_hdr->height_ + 15) >> 4;
|
||||
// Setup default output area (can be later modified during io->setup())
|
||||
io->width = pic_hdr->width_;
|
||||
io->height = pic_hdr->height_;
|
||||
io->use_scaling = 0;
|
||||
io->use_cropping = 0;
|
||||
io->crop_top = 0;
|
||||
io->crop_left = 0;
|
||||
io->crop_right = io->width;
|
||||
io->crop_bottom = io->height;
|
||||
io->mb_w = io->width; // sanity check
|
||||
io->mb_h = io->height; // ditto
|
||||
|
||||
VP8ResetProba(&dec->proba_);
|
||||
ResetSegmentHeader(&dec->segment_hdr_);
|
||||
dec->segment_ = 0; // default for intra
|
||||
}
|
||||
|
||||
// Check if we have all the partition #0 available, and initialize dec->br_
|
||||
// to read this partition (and this partition only).
|
||||
if (frm_hdr->partition_length_ > buf_size) {
|
||||
return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
|
||||
"bad partition length");
|
||||
}
|
||||
|
||||
br = &dec->br_;
|
||||
VP8InitBitReader(br, buf, buf + frm_hdr->partition_length_);
|
||||
buf += frm_hdr->partition_length_;
|
||||
buf_size -= frm_hdr->partition_length_;
|
||||
|
||||
if (frm_hdr->key_frame_) {
|
||||
pic_hdr->colorspace_ = VP8Get(br);
|
||||
pic_hdr->clamp_type_ = VP8Get(br);
|
||||
}
|
||||
if (!ParseSegmentHeader(br, &dec->segment_hdr_, &dec->proba_)) {
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"cannot parse segment header");
|
||||
}
|
||||
// Filter specs
|
||||
if (!ParseFilterHeader(br, dec)) {
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"cannot parse filter header");
|
||||
}
|
||||
status = ParsePartitions(dec, buf, buf_size);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return VP8SetError(dec, status, "cannot parse partitions");
|
||||
}
|
||||
|
||||
// quantizer change
|
||||
VP8ParseQuant(dec);
|
||||
|
||||
// Frame buffer marking
|
||||
if (!frm_hdr->key_frame_) {
|
||||
// Paragraph 9.7
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
dec->buffer_flags_ = VP8Get(br) << 0; // update golden
|
||||
dec->buffer_flags_ |= VP8Get(br) << 1; // update alt ref
|
||||
if (!(dec->buffer_flags_ & 1)) {
|
||||
dec->buffer_flags_ |= VP8GetValue(br, 2) << 2;
|
||||
}
|
||||
if (!(dec->buffer_flags_ & 2)) {
|
||||
dec->buffer_flags_ |= VP8GetValue(br, 2) << 4;
|
||||
}
|
||||
dec->buffer_flags_ |= VP8Get(br) << 6; // sign bias golden
|
||||
dec->buffer_flags_ |= VP8Get(br) << 7; // sign bias alt ref
|
||||
#else
|
||||
return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE,
|
||||
"Not a key frame.");
|
||||
#endif
|
||||
} else {
|
||||
dec->buffer_flags_ = 0x003 | 0x100;
|
||||
}
|
||||
|
||||
// Paragraph 9.8
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
dec->update_proba_ = VP8Get(br);
|
||||
if (!dec->update_proba_) { // save for later restore
|
||||
dec->proba_saved_ = dec->proba_;
|
||||
}
|
||||
dec->buffer_flags_ &= 1 << 8;
|
||||
dec->buffer_flags_ |=
|
||||
(frm_hdr->key_frame_ || VP8Get(br)) << 8; // refresh last frame
|
||||
#else
|
||||
VP8Get(br); // just ignore the value of update_proba_
|
||||
#endif
|
||||
|
||||
VP8ParseProba(br, dec);
|
||||
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
// Extensions
|
||||
if (dec->pic_hdr_.colorspace_) {
|
||||
const size_t kTrailerSize = 8;
|
||||
const uint8_t kTrailerMarker = 0x01;
|
||||
const uint8_t* ext_buf = buf - kTrailerSize;
|
||||
size_t size;
|
||||
|
||||
if (frm_hdr->partition_length_ < kTrailerSize ||
|
||||
ext_buf[kTrailerSize - 1] != kTrailerMarker) {
|
||||
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
||||
"RIFF: Inconsistent extra information.");
|
||||
}
|
||||
|
||||
// Layer
|
||||
size = (ext_buf[0] << 0) | (ext_buf[1] << 8) | (ext_buf[2] << 16);
|
||||
dec->layer_data_size_ = size;
|
||||
dec->layer_data_ = NULL; // will be set later
|
||||
dec->layer_colorspace_ = ext_buf[3];
|
||||
}
|
||||
#endif
|
||||
|
||||
// sanitized state
|
||||
dec->ready_ = 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Residual decoding (Paragraph 13.2 / 13.3)
|
||||
|
||||
static const uint8_t kBands[16 + 1] = {
|
||||
0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
|
||||
0 // extra entry as sentinel
|
||||
};
|
||||
|
||||
static const uint8_t kCat3[] = { 173, 148, 140, 0 };
|
||||
static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 };
|
||||
static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 };
|
||||
static const uint8_t kCat6[] =
|
||||
{ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 };
|
||||
static const uint8_t* const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 };
|
||||
static const uint8_t kZigzag[16] = {
|
||||
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
|
||||
};
|
||||
|
||||
typedef const uint8_t (*ProbaArray)[NUM_CTX][NUM_PROBAS]; // for const-casting
|
||||
|
||||
// Returns the position of the last non-zero coeff plus one
|
||||
// (and 0 if there's no coeff at all)
|
||||
static int GetCoeffs(VP8BitReader* const br, ProbaArray prob,
|
||||
int ctx, const quant_t dq, int n, int16_t* out) {
|
||||
// n is either 0 or 1 here. kBands[n] is not necessary for extracting '*p'.
|
||||
const uint8_t* p = prob[n][ctx];
|
||||
if (!VP8GetBit(br, p[0])) { // first EOB is more a 'CBP' bit.
|
||||
return 0;
|
||||
}
|
||||
while (1) {
|
||||
++n;
|
||||
if (!VP8GetBit(br, p[1])) {
|
||||
p = prob[kBands[n]][0];
|
||||
} else { // non zero coeff
|
||||
int v, j;
|
||||
if (!VP8GetBit(br, p[2])) {
|
||||
p = prob[kBands[n]][1];
|
||||
v = 1;
|
||||
} else {
|
||||
if (!VP8GetBit(br, p[3])) {
|
||||
if (!VP8GetBit(br, p[4])) {
|
||||
v = 2;
|
||||
} else {
|
||||
v = 3 + VP8GetBit(br, p[5]);
|
||||
}
|
||||
} else {
|
||||
if (!VP8GetBit(br, p[6])) {
|
||||
if (!VP8GetBit(br, p[7])) {
|
||||
v = 5 + VP8GetBit(br, 159);
|
||||
} else {
|
||||
v = 7 + 2 * VP8GetBit(br, 165);
|
||||
v += VP8GetBit(br, 145);
|
||||
}
|
||||
} else {
|
||||
const uint8_t* tab;
|
||||
const int bit1 = VP8GetBit(br, p[8]);
|
||||
const int bit0 = VP8GetBit(br, p[9 + bit1]);
|
||||
const int cat = 2 * bit1 + bit0;
|
||||
v = 0;
|
||||
for (tab = kCat3456[cat]; *tab; ++tab) {
|
||||
v += v + VP8GetBit(br, *tab);
|
||||
}
|
||||
v += 3 + (8 << cat);
|
||||
}
|
||||
}
|
||||
p = prob[kBands[n]][2];
|
||||
}
|
||||
j = kZigzag[n - 1];
|
||||
out[j] = VP8GetSigned(br, v) * dq[j > 0];
|
||||
if (n == 16 || !VP8GetBit(br, p[0])) { // EOB
|
||||
return n;
|
||||
}
|
||||
}
|
||||
if (n == 16) {
|
||||
return 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Alias-safe way of converting 4bytes to 32bits.
|
||||
typedef union {
|
||||
uint8_t i8[4];
|
||||
uint32_t i32;
|
||||
} PackedNz;
|
||||
|
||||
// Table to unpack four bits into four bytes
|
||||
static const PackedNz kUnpackTab[16] = {
|
||||
{{0, 0, 0, 0}}, {{1, 0, 0, 0}}, {{0, 1, 0, 0}}, {{1, 1, 0, 0}},
|
||||
{{0, 0, 1, 0}}, {{1, 0, 1, 0}}, {{0, 1, 1, 0}}, {{1, 1, 1, 0}},
|
||||
{{0, 0, 0, 1}}, {{1, 0, 0, 1}}, {{0, 1, 0, 1}}, {{1, 1, 0, 1}},
|
||||
{{0, 0, 1, 1}}, {{1, 0, 1, 1}}, {{0, 1, 1, 1}}, {{1, 1, 1, 1}} };
|
||||
|
||||
// Macro to pack four LSB of four bytes into four bits.
|
||||
#if defined(__PPC__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
|
||||
defined(__BIG_ENDIAN__)
|
||||
#define PACK_CST 0x08040201U
|
||||
#else
|
||||
#define PACK_CST 0x01020408U
|
||||
#endif
|
||||
#define PACK(X, S) ((((X).i32 * PACK_CST) & 0xff000000) >> (S))
|
||||
|
||||
static void ParseResiduals(VP8Decoder* const dec,
|
||||
VP8MB* const mb, VP8BitReader* const token_br) {
|
||||
int out_t_nz, out_l_nz, first;
|
||||
ProbaArray ac_prob;
|
||||
const VP8QuantMatrix* q = &dec->dqm_[dec->segment_];
|
||||
int16_t* dst = dec->coeffs_;
|
||||
VP8MB* const left_mb = dec->mb_info_ - 1;
|
||||
PackedNz nz_ac, nz_dc;
|
||||
PackedNz tnz, lnz;
|
||||
uint32_t non_zero_ac = 0;
|
||||
uint32_t non_zero_dc = 0;
|
||||
int x, y, ch;
|
||||
|
||||
nz_dc.i32 = nz_ac.i32 = 0;
|
||||
memset(dst, 0, 384 * sizeof(*dst));
|
||||
if (!dec->is_i4x4_) { // parse DC
|
||||
int16_t dc[16] = { 0 };
|
||||
const int ctx = mb->dc_nz_ + left_mb->dc_nz_;
|
||||
mb->dc_nz_ = left_mb->dc_nz_ =
|
||||
(GetCoeffs(token_br, (ProbaArray)dec->proba_.coeffs_[1],
|
||||
ctx, q->y2_mat_, 0, dc) > 0);
|
||||
first = 1;
|
||||
ac_prob = (ProbaArray)dec->proba_.coeffs_[0];
|
||||
VP8TransformWHT(dc, dst);
|
||||
} else {
|
||||
first = 0;
|
||||
ac_prob = (ProbaArray)dec->proba_.coeffs_[3];
|
||||
}
|
||||
|
||||
tnz = kUnpackTab[mb->nz_ & 0xf];
|
||||
lnz = kUnpackTab[left_mb->nz_ & 0xf];
|
||||
for (y = 0; y < 4; ++y) {
|
||||
int l = lnz.i8[y];
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const int ctx = l + tnz.i8[x];
|
||||
const int nz = GetCoeffs(token_br, ac_prob, ctx,
|
||||
q->y1_mat_, first, dst);
|
||||
tnz.i8[x] = l = (nz > 0);
|
||||
nz_dc.i8[x] = (dst[0] != 0);
|
||||
nz_ac.i8[x] = (nz > 1);
|
||||
dst += 16;
|
||||
}
|
||||
lnz.i8[y] = l;
|
||||
non_zero_dc |= PACK(nz_dc, 24 - y * 4);
|
||||
non_zero_ac |= PACK(nz_ac, 24 - y * 4);
|
||||
}
|
||||
out_t_nz = PACK(tnz, 24);
|
||||
out_l_nz = PACK(lnz, 24);
|
||||
|
||||
tnz = kUnpackTab[mb->nz_ >> 4];
|
||||
lnz = kUnpackTab[left_mb->nz_ >> 4];
|
||||
for (ch = 0; ch < 4; ch += 2) {
|
||||
for (y = 0; y < 2; ++y) {
|
||||
int l = lnz.i8[ch + y];
|
||||
for (x = 0; x < 2; ++x) {
|
||||
const int ctx = l + tnz.i8[ch + x];
|
||||
const int nz =
|
||||
GetCoeffs(token_br, (ProbaArray)dec->proba_.coeffs_[2],
|
||||
ctx, q->uv_mat_, 0, dst);
|
||||
tnz.i8[ch + x] = l = (nz > 0);
|
||||
nz_dc.i8[y * 2 + x] = (dst[0] != 0);
|
||||
nz_ac.i8[y * 2 + x] = (nz > 1);
|
||||
dst += 16;
|
||||
}
|
||||
lnz.i8[ch + y] = l;
|
||||
}
|
||||
non_zero_dc |= PACK(nz_dc, 8 - ch * 2);
|
||||
non_zero_ac |= PACK(nz_ac, 8 - ch * 2);
|
||||
}
|
||||
out_t_nz |= PACK(tnz, 20);
|
||||
out_l_nz |= PACK(lnz, 20);
|
||||
mb->nz_ = out_t_nz;
|
||||
left_mb->nz_ = out_l_nz;
|
||||
|
||||
dec->non_zero_ac_ = non_zero_ac;
|
||||
dec->non_zero_ = non_zero_ac | non_zero_dc;
|
||||
mb->skip_ = !dec->non_zero_;
|
||||
}
|
||||
#undef PACK
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main loop
|
||||
|
||||
int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br) {
|
||||
VP8BitReader* const br = &dec->br_;
|
||||
VP8MB* const left = dec->mb_info_ - 1;
|
||||
VP8MB* const info = dec->mb_info_ + dec->mb_x_;
|
||||
|
||||
// Note: we don't save segment map (yet), as we don't expect
|
||||
// to decode more than 1 keyframe.
|
||||
if (dec->segment_hdr_.update_map_) {
|
||||
// Hardcoded tree parsing
|
||||
dec->segment_ = !VP8GetBit(br, dec->proba_.segments_[0]) ?
|
||||
VP8GetBit(br, dec->proba_.segments_[1]) :
|
||||
2 + VP8GetBit(br, dec->proba_.segments_[2]);
|
||||
}
|
||||
info->skip_ = dec->use_skip_proba_ ? VP8GetBit(br, dec->skip_p_) : 0;
|
||||
|
||||
VP8ParseIntraMode(br, dec);
|
||||
if (br->eof_) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!info->skip_) {
|
||||
ParseResiduals(dec, info, token_br);
|
||||
} else {
|
||||
left->nz_ = info->nz_ = 0;
|
||||
if (!dec->is_i4x4_) {
|
||||
left->dc_nz_ = info->dc_nz_ = 0;
|
||||
}
|
||||
dec->non_zero_ = 0;
|
||||
dec->non_zero_ac_ = 0;
|
||||
}
|
||||
|
||||
return (!token_br->eof_);
|
||||
}
|
||||
|
||||
void VP8InitScanline(VP8Decoder* const dec) {
|
||||
VP8MB* const left = dec->mb_info_ - 1;
|
||||
left->nz_ = 0;
|
||||
left->dc_nz_ = 0;
|
||||
memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_));
|
||||
dec->filter_row_ =
|
||||
(dec->filter_type_ > 0) &&
|
||||
(dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
|
||||
}
|
||||
|
||||
static int ParseFrame(VP8Decoder* const dec, VP8Io* io) {
|
||||
for (dec->mb_y_ = 0; dec->mb_y_ < dec->br_mb_y_; ++dec->mb_y_) {
|
||||
VP8BitReader* const token_br =
|
||||
&dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)];
|
||||
VP8InitScanline(dec);
|
||||
for (dec->mb_x_ = 0; dec->mb_x_ < dec->mb_w_; dec->mb_x_++) {
|
||||
if (!VP8DecodeMB(dec, token_br)) {
|
||||
return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
|
||||
"Premature end-of-file encountered.");
|
||||
}
|
||||
VP8ReconstructBlock(dec);
|
||||
|
||||
// Store data and save block's filtering params
|
||||
VP8StoreBlock(dec);
|
||||
}
|
||||
if (!VP8ProcessRow(dec, io)) {
|
||||
return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Output aborted.");
|
||||
}
|
||||
}
|
||||
if (dec->use_threads_ && !WebPWorkerSync(&dec->worker_)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Finish
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
if (!dec->update_proba_) {
|
||||
dec->proba_ = dec->proba_saved_;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
if (dec->layer_data_size_ > 0) {
|
||||
if (!VP8DecodeLayer(dec)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Main entry point
|
||||
int VP8Decode(VP8Decoder* const dec, VP8Io* const io) {
|
||||
int ok = 0;
|
||||
if (dec == NULL) {
|
||||
return 0;
|
||||
}
|
||||
if (io == NULL) {
|
||||
return VP8SetError(dec, VP8_STATUS_INVALID_PARAM,
|
||||
"NULL VP8Io parameter in VP8Decode().");
|
||||
}
|
||||
|
||||
if (!dec->ready_) {
|
||||
if (!VP8GetHeaders(dec, io)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
assert(dec->ready_);
|
||||
|
||||
// Finish setting up the decoding parameter. Will call io->setup().
|
||||
ok = (VP8EnterCritical(dec, io) == VP8_STATUS_OK);
|
||||
if (ok) { // good to go.
|
||||
// Will allocate memory and prepare everything.
|
||||
if (ok) ok = VP8InitFrame(dec, io);
|
||||
|
||||
// Main decoding loop
|
||||
if (ok) ok = ParseFrame(dec, io);
|
||||
|
||||
// Exit.
|
||||
ok &= VP8ExitCritical(dec, io);
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
VP8Clear(dec);
|
||||
return 0;
|
||||
}
|
||||
|
||||
dec->ready_ = 0;
|
||||
return ok;
|
||||
}
|
||||
|
||||
void VP8Clear(VP8Decoder* const dec) {
|
||||
if (dec == NULL) {
|
||||
return;
|
||||
}
|
||||
if (dec->use_threads_) {
|
||||
WebPWorkerEnd(&dec->worker_);
|
||||
}
|
||||
if (dec->mem_) {
|
||||
free(dec->mem_);
|
||||
}
|
||||
dec->mem_ = NULL;
|
||||
dec->mem_size_ = 0;
|
||||
memset(&dec->br_, 0, sizeof(dec->br_));
|
||||
dec->ready_ = 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,335 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// VP8 decoder: internal header.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_DEC_VP8I_H_
|
||||
#define WEBP_DEC_VP8I_H_
|
||||
|
||||
#include <string.h> // for memcpy()
|
||||
#include "./vp8li.h"
|
||||
#include "../utils/bit_reader.h"
|
||||
#include "../utils/thread.h"
|
||||
#include "../dsp/dsp.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Various defines and enums
|
||||
|
||||
// version numbers
|
||||
#define DEC_MAJ_VERSION 0
|
||||
#define DEC_MIN_VERSION 2
|
||||
#define DEC_REV_VERSION 0
|
||||
|
||||
#define ONLY_KEYFRAME_CODE // to remove any code related to P-Frames
|
||||
|
||||
// intra prediction modes
|
||||
enum { B_DC_PRED = 0, // 4x4 modes
|
||||
B_TM_PRED,
|
||||
B_VE_PRED,
|
||||
B_HE_PRED,
|
||||
B_RD_PRED,
|
||||
B_VR_PRED,
|
||||
B_LD_PRED,
|
||||
B_VL_PRED,
|
||||
B_HD_PRED,
|
||||
B_HU_PRED,
|
||||
NUM_BMODES = B_HU_PRED + 1 - B_DC_PRED, // = 10
|
||||
|
||||
// Luma16 or UV modes
|
||||
DC_PRED = B_DC_PRED, V_PRED = B_VE_PRED,
|
||||
H_PRED = B_HE_PRED, TM_PRED = B_TM_PRED,
|
||||
B_PRED = NUM_BMODES, // refined I4x4 mode
|
||||
|
||||
// special modes
|
||||
B_DC_PRED_NOTOP = 4,
|
||||
B_DC_PRED_NOLEFT = 5,
|
||||
B_DC_PRED_NOTOPLEFT = 6,
|
||||
NUM_B_DC_MODES = 7 };
|
||||
|
||||
enum { MB_FEATURE_TREE_PROBS = 3,
|
||||
NUM_MB_SEGMENTS = 4,
|
||||
NUM_REF_LF_DELTAS = 4,
|
||||
NUM_MODE_LF_DELTAS = 4, // I4x4, ZERO, *, SPLIT
|
||||
MAX_NUM_PARTITIONS = 8,
|
||||
// Probabilities
|
||||
NUM_TYPES = 4,
|
||||
NUM_BANDS = 8,
|
||||
NUM_CTX = 3,
|
||||
NUM_PROBAS = 11,
|
||||
NUM_MV_PROBAS = 19 };
|
||||
|
||||
// YUV-cache parameters.
|
||||
// Constraints are: We need to store one 16x16 block of luma samples (y),
|
||||
// and two 8x8 chroma blocks (u/v). These are better be 16-bytes aligned,
|
||||
// in order to be SIMD-friendly. We also need to store the top, left and
|
||||
// top-left samples (from previously decoded blocks), along with four
|
||||
// extra top-right samples for luma (intra4x4 prediction only).
|
||||
// One possible layout is, using 32 * (17 + 9) bytes:
|
||||
//
|
||||
// .+------ <- only 1 pixel high
|
||||
// .|yyyyt.
|
||||
// .|yyyyt.
|
||||
// .|yyyyt.
|
||||
// .|yyyy..
|
||||
// .+--.+-- <- only 1 pixel high
|
||||
// .|uu.|vv
|
||||
// .|uu.|vv
|
||||
//
|
||||
// Every character is a 4x4 block, with legend:
|
||||
// '.' = unused
|
||||
// 'y' = y-samples 'u' = u-samples 'v' = u-samples
|
||||
// '|' = left sample, '-' = top sample, '+' = top-left sample
|
||||
// 't' = extra top-right sample for 4x4 modes
|
||||
// With this layout, BPS (=Bytes Per Scan-line) is one cacheline size.
|
||||
#define BPS 32 // this is the common stride used by yuv[]
|
||||
#define YUV_SIZE (BPS * 17 + BPS * 9)
|
||||
#define Y_SIZE (BPS * 17)
|
||||
#define Y_OFF (BPS * 1 + 8)
|
||||
#define U_OFF (Y_OFF + BPS * 16 + BPS)
|
||||
#define V_OFF (U_OFF + 16)
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Headers
|
||||
|
||||
typedef struct {
|
||||
uint8_t key_frame_;
|
||||
uint8_t profile_;
|
||||
uint8_t show_;
|
||||
uint32_t partition_length_;
|
||||
} VP8FrameHeader;
|
||||
|
||||
typedef struct {
|
||||
uint16_t width_;
|
||||
uint16_t height_;
|
||||
uint8_t xscale_;
|
||||
uint8_t yscale_;
|
||||
uint8_t colorspace_; // 0 = YCbCr
|
||||
uint8_t clamp_type_;
|
||||
} VP8PictureHeader;
|
||||
|
||||
// segment features
|
||||
typedef struct {
|
||||
int use_segment_;
|
||||
int update_map_; // whether to update the segment map or not
|
||||
int absolute_delta_; // absolute or delta values for quantizer and filter
|
||||
int8_t quantizer_[NUM_MB_SEGMENTS]; // quantization changes
|
||||
int8_t filter_strength_[NUM_MB_SEGMENTS]; // filter strength for segments
|
||||
} VP8SegmentHeader;
|
||||
|
||||
// Struct collecting all frame-persistent probabilities.
|
||||
typedef struct {
|
||||
uint8_t segments_[MB_FEATURE_TREE_PROBS];
|
||||
// Type: 0:Intra16-AC 1:Intra16-DC 2:Chroma 3:Intra4
|
||||
uint8_t coeffs_[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
uint8_t ymode_[4], uvmode_[3];
|
||||
uint8_t mv_[2][NUM_MV_PROBAS];
|
||||
#endif
|
||||
} VP8Proba;
|
||||
|
||||
// Filter parameters
|
||||
typedef struct {
|
||||
int simple_; // 0=complex, 1=simple
|
||||
int level_; // [0..63]
|
||||
int sharpness_; // [0..7]
|
||||
int use_lf_delta_;
|
||||
int ref_lf_delta_[NUM_REF_LF_DELTAS];
|
||||
int mode_lf_delta_[NUM_MODE_LF_DELTAS];
|
||||
} VP8FilterHeader;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Informations about the macroblocks.
|
||||
|
||||
typedef struct { // filter specs
|
||||
unsigned int f_level_:6; // filter strength: 0..63
|
||||
unsigned int f_ilevel_:6; // inner limit: 1..63
|
||||
unsigned int f_inner_:1; // do inner filtering?
|
||||
} VP8FInfo;
|
||||
|
||||
typedef struct { // used for syntax-parsing
|
||||
unsigned int nz_; // non-zero AC/DC coeffs
|
||||
unsigned int dc_nz_:1; // non-zero DC coeffs
|
||||
unsigned int skip_:1; // block type
|
||||
} VP8MB;
|
||||
|
||||
// Dequantization matrices
|
||||
typedef int quant_t[2]; // [DC / AC]. Can be 'uint16_t[2]' too (~slower).
|
||||
typedef struct {
|
||||
quant_t y1_mat_, y2_mat_, uv_mat_;
|
||||
} VP8QuantMatrix;
|
||||
|
||||
// Persistent information needed by the parallel processing
|
||||
typedef struct {
|
||||
int id_; // cache row to process (in [0..2])
|
||||
int mb_y_; // macroblock position of the row
|
||||
int filter_row_; // true if row-filtering is needed
|
||||
VP8FInfo* f_info_; // filter strengths
|
||||
VP8Io io_; // copy of the VP8Io to pass to put()
|
||||
} VP8ThreadContext;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8Decoder: the main opaque structure handed over to user
|
||||
|
||||
struct VP8Decoder {
|
||||
VP8StatusCode status_;
|
||||
int ready_; // true if ready to decode a picture with VP8Decode()
|
||||
const char* error_msg_; // set when status_ is not OK.
|
||||
|
||||
// Main data source
|
||||
VP8BitReader br_;
|
||||
|
||||
// headers
|
||||
VP8FrameHeader frm_hdr_;
|
||||
VP8PictureHeader pic_hdr_;
|
||||
VP8FilterHeader filter_hdr_;
|
||||
VP8SegmentHeader segment_hdr_;
|
||||
|
||||
// Worker
|
||||
WebPWorker worker_;
|
||||
int use_threads_; // use multi-thread
|
||||
int cache_id_; // current cache row
|
||||
int num_caches_; // number of cached rows of 16 pixels (1, 2 or 3)
|
||||
VP8ThreadContext thread_ctx_; // Thread context
|
||||
|
||||
// dimension, in macroblock units.
|
||||
int mb_w_, mb_h_;
|
||||
|
||||
// Macroblock to process/filter, depending on cropping and filter_type.
|
||||
int tl_mb_x_, tl_mb_y_; // top-left MB that must be in-loop filtered
|
||||
int br_mb_x_, br_mb_y_; // last bottom-right MB that must be decoded
|
||||
|
||||
// number of partitions.
|
||||
int num_parts_;
|
||||
// per-partition boolean decoders.
|
||||
VP8BitReader parts_[MAX_NUM_PARTITIONS];
|
||||
|
||||
// buffer refresh flags
|
||||
// bit 0: refresh Gold, bit 1: refresh Alt
|
||||
// bit 2-3: copy to Gold, bit 4-5: copy to Alt
|
||||
// bit 6: Gold sign bias, bit 7: Alt sign bias
|
||||
// bit 8: refresh last frame
|
||||
uint32_t buffer_flags_;
|
||||
|
||||
// dequantization (one set of DC/AC dequant factor per segment)
|
||||
VP8QuantMatrix dqm_[NUM_MB_SEGMENTS];
|
||||
|
||||
// probabilities
|
||||
VP8Proba proba_;
|
||||
int use_skip_proba_;
|
||||
uint8_t skip_p_;
|
||||
#ifndef ONLY_KEYFRAME_CODE
|
||||
uint8_t intra_p_, last_p_, golden_p_;
|
||||
VP8Proba proba_saved_;
|
||||
int update_proba_;
|
||||
#endif
|
||||
|
||||
// Boundary data cache and persistent buffers.
|
||||
uint8_t* intra_t_; // top intra modes values: 4 * mb_w_
|
||||
uint8_t intra_l_[4]; // left intra modes values
|
||||
uint8_t* y_t_; // top luma samples: 16 * mb_w_
|
||||
uint8_t* u_t_, *v_t_; // top u/v samples: 8 * mb_w_ each
|
||||
|
||||
VP8MB* mb_info_; // contextual macroblock info (mb_w_ + 1)
|
||||
VP8FInfo* f_info_; // filter strength info
|
||||
uint8_t* yuv_b_; // main block for Y/U/V (size = YUV_SIZE)
|
||||
int16_t* coeffs_; // 384 coeffs = (16+8+8) * 4*4
|
||||
|
||||
uint8_t* cache_y_; // macroblock row for storing unfiltered samples
|
||||
uint8_t* cache_u_;
|
||||
uint8_t* cache_v_;
|
||||
int cache_y_stride_;
|
||||
int cache_uv_stride_;
|
||||
|
||||
// main memory chunk for the above data. Persistent.
|
||||
void* mem_;
|
||||
size_t mem_size_;
|
||||
|
||||
// Per macroblock non-persistent infos.
|
||||
int mb_x_, mb_y_; // current position, in macroblock units
|
||||
uint8_t is_i4x4_; // true if intra4x4
|
||||
uint8_t imodes_[16]; // one 16x16 mode (#0) or sixteen 4x4 modes
|
||||
uint8_t uvmode_; // chroma prediction mode
|
||||
uint8_t segment_; // block's segment
|
||||
|
||||
// bit-wise info about the content of each sub-4x4 blocks: there are 16 bits
|
||||
// for luma (bits #0->#15), then 4 bits for chroma-u (#16->#19) and 4 bits for
|
||||
// chroma-v (#20->#23), each corresponding to one 4x4 block in decoding order.
|
||||
// If the bit is set, the 4x4 block contains some non-zero coefficients.
|
||||
uint32_t non_zero_;
|
||||
uint32_t non_zero_ac_;
|
||||
|
||||
// Filtering side-info
|
||||
int filter_type_; // 0=off, 1=simple, 2=complex
|
||||
int filter_row_; // per-row flag
|
||||
uint8_t filter_levels_[NUM_MB_SEGMENTS]; // precalculated per-segment
|
||||
|
||||
// extensions
|
||||
const uint8_t* alpha_data_; // compressed alpha data (if present)
|
||||
size_t alpha_data_size_;
|
||||
uint8_t* alpha_plane_; // output. Persistent, contains the whole data.
|
||||
|
||||
int layer_colorspace_;
|
||||
const uint8_t* layer_data_; // compressed layer data (if present)
|
||||
size_t layer_data_size_;
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// internal functions. Not public.
|
||||
|
||||
// in vp8.c
|
||||
int VP8SetError(VP8Decoder* const dec,
|
||||
VP8StatusCode error, const char* const msg);
|
||||
|
||||
// in tree.c
|
||||
void VP8ResetProba(VP8Proba* const proba);
|
||||
void VP8ParseProba(VP8BitReader* const br, VP8Decoder* const dec);
|
||||
void VP8ParseIntraMode(VP8BitReader* const br, VP8Decoder* const dec);
|
||||
|
||||
// in quant.c
|
||||
void VP8ParseQuant(VP8Decoder* const dec);
|
||||
|
||||
// in frame.c
|
||||
int VP8InitFrame(VP8Decoder* const dec, VP8Io* io);
|
||||
// Predict a block and add residual
|
||||
void VP8ReconstructBlock(VP8Decoder* const dec);
|
||||
// Call io->setup() and finish setting up scan parameters.
|
||||
// After this call returns, one must always call VP8ExitCritical() with the
|
||||
// same parameters. Both functions should be used in pair. Returns VP8_STATUS_OK
|
||||
// if ok, otherwise sets and returns the error status on *dec.
|
||||
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io);
|
||||
// Must always be called in pair with VP8EnterCritical().
|
||||
// Returns false in case of error.
|
||||
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io);
|
||||
// Process the last decoded row (filtering + output)
|
||||
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io);
|
||||
// Store a block, along with filtering params
|
||||
void VP8StoreBlock(VP8Decoder* const dec);
|
||||
// To be called at the start of a new scanline, to initialize predictors.
|
||||
void VP8InitScanline(VP8Decoder* const dec);
|
||||
// Decode one macroblock. Returns false if there is not enough data.
|
||||
int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br);
|
||||
|
||||
// in alpha.c
|
||||
const uint8_t* VP8DecompressAlphaRows(VP8Decoder* const dec,
|
||||
int row, int num_rows);
|
||||
|
||||
// in layer.c
|
||||
int VP8DecodeLayer(VP8Decoder* const dec);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_DEC_VP8I_H_ */
|
File diff suppressed because it is too large
Load Diff
|
@ -1,121 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Lossless decoder: internal header.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
// Vikas Arora(vikaas.arora@gmail.com)
|
||||
|
||||
#ifndef WEBP_DEC_VP8LI_H_
|
||||
#define WEBP_DEC_VP8LI_H_
|
||||
|
||||
#include <string.h> // for memcpy()
|
||||
#include "./webpi.h"
|
||||
#include "../utils/bit_reader.h"
|
||||
#include "../utils/color_cache.h"
|
||||
#include "../utils/huffman.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef enum {
|
||||
READ_DATA = 0,
|
||||
READ_HDR = 1,
|
||||
READ_DIM = 2
|
||||
} VP8LDecodeState;
|
||||
|
||||
typedef struct VP8LTransform VP8LTransform;
|
||||
struct VP8LTransform {
|
||||
VP8LImageTransformType type_; // transform type.
|
||||
int bits_; // subsampling bits defining transform window.
|
||||
int xsize_; // transform window X index.
|
||||
int ysize_; // transform window Y index.
|
||||
uint32_t *data_; // transform data.
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
HuffmanTree htrees_[HUFFMAN_CODES_PER_META_CODE];
|
||||
} HTreeGroup;
|
||||
|
||||
typedef struct {
|
||||
int color_cache_size_;
|
||||
VP8LColorCache color_cache_;
|
||||
|
||||
int huffman_mask_;
|
||||
int huffman_subsample_bits_;
|
||||
int huffman_xsize_;
|
||||
uint32_t *huffman_image_;
|
||||
int num_htree_groups_;
|
||||
HTreeGroup *htree_groups_;
|
||||
} VP8LMetadata;
|
||||
|
||||
typedef struct {
|
||||
VP8StatusCode status_;
|
||||
VP8LDecodeState action_;
|
||||
VP8LDecodeState state_;
|
||||
VP8Io *io_;
|
||||
|
||||
const WebPDecBuffer *output_; // shortcut to io->opaque->output
|
||||
|
||||
uint32_t *argb_; // Internal data: always in BGRA color mode.
|
||||
uint32_t *argb_cache_; // Scratch buffer for temporary BGRA storage.
|
||||
|
||||
VP8LBitReader br_;
|
||||
|
||||
int width_;
|
||||
int height_;
|
||||
int last_row_; // last input row decoded so far.
|
||||
int last_out_row_; // last row output so far.
|
||||
|
||||
VP8LMetadata hdr_;
|
||||
|
||||
int next_transform_;
|
||||
VP8LTransform transforms_[NUM_TRANSFORMS];
|
||||
// or'd bitset storing the transforms types.
|
||||
uint32_t transforms_seen_;
|
||||
|
||||
uint8_t *rescaler_memory; // Working memory for rescaling work.
|
||||
WebPRescaler *rescaler; // Common rescaler for all channels.
|
||||
} VP8LDecoder;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// internal functions. Not public.
|
||||
|
||||
// in vp8l.c
|
||||
|
||||
// Decodes a raw image stream (without header) and store the alpha data
|
||||
// into *output, which must be of size width x height. Returns false in case
|
||||
// of error.
|
||||
int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
|
||||
size_t data_size, uint8_t* const output);
|
||||
|
||||
// Allocates and initialize a new lossless decoder instance.
|
||||
VP8LDecoder* VP8LNew(void);
|
||||
|
||||
// Decodes the image header. Returns false in case of error.
|
||||
int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io);
|
||||
|
||||
// Decodes an image. It's required to decode the lossless header before calling
|
||||
// this function. Returns false in case of error, with updated dec->status_.
|
||||
int VP8LDecodeImage(VP8LDecoder* const dec);
|
||||
|
||||
// Resets the decoder in its initial state, reclaiming memory.
|
||||
// Preserves the dec->status_ value.
|
||||
void VP8LClear(VP8LDecoder* const dec);
|
||||
|
||||
// Clears and deallocate a lossless decoder instance.
|
||||
void VP8LDelete(VP8LDecoder* const dec);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_DEC_VP8LI_H_ */
|
|
@ -1,771 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Main decoding functions for WEBP images.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./vp8i.h"
|
||||
#include "./vp8li.h"
|
||||
#include "./webpi.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RIFF layout is:
|
||||
// Offset tag
|
||||
// 0...3 "RIFF" 4-byte tag
|
||||
// 4...7 size of image data (including metadata) starting at offset 8
|
||||
// 8...11 "WEBP" our form-type signature
|
||||
// The RIFF container (12 bytes) is followed by appropriate chunks:
|
||||
// 12..15 "VP8 ": 4-bytes tags, signaling the use of VP8 video format
|
||||
// 16..19 size of the raw VP8 image data, starting at offset 20
|
||||
// 20.... the VP8 bytes
|
||||
// Or,
|
||||
// 12..15 "VP8L": 4-bytes tags, signaling the use of VP8L lossless format
|
||||
// 16..19 size of the raw VP8L image data, starting at offset 20
|
||||
// 20.... the VP8L bytes
|
||||
// Or,
|
||||
// 12..15 "VP8X": 4-bytes tags, describing the extended-VP8 chunk.
|
||||
// 16..19 size of the VP8X chunk starting at offset 20.
|
||||
// 20..23 VP8X flags bit-map corresponding to the chunk-types present.
|
||||
// 24..26 Width of the Canvas Image.
|
||||
// 27..29 Height of the Canvas Image.
|
||||
// There can be extra chunks after the "VP8X" chunk (ICCP, TILE, FRM, VP8,
|
||||
// META ...)
|
||||
// All sizes are in little-endian order.
|
||||
// Note: chunk data size must be padded to multiple of 2 when written.
|
||||
|
||||
static WEBP_INLINE uint32_t get_le24(const uint8_t* const data) {
|
||||
return data[0] | (data[1] << 8) | (data[2] << 16);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t get_le32(const uint8_t* const data) {
|
||||
return (uint32_t)get_le24(data) | (data[3] << 24);
|
||||
}
|
||||
|
||||
// Validates the RIFF container (if detected) and skips over it.
|
||||
// If a RIFF container is detected,
|
||||
// Returns VP8_STATUS_BITSTREAM_ERROR for invalid header, and
|
||||
// VP8_STATUS_OK otherwise.
|
||||
// In case there are not enough bytes (partial RIFF container), return 0 for
|
||||
// *riff_size. Else return the RIFF size extracted from the header.
|
||||
static VP8StatusCode ParseRIFF(const uint8_t** const data,
|
||||
size_t* const data_size,
|
||||
size_t* const riff_size) {
|
||||
assert(data != NULL);
|
||||
assert(data_size != NULL);
|
||||
assert(riff_size != NULL);
|
||||
|
||||
*riff_size = 0; // Default: no RIFF present.
|
||||
if (*data_size >= RIFF_HEADER_SIZE && !memcmp(*data, "RIFF", TAG_SIZE)) {
|
||||
if (memcmp(*data + 8, "WEBP", TAG_SIZE)) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // Wrong image file signature.
|
||||
} else {
|
||||
const uint32_t size = get_le32(*data + TAG_SIZE);
|
||||
// Check that we have at least one chunk (i.e "WEBP" + "VP8?nnnn").
|
||||
if (size < TAG_SIZE + CHUNK_HEADER_SIZE) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR;
|
||||
}
|
||||
// We have a RIFF container. Skip it.
|
||||
*riff_size = size;
|
||||
*data += RIFF_HEADER_SIZE;
|
||||
*data_size -= RIFF_HEADER_SIZE;
|
||||
}
|
||||
}
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
// Validates the VP8X header and skips over it.
|
||||
// Returns VP8_STATUS_BITSTREAM_ERROR for invalid VP8X header,
|
||||
// VP8_STATUS_NOT_ENOUGH_DATA in case of insufficient data, and
|
||||
// VP8_STATUS_OK otherwise.
|
||||
// If a VP8X chunk is found, found_vp8x is set to true and *width_ptr,
|
||||
// *height_ptr and *flags_ptr are set to the corresponding values extracted
|
||||
// from the VP8X chunk.
|
||||
static VP8StatusCode ParseVP8X(const uint8_t** const data,
|
||||
size_t* const data_size,
|
||||
int* const found_vp8x,
|
||||
int* const width_ptr, int* const height_ptr,
|
||||
uint32_t* const flags_ptr) {
|
||||
const uint32_t vp8x_size = CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE;
|
||||
assert(data != NULL);
|
||||
assert(data_size != NULL);
|
||||
assert(found_vp8x != NULL);
|
||||
|
||||
*found_vp8x = 0;
|
||||
|
||||
if (*data_size < CHUNK_HEADER_SIZE) {
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data.
|
||||
}
|
||||
|
||||
if (!memcmp(*data, "VP8X", TAG_SIZE)) {
|
||||
int width, height;
|
||||
uint32_t flags;
|
||||
const uint32_t chunk_size = get_le32(*data + TAG_SIZE);
|
||||
if (chunk_size != VP8X_CHUNK_SIZE) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // Wrong chunk size.
|
||||
}
|
||||
|
||||
// Verify if enough data is available to validate the VP8X chunk.
|
||||
if (*data_size < vp8x_size) {
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data.
|
||||
}
|
||||
flags = get_le32(*data + 8);
|
||||
width = 1 + get_le24(*data + 12);
|
||||
height = 1 + get_le24(*data + 15);
|
||||
if (width * (uint64_t)height >= MAX_IMAGE_AREA) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // image is too large
|
||||
}
|
||||
|
||||
if (flags_ptr != NULL) *flags_ptr = flags;
|
||||
if (width_ptr != NULL) *width_ptr = width;
|
||||
if (height_ptr != NULL) *height_ptr = height;
|
||||
// Skip over VP8X header bytes.
|
||||
*data += vp8x_size;
|
||||
*data_size -= vp8x_size;
|
||||
*found_vp8x = 1;
|
||||
}
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
// Skips to the next VP8/VP8L chunk header in the data given the size of the
|
||||
// RIFF chunk 'riff_size'.
|
||||
// Returns VP8_STATUS_BITSTREAM_ERROR if any invalid chunk size is encountered,
|
||||
// VP8_STATUS_NOT_ENOUGH_DATA in case of insufficient data, and
|
||||
// VP8_STATUS_OK otherwise.
|
||||
// If an alpha chunk is found, *alpha_data and *alpha_size are set
|
||||
// appropriately.
|
||||
static VP8StatusCode ParseOptionalChunks(const uint8_t** const data,
|
||||
size_t* const data_size,
|
||||
size_t const riff_size,
|
||||
const uint8_t** const alpha_data,
|
||||
size_t* const alpha_size) {
|
||||
const uint8_t* buf;
|
||||
size_t buf_size;
|
||||
uint32_t total_size = TAG_SIZE + // "WEBP".
|
||||
CHUNK_HEADER_SIZE + // "VP8Xnnnn".
|
||||
VP8X_CHUNK_SIZE; // data.
|
||||
assert(data != NULL);
|
||||
assert(data_size != NULL);
|
||||
buf = *data;
|
||||
buf_size = *data_size;
|
||||
|
||||
assert(alpha_data != NULL);
|
||||
assert(alpha_size != NULL);
|
||||
*alpha_data = NULL;
|
||||
*alpha_size = 0;
|
||||
|
||||
while (1) {
|
||||
uint32_t chunk_size;
|
||||
uint32_t disk_chunk_size; // chunk_size with padding
|
||||
|
||||
*data = buf;
|
||||
*data_size = buf_size;
|
||||
|
||||
if (buf_size < CHUNK_HEADER_SIZE) { // Insufficient data.
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
}
|
||||
|
||||
chunk_size = get_le32(buf + TAG_SIZE);
|
||||
// For odd-sized chunk-payload, there's one byte padding at the end.
|
||||
disk_chunk_size = (CHUNK_HEADER_SIZE + chunk_size + 1) & ~1;
|
||||
total_size += disk_chunk_size;
|
||||
|
||||
// Check that total bytes skipped so far does not exceed riff_size.
|
||||
if (riff_size > 0 && (total_size > riff_size)) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // Not a valid chunk size.
|
||||
}
|
||||
|
||||
if (buf_size < disk_chunk_size) { // Insufficient data.
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
}
|
||||
|
||||
if (!memcmp(buf, "ALPH", TAG_SIZE)) { // A valid ALPH header.
|
||||
*alpha_data = buf + CHUNK_HEADER_SIZE;
|
||||
*alpha_size = chunk_size;
|
||||
} else if (!memcmp(buf, "VP8 ", TAG_SIZE) ||
|
||||
!memcmp(buf, "VP8L", TAG_SIZE)) { // A valid VP8/VP8L header.
|
||||
return VP8_STATUS_OK; // Found.
|
||||
}
|
||||
|
||||
// We have a full and valid chunk; skip it.
|
||||
buf += disk_chunk_size;
|
||||
buf_size -= disk_chunk_size;
|
||||
}
|
||||
}
|
||||
|
||||
// Validates the VP8/VP8L Header ("VP8 nnnn" or "VP8L nnnn") and skips over it.
|
||||
// Returns VP8_STATUS_BITSTREAM_ERROR for invalid (chunk larger than
|
||||
// riff_size) VP8/VP8L header,
|
||||
// VP8_STATUS_NOT_ENOUGH_DATA in case of insufficient data, and
|
||||
// VP8_STATUS_OK otherwise.
|
||||
// If a VP8/VP8L chunk is found, *chunk_size is set to the total number of bytes
|
||||
// extracted from the VP8/VP8L chunk header.
|
||||
// The flag '*is_lossless' is set to 1 in case of VP8L chunk / raw VP8L data.
|
||||
static VP8StatusCode ParseVP8Header(const uint8_t** const data_ptr,
|
||||
size_t* const data_size,
|
||||
size_t riff_size,
|
||||
size_t* const chunk_size,
|
||||
int* const is_lossless) {
|
||||
const uint8_t* const data = *data_ptr;
|
||||
const int is_vp8 = !memcmp(data, "VP8 ", TAG_SIZE);
|
||||
const int is_vp8l = !memcmp(data, "VP8L", TAG_SIZE);
|
||||
const uint32_t minimal_size =
|
||||
TAG_SIZE + CHUNK_HEADER_SIZE; // "WEBP" + "VP8 nnnn" OR
|
||||
// "WEBP" + "VP8Lnnnn"
|
||||
assert(data != NULL);
|
||||
assert(data_size != NULL);
|
||||
assert(chunk_size != NULL);
|
||||
assert(is_lossless != NULL);
|
||||
|
||||
if (*data_size < CHUNK_HEADER_SIZE) {
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data.
|
||||
}
|
||||
|
||||
if (is_vp8 || is_vp8l) {
|
||||
// Bitstream contains VP8/VP8L header.
|
||||
const uint32_t size = get_le32(data + TAG_SIZE);
|
||||
if ((riff_size >= minimal_size) && (size > riff_size - minimal_size)) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // Inconsistent size information.
|
||||
}
|
||||
// Skip over CHUNK_HEADER_SIZE bytes from VP8/VP8L Header.
|
||||
*chunk_size = size;
|
||||
*data_ptr += CHUNK_HEADER_SIZE;
|
||||
*data_size -= CHUNK_HEADER_SIZE;
|
||||
*is_lossless = is_vp8l;
|
||||
} else {
|
||||
// Raw VP8/VP8L bitstream (no header).
|
||||
*is_lossless = VP8LCheckSignature(data, *data_size);
|
||||
*chunk_size = *data_size;
|
||||
}
|
||||
|
||||
return VP8_STATUS_OK;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
// Fetch '*width', '*height', '*has_alpha' and fill out 'headers' based on
|
||||
// 'data'. All the output parameters may be NULL. If 'headers' is NULL only the
|
||||
// minimal amount will be read to fetch the remaining parameters.
|
||||
// If 'headers' is non-NULL this function will attempt to locate both alpha
|
||||
// data (with or without a VP8X chunk) and the bitstream chunk (VP8/VP8L).
|
||||
// Note: The following chunk sequences (before the raw VP8/VP8L data) are
|
||||
// considered valid by this function:
|
||||
// RIFF + VP8(L)
|
||||
// RIFF + VP8X + (optional chunks) + VP8(L)
|
||||
// ALPH + VP8 <-- Not a valid WebP format: only allowed for internal purpose.
|
||||
// VP8(L) <-- Not a valid WebP format: only allowed for internal purpose.
|
||||
static VP8StatusCode ParseHeadersInternal(const uint8_t* data,
|
||||
size_t data_size,
|
||||
int* const width,
|
||||
int* const height,
|
||||
int* const has_alpha,
|
||||
WebPHeaderStructure* const headers) {
|
||||
int found_riff = 0;
|
||||
int found_vp8x = 0;
|
||||
VP8StatusCode status;
|
||||
WebPHeaderStructure hdrs;
|
||||
|
||||
if (data == NULL || data_size < RIFF_HEADER_SIZE) {
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
}
|
||||
memset(&hdrs, 0, sizeof(hdrs));
|
||||
hdrs.data = data;
|
||||
hdrs.data_size = data_size;
|
||||
|
||||
// Skip over RIFF header.
|
||||
status = ParseRIFF(&data, &data_size, &hdrs.riff_size);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return status; // Wrong RIFF header / insufficient data.
|
||||
}
|
||||
found_riff = (hdrs.riff_size > 0);
|
||||
|
||||
// Skip over VP8X.
|
||||
{
|
||||
uint32_t flags = 0;
|
||||
status = ParseVP8X(&data, &data_size, &found_vp8x, width, height, &flags);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return status; // Wrong VP8X / insufficient data.
|
||||
}
|
||||
if (!found_riff && found_vp8x) {
|
||||
// Note: This restriction may be removed in the future, if it becomes
|
||||
// necessary to send VP8X chunk to the decoder.
|
||||
return VP8_STATUS_BITSTREAM_ERROR;
|
||||
}
|
||||
if (has_alpha != NULL) *has_alpha = !!(flags & ALPHA_FLAG_BIT);
|
||||
if (found_vp8x && headers == NULL) {
|
||||
return VP8_STATUS_OK; // Return features from VP8X header.
|
||||
}
|
||||
}
|
||||
|
||||
if (data_size < TAG_SIZE) return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
|
||||
// Skip over optional chunks if data started with "RIFF + VP8X" or "ALPH".
|
||||
if ((found_riff && found_vp8x) ||
|
||||
(!found_riff && !found_vp8x && !memcmp(data, "ALPH", TAG_SIZE))) {
|
||||
status = ParseOptionalChunks(&data, &data_size, hdrs.riff_size,
|
||||
&hdrs.alpha_data, &hdrs.alpha_data_size);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return status; // Found an invalid chunk size / insufficient data.
|
||||
}
|
||||
}
|
||||
|
||||
// Skip over VP8/VP8L header.
|
||||
status = ParseVP8Header(&data, &data_size, hdrs.riff_size,
|
||||
&hdrs.compressed_size, &hdrs.is_lossless);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return status; // Wrong VP8/VP8L chunk-header / insufficient data.
|
||||
}
|
||||
if (hdrs.compressed_size > MAX_CHUNK_PAYLOAD) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR;
|
||||
}
|
||||
|
||||
if (!hdrs.is_lossless) {
|
||||
if (data_size < VP8_FRAME_HEADER_SIZE) {
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
}
|
||||
// Validates raw VP8 data.
|
||||
if (!VP8GetInfo(data, data_size,
|
||||
(uint32_t)hdrs.compressed_size, width, height)) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR;
|
||||
}
|
||||
} else {
|
||||
if (data_size < VP8L_FRAME_HEADER_SIZE) {
|
||||
return VP8_STATUS_NOT_ENOUGH_DATA;
|
||||
}
|
||||
// Validates raw VP8L data.
|
||||
if (!VP8LGetInfo(data, data_size, width, height, has_alpha)) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
if (has_alpha != NULL) {
|
||||
// If the data did not contain a VP8X/VP8L chunk the only definitive way
|
||||
// to set this is by looking for alpha data (from an ALPH chunk).
|
||||
*has_alpha |= (hdrs.alpha_data != NULL);
|
||||
}
|
||||
if (headers != NULL) {
|
||||
*headers = hdrs;
|
||||
headers->offset = data - headers->data;
|
||||
assert((uint64_t)(data - headers->data) < MAX_CHUNK_PAYLOAD);
|
||||
assert(headers->offset == headers->data_size - data_size);
|
||||
}
|
||||
return VP8_STATUS_OK; // Return features from VP8 header.
|
||||
}
|
||||
|
||||
VP8StatusCode WebPParseHeaders(WebPHeaderStructure* const headers) {
|
||||
assert(headers != NULL);
|
||||
// fill out headers, ignore width/height/has_alpha.
|
||||
return ParseHeadersInternal(headers->data, headers->data_size,
|
||||
NULL, NULL, NULL, headers);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPDecParams
|
||||
|
||||
void WebPResetDecParams(WebPDecParams* const params) {
|
||||
if (params) {
|
||||
memset(params, 0, sizeof(*params));
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// "Into" decoding variants
|
||||
|
||||
// Main flow
|
||||
static VP8StatusCode DecodeInto(const uint8_t* const data, size_t data_size,
|
||||
WebPDecParams* const params) {
|
||||
VP8StatusCode status;
|
||||
VP8Io io;
|
||||
WebPHeaderStructure headers;
|
||||
|
||||
headers.data = data;
|
||||
headers.data_size = data_size;
|
||||
status = WebPParseHeaders(&headers); // Process Pre-VP8 chunks.
|
||||
if (status != VP8_STATUS_OK) {
|
||||
return status;
|
||||
}
|
||||
|
||||
assert(params != NULL);
|
||||
VP8InitIo(&io);
|
||||
io.data = headers.data + headers.offset;
|
||||
io.data_size = headers.data_size - headers.offset;
|
||||
WebPInitCustomIo(params, &io); // Plug the I/O functions.
|
||||
|
||||
if (!headers.is_lossless) {
|
||||
VP8Decoder* const dec = VP8New();
|
||||
if (dec == NULL) {
|
||||
return VP8_STATUS_OUT_OF_MEMORY;
|
||||
}
|
||||
#ifdef WEBP_USE_THREAD
|
||||
dec->use_threads_ = params->options && (params->options->use_threads > 0);
|
||||
#else
|
||||
dec->use_threads_ = 0;
|
||||
#endif
|
||||
dec->alpha_data_ = headers.alpha_data;
|
||||
dec->alpha_data_size_ = headers.alpha_data_size;
|
||||
|
||||
// Decode bitstream header, update io->width/io->height.
|
||||
if (!VP8GetHeaders(dec, &io)) {
|
||||
status = dec->status_; // An error occurred. Grab error status.
|
||||
} else {
|
||||
// Allocate/check output buffers.
|
||||
status = WebPAllocateDecBuffer(io.width, io.height, params->options,
|
||||
params->output);
|
||||
if (status == VP8_STATUS_OK) { // Decode
|
||||
if (!VP8Decode(dec, &io)) {
|
||||
status = dec->status_;
|
||||
}
|
||||
}
|
||||
}
|
||||
VP8Delete(dec);
|
||||
} else {
|
||||
VP8LDecoder* const dec = VP8LNew();
|
||||
if (dec == NULL) {
|
||||
return VP8_STATUS_OUT_OF_MEMORY;
|
||||
}
|
||||
if (!VP8LDecodeHeader(dec, &io)) {
|
||||
status = dec->status_; // An error occurred. Grab error status.
|
||||
} else {
|
||||
// Allocate/check output buffers.
|
||||
status = WebPAllocateDecBuffer(io.width, io.height, params->options,
|
||||
params->output);
|
||||
if (status == VP8_STATUS_OK) { // Decode
|
||||
if (!VP8LDecodeImage(dec)) {
|
||||
status = dec->status_;
|
||||
}
|
||||
}
|
||||
}
|
||||
VP8LDelete(dec);
|
||||
}
|
||||
|
||||
if (status != VP8_STATUS_OK) {
|
||||
WebPFreeDecBuffer(params->output);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
// Helpers
|
||||
static uint8_t* DecodeIntoRGBABuffer(WEBP_CSP_MODE colorspace,
|
||||
const uint8_t* const data,
|
||||
size_t data_size,
|
||||
uint8_t* const rgba,
|
||||
int stride, size_t size) {
|
||||
WebPDecParams params;
|
||||
WebPDecBuffer buf;
|
||||
if (rgba == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
WebPInitDecBuffer(&buf);
|
||||
WebPResetDecParams(¶ms);
|
||||
params.output = &buf;
|
||||
buf.colorspace = colorspace;
|
||||
buf.u.RGBA.rgba = rgba;
|
||||
buf.u.RGBA.stride = stride;
|
||||
buf.u.RGBA.size = size;
|
||||
buf.is_external_memory = 1;
|
||||
if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) {
|
||||
return NULL;
|
||||
}
|
||||
return rgba;
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeRGBInto(const uint8_t* data, size_t data_size,
|
||||
uint8_t* output, size_t size, int stride) {
|
||||
return DecodeIntoRGBABuffer(MODE_RGB, data, data_size, output, stride, size);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeRGBAInto(const uint8_t* data, size_t data_size,
|
||||
uint8_t* output, size_t size, int stride) {
|
||||
return DecodeIntoRGBABuffer(MODE_RGBA, data, data_size, output, stride, size);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeARGBInto(const uint8_t* data, size_t data_size,
|
||||
uint8_t* output, size_t size, int stride) {
|
||||
return DecodeIntoRGBABuffer(MODE_ARGB, data, data_size, output, stride, size);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeBGRInto(const uint8_t* data, size_t data_size,
|
||||
uint8_t* output, size_t size, int stride) {
|
||||
return DecodeIntoRGBABuffer(MODE_BGR, data, data_size, output, stride, size);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeBGRAInto(const uint8_t* data, size_t data_size,
|
||||
uint8_t* output, size_t size, int stride) {
|
||||
return DecodeIntoRGBABuffer(MODE_BGRA, data, data_size, output, stride, size);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeYUVInto(const uint8_t* data, size_t data_size,
|
||||
uint8_t* luma, size_t luma_size, int luma_stride,
|
||||
uint8_t* u, size_t u_size, int u_stride,
|
||||
uint8_t* v, size_t v_size, int v_stride) {
|
||||
WebPDecParams params;
|
||||
WebPDecBuffer output;
|
||||
if (luma == NULL) return NULL;
|
||||
WebPInitDecBuffer(&output);
|
||||
WebPResetDecParams(¶ms);
|
||||
params.output = &output;
|
||||
output.colorspace = MODE_YUV;
|
||||
output.u.YUVA.y = luma;
|
||||
output.u.YUVA.y_stride = luma_stride;
|
||||
output.u.YUVA.y_size = luma_size;
|
||||
output.u.YUVA.u = u;
|
||||
output.u.YUVA.u_stride = u_stride;
|
||||
output.u.YUVA.u_size = u_size;
|
||||
output.u.YUVA.v = v;
|
||||
output.u.YUVA.v_stride = v_stride;
|
||||
output.u.YUVA.v_size = v_size;
|
||||
output.is_external_memory = 1;
|
||||
if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) {
|
||||
return NULL;
|
||||
}
|
||||
return luma;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static uint8_t* Decode(WEBP_CSP_MODE mode, const uint8_t* const data,
|
||||
size_t data_size, int* const width, int* const height,
|
||||
WebPDecBuffer* const keep_info) {
|
||||
WebPDecParams params;
|
||||
WebPDecBuffer output;
|
||||
|
||||
WebPInitDecBuffer(&output);
|
||||
WebPResetDecParams(¶ms);
|
||||
params.output = &output;
|
||||
output.colorspace = mode;
|
||||
|
||||
// Retrieve (and report back) the required dimensions from bitstream.
|
||||
if (!WebPGetInfo(data, data_size, &output.width, &output.height)) {
|
||||
return NULL;
|
||||
}
|
||||
if (width != NULL) *width = output.width;
|
||||
if (height != NULL) *height = output.height;
|
||||
|
||||
// Decode
|
||||
if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) {
|
||||
return NULL;
|
||||
}
|
||||
if (keep_info != NULL) { // keep track of the side-info
|
||||
WebPCopyDecBuffer(&output, keep_info);
|
||||
}
|
||||
// return decoded samples (don't clear 'output'!)
|
||||
return WebPIsRGBMode(mode) ? output.u.RGBA.rgba : output.u.YUVA.y;
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeRGB(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height) {
|
||||
return Decode(MODE_RGB, data, data_size, width, height, NULL);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeRGBA(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height) {
|
||||
return Decode(MODE_RGBA, data, data_size, width, height, NULL);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeARGB(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height) {
|
||||
return Decode(MODE_ARGB, data, data_size, width, height, NULL);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeBGR(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height) {
|
||||
return Decode(MODE_BGR, data, data_size, width, height, NULL);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeBGRA(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height) {
|
||||
return Decode(MODE_BGRA, data, data_size, width, height, NULL);
|
||||
}
|
||||
|
||||
uint8_t* WebPDecodeYUV(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height, uint8_t** u, uint8_t** v,
|
||||
int* stride, int* uv_stride) {
|
||||
WebPDecBuffer output; // only to preserve the side-infos
|
||||
uint8_t* const out = Decode(MODE_YUV, data, data_size,
|
||||
width, height, &output);
|
||||
|
||||
if (out != NULL) {
|
||||
const WebPYUVABuffer* const buf = &output.u.YUVA;
|
||||
*u = buf->u;
|
||||
*v = buf->v;
|
||||
*stride = buf->y_stride;
|
||||
*uv_stride = buf->u_stride;
|
||||
assert(buf->u_stride == buf->v_stride);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
static void DefaultFeatures(WebPBitstreamFeatures* const features) {
|
||||
assert(features != NULL);
|
||||
memset(features, 0, sizeof(*features));
|
||||
features->bitstream_version = 0;
|
||||
}
|
||||
|
||||
static VP8StatusCode GetFeatures(const uint8_t* const data, size_t data_size,
|
||||
WebPBitstreamFeatures* const features) {
|
||||
if (features == NULL || data == NULL) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
DefaultFeatures(features);
|
||||
|
||||
// Only parse enough of the data to retrieve width/height/has_alpha.
|
||||
return ParseHeadersInternal(data, data_size,
|
||||
&features->width, &features->height,
|
||||
&features->has_alpha, NULL);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPGetInfo()
|
||||
|
||||
int WebPGetInfo(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height) {
|
||||
WebPBitstreamFeatures features;
|
||||
|
||||
if (GetFeatures(data, data_size, &features) != VP8_STATUS_OK) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (width != NULL) {
|
||||
*width = features.width;
|
||||
}
|
||||
if (height != NULL) {
|
||||
*height = features.height;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Advance decoding API
|
||||
|
||||
int WebPInitDecoderConfigInternal(WebPDecoderConfig* config,
|
||||
int version) {
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) {
|
||||
return 0; // version mismatch
|
||||
}
|
||||
if (config == NULL) {
|
||||
return 0;
|
||||
}
|
||||
memset(config, 0, sizeof(*config));
|
||||
DefaultFeatures(&config->input);
|
||||
WebPInitDecBuffer(&config->output);
|
||||
return 1;
|
||||
}
|
||||
|
||||
VP8StatusCode WebPGetFeaturesInternal(const uint8_t* data, size_t data_size,
|
||||
WebPBitstreamFeatures* features,
|
||||
int version) {
|
||||
VP8StatusCode status;
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) {
|
||||
return VP8_STATUS_INVALID_PARAM; // version mismatch
|
||||
}
|
||||
if (features == NULL) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
|
||||
status = GetFeatures(data, data_size, features);
|
||||
if (status == VP8_STATUS_NOT_ENOUGH_DATA) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // Not-enough-data treated as error.
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
VP8StatusCode WebPDecode(const uint8_t* data, size_t data_size,
|
||||
WebPDecoderConfig* config) {
|
||||
WebPDecParams params;
|
||||
VP8StatusCode status;
|
||||
|
||||
if (config == NULL) {
|
||||
return VP8_STATUS_INVALID_PARAM;
|
||||
}
|
||||
|
||||
status = GetFeatures(data, data_size, &config->input);
|
||||
if (status != VP8_STATUS_OK) {
|
||||
if (status == VP8_STATUS_NOT_ENOUGH_DATA) {
|
||||
return VP8_STATUS_BITSTREAM_ERROR; // Not-enough-data treated as error.
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
WebPResetDecParams(¶ms);
|
||||
params.output = &config->output;
|
||||
params.options = &config->options;
|
||||
status = DecodeInto(data, data_size, ¶ms);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Cropping and rescaling.
|
||||
|
||||
int WebPIoInitFromOptions(const WebPDecoderOptions* const options,
|
||||
VP8Io* const io, WEBP_CSP_MODE src_colorspace) {
|
||||
const int W = io->width;
|
||||
const int H = io->height;
|
||||
int x = 0, y = 0, w = W, h = H;
|
||||
|
||||
// Cropping
|
||||
io->use_cropping = (options != NULL) && (options->use_cropping > 0);
|
||||
if (io->use_cropping) {
|
||||
w = options->crop_width;
|
||||
h = options->crop_height;
|
||||
x = options->crop_left;
|
||||
y = options->crop_top;
|
||||
if (!WebPIsRGBMode(src_colorspace)) { // only snap for YUV420 or YUV422
|
||||
x &= ~1;
|
||||
y &= ~1; // TODO(later): only for YUV420, not YUV422.
|
||||
}
|
||||
if (x < 0 || y < 0 || w <= 0 || h <= 0 || x + w > W || y + h > H) {
|
||||
return 0; // out of frame boundary error
|
||||
}
|
||||
}
|
||||
io->crop_left = x;
|
||||
io->crop_top = y;
|
||||
io->crop_right = x + w;
|
||||
io->crop_bottom = y + h;
|
||||
io->mb_w = w;
|
||||
io->mb_h = h;
|
||||
|
||||
// Scaling
|
||||
io->use_scaling = (options != NULL) && (options->use_scaling > 0);
|
||||
if (io->use_scaling) {
|
||||
if (options->scaled_width <= 0 || options->scaled_height <= 0) {
|
||||
return 0;
|
||||
}
|
||||
io->scaled_width = options->scaled_width;
|
||||
io->scaled_height = options->scaled_height;
|
||||
}
|
||||
|
||||
// Filter
|
||||
io->bypass_filtering = options && options->bypass_filtering;
|
||||
|
||||
// Fancy upsampler
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
io->fancy_upsampling = (options == NULL) || (!options->no_fancy_upsampling);
|
||||
#endif
|
||||
|
||||
if (io->use_scaling) {
|
||||
// disable filter (only for large downscaling ratio).
|
||||
io->bypass_filtering = (io->scaled_width < W * 3 / 4) &&
|
||||
(io->scaled_height < H * 3 / 4);
|
||||
io->fancy_upsampling = 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,114 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Internal header: WebP decoding parameters and custom IO on buffer
|
||||
//
|
||||
// Author: somnath@google.com (Somnath Banerjee)
|
||||
|
||||
#ifndef WEBP_DEC_WEBPI_H_
|
||||
#define WEBP_DEC_WEBPI_H_
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../utils/rescaler.h"
|
||||
#include "./decode_vp8.h"
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPDecParams: Decoding output parameters. Transient internal object.
|
||||
|
||||
typedef struct WebPDecParams WebPDecParams;
|
||||
typedef int (*OutputFunc)(const VP8Io* const io, WebPDecParams* const p);
|
||||
typedef int (*OutputRowFunc)(WebPDecParams* const p, int y_pos);
|
||||
|
||||
struct WebPDecParams {
|
||||
WebPDecBuffer* output; // output buffer.
|
||||
uint8_t* tmp_y, *tmp_u, *tmp_v; // cache for the fancy upsampler
|
||||
// or used for tmp rescaling
|
||||
|
||||
int last_y; // coordinate of the line that was last output
|
||||
const WebPDecoderOptions* options; // if not NULL, use alt decoding features
|
||||
// rescalers
|
||||
WebPRescaler scaler_y, scaler_u, scaler_v, scaler_a;
|
||||
void* memory; // overall scratch memory for the output work.
|
||||
|
||||
OutputFunc emit; // output RGB or YUV samples
|
||||
OutputFunc emit_alpha; // output alpha channel
|
||||
OutputRowFunc emit_alpha_row; // output one line of rescaled alpha values
|
||||
};
|
||||
|
||||
// Should be called first, before any use of the WebPDecParams object.
|
||||
void WebPResetDecParams(WebPDecParams* const params);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Header parsing helpers
|
||||
|
||||
// Structure storing a description of the RIFF headers.
|
||||
typedef struct {
|
||||
const uint8_t* data; // input buffer
|
||||
size_t data_size; // input buffer size
|
||||
size_t offset; // offset to main data chunk (VP8 or VP8L)
|
||||
const uint8_t* alpha_data; // points to alpha chunk (if present)
|
||||
size_t alpha_data_size; // alpha chunk size
|
||||
size_t compressed_size; // VP8/VP8L compressed data size
|
||||
size_t riff_size; // size of the riff payload (or 0 if absent)
|
||||
int is_lossless; // true if a VP8L chunk is present
|
||||
} WebPHeaderStructure;
|
||||
|
||||
// Skips over all valid chunks prior to the first VP8/VP8L frame header.
|
||||
// Returns VP8_STATUS_OK on success,
|
||||
// VP8_STATUS_BITSTREAM_ERROR if an invalid header/chunk is found, and
|
||||
// VP8_STATUS_NOT_ENOUGH_DATA if case of insufficient data.
|
||||
// In 'headers', compressed_size, offset, alpha_data, alpha_size and lossless
|
||||
// fields are updated appropriately upon success.
|
||||
VP8StatusCode WebPParseHeaders(WebPHeaderStructure* const headers);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Misc utils
|
||||
|
||||
// Initializes VP8Io with custom setup, io and teardown functions. The default
|
||||
// hooks will use the supplied 'params' as io->opaque handle.
|
||||
void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io);
|
||||
|
||||
// Setup crop_xxx fields, mb_w and mb_h in io. 'src_colorspace' refers
|
||||
// to the *compressed* format, not the output one.
|
||||
int WebPIoInitFromOptions(const WebPDecoderOptions* const options,
|
||||
VP8Io* const io, WEBP_CSP_MODE src_colorspace);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Internal functions regarding WebPDecBuffer memory (in buffer.c).
|
||||
// Don't really need to be externally visible for now.
|
||||
|
||||
// Prepare 'buffer' with the requested initial dimensions width/height.
|
||||
// If no external storage is supplied, initializes buffer by allocating output
|
||||
// memory and setting up the stride information. Validate the parameters. Return
|
||||
// an error code in case of problem (no memory, or invalid stride / size /
|
||||
// dimension / etc.). If *options is not NULL, also verify that the options'
|
||||
// parameters are valid and apply them to the width/height dimensions of the
|
||||
// output buffer. This takes cropping / scaling / rotation into account.
|
||||
VP8StatusCode WebPAllocateDecBuffer(int width, int height,
|
||||
const WebPDecoderOptions* const options,
|
||||
WebPDecBuffer* const buffer);
|
||||
|
||||
// Copy 'src' into 'dst' buffer, making sure 'dst' is not marked as owner of the
|
||||
// memory (still held by 'src').
|
||||
void WebPCopyDecBuffer(const WebPDecBuffer* const src,
|
||||
WebPDecBuffer* const dst);
|
||||
|
||||
// Copy and transfer ownership from src to dst (beware of parameter order!)
|
||||
void WebPGrabDecBuffer(WebPDecBuffer* const src, WebPDecBuffer* const dst);
|
||||
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_DEC_WEBPI_H_ */
|
|
@ -1,454 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Main decoding functions for WebP images.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_WEBP_DECODE_H_
|
||||
#define WEBP_WEBP_DECODE_H_
|
||||
|
||||
#include "./types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define WEBP_DECODER_ABI_VERSION 0x0200 // MAJOR(8b) + MINOR(8b)
|
||||
|
||||
// Return the decoder's version number, packed in hexadecimal using 8bits for
|
||||
// each of major/minor/revision. E.g: v2.5.7 is 0x020507.
|
||||
WEBP_EXTERN(int) WebPGetDecoderVersion(void);
|
||||
|
||||
// Retrieve basic header information: width, height.
|
||||
// This function will also validate the header and return 0 in
|
||||
// case of formatting error.
|
||||
// Pointers 'width' and 'height' can be passed NULL if deemed irrelevant.
|
||||
WEBP_EXTERN(int) WebPGetInfo(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height);
|
||||
|
||||
// Decodes WebP images pointed to by 'data' and returns RGBA samples, along
|
||||
// with the dimensions in *width and *height. The ordering of samples in
|
||||
// memory is R, G, B, A, R, G, B, A... in scan order (endian-independent).
|
||||
// The returned pointer should be deleted calling free().
|
||||
// Returns NULL in case of error.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeRGBA(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height);
|
||||
|
||||
// Same as WebPDecodeRGBA, but returning A, R, G, B, A, R, G, B... ordered data.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeARGB(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height);
|
||||
|
||||
// Same as WebPDecodeRGBA, but returning B, G, R, A, B, G, R, A... ordered data.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeBGRA(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height);
|
||||
|
||||
// Same as WebPDecodeRGBA, but returning R, G, B, R, G, B... ordered data.
|
||||
// If the bitstream contains transparency, it is ignored.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeRGB(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height);
|
||||
|
||||
// Same as WebPDecodeRGB, but returning B, G, R, B, G, R... ordered data.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeBGR(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height);
|
||||
|
||||
|
||||
// Decode WebP images pointed to by 'data' to Y'UV format(*). The pointer
|
||||
// returned is the Y samples buffer. Upon return, *u and *v will point to
|
||||
// the U and V chroma data. These U and V buffers need NOT be free()'d,
|
||||
// unlike the returned Y luma one. The dimension of the U and V planes
|
||||
// are both (*width + 1) / 2 and (*height + 1)/ 2.
|
||||
// Upon return, the Y buffer has a stride returned as '*stride', while U and V
|
||||
// have a common stride returned as '*uv_stride'.
|
||||
// Return NULL in case of error.
|
||||
// (*) Also named Y'CbCr. See: http://en.wikipedia.org/wiki/YCbCr
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeYUV(const uint8_t* data, size_t data_size,
|
||||
int* width, int* height,
|
||||
uint8_t** u, uint8_t** v,
|
||||
int* stride, int* uv_stride);
|
||||
|
||||
// These five functions are variants of the above ones, that decode the image
|
||||
// directly into a pre-allocated buffer 'output_buffer'. The maximum storage
|
||||
// available in this buffer is indicated by 'output_buffer_size'. If this
|
||||
// storage is not sufficient (or an error occurred), NULL is returned.
|
||||
// Otherwise, output_buffer is returned, for convenience.
|
||||
// The parameter 'output_stride' specifies the distance (in bytes)
|
||||
// between scanlines. Hence, output_buffer_size is expected to be at least
|
||||
// output_stride x picture-height.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeRGBAInto(
|
||||
const uint8_t* data, size_t data_size,
|
||||
uint8_t* output_buffer, size_t output_buffer_size, int output_stride);
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeARGBInto(
|
||||
const uint8_t* data, size_t data_size,
|
||||
uint8_t* output_buffer, size_t output_buffer_size, int output_stride);
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeBGRAInto(
|
||||
const uint8_t* data, size_t data_size,
|
||||
uint8_t* output_buffer, size_t output_buffer_size, int output_stride);
|
||||
|
||||
// RGB and BGR variants. Here too the transparency information, if present,
|
||||
// will be dropped and ignored.
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeRGBInto(
|
||||
const uint8_t* data, size_t data_size,
|
||||
uint8_t* output_buffer, size_t output_buffer_size, int output_stride);
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeBGRInto(
|
||||
const uint8_t* data, size_t data_size,
|
||||
uint8_t* output_buffer, size_t output_buffer_size, int output_stride);
|
||||
|
||||
// WebPDecodeYUVInto() is a variant of WebPDecodeYUV() that operates directly
|
||||
// into pre-allocated luma/chroma plane buffers. This function requires the
|
||||
// strides to be passed: one for the luma plane and one for each of the
|
||||
// chroma ones. The size of each plane buffer is passed as 'luma_size',
|
||||
// 'u_size' and 'v_size' respectively.
|
||||
// Pointer to the luma plane ('*luma') is returned or NULL if an error occurred
|
||||
// during decoding (or because some buffers were found to be too small).
|
||||
WEBP_EXTERN(uint8_t*) WebPDecodeYUVInto(
|
||||
const uint8_t* data, size_t data_size,
|
||||
uint8_t* luma, size_t luma_size, int luma_stride,
|
||||
uint8_t* u, size_t u_size, int u_stride,
|
||||
uint8_t* v, size_t v_size, int v_stride);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Output colorspaces and buffer
|
||||
|
||||
// Colorspaces
|
||||
// Note: the naming describes the byte-ordering of packed samples in memory.
|
||||
// For instance, MODE_BGRA relates to samples ordered as B,G,R,A,B,G,R,A,...
|
||||
// Non-capital names (e.g.:MODE_Argb) relates to pre-multiplied RGB channels.
|
||||
// RGB-565 and RGBA-4444 are also endian-agnostic and byte-oriented.
|
||||
typedef enum { MODE_RGB = 0, MODE_RGBA = 1,
|
||||
MODE_BGR = 2, MODE_BGRA = 3,
|
||||
MODE_ARGB = 4, MODE_RGBA_4444 = 5,
|
||||
MODE_RGB_565 = 6,
|
||||
// RGB-premultiplied transparent modes (alpha value is preserved)
|
||||
MODE_rgbA = 7,
|
||||
MODE_bgrA = 8,
|
||||
MODE_Argb = 9,
|
||||
MODE_rgbA_4444 = 10,
|
||||
// YUV modes must come after RGB ones.
|
||||
MODE_YUV = 11, MODE_YUVA = 12, // yuv 4:2:0
|
||||
MODE_LAST = 13
|
||||
} WEBP_CSP_MODE;
|
||||
|
||||
// Some useful macros:
|
||||
static WEBP_INLINE int WebPIsPremultipliedMode(WEBP_CSP_MODE mode) {
|
||||
return (mode == MODE_rgbA || mode == MODE_bgrA || mode == MODE_Argb ||
|
||||
mode == MODE_rgbA_4444);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int WebPIsAlphaMode(WEBP_CSP_MODE mode) {
|
||||
return (mode == MODE_RGBA || mode == MODE_BGRA || mode == MODE_ARGB ||
|
||||
mode == MODE_RGBA_4444 || mode == MODE_YUVA ||
|
||||
WebPIsPremultipliedMode(mode));
|
||||
}
|
||||
|
||||
static WEBP_INLINE int WebPIsRGBMode(WEBP_CSP_MODE mode) {
|
||||
return (mode < MODE_YUV);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPDecBuffer: Generic structure for describing the output sample buffer.
|
||||
|
||||
typedef struct { // view as RGBA
|
||||
uint8_t* rgba; // pointer to RGBA samples
|
||||
int stride; // stride in bytes from one scanline to the next.
|
||||
size_t size; // total size of the *rgba buffer.
|
||||
} WebPRGBABuffer;
|
||||
|
||||
typedef struct { // view as YUVA
|
||||
uint8_t* y, *u, *v, *a; // pointer to luma, chroma U/V, alpha samples
|
||||
int y_stride; // luma stride
|
||||
int u_stride, v_stride; // chroma strides
|
||||
int a_stride; // alpha stride
|
||||
size_t y_size; // luma plane size
|
||||
size_t u_size, v_size; // chroma planes size
|
||||
size_t a_size; // alpha-plane size
|
||||
} WebPYUVABuffer;
|
||||
|
||||
// Output buffer
|
||||
typedef struct {
|
||||
WEBP_CSP_MODE colorspace; // Colorspace.
|
||||
int width, height; // Dimensions.
|
||||
int is_external_memory; // If true, 'internal_memory' pointer is not used.
|
||||
union {
|
||||
WebPRGBABuffer RGBA;
|
||||
WebPYUVABuffer YUVA;
|
||||
} u; // Nameless union of buffer parameters.
|
||||
uint32_t pad[4]; // padding for later use
|
||||
|
||||
uint8_t* private_memory; // Internally allocated memory (only when
|
||||
// is_external_memory is false). Should not be used
|
||||
// externally, but accessed via the buffer union.
|
||||
} WebPDecBuffer;
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(int) WebPInitDecBufferInternal(WebPDecBuffer*, int);
|
||||
|
||||
// Initialize the structure as empty. Must be called before any other use.
|
||||
// Returns false in case of version mismatch
|
||||
static WEBP_INLINE int WebPInitDecBuffer(WebPDecBuffer* buffer) {
|
||||
return WebPInitDecBufferInternal(buffer, WEBP_DECODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Free any memory associated with the buffer. Must always be called last.
|
||||
// Note: doesn't free the 'buffer' structure itself.
|
||||
WEBP_EXTERN(void) WebPFreeDecBuffer(WebPDecBuffer* buffer);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Enumeration of the status codes
|
||||
|
||||
typedef enum {
|
||||
VP8_STATUS_OK = 0,
|
||||
VP8_STATUS_OUT_OF_MEMORY,
|
||||
VP8_STATUS_INVALID_PARAM,
|
||||
VP8_STATUS_BITSTREAM_ERROR,
|
||||
VP8_STATUS_UNSUPPORTED_FEATURE,
|
||||
VP8_STATUS_SUSPENDED,
|
||||
VP8_STATUS_USER_ABORT,
|
||||
VP8_STATUS_NOT_ENOUGH_DATA
|
||||
} VP8StatusCode;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Incremental decoding
|
||||
//
|
||||
// This API allows streamlined decoding of partial data.
|
||||
// Picture can be incrementally decoded as data become available thanks to the
|
||||
// WebPIDecoder object. This object can be left in a SUSPENDED state if the
|
||||
// picture is only partially decoded, pending additional input.
|
||||
// Code example:
|
||||
//
|
||||
// WebPInitDecBuffer(&buffer);
|
||||
// buffer.colorspace = mode;
|
||||
// ...
|
||||
// WebPIDecoder* idec = WebPINewDecoder(&buffer);
|
||||
// while (has_more_data) {
|
||||
// // ... (get additional data)
|
||||
// status = WebPIAppend(idec, new_data, new_data_size);
|
||||
// if (status != VP8_STATUS_SUSPENDED ||
|
||||
// break;
|
||||
// }
|
||||
//
|
||||
// // The above call decodes the current available buffer.
|
||||
// // Part of the image can now be refreshed by calling to
|
||||
// // WebPIDecGetRGB()/WebPIDecGetYUVA() etc.
|
||||
// }
|
||||
// WebPIDelete(idec);
|
||||
|
||||
typedef struct WebPIDecoder WebPIDecoder;
|
||||
|
||||
// Creates a new incremental decoder with the supplied buffer parameter.
|
||||
// This output_buffer can be passed NULL, in which case a default output buffer
|
||||
// is used (with MODE_RGB). Otherwise, an internal reference to 'output_buffer'
|
||||
// is kept, which means that the lifespan of 'output_buffer' must be larger than
|
||||
// that of the returned WebPIDecoder object.
|
||||
// Returns NULL if the allocation failed.
|
||||
WEBP_EXTERN(WebPIDecoder*) WebPINewDecoder(WebPDecBuffer* output_buffer);
|
||||
|
||||
// This function allocates and initializes an incremental-decoder object, which
|
||||
// will output the RGB/A samples specified by 'csp' into a preallocated
|
||||
// buffer 'output_buffer'. The size of this buffer is at least
|
||||
// 'output_buffer_size' and the stride (distance in bytes between two scanlines)
|
||||
// is specified by 'output_stride'. Returns NULL if the allocation failed.
|
||||
WEBP_EXTERN(WebPIDecoder*) WebPINewRGB(
|
||||
WEBP_CSP_MODE csp,
|
||||
uint8_t* output_buffer, size_t output_buffer_size, int output_stride);
|
||||
|
||||
// This function allocates and initializes an incremental-decoder object, which
|
||||
// will output the raw luma/chroma samples into a preallocated planes. The luma
|
||||
// plane is specified by its pointer 'luma', its size 'luma_size' and its stride
|
||||
// 'luma_stride'. Similarly, the chroma-u plane is specified by the 'u',
|
||||
// 'u_size' and 'u_stride' parameters, and the chroma-v plane by 'v'
|
||||
// and 'v_size'. And same for the alpha-plane. The 'a' pointer can be pass
|
||||
// NULL in case one is not interested in the transparency plane.
|
||||
// Returns NULL if the allocation failed.
|
||||
WEBP_EXTERN(WebPIDecoder*) WebPINewYUVA(
|
||||
uint8_t* luma, size_t luma_size, int luma_stride,
|
||||
uint8_t* u, size_t u_size, int u_stride,
|
||||
uint8_t* v, size_t v_size, int v_stride,
|
||||
uint8_t* a, size_t a_size, int a_stride);
|
||||
|
||||
// Deprecated version of the above, without the alpha plane.
|
||||
// Kept for backward compatibility.
|
||||
WEBP_EXTERN(WebPIDecoder*) WebPINewYUV(
|
||||
uint8_t* luma, size_t luma_size, int luma_stride,
|
||||
uint8_t* u, size_t u_size, int u_stride,
|
||||
uint8_t* v, size_t v_size, int v_stride);
|
||||
|
||||
// Deletes the WebPIDecoder object and associated memory. Must always be called
|
||||
// if WebPINewDecoder, WebPINewRGB or WebPINewYUV succeeded.
|
||||
WEBP_EXTERN(void) WebPIDelete(WebPIDecoder* idec);
|
||||
|
||||
// Copies and decodes the next available data. Returns VP8_STATUS_OK when
|
||||
// the image is successfully decoded. Returns VP8_STATUS_SUSPENDED when more
|
||||
// data is expected. Returns error in other cases.
|
||||
WEBP_EXTERN(VP8StatusCode) WebPIAppend(
|
||||
WebPIDecoder* idec, const uint8_t* data, size_t data_size);
|
||||
|
||||
// A variant of the above function to be used when data buffer contains
|
||||
// partial data from the beginning. In this case data buffer is not copied
|
||||
// to the internal memory.
|
||||
// Note that the value of the 'data' pointer can change between calls to
|
||||
// WebPIUpdate, for instance when the data buffer is resized to fit larger data.
|
||||
WEBP_EXTERN(VP8StatusCode) WebPIUpdate(
|
||||
WebPIDecoder* idec, const uint8_t* data, size_t data_size);
|
||||
|
||||
// Returns the RGB/A image decoded so far. Returns NULL if output params
|
||||
// are not initialized yet. The RGB/A output type corresponds to the colorspace
|
||||
// specified during call to WebPINewDecoder() or WebPINewRGB().
|
||||
// *last_y is the index of last decoded row in raster scan order. Some pointers
|
||||
// (*last_y, *width etc.) can be NULL if corresponding information is not
|
||||
// needed.
|
||||
WEBP_EXTERN(uint8_t*) WebPIDecGetRGB(
|
||||
const WebPIDecoder* idec, int* last_y,
|
||||
int* width, int* height, int* stride);
|
||||
|
||||
// Same as above function to get a YUVA image. Returns pointer to the luma
|
||||
// plane or NULL in case of error. If there is no alpha information
|
||||
// the alpha pointer '*a' will be returned NULL.
|
||||
WEBP_EXTERN(uint8_t*) WebPIDecGetYUVA(
|
||||
const WebPIDecoder* idec, int* last_y,
|
||||
uint8_t** u, uint8_t** v, uint8_t** a,
|
||||
int* width, int* height, int* stride, int* uv_stride, int* a_stride);
|
||||
|
||||
// Deprecated alpha-less version of WebPIDecGetYUVA(): it will ignore the
|
||||
// alpha information (if present). Kept for backward compatibility.
|
||||
static WEBP_INLINE uint8_t* WebPIDecGetYUV(
|
||||
const WebPIDecoder* idec, int* last_y, uint8_t** u, uint8_t** v,
|
||||
int* width, int* height, int* stride, int* uv_stride) {
|
||||
return WebPIDecGetYUVA(idec, last_y, u, v, NULL, width, height,
|
||||
stride, uv_stride, NULL);
|
||||
}
|
||||
|
||||
// Generic call to retrieve information about the displayable area.
|
||||
// If non NULL, the left/right/width/height pointers are filled with the visible
|
||||
// rectangular area so far.
|
||||
// Returns NULL in case the incremental decoder object is in an invalid state.
|
||||
// Otherwise returns the pointer to the internal representation. This structure
|
||||
// is read-only, tied to WebPIDecoder's lifespan and should not be modified.
|
||||
WEBP_EXTERN(const WebPDecBuffer*) WebPIDecodedArea(
|
||||
const WebPIDecoder* idec, int* left, int* top, int* width, int* height);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Advanced decoding parametrization
|
||||
//
|
||||
// Code sample for using the advanced decoding API
|
||||
/*
|
||||
// A) Init a configuration object
|
||||
WebPDecoderConfig config;
|
||||
CHECK(WebPInitDecoderConfig(&config));
|
||||
|
||||
// B) optional: retrieve the bitstream's features.
|
||||
CHECK(WebPGetFeatures(data, data_size, &config.input) == VP8_STATUS_OK);
|
||||
|
||||
// C) Adjust 'config', if needed
|
||||
config.no_fancy = 1;
|
||||
config.output.colorspace = MODE_BGRA;
|
||||
// etc.
|
||||
|
||||
// Note that you can also make config.output point to an externally
|
||||
// supplied memory buffer, provided it's big enough to store the decoded
|
||||
// picture. Otherwise, config.output will just be used to allocate memory
|
||||
// and store the decoded picture.
|
||||
|
||||
// D) Decode!
|
||||
CHECK(WebPDecode(data, data_size, &config) == VP8_STATUS_OK);
|
||||
|
||||
// E) Decoded image is now in config.output (and config.output.u.RGBA)
|
||||
|
||||
// F) Reclaim memory allocated in config's object. It's safe to call
|
||||
// this function even if the memory is external and wasn't allocated
|
||||
// by WebPDecode().
|
||||
WebPFreeDecBuffer(&config.output);
|
||||
*/
|
||||
|
||||
// Features gathered from the bitstream
|
||||
typedef struct {
|
||||
int width; // Width in pixels, as read from the bitstream.
|
||||
int height; // Height in pixels, as read from the bitstream.
|
||||
int has_alpha; // True if the bitstream contains an alpha channel.
|
||||
|
||||
// Unused for now:
|
||||
int bitstream_version; // should be 0 for now. TODO(later)
|
||||
int no_incremental_decoding; // if true, using incremental decoding is not
|
||||
// recommended.
|
||||
int rotate; // TODO(later)
|
||||
int uv_sampling; // should be 0 for now. TODO(later)
|
||||
uint32_t pad[3]; // padding for later use
|
||||
} WebPBitstreamFeatures;
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(VP8StatusCode) WebPGetFeaturesInternal(
|
||||
const uint8_t*, size_t, WebPBitstreamFeatures*, int);
|
||||
|
||||
// Retrieve features from the bitstream. The *features structure is filled
|
||||
// with information gathered from the bitstream.
|
||||
// Returns false in case of error or version mismatch.
|
||||
// In case of error, features->bitstream_status will reflect the error code.
|
||||
static WEBP_INLINE VP8StatusCode WebPGetFeatures(
|
||||
const uint8_t* data, size_t data_size,
|
||||
WebPBitstreamFeatures* features) {
|
||||
return WebPGetFeaturesInternal(data, data_size, features,
|
||||
WEBP_DECODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Decoding options
|
||||
typedef struct {
|
||||
int bypass_filtering; // if true, skip the in-loop filtering
|
||||
int no_fancy_upsampling; // if true, use faster pointwise upsampler
|
||||
int use_cropping; // if true, cropping is applied _first_
|
||||
int crop_left, crop_top; // top-left position for cropping.
|
||||
// Will be snapped to even values.
|
||||
int crop_width, crop_height; // dimension of the cropping area
|
||||
int use_scaling; // if true, scaling is applied _afterward_
|
||||
int scaled_width, scaled_height; // final resolution
|
||||
int use_threads; // if true, use multi-threaded decoding
|
||||
|
||||
// Unused for now:
|
||||
int force_rotation; // forced rotation (to be applied _last_)
|
||||
int no_enhancement; // if true, discard enhancement layer
|
||||
uint32_t pad[6]; // padding for later use
|
||||
} WebPDecoderOptions;
|
||||
|
||||
// Main object storing the configuration for advanced decoding.
|
||||
typedef struct {
|
||||
WebPBitstreamFeatures input; // Immutable bitstream features (optional)
|
||||
WebPDecBuffer output; // Output buffer (can point to external mem)
|
||||
WebPDecoderOptions options; // Decoding options
|
||||
} WebPDecoderConfig;
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(int) WebPInitDecoderConfigInternal(WebPDecoderConfig*, int);
|
||||
|
||||
// Initialize the configuration as empty. This function must always be
|
||||
// called first, unless WebPGetFeatures() is to be called.
|
||||
// Returns false in case of mismatched version.
|
||||
static WEBP_INLINE int WebPInitDecoderConfig(WebPDecoderConfig* config) {
|
||||
return WebPInitDecoderConfigInternal(config, WEBP_DECODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Instantiate a new incremental decoder object with the requested
|
||||
// configuration. The bitstream can be passed using 'data' and 'data_size'
|
||||
// parameter, in which case the features will be parsed and stored into
|
||||
// config->input. Otherwise, 'data' can be NULL and no parsing will occur.
|
||||
// Note that 'config' can be NULL too, in which case a default configuration
|
||||
// is used.
|
||||
// The return WebPIDecoder object must always be deleted calling WebPIDelete().
|
||||
// Returns NULL in case of error (and config->status will then reflect
|
||||
// the error condition).
|
||||
WEBP_EXTERN(WebPIDecoder*) WebPIDecode(const uint8_t* data, size_t data_size,
|
||||
WebPDecoderConfig* config);
|
||||
|
||||
// Non-incremental version. This version decodes the full data at once, taking
|
||||
// 'config' into account. Returns decoding status (which should be VP8_STATUS_OK
|
||||
// if the decoding was successful).
|
||||
WEBP_EXTERN(VP8StatusCode) WebPDecode(const uint8_t* data, size_t data_size,
|
||||
WebPDecoderConfig* config);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_WEBP_DECODE_H_ */
|
|
@ -1,85 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// CPU detection
|
||||
//
|
||||
// Author: Christian Duvivier (cduvivier@google.com)
|
||||
|
||||
#include "./dsp.h"
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
#include <cpu-features.h>
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// SSE2 detection.
|
||||
//
|
||||
|
||||
// apple/darwin gcc-4.0.1 defines __PIC__, but not __pic__ with -fPIC.
|
||||
#if (defined(__pic__) || defined(__PIC__)) && defined(__i386__)
|
||||
static WEBP_INLINE void GetCPUInfo(int cpu_info[4], int info_type) {
|
||||
__asm__ volatile (
|
||||
"mov %%ebx, %%edi\n"
|
||||
"cpuid\n"
|
||||
"xchg %%edi, %%ebx\n"
|
||||
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
|
||||
: "a"(info_type));
|
||||
}
|
||||
#elif defined(__i386__) || defined(__x86_64__)
|
||||
static WEBP_INLINE void GetCPUInfo(int cpu_info[4], int info_type) {
|
||||
__asm__ volatile (
|
||||
"cpuid\n"
|
||||
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
|
||||
: "a"(info_type));
|
||||
}
|
||||
#elif defined(WEBP_MSC_SSE2)
|
||||
#define GetCPUInfo __cpuid
|
||||
#endif
|
||||
|
||||
#if defined(__i386__) || defined(__x86_64__) || defined(WEBP_MSC_SSE2)
|
||||
static int x86CPUInfo(CPUFeature feature) {
|
||||
int cpu_info[4];
|
||||
GetCPUInfo(cpu_info, 1);
|
||||
if (feature == kSSE2) {
|
||||
return 0 != (cpu_info[3] & 0x04000000);
|
||||
}
|
||||
if (feature == kSSE3) {
|
||||
return 0 != (cpu_info[2] & 0x00000001);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
VP8CPUInfo VP8GetCPUInfo = x86CPUInfo;
|
||||
#elif defined(WEBP_ANDROID_NEON)
|
||||
static int AndroidCPUInfo(CPUFeature feature) {
|
||||
const AndroidCpuFamily cpu_family = android_getCpuFamily();
|
||||
const uint64_t cpu_features = android_getCpuFeatures();
|
||||
if (feature == kNEON) {
|
||||
return (cpu_family == ANDROID_CPU_FAMILY_ARM &&
|
||||
0 != (cpu_features & ANDROID_CPU_ARM_FEATURE_NEON));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
VP8CPUInfo VP8GetCPUInfo = AndroidCPUInfo;
|
||||
#elif defined(__ARM_NEON__)
|
||||
// define a dummy function to enable turning off NEON at runtime by setting
|
||||
// VP8DecGetCPUInfo = NULL
|
||||
static int armCPUInfo(CPUFeature feature) {
|
||||
(void)feature;
|
||||
return 1;
|
||||
}
|
||||
VP8CPUInfo VP8GetCPUInfo = armCPUInfo;
|
||||
#else
|
||||
VP8CPUInfo VP8GetCPUInfo = NULL;
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,732 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Speed-critical decoding functions.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "./dsp.h"
|
||||
#include "../dec/vp8i.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// run-time tables (~4k)
|
||||
|
||||
static uint8_t abs0[255 + 255 + 1]; // abs(i)
|
||||
static uint8_t abs1[255 + 255 + 1]; // abs(i)>>1
|
||||
static int8_t sclip1[1020 + 1020 + 1]; // clips [-1020, 1020] to [-128, 127]
|
||||
static int8_t sclip2[112 + 112 + 1]; // clips [-112, 112] to [-16, 15]
|
||||
static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
|
||||
|
||||
// We declare this variable 'volatile' to prevent instruction reordering
|
||||
// and make sure it's set to true _last_ (so as to be thread-safe)
|
||||
static volatile int tables_ok = 0;
|
||||
|
||||
static void DspInitTables(void) {
|
||||
if (!tables_ok) {
|
||||
int i;
|
||||
for (i = -255; i <= 255; ++i) {
|
||||
abs0[255 + i] = (i < 0) ? -i : i;
|
||||
abs1[255 + i] = abs0[255 + i] >> 1;
|
||||
}
|
||||
for (i = -1020; i <= 1020; ++i) {
|
||||
sclip1[1020 + i] = (i < -128) ? -128 : (i > 127) ? 127 : i;
|
||||
}
|
||||
for (i = -112; i <= 112; ++i) {
|
||||
sclip2[112 + i] = (i < -16) ? -16 : (i > 15) ? 15 : i;
|
||||
}
|
||||
for (i = -255; i <= 255 + 255; ++i) {
|
||||
clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
|
||||
}
|
||||
tables_ok = 1;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t clip_8b(int v) {
|
||||
return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Transforms (Paragraph 14.4)
|
||||
|
||||
#define STORE(x, y, v) \
|
||||
dst[x + y * BPS] = clip_8b(dst[x + y * BPS] + ((v) >> 3))
|
||||
|
||||
static const int kC1 = 20091 + (1 << 16);
|
||||
static const int kC2 = 35468;
|
||||
#define MUL(a, b) (((a) * (b)) >> 16)
|
||||
|
||||
static void TransformOne(const int16_t* in, uint8_t* dst) {
|
||||
int C[4 * 4], *tmp;
|
||||
int i;
|
||||
tmp = C;
|
||||
for (i = 0; i < 4; ++i) { // vertical pass
|
||||
const int a = in[0] + in[8]; // [-4096, 4094]
|
||||
const int b = in[0] - in[8]; // [-4095, 4095]
|
||||
const int c = MUL(in[4], kC2) - MUL(in[12], kC1); // [-3783, 3783]
|
||||
const int d = MUL(in[4], kC1) + MUL(in[12], kC2); // [-3785, 3781]
|
||||
tmp[0] = a + d; // [-7881, 7875]
|
||||
tmp[1] = b + c; // [-7878, 7878]
|
||||
tmp[2] = b - c; // [-7878, 7878]
|
||||
tmp[3] = a - d; // [-7877, 7879]
|
||||
tmp += 4;
|
||||
in++;
|
||||
}
|
||||
// Each pass is expanding the dynamic range by ~3.85 (upper bound).
|
||||
// The exact value is (2. + (kC1 + kC2) / 65536).
|
||||
// After the second pass, maximum interval is [-3794, 3794], assuming
|
||||
// an input in [-2048, 2047] interval. We then need to add a dst value
|
||||
// in the [0, 255] range.
|
||||
// In the worst case scenario, the input to clip_8b() can be as large as
|
||||
// [-60713, 60968].
|
||||
tmp = C;
|
||||
for (i = 0; i < 4; ++i) { // horizontal pass
|
||||
const int dc = tmp[0] + 4;
|
||||
const int a = dc + tmp[8];
|
||||
const int b = dc - tmp[8];
|
||||
const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
|
||||
const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
|
||||
STORE(0, 0, a + d);
|
||||
STORE(1, 0, b + c);
|
||||
STORE(2, 0, b - c);
|
||||
STORE(3, 0, a - d);
|
||||
tmp++;
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
#undef MUL
|
||||
|
||||
static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) {
|
||||
TransformOne(in, dst);
|
||||
if (do_two) {
|
||||
TransformOne(in + 16, dst + 4);
|
||||
}
|
||||
}
|
||||
|
||||
static void TransformUV(const int16_t* in, uint8_t* dst) {
|
||||
VP8Transform(in + 0 * 16, dst, 1);
|
||||
VP8Transform(in + 2 * 16, dst + 4 * BPS, 1);
|
||||
}
|
||||
|
||||
static void TransformDC(const int16_t *in, uint8_t* dst) {
|
||||
const int DC = in[0] + 4;
|
||||
int i, j;
|
||||
for (j = 0; j < 4; ++j) {
|
||||
for (i = 0; i < 4; ++i) {
|
||||
STORE(i, j, DC);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void TransformDCUV(const int16_t* in, uint8_t* dst) {
|
||||
if (in[0 * 16]) TransformDC(in + 0 * 16, dst);
|
||||
if (in[1 * 16]) TransformDC(in + 1 * 16, dst + 4);
|
||||
if (in[2 * 16]) TransformDC(in + 2 * 16, dst + 4 * BPS);
|
||||
if (in[3 * 16]) TransformDC(in + 3 * 16, dst + 4 * BPS + 4);
|
||||
}
|
||||
|
||||
#undef STORE
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Paragraph 14.3
|
||||
|
||||
static void TransformWHT(const int16_t* in, int16_t* out) {
|
||||
int tmp[16];
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const int a0 = in[0 + i] + in[12 + i];
|
||||
const int a1 = in[4 + i] + in[ 8 + i];
|
||||
const int a2 = in[4 + i] - in[ 8 + i];
|
||||
const int a3 = in[0 + i] - in[12 + i];
|
||||
tmp[0 + i] = a0 + a1;
|
||||
tmp[8 + i] = a0 - a1;
|
||||
tmp[4 + i] = a3 + a2;
|
||||
tmp[12 + i] = a3 - a2;
|
||||
}
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const int dc = tmp[0 + i * 4] + 3; // w/ rounder
|
||||
const int a0 = dc + tmp[3 + i * 4];
|
||||
const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
|
||||
const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
|
||||
const int a3 = dc - tmp[3 + i * 4];
|
||||
out[ 0] = (a0 + a1) >> 3;
|
||||
out[16] = (a3 + a2) >> 3;
|
||||
out[32] = (a0 - a1) >> 3;
|
||||
out[48] = (a3 - a2) >> 3;
|
||||
out += 64;
|
||||
}
|
||||
}
|
||||
|
||||
void (*VP8TransformWHT)(const int16_t* in, int16_t* out) = TransformWHT;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Intra predictions
|
||||
|
||||
#define DST(x, y) dst[(x) + (y) * BPS]
|
||||
|
||||
static WEBP_INLINE void TrueMotion(uint8_t *dst, int size) {
|
||||
const uint8_t* top = dst - BPS;
|
||||
const uint8_t* const clip0 = clip1 + 255 - top[-1];
|
||||
int y;
|
||||
for (y = 0; y < size; ++y) {
|
||||
const uint8_t* const clip = clip0 + dst[-1];
|
||||
int x;
|
||||
for (x = 0; x < size; ++x) {
|
||||
dst[x] = clip[top[x]];
|
||||
}
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
static void TM4(uint8_t *dst) { TrueMotion(dst, 4); }
|
||||
static void TM8uv(uint8_t *dst) { TrueMotion(dst, 8); }
|
||||
static void TM16(uint8_t *dst) { TrueMotion(dst, 16); }
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// 16x16
|
||||
|
||||
static void VE16(uint8_t *dst) { // vertical
|
||||
int j;
|
||||
for (j = 0; j < 16; ++j) {
|
||||
memcpy(dst + j * BPS, dst - BPS, 16);
|
||||
}
|
||||
}
|
||||
|
||||
static void HE16(uint8_t *dst) { // horizontal
|
||||
int j;
|
||||
for (j = 16; j > 0; --j) {
|
||||
memset(dst, dst[-1], 16);
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void Put16(int v, uint8_t* dst) {
|
||||
int j;
|
||||
for (j = 0; j < 16; ++j) {
|
||||
memset(dst + j * BPS, v, 16);
|
||||
}
|
||||
}
|
||||
|
||||
static void DC16(uint8_t *dst) { // DC
|
||||
int DC = 16;
|
||||
int j;
|
||||
for (j = 0; j < 16; ++j) {
|
||||
DC += dst[-1 + j * BPS] + dst[j - BPS];
|
||||
}
|
||||
Put16(DC >> 5, dst);
|
||||
}
|
||||
|
||||
static void DC16NoTop(uint8_t *dst) { // DC with top samples not available
|
||||
int DC = 8;
|
||||
int j;
|
||||
for (j = 0; j < 16; ++j) {
|
||||
DC += dst[-1 + j * BPS];
|
||||
}
|
||||
Put16(DC >> 4, dst);
|
||||
}
|
||||
|
||||
static void DC16NoLeft(uint8_t *dst) { // DC with left samples not available
|
||||
int DC = 8;
|
||||
int i;
|
||||
for (i = 0; i < 16; ++i) {
|
||||
DC += dst[i - BPS];
|
||||
}
|
||||
Put16(DC >> 4, dst);
|
||||
}
|
||||
|
||||
static void DC16NoTopLeft(uint8_t *dst) { // DC with no top and left samples
|
||||
Put16(0x80, dst);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// 4x4
|
||||
|
||||
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
|
||||
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
|
||||
|
||||
static void VE4(uint8_t *dst) { // vertical
|
||||
const uint8_t* top = dst - BPS;
|
||||
const uint8_t vals[4] = {
|
||||
AVG3(top[-1], top[0], top[1]),
|
||||
AVG3(top[ 0], top[1], top[2]),
|
||||
AVG3(top[ 1], top[2], top[3]),
|
||||
AVG3(top[ 2], top[3], top[4])
|
||||
};
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
memcpy(dst + i * BPS, vals, sizeof(vals));
|
||||
}
|
||||
}
|
||||
|
||||
static void HE4(uint8_t *dst) { // horizontal
|
||||
const int A = dst[-1 - BPS];
|
||||
const int B = dst[-1];
|
||||
const int C = dst[-1 + BPS];
|
||||
const int D = dst[-1 + 2 * BPS];
|
||||
const int E = dst[-1 + 3 * BPS];
|
||||
*(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(A, B, C);
|
||||
*(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(B, C, D);
|
||||
*(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(C, D, E);
|
||||
*(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(D, E, E);
|
||||
}
|
||||
|
||||
static void DC4(uint8_t *dst) { // DC
|
||||
uint32_t dc = 4;
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS];
|
||||
dc >>= 3;
|
||||
for (i = 0; i < 4; ++i) memset(dst + i * BPS, dc, 4);
|
||||
}
|
||||
|
||||
static void RD4(uint8_t *dst) { // Down-right
|
||||
const int I = dst[-1 + 0 * BPS];
|
||||
const int J = dst[-1 + 1 * BPS];
|
||||
const int K = dst[-1 + 2 * BPS];
|
||||
const int L = dst[-1 + 3 * BPS];
|
||||
const int X = dst[-1 - BPS];
|
||||
const int A = dst[0 - BPS];
|
||||
const int B = dst[1 - BPS];
|
||||
const int C = dst[2 - BPS];
|
||||
const int D = dst[3 - BPS];
|
||||
DST(0, 3) = AVG3(J, K, L);
|
||||
DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
|
||||
DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
|
||||
DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
|
||||
DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
|
||||
DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
|
||||
DST(3, 0) = AVG3(D, C, B);
|
||||
}
|
||||
|
||||
static void LD4(uint8_t *dst) { // Down-Left
|
||||
const int A = dst[0 - BPS];
|
||||
const int B = dst[1 - BPS];
|
||||
const int C = dst[2 - BPS];
|
||||
const int D = dst[3 - BPS];
|
||||
const int E = dst[4 - BPS];
|
||||
const int F = dst[5 - BPS];
|
||||
const int G = dst[6 - BPS];
|
||||
const int H = dst[7 - BPS];
|
||||
DST(0, 0) = AVG3(A, B, C);
|
||||
DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
|
||||
DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
|
||||
DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
|
||||
DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
|
||||
DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
|
||||
DST(3, 3) = AVG3(G, H, H);
|
||||
}
|
||||
|
||||
static void VR4(uint8_t *dst) { // Vertical-Right
|
||||
const int I = dst[-1 + 0 * BPS];
|
||||
const int J = dst[-1 + 1 * BPS];
|
||||
const int K = dst[-1 + 2 * BPS];
|
||||
const int X = dst[-1 - BPS];
|
||||
const int A = dst[0 - BPS];
|
||||
const int B = dst[1 - BPS];
|
||||
const int C = dst[2 - BPS];
|
||||
const int D = dst[3 - BPS];
|
||||
DST(0, 0) = DST(1, 2) = AVG2(X, A);
|
||||
DST(1, 0) = DST(2, 2) = AVG2(A, B);
|
||||
DST(2, 0) = DST(3, 2) = AVG2(B, C);
|
||||
DST(3, 0) = AVG2(C, D);
|
||||
|
||||
DST(0, 3) = AVG3(K, J, I);
|
||||
DST(0, 2) = AVG3(J, I, X);
|
||||
DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
|
||||
DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
|
||||
DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
|
||||
DST(3, 1) = AVG3(B, C, D);
|
||||
}
|
||||
|
||||
static void VL4(uint8_t *dst) { // Vertical-Left
|
||||
const int A = dst[0 - BPS];
|
||||
const int B = dst[1 - BPS];
|
||||
const int C = dst[2 - BPS];
|
||||
const int D = dst[3 - BPS];
|
||||
const int E = dst[4 - BPS];
|
||||
const int F = dst[5 - BPS];
|
||||
const int G = dst[6 - BPS];
|
||||
const int H = dst[7 - BPS];
|
||||
DST(0, 0) = AVG2(A, B);
|
||||
DST(1, 0) = DST(0, 2) = AVG2(B, C);
|
||||
DST(2, 0) = DST(1, 2) = AVG2(C, D);
|
||||
DST(3, 0) = DST(2, 2) = AVG2(D, E);
|
||||
|
||||
DST(0, 1) = AVG3(A, B, C);
|
||||
DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
|
||||
DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
|
||||
DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
|
||||
DST(3, 2) = AVG3(E, F, G);
|
||||
DST(3, 3) = AVG3(F, G, H);
|
||||
}
|
||||
|
||||
static void HU4(uint8_t *dst) { // Horizontal-Up
|
||||
const int I = dst[-1 + 0 * BPS];
|
||||
const int J = dst[-1 + 1 * BPS];
|
||||
const int K = dst[-1 + 2 * BPS];
|
||||
const int L = dst[-1 + 3 * BPS];
|
||||
DST(0, 0) = AVG2(I, J);
|
||||
DST(2, 0) = DST(0, 1) = AVG2(J, K);
|
||||
DST(2, 1) = DST(0, 2) = AVG2(K, L);
|
||||
DST(1, 0) = AVG3(I, J, K);
|
||||
DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
|
||||
DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
|
||||
DST(3, 2) = DST(2, 2) =
|
||||
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
|
||||
}
|
||||
|
||||
static void HD4(uint8_t *dst) { // Horizontal-Down
|
||||
const int I = dst[-1 + 0 * BPS];
|
||||
const int J = dst[-1 + 1 * BPS];
|
||||
const int K = dst[-1 + 2 * BPS];
|
||||
const int L = dst[-1 + 3 * BPS];
|
||||
const int X = dst[-1 - BPS];
|
||||
const int A = dst[0 - BPS];
|
||||
const int B = dst[1 - BPS];
|
||||
const int C = dst[2 - BPS];
|
||||
|
||||
DST(0, 0) = DST(2, 1) = AVG2(I, X);
|
||||
DST(0, 1) = DST(2, 2) = AVG2(J, I);
|
||||
DST(0, 2) = DST(2, 3) = AVG2(K, J);
|
||||
DST(0, 3) = AVG2(L, K);
|
||||
|
||||
DST(3, 0) = AVG3(A, B, C);
|
||||
DST(2, 0) = AVG3(X, A, B);
|
||||
DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
|
||||
DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
|
||||
DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
|
||||
DST(1, 3) = AVG3(L, K, J);
|
||||
}
|
||||
|
||||
#undef DST
|
||||
#undef AVG3
|
||||
#undef AVG2
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chroma
|
||||
|
||||
static void VE8uv(uint8_t *dst) { // vertical
|
||||
int j;
|
||||
for (j = 0; j < 8; ++j) {
|
||||
memcpy(dst + j * BPS, dst - BPS, 8);
|
||||
}
|
||||
}
|
||||
|
||||
static void HE8uv(uint8_t *dst) { // horizontal
|
||||
int j;
|
||||
for (j = 0; j < 8; ++j) {
|
||||
memset(dst, dst[-1], 8);
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
|
||||
// helper for chroma-DC predictions
|
||||
static WEBP_INLINE void Put8x8uv(uint64_t v, uint8_t* dst) {
|
||||
int j;
|
||||
for (j = 0; j < 8; ++j) {
|
||||
*(uint64_t*)(dst + j * BPS) = v;
|
||||
}
|
||||
}
|
||||
|
||||
static void DC8uv(uint8_t *dst) { // DC
|
||||
int dc0 = 8;
|
||||
int i;
|
||||
for (i = 0; i < 8; ++i) {
|
||||
dc0 += dst[i - BPS] + dst[-1 + i * BPS];
|
||||
}
|
||||
Put8x8uv((uint64_t)((dc0 >> 4) * 0x0101010101010101ULL), dst);
|
||||
}
|
||||
|
||||
static void DC8uvNoLeft(uint8_t *dst) { // DC with no left samples
|
||||
int dc0 = 4;
|
||||
int i;
|
||||
for (i = 0; i < 8; ++i) {
|
||||
dc0 += dst[i - BPS];
|
||||
}
|
||||
Put8x8uv((uint64_t)((dc0 >> 3) * 0x0101010101010101ULL), dst);
|
||||
}
|
||||
|
||||
static void DC8uvNoTop(uint8_t *dst) { // DC with no top samples
|
||||
int dc0 = 4;
|
||||
int i;
|
||||
for (i = 0; i < 8; ++i) {
|
||||
dc0 += dst[-1 + i * BPS];
|
||||
}
|
||||
Put8x8uv((uint64_t)((dc0 >> 3) * 0x0101010101010101ULL), dst);
|
||||
}
|
||||
|
||||
static void DC8uvNoTopLeft(uint8_t *dst) { // DC with nothing
|
||||
Put8x8uv(0x8080808080808080ULL, dst);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// default C implementations
|
||||
|
||||
const VP8PredFunc VP8PredLuma4[NUM_BMODES] = {
|
||||
DC4, TM4, VE4, HE4, RD4, VR4, LD4, VL4, HD4, HU4
|
||||
};
|
||||
|
||||
const VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES] = {
|
||||
DC16, TM16, VE16, HE16,
|
||||
DC16NoTop, DC16NoLeft, DC16NoTopLeft
|
||||
};
|
||||
|
||||
const VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES] = {
|
||||
DC8uv, TM8uv, VE8uv, HE8uv,
|
||||
DC8uvNoTop, DC8uvNoLeft, DC8uvNoTopLeft
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Edge filtering functions
|
||||
|
||||
// 4 pixels in, 2 pixels out
|
||||
static WEBP_INLINE void do_filter2(uint8_t* p, int step) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
const int a = 3 * (q0 - p0) + sclip1[1020 + p1 - q1];
|
||||
const int a1 = sclip2[112 + ((a + 4) >> 3)];
|
||||
const int a2 = sclip2[112 + ((a + 3) >> 3)];
|
||||
p[-step] = clip1[255 + p0 + a2];
|
||||
p[ 0] = clip1[255 + q0 - a1];
|
||||
}
|
||||
|
||||
// 4 pixels in, 4 pixels out
|
||||
static WEBP_INLINE void do_filter4(uint8_t* p, int step) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
const int a = 3 * (q0 - p0);
|
||||
const int a1 = sclip2[112 + ((a + 4) >> 3)];
|
||||
const int a2 = sclip2[112 + ((a + 3) >> 3)];
|
||||
const int a3 = (a1 + 1) >> 1;
|
||||
p[-2*step] = clip1[255 + p1 + a3];
|
||||
p[- step] = clip1[255 + p0 + a2];
|
||||
p[ 0] = clip1[255 + q0 - a1];
|
||||
p[ step] = clip1[255 + q1 - a3];
|
||||
}
|
||||
|
||||
// 6 pixels in, 6 pixels out
|
||||
static WEBP_INLINE void do_filter6(uint8_t* p, int step) {
|
||||
const int p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step];
|
||||
const int q0 = p[0], q1 = p[step], q2 = p[2*step];
|
||||
const int a = sclip1[1020 + 3 * (q0 - p0) + sclip1[1020 + p1 - q1]];
|
||||
const int a1 = (27 * a + 63) >> 7; // eq. to ((3 * a + 7) * 9) >> 7
|
||||
const int a2 = (18 * a + 63) >> 7; // eq. to ((2 * a + 7) * 9) >> 7
|
||||
const int a3 = (9 * a + 63) >> 7; // eq. to ((1 * a + 7) * 9) >> 7
|
||||
p[-3*step] = clip1[255 + p2 + a3];
|
||||
p[-2*step] = clip1[255 + p1 + a2];
|
||||
p[- step] = clip1[255 + p0 + a1];
|
||||
p[ 0] = clip1[255 + q0 - a1];
|
||||
p[ step] = clip1[255 + q1 - a2];
|
||||
p[ 2*step] = clip1[255 + q2 - a3];
|
||||
}
|
||||
|
||||
static WEBP_INLINE int hev(const uint8_t* p, int step, int thresh) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
return (abs0[255 + p1 - p0] > thresh) || (abs0[255 + q1 - q0] > thresh);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int needs_filter(const uint8_t* p, int step, int thresh) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
return (2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) <= thresh;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int needs_filter2(const uint8_t* p,
|
||||
int step, int t, int it) {
|
||||
const int p3 = p[-4*step], p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step];
|
||||
const int q0 = p[0], q1 = p[step], q2 = p[2*step], q3 = p[3*step];
|
||||
if ((2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) > t)
|
||||
return 0;
|
||||
return abs0[255 + p3 - p2] <= it && abs0[255 + p2 - p1] <= it &&
|
||||
abs0[255 + p1 - p0] <= it && abs0[255 + q3 - q2] <= it &&
|
||||
abs0[255 + q2 - q1] <= it && abs0[255 + q1 - q0] <= it;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Simple In-loop filtering (Paragraph 15.2)
|
||||
|
||||
static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
|
||||
int i;
|
||||
for (i = 0; i < 16; ++i) {
|
||||
if (needs_filter(p + i, stride, thresh)) {
|
||||
do_filter2(p + i, stride);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
|
||||
int i;
|
||||
for (i = 0; i < 16; ++i) {
|
||||
if (needs_filter(p + i * stride, 1, thresh)) {
|
||||
do_filter2(p + i * stride, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4 * stride;
|
||||
SimpleVFilter16(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4;
|
||||
SimpleHFilter16(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Complex In-loop filtering (Paragraph 15.3)
|
||||
|
||||
static WEBP_INLINE void FilterLoop26(uint8_t* p,
|
||||
int hstride, int vstride, int size,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
while (size-- > 0) {
|
||||
if (needs_filter2(p, hstride, thresh, ithresh)) {
|
||||
if (hev(p, hstride, hev_thresh)) {
|
||||
do_filter2(p, hstride);
|
||||
} else {
|
||||
do_filter6(p, hstride);
|
||||
}
|
||||
}
|
||||
p += vstride;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void FilterLoop24(uint8_t* p,
|
||||
int hstride, int vstride, int size,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
while (size-- > 0) {
|
||||
if (needs_filter2(p, hstride, thresh, ithresh)) {
|
||||
if (hev(p, hstride, hev_thresh)) {
|
||||
do_filter2(p, hstride);
|
||||
} else {
|
||||
do_filter4(p, hstride);
|
||||
}
|
||||
}
|
||||
p += vstride;
|
||||
}
|
||||
}
|
||||
|
||||
// on macroblock edges
|
||||
static void VFilter16(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop26(p, stride, 1, 16, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
static void HFilter16(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop26(p, 1, stride, 16, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
// on three inner edges
|
||||
static void VFilter16i(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4 * stride;
|
||||
FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void HFilter16i(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4;
|
||||
FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
// 8-pixels wide variant, for chroma filtering
|
||||
static void VFilter8(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop26(u, stride, 1, 8, thresh, ithresh, hev_thresh);
|
||||
FilterLoop26(v, stride, 1, 8, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
static void HFilter8(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop26(u, 1, stride, 8, thresh, ithresh, hev_thresh);
|
||||
FilterLoop26(v, 1, stride, 8, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
|
||||
FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
|
||||
FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
VP8DecIdct2 VP8Transform;
|
||||
VP8DecIdct VP8TransformUV;
|
||||
VP8DecIdct VP8TransformDC;
|
||||
VP8DecIdct VP8TransformDCUV;
|
||||
|
||||
VP8LumaFilterFunc VP8VFilter16;
|
||||
VP8LumaFilterFunc VP8HFilter16;
|
||||
VP8ChromaFilterFunc VP8VFilter8;
|
||||
VP8ChromaFilterFunc VP8HFilter8;
|
||||
VP8LumaFilterFunc VP8VFilter16i;
|
||||
VP8LumaFilterFunc VP8HFilter16i;
|
||||
VP8ChromaFilterFunc VP8VFilter8i;
|
||||
VP8ChromaFilterFunc VP8HFilter8i;
|
||||
VP8SimpleFilterFunc VP8SimpleVFilter16;
|
||||
VP8SimpleFilterFunc VP8SimpleHFilter16;
|
||||
VP8SimpleFilterFunc VP8SimpleVFilter16i;
|
||||
VP8SimpleFilterFunc VP8SimpleHFilter16i;
|
||||
|
||||
extern void VP8DspInitSSE2(void);
|
||||
extern void VP8DspInitNEON(void);
|
||||
|
||||
void VP8DspInit(void) {
|
||||
DspInitTables();
|
||||
|
||||
VP8Transform = TransformTwo;
|
||||
VP8TransformUV = TransformUV;
|
||||
VP8TransformDC = TransformDC;
|
||||
VP8TransformDCUV = TransformDCUV;
|
||||
|
||||
VP8VFilter16 = VFilter16;
|
||||
VP8HFilter16 = HFilter16;
|
||||
VP8VFilter8 = VFilter8;
|
||||
VP8HFilter8 = HFilter8;
|
||||
VP8VFilter16i = VFilter16i;
|
||||
VP8HFilter16i = HFilter16i;
|
||||
VP8VFilter8i = VFilter8i;
|
||||
VP8HFilter8i = HFilter8i;
|
||||
VP8SimpleVFilter16 = SimpleVFilter16;
|
||||
VP8SimpleHFilter16 = SimpleHFilter16;
|
||||
VP8SimpleVFilter16i = SimpleVFilter16i;
|
||||
VP8SimpleHFilter16i = SimpleHFilter16i;
|
||||
|
||||
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
||||
if (VP8GetCPUInfo) {
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
if (VP8GetCPUInfo(kSSE2)) {
|
||||
VP8DspInitSSE2();
|
||||
}
|
||||
#elif defined(WEBP_USE_NEON)
|
||||
if (VP8GetCPUInfo(kNEON)) {
|
||||
VP8DspInitNEON();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,329 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// ARM NEON version of dsp functions and loop filtering.
|
||||
//
|
||||
// Authors: Somnath Banerjee (somnath@google.com)
|
||||
// Johann Koenig (johannkoenig@google.com)
|
||||
|
||||
#include "./dsp.h"
|
||||
|
||||
#if defined(WEBP_USE_NEON)
|
||||
|
||||
#include "../dec/vp8i.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define QRegs "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", \
|
||||
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15"
|
||||
|
||||
#define FLIP_SIGN_BIT2(a, b, s) \
|
||||
"veor " #a "," #a "," #s " \n" \
|
||||
"veor " #b "," #b "," #s " \n" \
|
||||
|
||||
#define FLIP_SIGN_BIT4(a, b, c, d, s) \
|
||||
FLIP_SIGN_BIT2(a, b, s) \
|
||||
FLIP_SIGN_BIT2(c, d, s) \
|
||||
|
||||
#define NEEDS_FILTER(p1, p0, q0, q1, thresh, mask) \
|
||||
"vabd.u8 q15," #p0 "," #q0 " \n" /* abs(p0 - q0) */ \
|
||||
"vabd.u8 q14," #p1 "," #q1 " \n" /* abs(p1 - q1) */ \
|
||||
"vqadd.u8 q15, q15, q15 \n" /* abs(p0 - q0) * 2 */ \
|
||||
"vshr.u8 q14, q14, #1 \n" /* abs(p1 - q1) / 2 */ \
|
||||
"vqadd.u8 q15, q15, q14 \n" /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 */ \
|
||||
"vdup.8 q14, " #thresh " \n" \
|
||||
"vcge.u8 " #mask ", q14, q15 \n" /* mask <= thresh */
|
||||
|
||||
#define GET_BASE_DELTA(p1, p0, q0, q1, o) \
|
||||
"vqsub.s8 q15," #q0 "," #p0 " \n" /* (q0 - p0) */ \
|
||||
"vqsub.s8 " #o "," #p1 "," #q1 " \n" /* (p1 - q1) */ \
|
||||
"vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 1 * (p0 - q0) */ \
|
||||
"vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 2 * (p0 - q0) */ \
|
||||
"vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 3 * (p0 - q0) */
|
||||
|
||||
#define DO_SIMPLE_FILTER(p0, q0, fl) \
|
||||
"vmov.i8 q15, #0x03 \n" \
|
||||
"vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 3 */ \
|
||||
"vshr.s8 q15, q15, #3 \n" /* filter1 >> 3 */ \
|
||||
"vqadd.s8 " #p0 "," #p0 ", q15 \n" /* p0 += filter1 */ \
|
||||
\
|
||||
"vmov.i8 q15, #0x04 \n" \
|
||||
"vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 4 */ \
|
||||
"vshr.s8 q15, q15, #3 \n" /* filter2 >> 3 */ \
|
||||
"vqsub.s8 " #q0 "," #q0 ", q15 \n" /* q0 -= filter2 */
|
||||
|
||||
// Applies filter on 2 pixels (p0 and q0)
|
||||
#define DO_FILTER2(p1, p0, q0, q1, thresh) \
|
||||
NEEDS_FILTER(p1, p0, q0, q1, thresh, q9) /* filter mask in q9 */ \
|
||||
"vmov.i8 q10, #0x80 \n" /* sign bit */ \
|
||||
FLIP_SIGN_BIT4(p1, p0, q0, q1, q10) /* convert to signed value */ \
|
||||
GET_BASE_DELTA(p1, p0, q0, q1, q11) /* get filter level */ \
|
||||
"vand q9, q9, q11 \n" /* apply filter mask */ \
|
||||
DO_SIMPLE_FILTER(p0, q0, q9) /* apply filter */ \
|
||||
FLIP_SIGN_BIT2(p0, q0, q10)
|
||||
|
||||
// Load/Store vertical edge
|
||||
#define LOAD8x4(c1, c2, c3, c4, b1, b2, stride) \
|
||||
"vld4.8 {" #c1"[0], " #c2"[0], " #c3"[0], " #c4"[0]}," #b1 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[1], " #c2"[1], " #c3"[1], " #c4"[1]}," #b2 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[2], " #c2"[2], " #c3"[2], " #c4"[2]}," #b1 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[3], " #c2"[3], " #c3"[3], " #c4"[3]}," #b2 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[4], " #c2"[4], " #c3"[4], " #c4"[4]}," #b1 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[5], " #c2"[5], " #c3"[5], " #c4"[5]}," #b2 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[6], " #c2"[6], " #c3"[6], " #c4"[6]}," #b1 "," #stride"\n" \
|
||||
"vld4.8 {" #c1"[7], " #c2"[7], " #c3"[7], " #c4"[7]}," #b2 "," #stride"\n"
|
||||
|
||||
#define STORE8x2(c1, c2, p,stride) \
|
||||
"vst2.8 {" #c1"[0], " #c2"[0]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[1], " #c2"[1]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[2], " #c2"[2]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[3], " #c2"[3]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[4], " #c2"[4]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[5], " #c2"[5]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[6], " #c2"[6]}," #p "," #stride " \n" \
|
||||
"vst2.8 {" #c1"[7], " #c2"[7]}," #p "," #stride " \n"
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Simple In-loop filtering (Paragraph 15.2)
|
||||
|
||||
static void SimpleVFilter16NEON(uint8_t* p, int stride, int thresh) {
|
||||
__asm__ volatile (
|
||||
"sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride
|
||||
|
||||
"vld1.u8 {q1}, [%[p]], %[stride] \n" // p1
|
||||
"vld1.u8 {q2}, [%[p]], %[stride] \n" // p0
|
||||
"vld1.u8 {q3}, [%[p]], %[stride] \n" // q0
|
||||
"vld1.u8 {q4}, [%[p]] \n" // q1
|
||||
|
||||
DO_FILTER2(q1, q2, q3, q4, %[thresh])
|
||||
|
||||
"sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride
|
||||
|
||||
"vst1.u8 {q2}, [%[p]], %[stride] \n" // store op0
|
||||
"vst1.u8 {q3}, [%[p]] \n" // store oq0
|
||||
: [p] "+r"(p)
|
||||
: [stride] "r"(stride), [thresh] "r"(thresh)
|
||||
: "memory", QRegs
|
||||
);
|
||||
}
|
||||
|
||||
static void SimpleHFilter16NEON(uint8_t* p, int stride, int thresh) {
|
||||
__asm__ volatile (
|
||||
"sub r4, %[p], #2 \n" // base1 = p - 2
|
||||
"lsl r6, %[stride], #1 \n" // r6 = 2 * stride
|
||||
"add r5, r4, %[stride] \n" // base2 = base1 + stride
|
||||
|
||||
LOAD8x4(d2, d3, d4, d5, [r4], [r5], r6)
|
||||
LOAD8x4(d6, d7, d8, d9, [r4], [r5], r6)
|
||||
"vswp d3, d6 \n" // p1:q1 p0:q3
|
||||
"vswp d5, d8 \n" // q0:q2 q1:q4
|
||||
"vswp q2, q3 \n" // p1:q1 p0:q2 q0:q3 q1:q4
|
||||
|
||||
DO_FILTER2(q1, q2, q3, q4, %[thresh])
|
||||
|
||||
"sub %[p], %[p], #1 \n" // p - 1
|
||||
|
||||
"vswp d5, d6 \n"
|
||||
STORE8x2(d4, d5, [%[p]], %[stride])
|
||||
STORE8x2(d6, d7, [%[p]], %[stride])
|
||||
|
||||
: [p] "+r"(p)
|
||||
: [stride] "r"(stride), [thresh] "r"(thresh)
|
||||
: "memory", "r4", "r5", "r6", QRegs
|
||||
);
|
||||
}
|
||||
|
||||
static void SimpleVFilter16iNEON(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4 * stride;
|
||||
SimpleVFilter16NEON(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleHFilter16iNEON(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4;
|
||||
SimpleHFilter16NEON(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void TransformOneNEON(const int16_t *in, uint8_t *dst) {
|
||||
const int kBPS = BPS;
|
||||
const int16_t constants[] = {20091, 17734, 0, 0};
|
||||
/* kC1, kC2. Padded because vld1.16 loads 8 bytes
|
||||
* Technically these are unsigned but vqdmulh is only available in signed.
|
||||
* vqdmulh returns high half (effectively >> 16) but also doubles the value,
|
||||
* changing the >> 16 to >> 15 and requiring an additional >> 1.
|
||||
* We use this to our advantage with kC2. The canonical value is 35468.
|
||||
* However, the high bit is set so treating it as signed will give incorrect
|
||||
* results. We avoid this by down shifting by 1 here to clear the highest bit.
|
||||
* Combined with the doubling effect of vqdmulh we get >> 16.
|
||||
* This can not be applied to kC1 because the lowest bit is set. Down shifting
|
||||
* the constant would reduce precision.
|
||||
*/
|
||||
|
||||
/* libwebp uses a trick to avoid some extra addition that libvpx does.
|
||||
* Instead of:
|
||||
* temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16);
|
||||
* libwebp adds 1 << 16 to cospi8sqrt2minus1 (kC1). However, this causes the
|
||||
* same issue with kC1 and vqdmulh that we work around by down shifting kC2
|
||||
*/
|
||||
|
||||
/* Adapted from libvpx: vp8/common/arm/neon/shortidct4x4llm_neon.asm */
|
||||
__asm__ volatile (
|
||||
"vld1.16 {q1, q2}, [%[in]] \n"
|
||||
"vld1.16 {d0}, [%[constants]] \n"
|
||||
|
||||
/* d2: in[0]
|
||||
* d3: in[8]
|
||||
* d4: in[4]
|
||||
* d5: in[12]
|
||||
*/
|
||||
"vswp d3, d4 \n"
|
||||
|
||||
/* q8 = {in[4], in[12]} * kC1 * 2 >> 16
|
||||
* q9 = {in[4], in[12]} * kC2 >> 16
|
||||
*/
|
||||
"vqdmulh.s16 q8, q2, d0[0] \n"
|
||||
"vqdmulh.s16 q9, q2, d0[1] \n"
|
||||
|
||||
/* d22 = a = in[0] + in[8]
|
||||
* d23 = b = in[0] - in[8]
|
||||
*/
|
||||
"vqadd.s16 d22, d2, d3 \n"
|
||||
"vqsub.s16 d23, d2, d3 \n"
|
||||
|
||||
/* The multiplication should be x * kC1 >> 16
|
||||
* However, with vqdmulh we get x * kC1 * 2 >> 16
|
||||
* (multiply, double, return high half)
|
||||
* We avoided this in kC2 by pre-shifting the constant.
|
||||
* q8 = in[4]/[12] * kC1 >> 16
|
||||
*/
|
||||
"vshr.s16 q8, q8, #1 \n"
|
||||
|
||||
/* Add {in[4], in[12]} back after the multiplication. This is handled by
|
||||
* adding 1 << 16 to kC1 in the libwebp C code.
|
||||
*/
|
||||
"vqadd.s16 q8, q2, q8 \n"
|
||||
|
||||
/* d20 = c = in[4]*kC2 - in[12]*kC1
|
||||
* d21 = d = in[4]*kC1 + in[12]*kC2
|
||||
*/
|
||||
"vqsub.s16 d20, d18, d17 \n"
|
||||
"vqadd.s16 d21, d19, d16 \n"
|
||||
|
||||
/* d2 = tmp[0] = a + d
|
||||
* d3 = tmp[1] = b + c
|
||||
* d4 = tmp[2] = b - c
|
||||
* d5 = tmp[3] = a - d
|
||||
*/
|
||||
"vqadd.s16 d2, d22, d21 \n"
|
||||
"vqadd.s16 d3, d23, d20 \n"
|
||||
"vqsub.s16 d4, d23, d20 \n"
|
||||
"vqsub.s16 d5, d22, d21 \n"
|
||||
|
||||
"vzip.16 q1, q2 \n"
|
||||
"vzip.16 q1, q2 \n"
|
||||
|
||||
"vswp d3, d4 \n"
|
||||
|
||||
/* q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16
|
||||
* q9 = {tmp[4], tmp[12]} * kC2 >> 16
|
||||
*/
|
||||
"vqdmulh.s16 q8, q2, d0[0] \n"
|
||||
"vqdmulh.s16 q9, q2, d0[1] \n"
|
||||
|
||||
/* d22 = a = tmp[0] + tmp[8]
|
||||
* d23 = b = tmp[0] - tmp[8]
|
||||
*/
|
||||
"vqadd.s16 d22, d2, d3 \n"
|
||||
"vqsub.s16 d23, d2, d3 \n"
|
||||
|
||||
/* See long winded explanations prior */
|
||||
"vshr.s16 q8, q8, #1 \n"
|
||||
"vqadd.s16 q8, q2, q8 \n"
|
||||
|
||||
/* d20 = c = in[4]*kC2 - in[12]*kC1
|
||||
* d21 = d = in[4]*kC1 + in[12]*kC2
|
||||
*/
|
||||
"vqsub.s16 d20, d18, d17 \n"
|
||||
"vqadd.s16 d21, d19, d16 \n"
|
||||
|
||||
/* d2 = tmp[0] = a + d
|
||||
* d3 = tmp[1] = b + c
|
||||
* d4 = tmp[2] = b - c
|
||||
* d5 = tmp[3] = a - d
|
||||
*/
|
||||
"vqadd.s16 d2, d22, d21 \n"
|
||||
"vqadd.s16 d3, d23, d20 \n"
|
||||
"vqsub.s16 d4, d23, d20 \n"
|
||||
"vqsub.s16 d5, d22, d21 \n"
|
||||
|
||||
"vld1.32 d6[0], [%[dst]], %[kBPS] \n"
|
||||
"vld1.32 d6[1], [%[dst]], %[kBPS] \n"
|
||||
"vld1.32 d7[0], [%[dst]], %[kBPS] \n"
|
||||
"vld1.32 d7[1], [%[dst]], %[kBPS] \n"
|
||||
|
||||
"sub %[dst], %[dst], %[kBPS], lsl #2 \n"
|
||||
|
||||
/* (val) + 4 >> 3 */
|
||||
"vrshr.s16 d2, d2, #3 \n"
|
||||
"vrshr.s16 d3, d3, #3 \n"
|
||||
"vrshr.s16 d4, d4, #3 \n"
|
||||
"vrshr.s16 d5, d5, #3 \n"
|
||||
|
||||
"vzip.16 q1, q2 \n"
|
||||
"vzip.16 q1, q2 \n"
|
||||
|
||||
/* Must accumulate before saturating */
|
||||
"vmovl.u8 q8, d6 \n"
|
||||
"vmovl.u8 q9, d7 \n"
|
||||
|
||||
"vqadd.s16 q1, q1, q8 \n"
|
||||
"vqadd.s16 q2, q2, q9 \n"
|
||||
|
||||
"vqmovun.s16 d0, q1 \n"
|
||||
"vqmovun.s16 d1, q2 \n"
|
||||
|
||||
"vst1.32 d0[0], [%[dst]], %[kBPS] \n"
|
||||
"vst1.32 d0[1], [%[dst]], %[kBPS] \n"
|
||||
"vst1.32 d1[0], [%[dst]], %[kBPS] \n"
|
||||
"vst1.32 d1[1], [%[dst]] \n"
|
||||
|
||||
: [in] "+r"(in), [dst] "+r"(dst) /* modified registers */
|
||||
: [kBPS] "r"(kBPS), [constants] "r"(constants) /* constants */
|
||||
: "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" /* clobbered */
|
||||
);
|
||||
}
|
||||
|
||||
static void TransformTwoNEON(const int16_t* in, uint8_t* dst, int do_two) {
|
||||
TransformOneNEON(in, dst);
|
||||
if (do_two) {
|
||||
TransformOneNEON(in + 16, dst + 4);
|
||||
}
|
||||
}
|
||||
|
||||
extern void VP8DspInitNEON(void);
|
||||
|
||||
void VP8DspInitNEON(void) {
|
||||
VP8Transform = TransformTwoNEON;
|
||||
|
||||
VP8SimpleVFilter16 = SimpleVFilter16NEON;
|
||||
VP8SimpleHFilter16 = SimpleHFilter16NEON;
|
||||
VP8SimpleVFilter16i = SimpleVFilter16iNEON;
|
||||
VP8SimpleHFilter16i = SimpleHFilter16iNEON;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_USE_NEON
|
|
@ -1,903 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// SSE2 version of some decoding functions (idct, loop filtering).
|
||||
//
|
||||
// Author: somnath@google.com (Somnath Banerjee)
|
||||
// cduvivier@google.com (Christian Duvivier)
|
||||
|
||||
#include "./dsp.h"
|
||||
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
|
||||
#include <emmintrin.h>
|
||||
#include "../dec/vp8i.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Transforms (Paragraph 14.4)
|
||||
|
||||
static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
|
||||
// This implementation makes use of 16-bit fixed point versions of two
|
||||
// multiply constants:
|
||||
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
|
||||
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
|
||||
//
|
||||
// To be able to use signed 16-bit integers, we use the following trick to
|
||||
// have constants within range:
|
||||
// - Associated constants are obtained by subtracting the 16-bit fixed point
|
||||
// version of one:
|
||||
// k = K - (1 << 16) => K = k + (1 << 16)
|
||||
// K1 = 85267 => k1 = 20091
|
||||
// K2 = 35468 => k2 = -30068
|
||||
// - The multiplication of a variable by a constant become the sum of the
|
||||
// variable and the multiplication of that variable by the associated
|
||||
// constant:
|
||||
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
|
||||
const __m128i k1 = _mm_set1_epi16(20091);
|
||||
const __m128i k2 = _mm_set1_epi16(-30068);
|
||||
__m128i T0, T1, T2, T3;
|
||||
|
||||
// Load and concatenate the transform coefficients (we'll do two transforms
|
||||
// in parallel). In the case of only one transform, the second half of the
|
||||
// vectors will just contain random value we'll never use nor store.
|
||||
__m128i in0, in1, in2, in3;
|
||||
{
|
||||
in0 = _mm_loadl_epi64((__m128i*)&in[0]);
|
||||
in1 = _mm_loadl_epi64((__m128i*)&in[4]);
|
||||
in2 = _mm_loadl_epi64((__m128i*)&in[8]);
|
||||
in3 = _mm_loadl_epi64((__m128i*)&in[12]);
|
||||
// a00 a10 a20 a30 x x x x
|
||||
// a01 a11 a21 a31 x x x x
|
||||
// a02 a12 a22 a32 x x x x
|
||||
// a03 a13 a23 a33 x x x x
|
||||
if (do_two) {
|
||||
const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
|
||||
const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
|
||||
const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
|
||||
const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
|
||||
in0 = _mm_unpacklo_epi64(in0, inB0);
|
||||
in1 = _mm_unpacklo_epi64(in1, inB1);
|
||||
in2 = _mm_unpacklo_epi64(in2, inB2);
|
||||
in3 = _mm_unpacklo_epi64(in3, inB3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
}
|
||||
|
||||
// Vertical pass and subsequent transpose.
|
||||
{
|
||||
// First pass, c and d calculations are longer because of the "trick"
|
||||
// multiplications.
|
||||
const __m128i a = _mm_add_epi16(in0, in2);
|
||||
const __m128i b = _mm_sub_epi16(in0, in2);
|
||||
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
|
||||
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
|
||||
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
|
||||
const __m128i c3 = _mm_sub_epi16(in1, in3);
|
||||
const __m128i c4 = _mm_sub_epi16(c1, c2);
|
||||
const __m128i c = _mm_add_epi16(c3, c4);
|
||||
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
|
||||
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
|
||||
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
|
||||
const __m128i d3 = _mm_add_epi16(in1, in3);
|
||||
const __m128i d4 = _mm_add_epi16(d1, d2);
|
||||
const __m128i d = _mm_add_epi16(d3, d4);
|
||||
|
||||
// Second pass.
|
||||
const __m128i tmp0 = _mm_add_epi16(a, d);
|
||||
const __m128i tmp1 = _mm_add_epi16(b, c);
|
||||
const __m128i tmp2 = _mm_sub_epi16(b, c);
|
||||
const __m128i tmp3 = _mm_sub_epi16(a, d);
|
||||
|
||||
// Transpose the two 4x4.
|
||||
// a00 a01 a02 a03 b00 b01 b02 b03
|
||||
// a10 a11 a12 a13 b10 b11 b12 b13
|
||||
// a20 a21 a22 a23 b20 b21 b22 b23
|
||||
// a30 a31 a32 a33 b30 b31 b32 b33
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
|
||||
const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
|
||||
const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
|
||||
// a00 a10 a01 a11 a02 a12 a03 a13
|
||||
// a20 a30 a21 a31 a22 a32 a23 a33
|
||||
// b00 b10 b01 b11 b02 b12 b03 b13
|
||||
// b20 b30 b21 b31 b22 b32 b23 b33
|
||||
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
|
||||
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
|
||||
// a00 a10 a20 a30 a01 a11 a21 a31
|
||||
// b00 b10 b20 b30 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 a03 a13 a23 a33
|
||||
// b02 b12 a22 b32 b03 b13 b23 b33
|
||||
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
|
||||
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
|
||||
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
|
||||
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
|
||||
// Horizontal pass and subsequent transpose.
|
||||
{
|
||||
// First pass, c and d calculations are longer because of the "trick"
|
||||
// multiplications.
|
||||
const __m128i four = _mm_set1_epi16(4);
|
||||
const __m128i dc = _mm_add_epi16(T0, four);
|
||||
const __m128i a = _mm_add_epi16(dc, T2);
|
||||
const __m128i b = _mm_sub_epi16(dc, T2);
|
||||
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
|
||||
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
|
||||
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
|
||||
const __m128i c3 = _mm_sub_epi16(T1, T3);
|
||||
const __m128i c4 = _mm_sub_epi16(c1, c2);
|
||||
const __m128i c = _mm_add_epi16(c3, c4);
|
||||
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
|
||||
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
|
||||
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
|
||||
const __m128i d3 = _mm_add_epi16(T1, T3);
|
||||
const __m128i d4 = _mm_add_epi16(d1, d2);
|
||||
const __m128i d = _mm_add_epi16(d3, d4);
|
||||
|
||||
// Second pass.
|
||||
const __m128i tmp0 = _mm_add_epi16(a, d);
|
||||
const __m128i tmp1 = _mm_add_epi16(b, c);
|
||||
const __m128i tmp2 = _mm_sub_epi16(b, c);
|
||||
const __m128i tmp3 = _mm_sub_epi16(a, d);
|
||||
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
|
||||
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
|
||||
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
|
||||
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
|
||||
|
||||
// Transpose the two 4x4.
|
||||
// a00 a01 a02 a03 b00 b01 b02 b03
|
||||
// a10 a11 a12 a13 b10 b11 b12 b13
|
||||
// a20 a21 a22 a23 b20 b21 b22 b23
|
||||
// a30 a31 a32 a33 b30 b31 b32 b33
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
|
||||
const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
|
||||
const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
|
||||
// a00 a10 a01 a11 a02 a12 a03 a13
|
||||
// a20 a30 a21 a31 a22 a32 a23 a33
|
||||
// b00 b10 b01 b11 b02 b12 b03 b13
|
||||
// b20 b30 b21 b31 b22 b32 b23 b33
|
||||
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
|
||||
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
|
||||
// a00 a10 a20 a30 a01 a11 a21 a31
|
||||
// b00 b10 b20 b30 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 a03 a13 a23 a33
|
||||
// b02 b12 a22 b32 b03 b13 b23 b33
|
||||
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
|
||||
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
|
||||
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
|
||||
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
|
||||
// Add inverse transform to 'dst' and store.
|
||||
{
|
||||
const __m128i zero = _mm_set1_epi16(0);
|
||||
// Load the reference(s).
|
||||
__m128i dst0, dst1, dst2, dst3;
|
||||
if (do_two) {
|
||||
// Load eight bytes/pixels per line.
|
||||
dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
|
||||
dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
|
||||
dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
|
||||
dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
|
||||
} else {
|
||||
// Load four bytes/pixels per line.
|
||||
dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
|
||||
dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
|
||||
dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
|
||||
dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
|
||||
}
|
||||
// Convert to 16b.
|
||||
dst0 = _mm_unpacklo_epi8(dst0, zero);
|
||||
dst1 = _mm_unpacklo_epi8(dst1, zero);
|
||||
dst2 = _mm_unpacklo_epi8(dst2, zero);
|
||||
dst3 = _mm_unpacklo_epi8(dst3, zero);
|
||||
// Add the inverse transform(s).
|
||||
dst0 = _mm_add_epi16(dst0, T0);
|
||||
dst1 = _mm_add_epi16(dst1, T1);
|
||||
dst2 = _mm_add_epi16(dst2, T2);
|
||||
dst3 = _mm_add_epi16(dst3, T3);
|
||||
// Unsigned saturate to 8b.
|
||||
dst0 = _mm_packus_epi16(dst0, dst0);
|
||||
dst1 = _mm_packus_epi16(dst1, dst1);
|
||||
dst2 = _mm_packus_epi16(dst2, dst2);
|
||||
dst3 = _mm_packus_epi16(dst3, dst3);
|
||||
// Store the results.
|
||||
if (do_two) {
|
||||
// Store eight bytes/pixels per line.
|
||||
_mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
|
||||
_mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
|
||||
_mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
|
||||
_mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
|
||||
} else {
|
||||
// Store four bytes/pixels per line.
|
||||
*((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
|
||||
*((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
|
||||
*((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
|
||||
*((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Loop Filter (Paragraph 15)
|
||||
|
||||
// Compute abs(p - q) = subs(p - q) OR subs(q - p)
|
||||
#define MM_ABS(p, q) _mm_or_si128( \
|
||||
_mm_subs_epu8((q), (p)), \
|
||||
_mm_subs_epu8((p), (q)))
|
||||
|
||||
// Shift each byte of "a" by N bits while preserving by the sign bit.
|
||||
//
|
||||
// It first shifts the lower bytes of the words and then the upper bytes and
|
||||
// then merges the results together.
|
||||
#define SIGNED_SHIFT_N(a, N) { \
|
||||
__m128i t = a; \
|
||||
t = _mm_slli_epi16(t, 8); \
|
||||
t = _mm_srai_epi16(t, N); \
|
||||
t = _mm_srli_epi16(t, 8); \
|
||||
\
|
||||
a = _mm_srai_epi16(a, N + 8); \
|
||||
a = _mm_slli_epi16(a, 8); \
|
||||
\
|
||||
a = _mm_or_si128(t, a); \
|
||||
}
|
||||
|
||||
#define FLIP_SIGN_BIT2(a, b) { \
|
||||
a = _mm_xor_si128(a, sign_bit); \
|
||||
b = _mm_xor_si128(b, sign_bit); \
|
||||
}
|
||||
|
||||
#define FLIP_SIGN_BIT4(a, b, c, d) { \
|
||||
FLIP_SIGN_BIT2(a, b); \
|
||||
FLIP_SIGN_BIT2(c, d); \
|
||||
}
|
||||
|
||||
#define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \
|
||||
const __m128i zero = _mm_setzero_si128(); \
|
||||
const __m128i t1 = MM_ABS(p1, p0); \
|
||||
const __m128i t2 = MM_ABS(q1, q0); \
|
||||
\
|
||||
const __m128i h = _mm_set1_epi8(hev_thresh); \
|
||||
const __m128i t3 = _mm_subs_epu8(t1, h); /* abs(p1 - p0) - hev_tresh */ \
|
||||
const __m128i t4 = _mm_subs_epu8(t2, h); /* abs(q1 - q0) - hev_tresh */ \
|
||||
\
|
||||
not_hev = _mm_or_si128(t3, t4); \
|
||||
not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
|
||||
}
|
||||
|
||||
#define GET_BASE_DELTA(p1, p0, q0, q1, o) { \
|
||||
const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \
|
||||
o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \
|
||||
o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \
|
||||
o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \
|
||||
o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \
|
||||
}
|
||||
|
||||
#define DO_SIMPLE_FILTER(p0, q0, fl) { \
|
||||
const __m128i three = _mm_set1_epi8(3); \
|
||||
const __m128i four = _mm_set1_epi8(4); \
|
||||
__m128i v3 = _mm_adds_epi8(fl, three); \
|
||||
__m128i v4 = _mm_adds_epi8(fl, four); \
|
||||
\
|
||||
/* Do +4 side */ \
|
||||
SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \
|
||||
q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \
|
||||
\
|
||||
/* Now do +3 side */ \
|
||||
SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \
|
||||
p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \
|
||||
}
|
||||
|
||||
// Updates values of 2 pixels at MB edge during complex filtering.
|
||||
// Update operations:
|
||||
// q = q - a and p = p + a; where a = [(a_hi >> 7), (a_lo >> 7)]
|
||||
#define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \
|
||||
const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \
|
||||
const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \
|
||||
const __m128i a = _mm_packs_epi16(a_lo7, a_hi7); \
|
||||
pi = _mm_adds_epi8(pi, a); \
|
||||
qi = _mm_subs_epi8(qi, a); \
|
||||
}
|
||||
|
||||
static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
|
||||
const __m128i* q1, int thresh, __m128i *mask) {
|
||||
__m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
|
||||
*mask = _mm_set1_epi8(0xFE);
|
||||
t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero
|
||||
t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2
|
||||
|
||||
*mask = MM_ABS(*p0, *q0); // abs(p0 - q0)
|
||||
*mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2
|
||||
*mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
|
||||
|
||||
t1 = _mm_set1_epi8(thresh);
|
||||
*mask = _mm_subs_epu8(*mask, t1); // mask <= thresh
|
||||
*mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Edge filtering functions
|
||||
|
||||
// Applies filter on 2 pixels (p0 and q0)
|
||||
static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
|
||||
const __m128i* q1, int thresh) {
|
||||
__m128i a, mask;
|
||||
const __m128i sign_bit = _mm_set1_epi8(0x80);
|
||||
const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
|
||||
const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
|
||||
|
||||
NeedsFilter(p1, p0, q0, q1, thresh, &mask);
|
||||
|
||||
// convert to signed values
|
||||
FLIP_SIGN_BIT2(*p0, *q0);
|
||||
|
||||
GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
|
||||
a = _mm_and_si128(a, mask); // mask filter values we don't care about
|
||||
DO_SIMPLE_FILTER(*p0, *q0, a);
|
||||
|
||||
// unoffset
|
||||
FLIP_SIGN_BIT2(*p0, *q0);
|
||||
}
|
||||
|
||||
// Applies filter on 4 pixels (p1, p0, q0 and q1)
|
||||
static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
|
||||
__m128i* q0, __m128i* q1,
|
||||
const __m128i* mask, int hev_thresh) {
|
||||
__m128i not_hev;
|
||||
__m128i t1, t2, t3;
|
||||
const __m128i sign_bit = _mm_set1_epi8(0x80);
|
||||
|
||||
// compute hev mask
|
||||
GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
|
||||
|
||||
// convert to signed values
|
||||
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
|
||||
|
||||
t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
|
||||
t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
|
||||
t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
|
||||
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
|
||||
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
|
||||
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
|
||||
t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
|
||||
|
||||
// Do +4 side
|
||||
t2 = _mm_set1_epi8(4);
|
||||
t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4
|
||||
SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
|
||||
t3 = t2; // save t2
|
||||
*q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2
|
||||
|
||||
// Now do +3 side
|
||||
t2 = _mm_set1_epi8(3);
|
||||
t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4
|
||||
SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
|
||||
*p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
|
||||
|
||||
t2 = _mm_set1_epi8(1);
|
||||
t3 = _mm_adds_epi8(t3, t2);
|
||||
SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
|
||||
|
||||
t3 = _mm_and_si128(not_hev, t3); // if !hev
|
||||
*q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
|
||||
*p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
|
||||
|
||||
// unoffset
|
||||
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
|
||||
}
|
||||
|
||||
// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
|
||||
static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
|
||||
__m128i* q0, __m128i* q1, __m128i *q2,
|
||||
const __m128i* mask, int hev_thresh) {
|
||||
__m128i a, not_hev;
|
||||
const __m128i sign_bit = _mm_set1_epi8(0x80);
|
||||
|
||||
// compute hev mask
|
||||
GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
|
||||
|
||||
// convert to signed values
|
||||
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
|
||||
FLIP_SIGN_BIT2(*p2, *q2);
|
||||
|
||||
GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
|
||||
|
||||
{ // do simple filter on pixels with hev
|
||||
const __m128i m = _mm_andnot_si128(not_hev, *mask);
|
||||
const __m128i f = _mm_and_si128(a, m);
|
||||
DO_SIMPLE_FILTER(*p0, *q0, f);
|
||||
}
|
||||
{ // do strong filter on pixels with not hev
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
const __m128i nine = _mm_set1_epi16(0x0900);
|
||||
const __m128i sixty_three = _mm_set1_epi16(63);
|
||||
|
||||
const __m128i m = _mm_and_si128(not_hev, *mask);
|
||||
const __m128i f = _mm_and_si128(a, m);
|
||||
const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
|
||||
const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
|
||||
|
||||
const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9
|
||||
const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9
|
||||
const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18
|
||||
const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18
|
||||
|
||||
const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63
|
||||
const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63
|
||||
|
||||
const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63
|
||||
const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63
|
||||
|
||||
const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63
|
||||
const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63
|
||||
|
||||
UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
|
||||
UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
|
||||
UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
|
||||
}
|
||||
|
||||
// unoffset
|
||||
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
|
||||
FLIP_SIGN_BIT2(*p2, *q2);
|
||||
}
|
||||
|
||||
// reads 8 rows across a vertical edge.
|
||||
//
|
||||
// TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
|
||||
// two Load4x4() to avoid code duplication.
|
||||
static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
|
||||
__m128i* p, __m128i* q) {
|
||||
__m128i t1, t2;
|
||||
|
||||
// Load 0th, 1st, 4th and 5th rows
|
||||
__m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00
|
||||
__m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10
|
||||
__m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40
|
||||
__m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50
|
||||
|
||||
r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00
|
||||
r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10
|
||||
|
||||
// t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
|
||||
t1 = _mm_unpacklo_epi8(r0, r1);
|
||||
|
||||
// Load 2nd, 3rd, 6th and 7th rows
|
||||
r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22
|
||||
r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30
|
||||
r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60
|
||||
r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70
|
||||
|
||||
r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20
|
||||
r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30
|
||||
|
||||
// t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
|
||||
t2 = _mm_unpacklo_epi8(r0, r1);
|
||||
|
||||
// t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
|
||||
// t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
|
||||
r0 = t1;
|
||||
t1 = _mm_unpacklo_epi16(t1, t2);
|
||||
t2 = _mm_unpackhi_epi16(r0, t2);
|
||||
|
||||
// *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
|
||||
// *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
|
||||
*p = _mm_unpacklo_epi32(t1, t2);
|
||||
*q = _mm_unpackhi_epi32(t1, t2);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
|
||||
int stride,
|
||||
__m128i* p1, __m128i* p0,
|
||||
__m128i* q0, __m128i* q1) {
|
||||
__m128i t1, t2;
|
||||
// Assume the pixels around the edge (|) are numbered as follows
|
||||
// 00 01 | 02 03
|
||||
// 10 11 | 12 13
|
||||
// ... | ...
|
||||
// e0 e1 | e2 e3
|
||||
// f0 f1 | f2 f3
|
||||
//
|
||||
// r0 is pointing to the 0th row (00)
|
||||
// r8 is pointing to the 8th row (80)
|
||||
|
||||
// Load
|
||||
// p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
|
||||
// q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
|
||||
// p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
|
||||
// q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
|
||||
Load8x4(r0, stride, p1, q0);
|
||||
Load8x4(r8, stride, p0, q1);
|
||||
|
||||
t1 = *p1;
|
||||
t2 = *q0;
|
||||
// p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
|
||||
// p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
|
||||
// q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
|
||||
// q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
|
||||
*p1 = _mm_unpacklo_epi64(t1, *p0);
|
||||
*p0 = _mm_unpackhi_epi64(t1, *p0);
|
||||
*q0 = _mm_unpacklo_epi64(t2, *q1);
|
||||
*q1 = _mm_unpackhi_epi64(t2, *q1);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i, dst += stride) {
|
||||
*((int32_t*)dst) = _mm_cvtsi128_si32(*x);
|
||||
*x = _mm_srli_si128(*x, 4);
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose back and store
|
||||
static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
|
||||
__m128i* p1, __m128i* p0,
|
||||
__m128i* q0, __m128i* q1) {
|
||||
__m128i t1;
|
||||
|
||||
// p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
|
||||
// p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
|
||||
t1 = *p0;
|
||||
*p0 = _mm_unpacklo_epi8(*p1, t1);
|
||||
*p1 = _mm_unpackhi_epi8(*p1, t1);
|
||||
|
||||
// q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
|
||||
// q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
|
||||
t1 = *q0;
|
||||
*q0 = _mm_unpacklo_epi8(t1, *q1);
|
||||
*q1 = _mm_unpackhi_epi8(t1, *q1);
|
||||
|
||||
// p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
|
||||
// q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
|
||||
t1 = *p0;
|
||||
*p0 = _mm_unpacklo_epi16(t1, *q0);
|
||||
*q0 = _mm_unpackhi_epi16(t1, *q0);
|
||||
|
||||
// p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
|
||||
// q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
|
||||
t1 = *p1;
|
||||
*p1 = _mm_unpacklo_epi16(t1, *q1);
|
||||
*q1 = _mm_unpackhi_epi16(t1, *q1);
|
||||
|
||||
Store4x4(p0, r0, stride);
|
||||
r0 += 4 * stride;
|
||||
Store4x4(q0, r0, stride);
|
||||
|
||||
Store4x4(p1, r8, stride);
|
||||
r8 += 4 * stride;
|
||||
Store4x4(q1, r8, stride);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Simple In-loop filtering (Paragraph 15.2)
|
||||
|
||||
static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
|
||||
// Load
|
||||
__m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
|
||||
__m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
|
||||
__m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
|
||||
__m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
|
||||
|
||||
DoFilter2(&p1, &p0, &q0, &q1, thresh);
|
||||
|
||||
// Store
|
||||
_mm_storeu_si128((__m128i*)&p[-stride], p0);
|
||||
_mm_storeu_si128((__m128i*)p, q0);
|
||||
}
|
||||
|
||||
static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
|
||||
__m128i p1, p0, q0, q1;
|
||||
|
||||
p -= 2; // beginning of p1
|
||||
|
||||
Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
|
||||
DoFilter2(&p1, &p0, &q0, &q1, thresh);
|
||||
Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
|
||||
}
|
||||
|
||||
static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4 * stride;
|
||||
SimpleVFilter16SSE2(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4;
|
||||
SimpleHFilter16SSE2(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Complex In-loop filtering (Paragraph 15.3)
|
||||
|
||||
#define MAX_DIFF1(p3, p2, p1, p0, m) { \
|
||||
m = MM_ABS(p3, p2); \
|
||||
m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
|
||||
m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
|
||||
}
|
||||
|
||||
#define MAX_DIFF2(p3, p2, p1, p0, m) { \
|
||||
m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
|
||||
m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
|
||||
m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
|
||||
}
|
||||
|
||||
#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
|
||||
e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \
|
||||
e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \
|
||||
e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \
|
||||
e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \
|
||||
}
|
||||
|
||||
#define LOADUV_H_EDGE(p, u, v, stride) { \
|
||||
p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
|
||||
p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \
|
||||
}
|
||||
|
||||
#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
|
||||
LOADUV_H_EDGE(e1, u, v, 0 * stride); \
|
||||
LOADUV_H_EDGE(e2, u, v, 1 * stride); \
|
||||
LOADUV_H_EDGE(e3, u, v, 2 * stride); \
|
||||
LOADUV_H_EDGE(e4, u, v, 3 * stride); \
|
||||
}
|
||||
|
||||
#define STOREUV(p, u, v, stride) { \
|
||||
_mm_storel_epi64((__m128i*)&u[(stride)], p); \
|
||||
p = _mm_srli_si128(p, 8); \
|
||||
_mm_storel_epi64((__m128i*)&v[(stride)], p); \
|
||||
}
|
||||
|
||||
#define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \
|
||||
__m128i fl_yes; \
|
||||
const __m128i it = _mm_set1_epi8(ithresh); \
|
||||
mask = _mm_subs_epu8(mask, it); \
|
||||
mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \
|
||||
NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \
|
||||
mask = _mm_and_si128(mask, fl_yes); \
|
||||
}
|
||||
|
||||
// on macroblock edges
|
||||
static void VFilter16SSE2(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
__m128i t1;
|
||||
__m128i mask;
|
||||
__m128i p2, p1, p0, q0, q1, q2;
|
||||
|
||||
// Load p3, p2, p1, p0
|
||||
LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
|
||||
MAX_DIFF1(t1, p2, p1, p0, mask);
|
||||
|
||||
// Load q0, q1, q2, q3
|
||||
LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
|
||||
MAX_DIFF2(t1, q2, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
|
||||
|
||||
// Store
|
||||
_mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
|
||||
_mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
|
||||
_mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
|
||||
_mm_storeu_si128((__m128i*)&p[0 * stride], q0);
|
||||
_mm_storeu_si128((__m128i*)&p[1 * stride], q1);
|
||||
_mm_storeu_si128((__m128i*)&p[2 * stride], q2);
|
||||
}
|
||||
|
||||
static void HFilter16SSE2(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
__m128i mask;
|
||||
__m128i p3, p2, p1, p0, q0, q1, q2, q3;
|
||||
|
||||
uint8_t* const b = p - 4;
|
||||
Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
|
||||
MAX_DIFF1(p3, p2, p1, p0, mask);
|
||||
|
||||
Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
|
||||
MAX_DIFF2(q3, q2, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
|
||||
|
||||
Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
|
||||
Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
|
||||
}
|
||||
|
||||
// on three inner edges
|
||||
static void VFilter16iSSE2(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
int k;
|
||||
__m128i mask;
|
||||
__m128i t1, t2, p1, p0, q0, q1;
|
||||
|
||||
for (k = 3; k > 0; --k) {
|
||||
// Load p3, p2, p1, p0
|
||||
LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
|
||||
MAX_DIFF1(t2, t1, p1, p0, mask);
|
||||
|
||||
p += 4 * stride;
|
||||
|
||||
// Load q0, q1, q2, q3
|
||||
LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
|
||||
MAX_DIFF2(t2, t1, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
|
||||
|
||||
// Store
|
||||
_mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
|
||||
_mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
|
||||
_mm_storeu_si128((__m128i*)&p[0 * stride], q0);
|
||||
_mm_storeu_si128((__m128i*)&p[1 * stride], q1);
|
||||
}
|
||||
}
|
||||
|
||||
static void HFilter16iSSE2(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
int k;
|
||||
uint8_t* b;
|
||||
__m128i mask;
|
||||
__m128i t1, t2, p1, p0, q0, q1;
|
||||
|
||||
for (k = 3; k > 0; --k) {
|
||||
b = p;
|
||||
Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
|
||||
MAX_DIFF1(t2, t1, p1, p0, mask);
|
||||
|
||||
b += 4; // beginning of q0
|
||||
Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
|
||||
MAX_DIFF2(t2, t1, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
|
||||
|
||||
b -= 2; // beginning of p1
|
||||
Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
|
||||
|
||||
p += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// 8-pixels wide variant, for chroma filtering
|
||||
static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
__m128i mask;
|
||||
__m128i t1, p2, p1, p0, q0, q1, q2;
|
||||
|
||||
// Load p3, p2, p1, p0
|
||||
LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
|
||||
MAX_DIFF1(t1, p2, p1, p0, mask);
|
||||
|
||||
// Load q0, q1, q2, q3
|
||||
LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
|
||||
MAX_DIFF2(t1, q2, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
|
||||
|
||||
// Store
|
||||
STOREUV(p2, u, v, -3 * stride);
|
||||
STOREUV(p1, u, v, -2 * stride);
|
||||
STOREUV(p0, u, v, -1 * stride);
|
||||
STOREUV(q0, u, v, 0 * stride);
|
||||
STOREUV(q1, u, v, 1 * stride);
|
||||
STOREUV(q2, u, v, 2 * stride);
|
||||
}
|
||||
|
||||
static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
__m128i mask;
|
||||
__m128i p3, p2, p1, p0, q0, q1, q2, q3;
|
||||
|
||||
uint8_t* const tu = u - 4;
|
||||
uint8_t* const tv = v - 4;
|
||||
Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
|
||||
MAX_DIFF1(p3, p2, p1, p0, mask);
|
||||
|
||||
Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
|
||||
MAX_DIFF2(q3, q2, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
|
||||
|
||||
Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
|
||||
Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
|
||||
}
|
||||
|
||||
static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
__m128i mask;
|
||||
__m128i t1, t2, p1, p0, q0, q1;
|
||||
|
||||
// Load p3, p2, p1, p0
|
||||
LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
|
||||
MAX_DIFF1(t2, t1, p1, p0, mask);
|
||||
|
||||
u += 4 * stride;
|
||||
v += 4 * stride;
|
||||
|
||||
// Load q0, q1, q2, q3
|
||||
LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
|
||||
MAX_DIFF2(t2, t1, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
|
||||
|
||||
// Store
|
||||
STOREUV(p1, u, v, -2 * stride);
|
||||
STOREUV(p0, u, v, -1 * stride);
|
||||
STOREUV(q0, u, v, 0 * stride);
|
||||
STOREUV(q1, u, v, 1 * stride);
|
||||
}
|
||||
|
||||
static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
__m128i mask;
|
||||
__m128i t1, t2, p1, p0, q0, q1;
|
||||
Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
|
||||
MAX_DIFF1(t2, t1, p1, p0, mask);
|
||||
|
||||
u += 4; // beginning of q0
|
||||
v += 4;
|
||||
Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
|
||||
MAX_DIFF2(t2, t1, q1, q0, mask);
|
||||
|
||||
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
|
||||
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
|
||||
|
||||
u -= 2; // beginning of p1
|
||||
v -= 2;
|
||||
Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
|
||||
}
|
||||
|
||||
extern void VP8DspInitSSE2(void);
|
||||
|
||||
void VP8DspInitSSE2(void) {
|
||||
VP8Transform = TransformSSE2;
|
||||
|
||||
VP8VFilter16 = VFilter16SSE2;
|
||||
VP8HFilter16 = HFilter16SSE2;
|
||||
VP8VFilter8 = VFilter8SSE2;
|
||||
VP8HFilter8 = HFilter8SSE2;
|
||||
VP8VFilter16i = VFilter16iSSE2;
|
||||
VP8HFilter16i = HFilter16iSSE2;
|
||||
VP8VFilter8i = VFilter8iSSE2;
|
||||
VP8HFilter8i = HFilter8iSSE2;
|
||||
|
||||
VP8SimpleVFilter16 = SimpleVFilter16SSE2;
|
||||
VP8SimpleHFilter16 = SimpleHFilter16SSE2;
|
||||
VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
|
||||
VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_USE_SSE2
|
|
@ -1,210 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Speed-critical functions.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_DSP_DSP_H_
|
||||
#define WEBP_DSP_DSP_H_
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// CPU detection
|
||||
|
||||
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
|
||||
#define WEBP_MSC_SSE2 // Visual C++ SSE2 targets
|
||||
#endif
|
||||
|
||||
#if defined(__SSE2__) || defined(WEBP_MSC_SSE2)
|
||||
#define WEBP_USE_SSE2
|
||||
#endif
|
||||
|
||||
#if defined(__ANDROID__) && defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__)
|
||||
#define WEBP_ANDROID_NEON // Android targets that might support NEON
|
||||
#endif
|
||||
|
||||
#if ( (defined(__ARM_NEON__) && !defined(__aarch64__)) || defined(WEBP_ANDROID_NEON)) && !defined(PSP2_ENABLED)
|
||||
#define WEBP_USE_NEON
|
||||
#endif
|
||||
|
||||
typedef enum {
|
||||
kSSE2,
|
||||
kSSE3,
|
||||
kNEON
|
||||
} CPUFeature;
|
||||
// returns true if the CPU supports the feature.
|
||||
typedef int (*VP8CPUInfo)(CPUFeature feature);
|
||||
extern VP8CPUInfo VP8GetCPUInfo;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Encoding
|
||||
|
||||
int VP8GetAlpha(const int histo[]);
|
||||
|
||||
// Transforms
|
||||
// VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms
|
||||
// will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4).
|
||||
typedef void (*VP8Idct)(const uint8_t* ref, const int16_t* in, uint8_t* dst,
|
||||
int do_two);
|
||||
typedef void (*VP8Fdct)(const uint8_t* src, const uint8_t* ref, int16_t* out);
|
||||
typedef void (*VP8WHT)(const int16_t* in, int16_t* out);
|
||||
extern VP8Idct VP8ITransform;
|
||||
extern VP8Fdct VP8FTransform;
|
||||
extern VP8WHT VP8ITransformWHT;
|
||||
extern VP8WHT VP8FTransformWHT;
|
||||
// Predictions
|
||||
// *dst is the destination block. *top and *left can be NULL.
|
||||
typedef void (*VP8IntraPreds)(uint8_t *dst, const uint8_t* left,
|
||||
const uint8_t* top);
|
||||
typedef void (*VP8Intra4Preds)(uint8_t *dst, const uint8_t* top);
|
||||
extern VP8Intra4Preds VP8EncPredLuma4;
|
||||
extern VP8IntraPreds VP8EncPredLuma16;
|
||||
extern VP8IntraPreds VP8EncPredChroma8;
|
||||
|
||||
typedef int (*VP8Metric)(const uint8_t* pix, const uint8_t* ref);
|
||||
extern VP8Metric VP8SSE16x16, VP8SSE16x8, VP8SSE8x8, VP8SSE4x4;
|
||||
typedef int (*VP8WMetric)(const uint8_t* pix, const uint8_t* ref,
|
||||
const uint16_t* const weights);
|
||||
extern VP8WMetric VP8TDisto4x4, VP8TDisto16x16;
|
||||
|
||||
typedef void (*VP8BlockCopy)(const uint8_t* src, uint8_t* dst);
|
||||
extern VP8BlockCopy VP8Copy4x4;
|
||||
// Quantization
|
||||
struct VP8Matrix; // forward declaration
|
||||
typedef int (*VP8QuantizeBlock)(int16_t in[16], int16_t out[16],
|
||||
int n, const struct VP8Matrix* const mtx);
|
||||
extern VP8QuantizeBlock VP8EncQuantizeBlock;
|
||||
|
||||
// Compute susceptibility based on DCT-coeff histograms:
|
||||
// the higher, the "easier" the macroblock is to compress.
|
||||
typedef int (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred,
|
||||
int start_block, int end_block);
|
||||
extern const int VP8DspScan[16 + 4 + 4];
|
||||
extern VP8CHisto VP8CollectHistogram;
|
||||
|
||||
void VP8EncDspInit(void); // must be called before using any of the above
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Decoding
|
||||
|
||||
typedef void (*VP8DecIdct)(const int16_t* coeffs, uint8_t* dst);
|
||||
// when doing two transforms, coeffs is actually int16_t[2][16].
|
||||
typedef void (*VP8DecIdct2)(const int16_t* coeffs, uint8_t* dst, int do_two);
|
||||
extern VP8DecIdct2 VP8Transform;
|
||||
extern VP8DecIdct VP8TransformUV;
|
||||
extern VP8DecIdct VP8TransformDC;
|
||||
extern VP8DecIdct VP8TransformDCUV;
|
||||
extern void (*VP8TransformWHT)(const int16_t* in, int16_t* out);
|
||||
|
||||
// *dst is the destination block, with stride BPS. Boundary samples are
|
||||
// assumed accessible when needed.
|
||||
typedef void (*VP8PredFunc)(uint8_t* dst);
|
||||
extern const VP8PredFunc VP8PredLuma16[/* NUM_B_DC_MODES */];
|
||||
extern const VP8PredFunc VP8PredChroma8[/* NUM_B_DC_MODES */];
|
||||
extern const VP8PredFunc VP8PredLuma4[/* NUM_BMODES */];
|
||||
|
||||
// simple filter (only for luma)
|
||||
typedef void (*VP8SimpleFilterFunc)(uint8_t* p, int stride, int thresh);
|
||||
extern VP8SimpleFilterFunc VP8SimpleVFilter16;
|
||||
extern VP8SimpleFilterFunc VP8SimpleHFilter16;
|
||||
extern VP8SimpleFilterFunc VP8SimpleVFilter16i; // filter 3 inner edges
|
||||
extern VP8SimpleFilterFunc VP8SimpleHFilter16i;
|
||||
|
||||
// regular filter (on both macroblock edges and inner edges)
|
||||
typedef void (*VP8LumaFilterFunc)(uint8_t* luma, int stride,
|
||||
int thresh, int ithresh, int hev_t);
|
||||
typedef void (*VP8ChromaFilterFunc)(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_t);
|
||||
// on outer edge
|
||||
extern VP8LumaFilterFunc VP8VFilter16;
|
||||
extern VP8LumaFilterFunc VP8HFilter16;
|
||||
extern VP8ChromaFilterFunc VP8VFilter8;
|
||||
extern VP8ChromaFilterFunc VP8HFilter8;
|
||||
|
||||
// on inner edge
|
||||
extern VP8LumaFilterFunc VP8VFilter16i; // filtering 3 inner edges altogether
|
||||
extern VP8LumaFilterFunc VP8HFilter16i;
|
||||
extern VP8ChromaFilterFunc VP8VFilter8i; // filtering u and v altogether
|
||||
extern VP8ChromaFilterFunc VP8HFilter8i;
|
||||
|
||||
// must be called before anything using the above
|
||||
void VP8DspInit(void);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebP I/O
|
||||
|
||||
#define FANCY_UPSAMPLING // undefined to remove fancy upsampling support
|
||||
|
||||
typedef void (*WebPUpsampleLinePairFunc)(
|
||||
const uint8_t* top_y, const uint8_t* bottom_y,
|
||||
const uint8_t* top_u, const uint8_t* top_v,
|
||||
const uint8_t* cur_u, const uint8_t* cur_v,
|
||||
uint8_t* top_dst, uint8_t* bottom_dst, int len);
|
||||
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
|
||||
// Fancy upsampling functions to convert YUV to RGB(A) modes
|
||||
extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
|
||||
|
||||
// Initializes SSE2 version of the fancy upsamplers.
|
||||
void WebPInitUpsamplersSSE2(void);
|
||||
|
||||
#endif // FANCY_UPSAMPLING
|
||||
|
||||
// Point-sampling methods.
|
||||
typedef void (*WebPSampleLinePairFunc)(
|
||||
const uint8_t* top_y, const uint8_t* bottom_y,
|
||||
const uint8_t* u, const uint8_t* v,
|
||||
uint8_t* top_dst, uint8_t* bottom_dst, int len);
|
||||
|
||||
extern const WebPSampleLinePairFunc WebPSamplers[/* MODE_LAST */];
|
||||
|
||||
// General function for converting two lines of ARGB or RGBA.
|
||||
// 'alpha_is_last' should be true if 0xff000000 is stored in memory as
|
||||
// as 0x00, 0x00, 0x00, 0xff (little endian).
|
||||
WebPUpsampleLinePairFunc WebPGetLinePairConverter(int alpha_is_last);
|
||||
|
||||
// YUV444->RGB converters
|
||||
typedef void (*WebPYUV444Converter)(const uint8_t* y,
|
||||
const uint8_t* u, const uint8_t* v,
|
||||
uint8_t* dst, int len);
|
||||
|
||||
extern const WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */];
|
||||
|
||||
// Main function to be called
|
||||
void WebPInitUpsamplers(void);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Pre-multiply planes with alpha values
|
||||
|
||||
// Apply alpha pre-multiply on an rgba, bgra or argb plane of size w * h.
|
||||
// alpha_first should be 0 for argb, 1 for rgba or bgra (where alpha is last).
|
||||
extern void (*WebPApplyAlphaMultiply)(
|
||||
uint8_t* rgba, int alpha_first, int w, int h, int stride);
|
||||
|
||||
// Same, buf specifically for RGBA4444 format
|
||||
extern void (*WebPApplyAlphaMultiply4444)(
|
||||
uint8_t* rgba4444, int w, int h, int stride);
|
||||
|
||||
// To be called first before using the above.
|
||||
void WebPInitPremultiply(void);
|
||||
|
||||
void WebPInitPremultiplySSE2(void); // should not be called directly.
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_DSP_DSP_H_ */
|
|
@ -1,743 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Speed-critical encoding functions.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h> // for abs()
|
||||
#include "./dsp.h"
|
||||
#include "../enc/vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Compute susceptibility based on DCT-coeff histograms:
|
||||
// the higher, the "easier" the macroblock is to compress.
|
||||
|
||||
static int ClipAlpha(int alpha) {
|
||||
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
|
||||
}
|
||||
|
||||
int VP8GetAlpha(const int histo[MAX_COEFF_THRESH + 1]) {
|
||||
int num = 0, den = 0, val = 0;
|
||||
int k;
|
||||
int alpha;
|
||||
// note: changing this loop to avoid the numerous "k + 1" slows things down.
|
||||
for (k = 0; k < MAX_COEFF_THRESH; ++k) {
|
||||
if (histo[k + 1]) {
|
||||
val += histo[k + 1];
|
||||
num += val * (k + 1);
|
||||
den += (k + 1) * (k + 1);
|
||||
}
|
||||
}
|
||||
// we scale the value to a usable [0..255] range
|
||||
alpha = den ? 10 * num / den - 5 : 0;
|
||||
return ClipAlpha(alpha);
|
||||
}
|
||||
|
||||
const int VP8DspScan[16 + 4 + 4] = {
|
||||
// Luma
|
||||
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
|
||||
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
|
||||
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
|
||||
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
|
||||
|
||||
0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
|
||||
8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
|
||||
};
|
||||
|
||||
static int CollectHistogram(const uint8_t* ref, const uint8_t* pred,
|
||||
int start_block, int end_block) {
|
||||
int histo[MAX_COEFF_THRESH + 1] = { 0 };
|
||||
int16_t out[16];
|
||||
int j, k;
|
||||
for (j = start_block; j < end_block; ++j) {
|
||||
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
|
||||
|
||||
// Convert coefficients to bin (within out[]).
|
||||
for (k = 0; k < 16; ++k) {
|
||||
const int v = abs(out[k]) >> 2;
|
||||
out[k] = (v > MAX_COEFF_THRESH) ? MAX_COEFF_THRESH : v;
|
||||
}
|
||||
|
||||
// Use bin to update histogram.
|
||||
for (k = 0; k < 16; ++k) {
|
||||
histo[out[k]]++;
|
||||
}
|
||||
}
|
||||
|
||||
return VP8GetAlpha(histo);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// run-time tables (~4k)
|
||||
|
||||
static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
|
||||
|
||||
// We declare this variable 'volatile' to prevent instruction reordering
|
||||
// and make sure it's set to true _last_ (so as to be thread-safe)
|
||||
static volatile int tables_ok = 0;
|
||||
|
||||
static void InitTables(void) {
|
||||
if (!tables_ok) {
|
||||
int i;
|
||||
for (i = -255; i <= 255 + 255; ++i) {
|
||||
clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
|
||||
}
|
||||
tables_ok = 1;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t clip_8b(int v) {
|
||||
return (!(v & ~0xff)) ? v : v < 0 ? 0 : 255;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Transforms (Paragraph 14.4)
|
||||
|
||||
#define STORE(x, y, v) \
|
||||
dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
|
||||
|
||||
static const int kC1 = 20091 + (1 << 16);
|
||||
static const int kC2 = 35468;
|
||||
#define MUL(a, b) (((a) * (b)) >> 16)
|
||||
|
||||
static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in,
|
||||
uint8_t* dst) {
|
||||
int C[4 * 4], *tmp;
|
||||
int i;
|
||||
tmp = C;
|
||||
for (i = 0; i < 4; ++i) { // vertical pass
|
||||
const int a = in[0] + in[8];
|
||||
const int b = in[0] - in[8];
|
||||
const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
|
||||
const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
|
||||
tmp[0] = a + d;
|
||||
tmp[1] = b + c;
|
||||
tmp[2] = b - c;
|
||||
tmp[3] = a - d;
|
||||
tmp += 4;
|
||||
in++;
|
||||
}
|
||||
|
||||
tmp = C;
|
||||
for (i = 0; i < 4; ++i) { // horizontal pass
|
||||
const int dc = tmp[0] + 4;
|
||||
const int a = dc + tmp[8];
|
||||
const int b = dc - tmp[8];
|
||||
const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
|
||||
const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
|
||||
STORE(0, i, a + d);
|
||||
STORE(1, i, b + c);
|
||||
STORE(2, i, b - c);
|
||||
STORE(3, i, a - d);
|
||||
tmp++;
|
||||
}
|
||||
}
|
||||
|
||||
static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
|
||||
int do_two) {
|
||||
ITransformOne(ref, in, dst);
|
||||
if (do_two) {
|
||||
ITransformOne(ref + 4, in + 16, dst + 4);
|
||||
}
|
||||
}
|
||||
|
||||
static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
|
||||
int i;
|
||||
int tmp[16];
|
||||
for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
|
||||
const int d0 = src[0] - ref[0];
|
||||
const int d1 = src[1] - ref[1];
|
||||
const int d2 = src[2] - ref[2];
|
||||
const int d3 = src[3] - ref[3];
|
||||
const int a0 = (d0 + d3) << 3;
|
||||
const int a1 = (d1 + d2) << 3;
|
||||
const int a2 = (d1 - d2) << 3;
|
||||
const int a3 = (d0 - d3) << 3;
|
||||
tmp[0 + i * 4] = (a0 + a1);
|
||||
tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 14500) >> 12;
|
||||
tmp[2 + i * 4] = (a0 - a1);
|
||||
tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 7500) >> 12;
|
||||
}
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const int a0 = (tmp[0 + i] + tmp[12 + i]);
|
||||
const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
|
||||
const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
|
||||
const int a3 = (tmp[0 + i] - tmp[12 + i]);
|
||||
out[0 + i] = (a0 + a1 + 7) >> 4;
|
||||
out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
|
||||
out[8 + i] = (a0 - a1 + 7) >> 4;
|
||||
out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
|
||||
}
|
||||
}
|
||||
|
||||
static void ITransformWHT(const int16_t* in, int16_t* out) {
|
||||
int tmp[16];
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const int a0 = in[0 + i] + in[12 + i];
|
||||
const int a1 = in[4 + i] + in[ 8 + i];
|
||||
const int a2 = in[4 + i] - in[ 8 + i];
|
||||
const int a3 = in[0 + i] - in[12 + i];
|
||||
tmp[0 + i] = a0 + a1;
|
||||
tmp[8 + i] = a0 - a1;
|
||||
tmp[4 + i] = a3 + a2;
|
||||
tmp[12 + i] = a3 - a2;
|
||||
}
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const int dc = tmp[0 + i * 4] + 3; // w/ rounder
|
||||
const int a0 = dc + tmp[3 + i * 4];
|
||||
const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
|
||||
const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
|
||||
const int a3 = dc - tmp[3 + i * 4];
|
||||
out[ 0] = (a0 + a1) >> 3;
|
||||
out[16] = (a3 + a2) >> 3;
|
||||
out[32] = (a0 - a1) >> 3;
|
||||
out[48] = (a3 - a2) >> 3;
|
||||
out += 64;
|
||||
}
|
||||
}
|
||||
|
||||
static void FTransformWHT(const int16_t* in, int16_t* out) {
|
||||
int tmp[16];
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i, in += 64) {
|
||||
const int a0 = (in[0 * 16] + in[2 * 16]) << 2;
|
||||
const int a1 = (in[1 * 16] + in[3 * 16]) << 2;
|
||||
const int a2 = (in[1 * 16] - in[3 * 16]) << 2;
|
||||
const int a3 = (in[0 * 16] - in[2 * 16]) << 2;
|
||||
tmp[0 + i * 4] = (a0 + a1) + (a0 != 0);
|
||||
tmp[1 + i * 4] = a3 + a2;
|
||||
tmp[2 + i * 4] = a3 - a2;
|
||||
tmp[3 + i * 4] = a0 - a1;
|
||||
}
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const int a0 = (tmp[0 + i] + tmp[8 + i]);
|
||||
const int a1 = (tmp[4 + i] + tmp[12+ i]);
|
||||
const int a2 = (tmp[4 + i] - tmp[12+ i]);
|
||||
const int a3 = (tmp[0 + i] - tmp[8 + i]);
|
||||
const int b0 = a0 + a1;
|
||||
const int b1 = a3 + a2;
|
||||
const int b2 = a3 - a2;
|
||||
const int b3 = a0 - a1;
|
||||
out[ 0 + i] = (b0 + (b0 > 0) + 3) >> 3;
|
||||
out[ 4 + i] = (b1 + (b1 > 0) + 3) >> 3;
|
||||
out[ 8 + i] = (b2 + (b2 > 0) + 3) >> 3;
|
||||
out[12 + i] = (b3 + (b3 > 0) + 3) >> 3;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MUL
|
||||
#undef STORE
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Intra predictions
|
||||
|
||||
#define DST(x, y) dst[(x) + (y) * BPS]
|
||||
|
||||
static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
|
||||
int j;
|
||||
for (j = 0; j < size; ++j) {
|
||||
memset(dst + j * BPS, value, size);
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VerticalPred(uint8_t* dst,
|
||||
const uint8_t* top, int size) {
|
||||
int j;
|
||||
if (top) {
|
||||
for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
|
||||
} else {
|
||||
Fill(dst, 127, size);
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void HorizontalPred(uint8_t* dst,
|
||||
const uint8_t* left, int size) {
|
||||
if (left) {
|
||||
int j;
|
||||
for (j = 0; j < size; ++j) {
|
||||
memset(dst + j * BPS, left[j], size);
|
||||
}
|
||||
} else {
|
||||
Fill(dst, 129, size);
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
|
||||
const uint8_t* top, int size) {
|
||||
int y;
|
||||
if (left) {
|
||||
if (top) {
|
||||
const uint8_t* const clip = clip1 + 255 - left[-1];
|
||||
for (y = 0; y < size; ++y) {
|
||||
const uint8_t* const clip_table = clip + left[y];
|
||||
int x;
|
||||
for (x = 0; x < size; ++x) {
|
||||
dst[x] = clip_table[top[x]];
|
||||
}
|
||||
dst += BPS;
|
||||
}
|
||||
} else {
|
||||
HorizontalPred(dst, left, size);
|
||||
}
|
||||
} else {
|
||||
// true motion without left samples (hence: with default 129 value)
|
||||
// is equivalent to VE prediction where you just copy the top samples.
|
||||
// Note that if top samples are not available, the default value is
|
||||
// then 129, and not 127 as in the VerticalPred case.
|
||||
if (top) {
|
||||
VerticalPred(dst, top, size);
|
||||
} else {
|
||||
Fill(dst, 129, size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void DCMode(uint8_t* dst, const uint8_t* left,
|
||||
const uint8_t* top,
|
||||
int size, int round, int shift) {
|
||||
int DC = 0;
|
||||
int j;
|
||||
if (top) {
|
||||
for (j = 0; j < size; ++j) DC += top[j];
|
||||
if (left) { // top and left present
|
||||
for (j = 0; j < size; ++j) DC += left[j];
|
||||
} else { // top, but no left
|
||||
DC += DC;
|
||||
}
|
||||
DC = (DC + round) >> shift;
|
||||
} else if (left) { // left but no top
|
||||
for (j = 0; j < size; ++j) DC += left[j];
|
||||
DC += DC;
|
||||
DC = (DC + round) >> shift;
|
||||
} else { // no top, no left, nothing.
|
||||
DC = 0x80;
|
||||
}
|
||||
Fill(dst, DC, size);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chroma 8x8 prediction (paragraph 12.2)
|
||||
|
||||
static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
|
||||
const uint8_t* top) {
|
||||
// U block
|
||||
DCMode(C8DC8 + dst, left, top, 8, 8, 4);
|
||||
VerticalPred(C8VE8 + dst, top, 8);
|
||||
HorizontalPred(C8HE8 + dst, left, 8);
|
||||
TrueMotion(C8TM8 + dst, left, top, 8);
|
||||
// V block
|
||||
dst += 8;
|
||||
if (top) top += 8;
|
||||
if (left) left += 16;
|
||||
DCMode(C8DC8 + dst, left, top, 8, 8, 4);
|
||||
VerticalPred(C8VE8 + dst, top, 8);
|
||||
HorizontalPred(C8HE8 + dst, left, 8);
|
||||
TrueMotion(C8TM8 + dst, left, top, 8);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// luma 16x16 prediction (paragraph 12.3)
|
||||
|
||||
static void Intra16Preds(uint8_t* dst,
|
||||
const uint8_t* left, const uint8_t* top) {
|
||||
DCMode(I16DC16 + dst, left, top, 16, 16, 5);
|
||||
VerticalPred(I16VE16 + dst, top, 16);
|
||||
HorizontalPred(I16HE16 + dst, left, 16);
|
||||
TrueMotion(I16TM16 + dst, left, top, 16);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// luma 4x4 prediction
|
||||
|
||||
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
|
||||
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
|
||||
|
||||
static void VE4(uint8_t* dst, const uint8_t* top) { // vertical
|
||||
const uint8_t vals[4] = {
|
||||
AVG3(top[-1], top[0], top[1]),
|
||||
AVG3(top[ 0], top[1], top[2]),
|
||||
AVG3(top[ 1], top[2], top[3]),
|
||||
AVG3(top[ 2], top[3], top[4])
|
||||
};
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
memcpy(dst + i * BPS, vals, 4);
|
||||
}
|
||||
}
|
||||
|
||||
static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
|
||||
const int X = top[-1];
|
||||
const int I = top[-2];
|
||||
const int J = top[-3];
|
||||
const int K = top[-4];
|
||||
const int L = top[-5];
|
||||
*(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(X, I, J);
|
||||
*(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(I, J, K);
|
||||
*(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(J, K, L);
|
||||
*(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(K, L, L);
|
||||
}
|
||||
|
||||
static void DC4(uint8_t* dst, const uint8_t* top) {
|
||||
uint32_t dc = 4;
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
|
||||
Fill(dst, dc >> 3, 4);
|
||||
}
|
||||
|
||||
static void RD4(uint8_t* dst, const uint8_t* top) {
|
||||
const int X = top[-1];
|
||||
const int I = top[-2];
|
||||
const int J = top[-3];
|
||||
const int K = top[-4];
|
||||
const int L = top[-5];
|
||||
const int A = top[0];
|
||||
const int B = top[1];
|
||||
const int C = top[2];
|
||||
const int D = top[3];
|
||||
DST(0, 3) = AVG3(J, K, L);
|
||||
DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
|
||||
DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
|
||||
DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
|
||||
DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
|
||||
DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
|
||||
DST(3, 0) = AVG3(D, C, B);
|
||||
}
|
||||
|
||||
static void LD4(uint8_t* dst, const uint8_t* top) {
|
||||
const int A = top[0];
|
||||
const int B = top[1];
|
||||
const int C = top[2];
|
||||
const int D = top[3];
|
||||
const int E = top[4];
|
||||
const int F = top[5];
|
||||
const int G = top[6];
|
||||
const int H = top[7];
|
||||
DST(0, 0) = AVG3(A, B, C);
|
||||
DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
|
||||
DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
|
||||
DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
|
||||
DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
|
||||
DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
|
||||
DST(3, 3) = AVG3(G, H, H);
|
||||
}
|
||||
|
||||
static void VR4(uint8_t* dst, const uint8_t* top) {
|
||||
const int X = top[-1];
|
||||
const int I = top[-2];
|
||||
const int J = top[-3];
|
||||
const int K = top[-4];
|
||||
const int A = top[0];
|
||||
const int B = top[1];
|
||||
const int C = top[2];
|
||||
const int D = top[3];
|
||||
DST(0, 0) = DST(1, 2) = AVG2(X, A);
|
||||
DST(1, 0) = DST(2, 2) = AVG2(A, B);
|
||||
DST(2, 0) = DST(3, 2) = AVG2(B, C);
|
||||
DST(3, 0) = AVG2(C, D);
|
||||
|
||||
DST(0, 3) = AVG3(K, J, I);
|
||||
DST(0, 2) = AVG3(J, I, X);
|
||||
DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
|
||||
DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
|
||||
DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
|
||||
DST(3, 1) = AVG3(B, C, D);
|
||||
}
|
||||
|
||||
static void VL4(uint8_t* dst, const uint8_t* top) {
|
||||
const int A = top[0];
|
||||
const int B = top[1];
|
||||
const int C = top[2];
|
||||
const int D = top[3];
|
||||
const int E = top[4];
|
||||
const int F = top[5];
|
||||
const int G = top[6];
|
||||
const int H = top[7];
|
||||
DST(0, 0) = AVG2(A, B);
|
||||
DST(1, 0) = DST(0, 2) = AVG2(B, C);
|
||||
DST(2, 0) = DST(1, 2) = AVG2(C, D);
|
||||
DST(3, 0) = DST(2, 2) = AVG2(D, E);
|
||||
|
||||
DST(0, 1) = AVG3(A, B, C);
|
||||
DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
|
||||
DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
|
||||
DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
|
||||
DST(3, 2) = AVG3(E, F, G);
|
||||
DST(3, 3) = AVG3(F, G, H);
|
||||
}
|
||||
|
||||
static void HU4(uint8_t* dst, const uint8_t* top) {
|
||||
const int I = top[-2];
|
||||
const int J = top[-3];
|
||||
const int K = top[-4];
|
||||
const int L = top[-5];
|
||||
DST(0, 0) = AVG2(I, J);
|
||||
DST(2, 0) = DST(0, 1) = AVG2(J, K);
|
||||
DST(2, 1) = DST(0, 2) = AVG2(K, L);
|
||||
DST(1, 0) = AVG3(I, J, K);
|
||||
DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
|
||||
DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
|
||||
DST(3, 2) = DST(2, 2) =
|
||||
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
|
||||
}
|
||||
|
||||
static void HD4(uint8_t* dst, const uint8_t* top) {
|
||||
const int X = top[-1];
|
||||
const int I = top[-2];
|
||||
const int J = top[-3];
|
||||
const int K = top[-4];
|
||||
const int L = top[-5];
|
||||
const int A = top[0];
|
||||
const int B = top[1];
|
||||
const int C = top[2];
|
||||
|
||||
DST(0, 0) = DST(2, 1) = AVG2(I, X);
|
||||
DST(0, 1) = DST(2, 2) = AVG2(J, I);
|
||||
DST(0, 2) = DST(2, 3) = AVG2(K, J);
|
||||
DST(0, 3) = AVG2(L, K);
|
||||
|
||||
DST(3, 0) = AVG3(A, B, C);
|
||||
DST(2, 0) = AVG3(X, A, B);
|
||||
DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
|
||||
DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
|
||||
DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
|
||||
DST(1, 3) = AVG3(L, K, J);
|
||||
}
|
||||
|
||||
static void TM4(uint8_t* dst, const uint8_t* top) {
|
||||
int x, y;
|
||||
const uint8_t* const clip = clip1 + 255 - top[-1];
|
||||
for (y = 0; y < 4; ++y) {
|
||||
const uint8_t* const clip_table = clip + top[-2 - y];
|
||||
for (x = 0; x < 4; ++x) {
|
||||
dst[x] = clip_table[top[x]];
|
||||
}
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
|
||||
#undef DST
|
||||
#undef AVG3
|
||||
#undef AVG2
|
||||
|
||||
// Left samples are top[-5 .. -2], top_left is top[-1], top are
|
||||
// located at top[0..3], and top right is top[4..7]
|
||||
static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
|
||||
DC4(I4DC4 + dst, top);
|
||||
TM4(I4TM4 + dst, top);
|
||||
VE4(I4VE4 + dst, top);
|
||||
HE4(I4HE4 + dst, top);
|
||||
RD4(I4RD4 + dst, top);
|
||||
VR4(I4VR4 + dst, top);
|
||||
LD4(I4LD4 + dst, top);
|
||||
VL4(I4VL4 + dst, top);
|
||||
HD4(I4HD4 + dst, top);
|
||||
HU4(I4HU4 + dst, top);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Metric
|
||||
|
||||
static WEBP_INLINE int GetSSE(const uint8_t* a, const uint8_t* b,
|
||||
int w, int h) {
|
||||
int count = 0;
|
||||
int y, x;
|
||||
for (y = 0; y < h; ++y) {
|
||||
for (x = 0; x < w; ++x) {
|
||||
const int diff = (int)a[x] - b[x];
|
||||
count += diff * diff;
|
||||
}
|
||||
a += BPS;
|
||||
b += BPS;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
static int SSE16x16(const uint8_t* a, const uint8_t* b) {
|
||||
return GetSSE(a, b, 16, 16);
|
||||
}
|
||||
static int SSE16x8(const uint8_t* a, const uint8_t* b) {
|
||||
return GetSSE(a, b, 16, 8);
|
||||
}
|
||||
static int SSE8x8(const uint8_t* a, const uint8_t* b) {
|
||||
return GetSSE(a, b, 8, 8);
|
||||
}
|
||||
static int SSE4x4(const uint8_t* a, const uint8_t* b) {
|
||||
return GetSSE(a, b, 4, 4);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Texture distortion
|
||||
//
|
||||
// We try to match the spectral content (weighted) between source and
|
||||
// reconstructed samples.
|
||||
|
||||
// Hadamard transform
|
||||
// Returns the weighted sum of the absolute value of transformed coefficients.
|
||||
static int TTransform(const uint8_t* in, const uint16_t* w) {
|
||||
int sum = 0;
|
||||
int tmp[16];
|
||||
int i;
|
||||
// horizontal pass
|
||||
for (i = 0; i < 4; ++i, in += BPS) {
|
||||
const int a0 = (in[0] + in[2]) << 2;
|
||||
const int a1 = (in[1] + in[3]) << 2;
|
||||
const int a2 = (in[1] - in[3]) << 2;
|
||||
const int a3 = (in[0] - in[2]) << 2;
|
||||
tmp[0 + i * 4] = a0 + a1 + (a0 != 0);
|
||||
tmp[1 + i * 4] = a3 + a2;
|
||||
tmp[2 + i * 4] = a3 - a2;
|
||||
tmp[3 + i * 4] = a0 - a1;
|
||||
}
|
||||
// vertical pass
|
||||
for (i = 0; i < 4; ++i, ++w) {
|
||||
const int a0 = (tmp[0 + i] + tmp[8 + i]);
|
||||
const int a1 = (tmp[4 + i] + tmp[12+ i]);
|
||||
const int a2 = (tmp[4 + i] - tmp[12+ i]);
|
||||
const int a3 = (tmp[0 + i] - tmp[8 + i]);
|
||||
const int b0 = a0 + a1;
|
||||
const int b1 = a3 + a2;
|
||||
const int b2 = a3 - a2;
|
||||
const int b3 = a0 - a1;
|
||||
// abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
|
||||
sum += w[ 0] * ((abs(b0) + 3) >> 3);
|
||||
sum += w[ 4] * ((abs(b1) + 3) >> 3);
|
||||
sum += w[ 8] * ((abs(b2) + 3) >> 3);
|
||||
sum += w[12] * ((abs(b3) + 3) >> 3);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
|
||||
const uint16_t* const w) {
|
||||
const int sum1 = TTransform(a, w);
|
||||
const int sum2 = TTransform(b, w);
|
||||
return (abs(sum2 - sum1) + 8) >> 4;
|
||||
}
|
||||
|
||||
static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
|
||||
const uint16_t* const w) {
|
||||
int D = 0;
|
||||
int x, y;
|
||||
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
|
||||
for (x = 0; x < 16; x += 4) {
|
||||
D += Disto4x4(a + x + y, b + x + y, w);
|
||||
}
|
||||
}
|
||||
return D;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Quantization
|
||||
//
|
||||
|
||||
static const uint8_t kZigzag[16] = {
|
||||
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
|
||||
};
|
||||
|
||||
// Simple quantization
|
||||
static int QuantizeBlock(int16_t in[16], int16_t out[16],
|
||||
int n, const VP8Matrix* const mtx) {
|
||||
int last = -1;
|
||||
for (; n < 16; ++n) {
|
||||
const int j = kZigzag[n];
|
||||
const int sign = (in[j] < 0);
|
||||
int coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
|
||||
if (coeff > 2047) coeff = 2047;
|
||||
if (coeff > mtx->zthresh_[j]) {
|
||||
const int Q = mtx->q_[j];
|
||||
const int iQ = mtx->iq_[j];
|
||||
const int B = mtx->bias_[j];
|
||||
out[n] = QUANTDIV(coeff, iQ, B);
|
||||
if (sign) out[n] = -out[n];
|
||||
in[j] = out[n] * Q;
|
||||
if (out[n]) last = n;
|
||||
} else {
|
||||
out[n] = 0;
|
||||
in[j] = 0;
|
||||
}
|
||||
}
|
||||
return (last >= 0);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Block copy
|
||||
|
||||
static WEBP_INLINE void Copy(const uint8_t* src, uint8_t* dst, int size) {
|
||||
int y;
|
||||
for (y = 0; y < size; ++y) {
|
||||
memcpy(dst, src, size);
|
||||
src += BPS;
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
|
||||
static void Copy4x4(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 4); }
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Initialization
|
||||
|
||||
// Speed-critical function pointers. We have to initialize them to the default
|
||||
// implementations within VP8EncDspInit().
|
||||
VP8CHisto VP8CollectHistogram;
|
||||
VP8Idct VP8ITransform;
|
||||
VP8Fdct VP8FTransform;
|
||||
VP8WHT VP8ITransformWHT;
|
||||
VP8WHT VP8FTransformWHT;
|
||||
VP8Intra4Preds VP8EncPredLuma4;
|
||||
VP8IntraPreds VP8EncPredLuma16;
|
||||
VP8IntraPreds VP8EncPredChroma8;
|
||||
VP8Metric VP8SSE16x16;
|
||||
VP8Metric VP8SSE8x8;
|
||||
VP8Metric VP8SSE16x8;
|
||||
VP8Metric VP8SSE4x4;
|
||||
VP8WMetric VP8TDisto4x4;
|
||||
VP8WMetric VP8TDisto16x16;
|
||||
VP8QuantizeBlock VP8EncQuantizeBlock;
|
||||
VP8BlockCopy VP8Copy4x4;
|
||||
|
||||
extern void VP8EncDspInitSSE2(void);
|
||||
|
||||
void VP8EncDspInit(void) {
|
||||
InitTables();
|
||||
|
||||
// default C implementations
|
||||
VP8CollectHistogram = CollectHistogram;
|
||||
VP8ITransform = ITransform;
|
||||
VP8FTransform = FTransform;
|
||||
VP8ITransformWHT = ITransformWHT;
|
||||
VP8FTransformWHT = FTransformWHT;
|
||||
VP8EncPredLuma4 = Intra4Preds;
|
||||
VP8EncPredLuma16 = Intra16Preds;
|
||||
VP8EncPredChroma8 = IntraChromaPreds;
|
||||
VP8SSE16x16 = SSE16x16;
|
||||
VP8SSE8x8 = SSE8x8;
|
||||
VP8SSE16x8 = SSE16x8;
|
||||
VP8SSE4x4 = SSE4x4;
|
||||
VP8TDisto4x4 = Disto4x4;
|
||||
VP8TDisto16x16 = Disto16x16;
|
||||
VP8EncQuantizeBlock = QuantizeBlock;
|
||||
VP8Copy4x4 = Copy4x4;
|
||||
|
||||
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
||||
if (VP8GetCPUInfo) {
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
if (VP8GetCPUInfo(kSSE2)) {
|
||||
VP8EncDspInitSSE2();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,837 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// SSE2 version of speed-critical encoding functions.
|
||||
//
|
||||
// Author: Christian Duvivier (cduvivier@google.com)
|
||||
|
||||
#include "./dsp.h"
|
||||
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
#include <stdlib.h> // for abs()
|
||||
#include <emmintrin.h>
|
||||
|
||||
#include "../enc/vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Compute susceptibility based on DCT-coeff histograms:
|
||||
// the higher, the "easier" the macroblock is to compress.
|
||||
|
||||
static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
|
||||
int start_block, int end_block) {
|
||||
int histo[MAX_COEFF_THRESH + 1] = { 0 };
|
||||
int16_t out[16];
|
||||
int j, k;
|
||||
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
|
||||
for (j = start_block; j < end_block; ++j) {
|
||||
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
|
||||
|
||||
// Convert coefficients to bin (within out[]).
|
||||
{
|
||||
// Load.
|
||||
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
|
||||
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
|
||||
// sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
|
||||
const __m128i sign0 = _mm_srai_epi16(out0, 15);
|
||||
const __m128i sign1 = _mm_srai_epi16(out1, 15);
|
||||
// abs(out) = (out ^ sign) - sign
|
||||
const __m128i xor0 = _mm_xor_si128(out0, sign0);
|
||||
const __m128i xor1 = _mm_xor_si128(out1, sign1);
|
||||
const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
|
||||
const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
|
||||
// v = abs(out) >> 2
|
||||
const __m128i v0 = _mm_srai_epi16(abs0, 2);
|
||||
const __m128i v1 = _mm_srai_epi16(abs1, 2);
|
||||
// bin = min(v, MAX_COEFF_THRESH)
|
||||
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
|
||||
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
|
||||
// Store.
|
||||
_mm_storeu_si128((__m128i*)&out[0], bin0);
|
||||
_mm_storeu_si128((__m128i*)&out[8], bin1);
|
||||
}
|
||||
|
||||
// Use bin to update histogram.
|
||||
for (k = 0; k < 16; ++k) {
|
||||
histo[out[k]]++;
|
||||
}
|
||||
}
|
||||
|
||||
return VP8GetAlpha(histo);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Transforms (Paragraph 14.4)
|
||||
|
||||
// Does one or two inverse transforms.
|
||||
static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
|
||||
int do_two) {
|
||||
// This implementation makes use of 16-bit fixed point versions of two
|
||||
// multiply constants:
|
||||
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
|
||||
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
|
||||
//
|
||||
// To be able to use signed 16-bit integers, we use the following trick to
|
||||
// have constants within range:
|
||||
// - Associated constants are obtained by subtracting the 16-bit fixed point
|
||||
// version of one:
|
||||
// k = K - (1 << 16) => K = k + (1 << 16)
|
||||
// K1 = 85267 => k1 = 20091
|
||||
// K2 = 35468 => k2 = -30068
|
||||
// - The multiplication of a variable by a constant become the sum of the
|
||||
// variable and the multiplication of that variable by the associated
|
||||
// constant:
|
||||
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
|
||||
const __m128i k1 = _mm_set1_epi16(20091);
|
||||
const __m128i k2 = _mm_set1_epi16(-30068);
|
||||
__m128i T0, T1, T2, T3;
|
||||
|
||||
// Load and concatenate the transform coefficients (we'll do two inverse
|
||||
// transforms in parallel). In the case of only one inverse transform, the
|
||||
// second half of the vectors will just contain random value we'll never
|
||||
// use nor store.
|
||||
__m128i in0, in1, in2, in3;
|
||||
{
|
||||
in0 = _mm_loadl_epi64((__m128i*)&in[0]);
|
||||
in1 = _mm_loadl_epi64((__m128i*)&in[4]);
|
||||
in2 = _mm_loadl_epi64((__m128i*)&in[8]);
|
||||
in3 = _mm_loadl_epi64((__m128i*)&in[12]);
|
||||
// a00 a10 a20 a30 x x x x
|
||||
// a01 a11 a21 a31 x x x x
|
||||
// a02 a12 a22 a32 x x x x
|
||||
// a03 a13 a23 a33 x x x x
|
||||
if (do_two) {
|
||||
const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
|
||||
const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
|
||||
const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
|
||||
const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
|
||||
in0 = _mm_unpacklo_epi64(in0, inB0);
|
||||
in1 = _mm_unpacklo_epi64(in1, inB1);
|
||||
in2 = _mm_unpacklo_epi64(in2, inB2);
|
||||
in3 = _mm_unpacklo_epi64(in3, inB3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
}
|
||||
|
||||
// Vertical pass and subsequent transpose.
|
||||
{
|
||||
// First pass, c and d calculations are longer because of the "trick"
|
||||
// multiplications.
|
||||
const __m128i a = _mm_add_epi16(in0, in2);
|
||||
const __m128i b = _mm_sub_epi16(in0, in2);
|
||||
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
|
||||
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
|
||||
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
|
||||
const __m128i c3 = _mm_sub_epi16(in1, in3);
|
||||
const __m128i c4 = _mm_sub_epi16(c1, c2);
|
||||
const __m128i c = _mm_add_epi16(c3, c4);
|
||||
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
|
||||
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
|
||||
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
|
||||
const __m128i d3 = _mm_add_epi16(in1, in3);
|
||||
const __m128i d4 = _mm_add_epi16(d1, d2);
|
||||
const __m128i d = _mm_add_epi16(d3, d4);
|
||||
|
||||
// Second pass.
|
||||
const __m128i tmp0 = _mm_add_epi16(a, d);
|
||||
const __m128i tmp1 = _mm_add_epi16(b, c);
|
||||
const __m128i tmp2 = _mm_sub_epi16(b, c);
|
||||
const __m128i tmp3 = _mm_sub_epi16(a, d);
|
||||
|
||||
// Transpose the two 4x4.
|
||||
// a00 a01 a02 a03 b00 b01 b02 b03
|
||||
// a10 a11 a12 a13 b10 b11 b12 b13
|
||||
// a20 a21 a22 a23 b20 b21 b22 b23
|
||||
// a30 a31 a32 a33 b30 b31 b32 b33
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
|
||||
const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
|
||||
const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
|
||||
// a00 a10 a01 a11 a02 a12 a03 a13
|
||||
// a20 a30 a21 a31 a22 a32 a23 a33
|
||||
// b00 b10 b01 b11 b02 b12 b03 b13
|
||||
// b20 b30 b21 b31 b22 b32 b23 b33
|
||||
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
|
||||
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
|
||||
// a00 a10 a20 a30 a01 a11 a21 a31
|
||||
// b00 b10 b20 b30 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 a03 a13 a23 a33
|
||||
// b02 b12 a22 b32 b03 b13 b23 b33
|
||||
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
|
||||
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
|
||||
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
|
||||
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
|
||||
// Horizontal pass and subsequent transpose.
|
||||
{
|
||||
// First pass, c and d calculations are longer because of the "trick"
|
||||
// multiplications.
|
||||
const __m128i four = _mm_set1_epi16(4);
|
||||
const __m128i dc = _mm_add_epi16(T0, four);
|
||||
const __m128i a = _mm_add_epi16(dc, T2);
|
||||
const __m128i b = _mm_sub_epi16(dc, T2);
|
||||
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
|
||||
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
|
||||
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
|
||||
const __m128i c3 = _mm_sub_epi16(T1, T3);
|
||||
const __m128i c4 = _mm_sub_epi16(c1, c2);
|
||||
const __m128i c = _mm_add_epi16(c3, c4);
|
||||
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
|
||||
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
|
||||
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
|
||||
const __m128i d3 = _mm_add_epi16(T1, T3);
|
||||
const __m128i d4 = _mm_add_epi16(d1, d2);
|
||||
const __m128i d = _mm_add_epi16(d3, d4);
|
||||
|
||||
// Second pass.
|
||||
const __m128i tmp0 = _mm_add_epi16(a, d);
|
||||
const __m128i tmp1 = _mm_add_epi16(b, c);
|
||||
const __m128i tmp2 = _mm_sub_epi16(b, c);
|
||||
const __m128i tmp3 = _mm_sub_epi16(a, d);
|
||||
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
|
||||
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
|
||||
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
|
||||
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
|
||||
|
||||
// Transpose the two 4x4.
|
||||
// a00 a01 a02 a03 b00 b01 b02 b03
|
||||
// a10 a11 a12 a13 b10 b11 b12 b13
|
||||
// a20 a21 a22 a23 b20 b21 b22 b23
|
||||
// a30 a31 a32 a33 b30 b31 b32 b33
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
|
||||
const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
|
||||
const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
|
||||
// a00 a10 a01 a11 a02 a12 a03 a13
|
||||
// a20 a30 a21 a31 a22 a32 a23 a33
|
||||
// b00 b10 b01 b11 b02 b12 b03 b13
|
||||
// b20 b30 b21 b31 b22 b32 b23 b33
|
||||
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
|
||||
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
|
||||
// a00 a10 a20 a30 a01 a11 a21 a31
|
||||
// b00 b10 b20 b30 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 a03 a13 a23 a33
|
||||
// b02 b12 a22 b32 b03 b13 b23 b33
|
||||
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
|
||||
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
|
||||
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
|
||||
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
|
||||
// Add inverse transform to 'ref' and store.
|
||||
{
|
||||
const __m128i zero = _mm_set1_epi16(0);
|
||||
// Load the reference(s).
|
||||
__m128i ref0, ref1, ref2, ref3;
|
||||
if (do_two) {
|
||||
// Load eight bytes/pixels per line.
|
||||
ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
|
||||
ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
|
||||
ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
|
||||
ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
|
||||
} else {
|
||||
// Load four bytes/pixels per line.
|
||||
ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
|
||||
ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
|
||||
ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
|
||||
ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
|
||||
}
|
||||
// Convert to 16b.
|
||||
ref0 = _mm_unpacklo_epi8(ref0, zero);
|
||||
ref1 = _mm_unpacklo_epi8(ref1, zero);
|
||||
ref2 = _mm_unpacklo_epi8(ref2, zero);
|
||||
ref3 = _mm_unpacklo_epi8(ref3, zero);
|
||||
// Add the inverse transform(s).
|
||||
ref0 = _mm_add_epi16(ref0, T0);
|
||||
ref1 = _mm_add_epi16(ref1, T1);
|
||||
ref2 = _mm_add_epi16(ref2, T2);
|
||||
ref3 = _mm_add_epi16(ref3, T3);
|
||||
// Unsigned saturate to 8b.
|
||||
ref0 = _mm_packus_epi16(ref0, ref0);
|
||||
ref1 = _mm_packus_epi16(ref1, ref1);
|
||||
ref2 = _mm_packus_epi16(ref2, ref2);
|
||||
ref3 = _mm_packus_epi16(ref3, ref3);
|
||||
// Store the results.
|
||||
if (do_two) {
|
||||
// Store eight bytes/pixels per line.
|
||||
_mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
|
||||
_mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
|
||||
_mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
|
||||
_mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
|
||||
} else {
|
||||
// Store four bytes/pixels per line.
|
||||
*((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
|
||||
*((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
|
||||
*((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
|
||||
*((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
|
||||
int16_t* out) {
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
const __m128i seven = _mm_set1_epi16(7);
|
||||
const __m128i k7500 = _mm_set1_epi32(7500);
|
||||
const __m128i k14500 = _mm_set1_epi32(14500);
|
||||
const __m128i k51000 = _mm_set1_epi32(51000);
|
||||
const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
|
||||
const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
|
||||
5352, 2217, 5352, 2217);
|
||||
const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
|
||||
2217, -5352, 2217, -5352);
|
||||
|
||||
__m128i v01, v32;
|
||||
|
||||
// Difference between src and ref and initial transpose.
|
||||
{
|
||||
// Load src and convert to 16b.
|
||||
const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
|
||||
const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
|
||||
const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
|
||||
const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
|
||||
const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
|
||||
const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
|
||||
const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
|
||||
const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
|
||||
// Load ref and convert to 16b.
|
||||
const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
|
||||
const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
|
||||
const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
|
||||
const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
|
||||
const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
|
||||
const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
|
||||
const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
|
||||
const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
|
||||
// Compute difference.
|
||||
const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
|
||||
const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
|
||||
const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
|
||||
const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
|
||||
|
||||
// Transpose.
|
||||
// 00 01 02 03 0 0 0 0
|
||||
// 10 11 12 13 0 0 0 0
|
||||
// 20 21 22 23 0 0 0 0
|
||||
// 30 31 32 33 0 0 0 0
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
|
||||
// 00 10 01 11 02 12 03 13
|
||||
// 20 30 21 31 22 32 23 33
|
||||
const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
|
||||
// a02 a12 a22 a32 a03 a13 a23 a33
|
||||
// a00 a10 a20 a30 a01 a11 a21 a31
|
||||
// a03 a13 a23 a33 a02 a12 a22 a32
|
||||
}
|
||||
|
||||
// First pass and subsequent transpose.
|
||||
{
|
||||
// Same operations are done on the (0,3) and (1,2) pairs.
|
||||
// b0 = (a0 + a3) << 3
|
||||
// b1 = (a1 + a2) << 3
|
||||
// b3 = (a0 - a3) << 3
|
||||
// b2 = (a1 - a2) << 3
|
||||
const __m128i a01 = _mm_add_epi16(v01, v32);
|
||||
const __m128i a32 = _mm_sub_epi16(v01, v32);
|
||||
const __m128i b01 = _mm_slli_epi16(a01, 3);
|
||||
const __m128i b32 = _mm_slli_epi16(a32, 3);
|
||||
const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
|
||||
const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
|
||||
|
||||
// e0 = b0 + b1
|
||||
// e2 = b0 - b1
|
||||
const __m128i e0 = _mm_add_epi16(b01, b11);
|
||||
const __m128i e2 = _mm_sub_epi16(b01, b11);
|
||||
const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
|
||||
|
||||
// e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
|
||||
// e3 = (b3 * 2217 - b2 * 5352 + 7500) >> 12
|
||||
const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
|
||||
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
|
||||
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
|
||||
const __m128i d1 = _mm_add_epi32(c1, k14500);
|
||||
const __m128i d3 = _mm_add_epi32(c3, k7500);
|
||||
const __m128i e1 = _mm_srai_epi32(d1, 12);
|
||||
const __m128i e3 = _mm_srai_epi32(d3, 12);
|
||||
const __m128i e13 = _mm_packs_epi32(e1, e3);
|
||||
|
||||
// Transpose.
|
||||
// 00 01 02 03 20 21 22 23
|
||||
// 10 11 12 13 30 31 32 33
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
|
||||
const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
|
||||
// 00 10 01 11 02 12 03 13
|
||||
// 20 30 21 31 22 32 23 33
|
||||
const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
|
||||
// 02 12 22 32 03 13 23 33
|
||||
// 00 10 20 30 01 11 21 31
|
||||
// 03 13 23 33 02 12 22 32
|
||||
}
|
||||
|
||||
// Second pass
|
||||
{
|
||||
// Same operations are done on the (0,3) and (1,2) pairs.
|
||||
// a0 = v0 + v3
|
||||
// a1 = v1 + v2
|
||||
// a3 = v0 - v3
|
||||
// a2 = v1 - v2
|
||||
const __m128i a01 = _mm_add_epi16(v01, v32);
|
||||
const __m128i a32 = _mm_sub_epi16(v01, v32);
|
||||
const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
|
||||
const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
|
||||
|
||||
// d0 = (a0 + a1 + 7) >> 4;
|
||||
// d2 = (a0 - a1 + 7) >> 4;
|
||||
const __m128i b0 = _mm_add_epi16(a01, a11);
|
||||
const __m128i b2 = _mm_sub_epi16(a01, a11);
|
||||
const __m128i c0 = _mm_add_epi16(b0, seven);
|
||||
const __m128i c2 = _mm_add_epi16(b2, seven);
|
||||
const __m128i d0 = _mm_srai_epi16(c0, 4);
|
||||
const __m128i d2 = _mm_srai_epi16(c2, 4);
|
||||
|
||||
// f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
|
||||
// f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
|
||||
const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
|
||||
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
|
||||
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
|
||||
const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
|
||||
const __m128i d3 = _mm_add_epi32(c3, k51000);
|
||||
const __m128i e1 = _mm_srai_epi32(d1, 16);
|
||||
const __m128i e3 = _mm_srai_epi32(d3, 16);
|
||||
const __m128i f1 = _mm_packs_epi32(e1, e1);
|
||||
const __m128i f3 = _mm_packs_epi32(e3, e3);
|
||||
// f1 = f1 + (a3 != 0);
|
||||
// The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
|
||||
// desired (0, 1), we add one earlier through k12000_plus_one.
|
||||
const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
|
||||
|
||||
_mm_storel_epi64((__m128i*)&out[ 0], d0);
|
||||
_mm_storel_epi64((__m128i*)&out[ 4], g1);
|
||||
_mm_storel_epi64((__m128i*)&out[ 8], d2);
|
||||
_mm_storel_epi64((__m128i*)&out[12], f3);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Metric
|
||||
|
||||
static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
|
||||
const __m128i zero = _mm_set1_epi16(0);
|
||||
|
||||
// Load values.
|
||||
const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
|
||||
const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
|
||||
const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
|
||||
const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
|
||||
const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
|
||||
const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
|
||||
const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
|
||||
const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
|
||||
|
||||
// Combine pair of lines and convert to 16b.
|
||||
const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
|
||||
const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
|
||||
const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
|
||||
const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
|
||||
const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
|
||||
const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
|
||||
const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
|
||||
const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
|
||||
|
||||
// Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
|
||||
// TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
|
||||
// need absolute values, there is no need to do calculation
|
||||
// in 8bit as we are already in 16bit, ... Yet this is what
|
||||
// benchmarks the fastest!
|
||||
const __m128i d0 = _mm_subs_epu8(a01s, b01s);
|
||||
const __m128i d1 = _mm_subs_epu8(b01s, a01s);
|
||||
const __m128i d2 = _mm_subs_epu8(a23s, b23s);
|
||||
const __m128i d3 = _mm_subs_epu8(b23s, a23s);
|
||||
|
||||
// Square and add them all together.
|
||||
const __m128i madd0 = _mm_madd_epi16(d0, d0);
|
||||
const __m128i madd1 = _mm_madd_epi16(d1, d1);
|
||||
const __m128i madd2 = _mm_madd_epi16(d2, d2);
|
||||
const __m128i madd3 = _mm_madd_epi16(d3, d3);
|
||||
const __m128i sum0 = _mm_add_epi32(madd0, madd1);
|
||||
const __m128i sum1 = _mm_add_epi32(madd2, madd3);
|
||||
const __m128i sum2 = _mm_add_epi32(sum0, sum1);
|
||||
int32_t tmp[4];
|
||||
_mm_storeu_si128((__m128i*)tmp, sum2);
|
||||
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Texture distortion
|
||||
//
|
||||
// We try to match the spectral content (weighted) between source and
|
||||
// reconstructed samples.
|
||||
|
||||
// Hadamard transform
|
||||
// Returns the difference between the weighted sum of the absolute value of
|
||||
// transformed coefficients.
|
||||
static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
|
||||
const uint16_t* const w) {
|
||||
int32_t sum[4];
|
||||
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
const __m128i one = _mm_set1_epi16(1);
|
||||
const __m128i three = _mm_set1_epi16(3);
|
||||
|
||||
// Load, combine and tranpose inputs.
|
||||
{
|
||||
const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
|
||||
const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
|
||||
const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
|
||||
const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
|
||||
const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
|
||||
const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
|
||||
const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
|
||||
const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
|
||||
|
||||
// Combine inA and inB (we'll do two transforms in parallel).
|
||||
const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
|
||||
const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
|
||||
const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
|
||||
const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
|
||||
// a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
|
||||
// a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
|
||||
// a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
|
||||
// a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
|
||||
|
||||
// Transpose the two 4x4, discarding the filling zeroes.
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
|
||||
// a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
|
||||
// a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
|
||||
const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
|
||||
|
||||
// Convert to 16b.
|
||||
tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
|
||||
tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
|
||||
tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
|
||||
tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
|
||||
// Horizontal pass and subsequent transpose.
|
||||
{
|
||||
// Calculate a and b (two 4x4 at once).
|
||||
const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
|
||||
const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
|
||||
const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
|
||||
const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
|
||||
// b0_extra = (a0 != 0);
|
||||
const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
|
||||
const __m128i b0_base = _mm_add_epi16(a0, a1);
|
||||
const __m128i b1 = _mm_add_epi16(a3, a2);
|
||||
const __m128i b2 = _mm_sub_epi16(a3, a2);
|
||||
const __m128i b3 = _mm_sub_epi16(a0, a1);
|
||||
const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
|
||||
// a00 a01 a02 a03 b00 b01 b02 b03
|
||||
// a10 a11 a12 a13 b10 b11 b12 b13
|
||||
// a20 a21 a22 a23 b20 b21 b22 b23
|
||||
// a30 a31 a32 a33 b30 b31 b32 b33
|
||||
|
||||
// Transpose the two 4x4.
|
||||
const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
|
||||
const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
|
||||
const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
|
||||
const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
|
||||
// a00 a10 a01 a11 a02 a12 a03 a13
|
||||
// a20 a30 a21 a31 a22 a32 a23 a33
|
||||
// b00 b10 b01 b11 b02 b12 b03 b13
|
||||
// b20 b30 b21 b31 b22 b32 b23 b33
|
||||
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
|
||||
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
|
||||
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
|
||||
// a00 a10 a20 a30 a01 a11 a21 a31
|
||||
// b00 b10 b20 b30 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 a03 a13 a23 a33
|
||||
// b02 b12 a22 b32 b03 b13 b23 b33
|
||||
tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
|
||||
tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
|
||||
tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
|
||||
tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
|
||||
// a00 a10 a20 a30 b00 b10 b20 b30
|
||||
// a01 a11 a21 a31 b01 b11 b21 b31
|
||||
// a02 a12 a22 a32 b02 b12 b22 b32
|
||||
// a03 a13 a23 a33 b03 b13 b23 b33
|
||||
}
|
||||
|
||||
// Vertical pass and difference of weighted sums.
|
||||
{
|
||||
// Load all inputs.
|
||||
// TODO(cduvivier): Make variable declarations and allocations aligned so
|
||||
// we can use _mm_load_si128 instead of _mm_loadu_si128.
|
||||
const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
|
||||
const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
|
||||
|
||||
// Calculate a and b (two 4x4 at once).
|
||||
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
|
||||
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
|
||||
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
|
||||
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
|
||||
const __m128i b0 = _mm_add_epi16(a0, a1);
|
||||
const __m128i b1 = _mm_add_epi16(a3, a2);
|
||||
const __m128i b2 = _mm_sub_epi16(a3, a2);
|
||||
const __m128i b3 = _mm_sub_epi16(a0, a1);
|
||||
|
||||
// Separate the transforms of inA and inB.
|
||||
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
|
||||
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
|
||||
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
|
||||
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
|
||||
|
||||
{
|
||||
// sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
|
||||
const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
|
||||
const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
|
||||
const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
|
||||
const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
|
||||
|
||||
// b = abs(b) = (b ^ sign) - sign
|
||||
A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
|
||||
A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
|
||||
B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
|
||||
B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
|
||||
A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
|
||||
A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
|
||||
B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
|
||||
B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
|
||||
}
|
||||
|
||||
// b = abs(b) + 3
|
||||
A_b0 = _mm_add_epi16(A_b0, three);
|
||||
A_b2 = _mm_add_epi16(A_b2, three);
|
||||
B_b0 = _mm_add_epi16(B_b0, three);
|
||||
B_b2 = _mm_add_epi16(B_b2, three);
|
||||
|
||||
// abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
|
||||
// b = (abs(b) + 3) >> 3
|
||||
A_b0 = _mm_srai_epi16(A_b0, 3);
|
||||
A_b2 = _mm_srai_epi16(A_b2, 3);
|
||||
B_b0 = _mm_srai_epi16(B_b0, 3);
|
||||
B_b2 = _mm_srai_epi16(B_b2, 3);
|
||||
|
||||
// weighted sums
|
||||
A_b0 = _mm_madd_epi16(A_b0, w_0);
|
||||
A_b2 = _mm_madd_epi16(A_b2, w_8);
|
||||
B_b0 = _mm_madd_epi16(B_b0, w_0);
|
||||
B_b2 = _mm_madd_epi16(B_b2, w_8);
|
||||
A_b0 = _mm_add_epi32(A_b0, A_b2);
|
||||
B_b0 = _mm_add_epi32(B_b0, B_b2);
|
||||
|
||||
// difference of weighted sums
|
||||
A_b0 = _mm_sub_epi32(A_b0, B_b0);
|
||||
_mm_storeu_si128((__m128i*)&sum[0], A_b0);
|
||||
}
|
||||
return sum[0] + sum[1] + sum[2] + sum[3];
|
||||
}
|
||||
|
||||
static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
|
||||
const uint16_t* const w) {
|
||||
const int diff_sum = TTransformSSE2(a, b, w);
|
||||
return (abs(diff_sum) + 8) >> 4;
|
||||
}
|
||||
|
||||
static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
|
||||
const uint16_t* const w) {
|
||||
int D = 0;
|
||||
int x, y;
|
||||
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
|
||||
for (x = 0; x < 16; x += 4) {
|
||||
D += Disto4x4SSE2(a + x + y, b + x + y, w);
|
||||
}
|
||||
}
|
||||
return D;
|
||||
}
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Quantization
|
||||
//
|
||||
|
||||
// Simple quantization
|
||||
static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
|
||||
int n, const VP8Matrix* const mtx) {
|
||||
const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
|
||||
const __m128i zero = _mm_set1_epi16(0);
|
||||
__m128i sign0, sign8;
|
||||
__m128i coeff0, coeff8;
|
||||
__m128i out0, out8;
|
||||
__m128i packed_out;
|
||||
|
||||
// Load all inputs.
|
||||
// TODO(cduvivier): Make variable declarations and allocations aligned so that
|
||||
// we can use _mm_load_si128 instead of _mm_loadu_si128.
|
||||
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
|
||||
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
|
||||
const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
|
||||
const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
|
||||
const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
|
||||
const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
|
||||
const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
|
||||
const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
|
||||
const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
|
||||
const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
|
||||
const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
|
||||
const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
|
||||
|
||||
// sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative)
|
||||
sign0 = _mm_srai_epi16(in0, 15);
|
||||
sign8 = _mm_srai_epi16(in8, 15);
|
||||
|
||||
// coeff = abs(in) = (in ^ sign) - sign
|
||||
coeff0 = _mm_xor_si128(in0, sign0);
|
||||
coeff8 = _mm_xor_si128(in8, sign8);
|
||||
coeff0 = _mm_sub_epi16(coeff0, sign0);
|
||||
coeff8 = _mm_sub_epi16(coeff8, sign8);
|
||||
|
||||
// coeff = abs(in) + sharpen
|
||||
coeff0 = _mm_add_epi16(coeff0, sharpen0);
|
||||
coeff8 = _mm_add_epi16(coeff8, sharpen8);
|
||||
|
||||
// if (coeff > 2047) coeff = 2047
|
||||
coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
|
||||
coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
|
||||
|
||||
// out = (coeff * iQ + B) >> QFIX;
|
||||
{
|
||||
// doing calculations with 32b precision (QFIX=17)
|
||||
// out = (coeff * iQ)
|
||||
__m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
|
||||
__m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
|
||||
__m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
|
||||
__m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
|
||||
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
|
||||
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
|
||||
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
|
||||
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
|
||||
// expand bias from 16b to 32b
|
||||
__m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
|
||||
__m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
|
||||
__m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
|
||||
__m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
|
||||
// out = (coeff * iQ + B)
|
||||
out_00 = _mm_add_epi32(out_00, bias_00);
|
||||
out_04 = _mm_add_epi32(out_04, bias_04);
|
||||
out_08 = _mm_add_epi32(out_08, bias_08);
|
||||
out_12 = _mm_add_epi32(out_12, bias_12);
|
||||
// out = (coeff * iQ + B) >> QFIX;
|
||||
out_00 = _mm_srai_epi32(out_00, QFIX);
|
||||
out_04 = _mm_srai_epi32(out_04, QFIX);
|
||||
out_08 = _mm_srai_epi32(out_08, QFIX);
|
||||
out_12 = _mm_srai_epi32(out_12, QFIX);
|
||||
// pack result as 16b
|
||||
out0 = _mm_packs_epi32(out_00, out_04);
|
||||
out8 = _mm_packs_epi32(out_08, out_12);
|
||||
}
|
||||
|
||||
// get sign back (if (sign[j]) out_n = -out_n)
|
||||
out0 = _mm_xor_si128(out0, sign0);
|
||||
out8 = _mm_xor_si128(out8, sign8);
|
||||
out0 = _mm_sub_epi16(out0, sign0);
|
||||
out8 = _mm_sub_epi16(out8, sign8);
|
||||
|
||||
// in = out * Q
|
||||
in0 = _mm_mullo_epi16(out0, q0);
|
||||
in8 = _mm_mullo_epi16(out8, q8);
|
||||
|
||||
// if (coeff <= mtx->zthresh_) {in=0; out=0;}
|
||||
{
|
||||
__m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
|
||||
__m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
|
||||
in0 = _mm_and_si128(in0, cmp0);
|
||||
in8 = _mm_and_si128(in8, cmp8);
|
||||
_mm_storeu_si128((__m128i*)&in[0], in0);
|
||||
_mm_storeu_si128((__m128i*)&in[8], in8);
|
||||
out0 = _mm_and_si128(out0, cmp0);
|
||||
out8 = _mm_and_si128(out8, cmp8);
|
||||
}
|
||||
|
||||
// zigzag the output before storing it.
|
||||
//
|
||||
// The zigzag pattern can almost be reproduced with a small sequence of
|
||||
// shuffles. After it, we only need to swap the 7th (ending up in third
|
||||
// position instead of twelfth) and 8th values.
|
||||
{
|
||||
__m128i outZ0, outZ8;
|
||||
outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
|
||||
outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
|
||||
outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
|
||||
outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
|
||||
outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
|
||||
outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
_mm_storeu_si128((__m128i*)&out[0], outZ0);
|
||||
_mm_storeu_si128((__m128i*)&out[8], outZ8);
|
||||
packed_out = _mm_packs_epi16(outZ0, outZ8);
|
||||
}
|
||||
{
|
||||
const int16_t outZ_12 = out[12];
|
||||
const int16_t outZ_3 = out[3];
|
||||
out[3] = outZ_12;
|
||||
out[12] = outZ_3;
|
||||
}
|
||||
|
||||
// detect if all 'out' values are zeroes or not
|
||||
{
|
||||
int32_t tmp[4];
|
||||
_mm_storeu_si128((__m128i*)tmp, packed_out);
|
||||
if (n) {
|
||||
tmp[0] &= ~0xff;
|
||||
}
|
||||
return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
|
||||
}
|
||||
}
|
||||
|
||||
extern void VP8EncDspInitSSE2(void);
|
||||
void VP8EncDspInitSSE2(void) {
|
||||
VP8CollectHistogram = CollectHistogramSSE2;
|
||||
VP8EncQuantizeBlock = QuantizeBlockSSE2;
|
||||
VP8ITransform = ITransformSSE2;
|
||||
VP8FTransform = FTransformSSE2;
|
||||
VP8SSE4x4 = SSE4x4SSE2;
|
||||
VP8TDisto4x4 = Disto4x4SSE2;
|
||||
VP8TDisto16x16 = Disto16x16SSE2;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_USE_SSE2
|
File diff suppressed because it is too large
Load Diff
|
@ -1,82 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Image transforms and color space conversion methods for lossless decoder.
|
||||
//
|
||||
// Authors: Vikas Arora (vikaas.arora@gmail.com)
|
||||
// Jyrki Alakuijala (jyrki@google.com)
|
||||
|
||||
#ifndef WEBP_DSP_LOSSLESS_H_
|
||||
#define WEBP_DSP_LOSSLESS_H_
|
||||
|
||||
#include "../types.h"
|
||||
#include "../decode.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Image transforms.
|
||||
|
||||
struct VP8LTransform; // Defined in dec/vp8li.h.
|
||||
|
||||
// Performs inverse transform of data given transform information, start and end
|
||||
// rows. Transform will be applied to rows [row_start, row_end[.
|
||||
// The *in and *out pointers refer to source and destination data respectively
|
||||
// corresponding to the intermediate row (row_start).
|
||||
void VP8LInverseTransform(const struct VP8LTransform* const transform,
|
||||
int row_start, int row_end,
|
||||
const uint32_t* const in, uint32_t* const out);
|
||||
|
||||
// Subtracts green from blue and red channels.
|
||||
void VP8LSubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs);
|
||||
|
||||
void VP8LResidualImage(int width, int height, int bits,
|
||||
uint32_t* const argb, uint32_t* const argb_scratch,
|
||||
uint32_t* const image);
|
||||
|
||||
void VP8LColorSpaceTransform(int width, int height, int bits, int step,
|
||||
uint32_t* const argb, uint32_t* image);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Color space conversion.
|
||||
|
||||
// Converts from BGRA to other color spaces.
|
||||
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
|
||||
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Misc methods.
|
||||
|
||||
// Computes sampled size of 'size' when sampling using 'sampling bits'.
|
||||
static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
|
||||
uint32_t sampling_bits) {
|
||||
return (size + (1 << sampling_bits) - 1) >> sampling_bits;
|
||||
}
|
||||
|
||||
// Faster logarithm for integers, with the property of log2(0) == 0.
|
||||
float VP8LFastLog2(int v);
|
||||
// Fast calculation of v * log2(v) for integer input.
|
||||
static WEBP_INLINE float VP8LFastSLog2(int v) { return VP8LFastLog2(v) * v; }
|
||||
|
||||
// In-place difference of each component with mod 256.
|
||||
static WEBP_INLINE uint32_t VP8LSubPixels(uint32_t a, uint32_t b) {
|
||||
const uint32_t alpha_and_green =
|
||||
0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u);
|
||||
const uint32_t red_and_blue =
|
||||
0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu);
|
||||
return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_DSP_LOSSLESS_H_
|
|
@ -1,357 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// YUV to RGB upsampling functions.
|
||||
//
|
||||
// Author: somnath@google.com (Somnath Banerjee)
|
||||
|
||||
#include "./dsp.h"
|
||||
#include "./yuv.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Fancy upsampler
|
||||
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
|
||||
// Fancy upsampling functions to convert YUV to RGB
|
||||
WebPUpsampleLinePairFunc WebPUpsamplers[MODE_LAST];
|
||||
|
||||
// Given samples laid out in a square as:
|
||||
// [a b]
|
||||
// [c d]
|
||||
// we interpolate u/v as:
|
||||
// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16
|
||||
// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16
|
||||
|
||||
// We process u and v together stashed into 32bit (16bit each).
|
||||
#define LOAD_UV(u,v) ((u) | ((v) << 16))
|
||||
|
||||
#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
|
||||
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
|
||||
const uint8_t* top_u, const uint8_t* top_v, \
|
||||
const uint8_t* cur_u, const uint8_t* cur_v, \
|
||||
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
|
||||
int x; \
|
||||
const int last_pixel_pair = (len - 1) >> 1; \
|
||||
uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \
|
||||
uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \
|
||||
if (top_y) { \
|
||||
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
|
||||
FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
|
||||
} \
|
||||
if (bottom_y) { \
|
||||
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
|
||||
FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \
|
||||
} \
|
||||
for (x = 1; x <= last_pixel_pair; ++x) { \
|
||||
const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \
|
||||
const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \
|
||||
/* precompute invariant values associated with first and second diagonals*/\
|
||||
const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \
|
||||
const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \
|
||||
const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \
|
||||
if (top_y) { \
|
||||
const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \
|
||||
const uint32_t uv1 = (diag_03 + t_uv) >> 1; \
|
||||
FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
|
||||
top_dst + (2 * x - 1) * XSTEP); \
|
||||
FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \
|
||||
top_dst + (2 * x - 0) * XSTEP); \
|
||||
} \
|
||||
if (bottom_y) { \
|
||||
const uint32_t uv0 = (diag_03 + l_uv) >> 1; \
|
||||
const uint32_t uv1 = (diag_12 + uv) >> 1; \
|
||||
FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
|
||||
bottom_dst + (2 * x - 1) * XSTEP); \
|
||||
FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \
|
||||
bottom_dst + (2 * x + 0) * XSTEP); \
|
||||
} \
|
||||
tl_uv = t_uv; \
|
||||
l_uv = uv; \
|
||||
} \
|
||||
if (!(len & 1)) { \
|
||||
if (top_y) { \
|
||||
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
|
||||
FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
|
||||
top_dst + (len - 1) * XSTEP); \
|
||||
} \
|
||||
if (bottom_y) { \
|
||||
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
|
||||
FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
|
||||
bottom_dst + (len - 1) * XSTEP); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
// All variants implemented.
|
||||
UPSAMPLE_FUNC(UpsampleRgbLinePair, VP8YuvToRgb, 3)
|
||||
UPSAMPLE_FUNC(UpsampleBgrLinePair, VP8YuvToBgr, 3)
|
||||
UPSAMPLE_FUNC(UpsampleRgbaLinePair, VP8YuvToRgba, 4)
|
||||
UPSAMPLE_FUNC(UpsampleBgraLinePair, VP8YuvToBgra, 4)
|
||||
UPSAMPLE_FUNC(UpsampleArgbLinePair, VP8YuvToArgb, 4)
|
||||
UPSAMPLE_FUNC(UpsampleRgba4444LinePair, VP8YuvToRgba4444, 2)
|
||||
UPSAMPLE_FUNC(UpsampleRgb565LinePair, VP8YuvToRgb565, 2)
|
||||
|
||||
#undef LOAD_UV
|
||||
#undef UPSAMPLE_FUNC
|
||||
|
||||
#endif // FANCY_UPSAMPLING
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// simple point-sampling
|
||||
|
||||
#define SAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
|
||||
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
|
||||
const uint8_t* u, const uint8_t* v, \
|
||||
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
|
||||
int i; \
|
||||
for (i = 0; i < len - 1; i += 2) { \
|
||||
FUNC(top_y[0], u[0], v[0], top_dst); \
|
||||
FUNC(top_y[1], u[0], v[0], top_dst + XSTEP); \
|
||||
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
|
||||
FUNC(bottom_y[1], u[0], v[0], bottom_dst + XSTEP); \
|
||||
top_y += 2; \
|
||||
bottom_y += 2; \
|
||||
u++; \
|
||||
v++; \
|
||||
top_dst += 2 * XSTEP; \
|
||||
bottom_dst += 2 * XSTEP; \
|
||||
} \
|
||||
if (i == len - 1) { /* last one */ \
|
||||
FUNC(top_y[0], u[0], v[0], top_dst); \
|
||||
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
|
||||
} \
|
||||
}
|
||||
|
||||
// All variants implemented.
|
||||
SAMPLE_FUNC(SampleRgbLinePair, VP8YuvToRgb, 3)
|
||||
SAMPLE_FUNC(SampleBgrLinePair, VP8YuvToBgr, 3)
|
||||
SAMPLE_FUNC(SampleRgbaLinePair, VP8YuvToRgba, 4)
|
||||
SAMPLE_FUNC(SampleBgraLinePair, VP8YuvToBgra, 4)
|
||||
SAMPLE_FUNC(SampleArgbLinePair, VP8YuvToArgb, 4)
|
||||
SAMPLE_FUNC(SampleRgba4444LinePair, VP8YuvToRgba4444, 2)
|
||||
SAMPLE_FUNC(SampleRgb565LinePair, VP8YuvToRgb565, 2)
|
||||
|
||||
#undef SAMPLE_FUNC
|
||||
|
||||
const WebPSampleLinePairFunc WebPSamplers[MODE_LAST] = {
|
||||
SampleRgbLinePair, // MODE_RGB
|
||||
SampleRgbaLinePair, // MODE_RGBA
|
||||
SampleBgrLinePair, // MODE_BGR
|
||||
SampleBgraLinePair, // MODE_BGRA
|
||||
SampleArgbLinePair, // MODE_ARGB
|
||||
SampleRgba4444LinePair, // MODE_RGBA_4444
|
||||
SampleRgb565LinePair, // MODE_RGB_565
|
||||
SampleRgbaLinePair, // MODE_rgbA
|
||||
SampleBgraLinePair, // MODE_bgrA
|
||||
SampleArgbLinePair, // MODE_Argb
|
||||
SampleRgba4444LinePair // MODE_rgbA_4444
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if !defined(FANCY_UPSAMPLING)
|
||||
#define DUAL_SAMPLE_FUNC(FUNC_NAME, FUNC) \
|
||||
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bot_y, \
|
||||
const uint8_t* top_u, const uint8_t* top_v, \
|
||||
const uint8_t* bot_u, const uint8_t* bot_v, \
|
||||
uint8_t* top_dst, uint8_t* bot_dst, int len) { \
|
||||
const int half_len = len >> 1; \
|
||||
int x; \
|
||||
if (top_dst != NULL) { \
|
||||
for (x = 0; x < half_len; ++x) { \
|
||||
FUNC(top_y[2 * x + 0], top_u[x], top_v[x], top_dst + 8 * x + 0); \
|
||||
FUNC(top_y[2 * x + 1], top_u[x], top_v[x], top_dst + 8 * x + 4); \
|
||||
} \
|
||||
if (len & 1) FUNC(top_y[2 * x + 0], top_u[x], top_v[x], top_dst + 8 * x); \
|
||||
} \
|
||||
if (bot_dst != NULL) { \
|
||||
for (x = 0; x < half_len; ++x) { \
|
||||
FUNC(bot_y[2 * x + 0], bot_u[x], bot_v[x], bot_dst + 8 * x + 0); \
|
||||
FUNC(bot_y[2 * x + 1], bot_u[x], bot_v[x], bot_dst + 8 * x + 4); \
|
||||
} \
|
||||
if (len & 1) FUNC(bot_y[2 * x + 0], bot_u[x], bot_v[x], bot_dst + 8 * x); \
|
||||
} \
|
||||
}
|
||||
|
||||
DUAL_SAMPLE_FUNC(DualLineSamplerBGRA, VP8YuvToBgra)
|
||||
DUAL_SAMPLE_FUNC(DualLineSamplerARGB, VP8YuvToArgb)
|
||||
#undef DUAL_SAMPLE_FUNC
|
||||
|
||||
#endif // !FANCY_UPSAMPLING
|
||||
|
||||
WebPUpsampleLinePairFunc WebPGetLinePairConverter(int alpha_is_last) {
|
||||
WebPInitUpsamplers();
|
||||
VP8YUVInit();
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
return WebPUpsamplers[alpha_is_last ? MODE_BGRA : MODE_ARGB];
|
||||
#else
|
||||
return (alpha_is_last ? DualLineSamplerBGRA : DualLineSamplerARGB);
|
||||
#endif
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// YUV444 converter
|
||||
|
||||
#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \
|
||||
static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
|
||||
uint8_t* dst, int len) { \
|
||||
int i; \
|
||||
for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \
|
||||
}
|
||||
|
||||
YUV444_FUNC(Yuv444ToRgb, VP8YuvToRgb, 3)
|
||||
YUV444_FUNC(Yuv444ToBgr, VP8YuvToBgr, 3)
|
||||
YUV444_FUNC(Yuv444ToRgba, VP8YuvToRgba, 4)
|
||||
YUV444_FUNC(Yuv444ToBgra, VP8YuvToBgra, 4)
|
||||
YUV444_FUNC(Yuv444ToArgb, VP8YuvToArgb, 4)
|
||||
YUV444_FUNC(Yuv444ToRgba4444, VP8YuvToRgba4444, 2)
|
||||
YUV444_FUNC(Yuv444ToRgb565, VP8YuvToRgb565, 2)
|
||||
|
||||
#undef YUV444_FUNC
|
||||
|
||||
const WebPYUV444Converter WebPYUV444Converters[MODE_LAST] = {
|
||||
Yuv444ToRgb, // MODE_RGB
|
||||
Yuv444ToRgba, // MODE_RGBA
|
||||
Yuv444ToBgr, // MODE_BGR
|
||||
Yuv444ToBgra, // MODE_BGRA
|
||||
Yuv444ToArgb, // MODE_ARGB
|
||||
Yuv444ToRgba4444, // MODE_RGBA_4444
|
||||
Yuv444ToRgb565, // MODE_RGB_565
|
||||
Yuv444ToRgba, // MODE_rgbA
|
||||
Yuv444ToBgra, // MODE_bgrA
|
||||
Yuv444ToArgb, // MODE_Argb
|
||||
Yuv444ToRgba4444 // MODE_rgbA_4444
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Premultiplied modes
|
||||
|
||||
// non dithered-modes
|
||||
|
||||
// (x * a * 32897) >> 23 is bit-wise equivalent to (int)(x * a / 255.)
|
||||
// for all 8bit x or a. For bit-wise equivalence to (int)(x * a / 255. + .5),
|
||||
// one can use instead: (x * a * 65793 + (1 << 23)) >> 24
|
||||
#if 1 // (int)(x * a / 255.)
|
||||
#define MULTIPLIER(a) ((a) * 32897UL)
|
||||
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
|
||||
#else // (int)(x * a / 255. + .5)
|
||||
#define MULTIPLIER(a) ((a) * 65793UL)
|
||||
#define PREMULTIPLY(x, m) (((x) * (m) + (1UL << 23)) >> 24)
|
||||
#endif
|
||||
|
||||
static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
|
||||
int w, int h, int stride) {
|
||||
while (h-- > 0) {
|
||||
uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
|
||||
const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
|
||||
int i;
|
||||
for (i = 0; i < w; ++i) {
|
||||
const uint32_t a = alpha[4 * i];
|
||||
if (a != 0xff) {
|
||||
const uint32_t mult = MULTIPLIER(a);
|
||||
rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
|
||||
rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
|
||||
rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
|
||||
}
|
||||
}
|
||||
rgba += stride;
|
||||
}
|
||||
}
|
||||
#undef MULTIPLIER
|
||||
#undef PREMULTIPLY
|
||||
|
||||
// rgbA4444
|
||||
|
||||
#define MULTIPLIER(a) ((a) * 0x1111) // 0x1111 ~= (1 << 16) / 15
|
||||
|
||||
static WEBP_INLINE uint8_t dither_hi(uint8_t x) {
|
||||
return (x & 0xf0) | (x >> 4);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t dither_lo(uint8_t x) {
|
||||
return (x & 0x0f) | (x << 4);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t multiply(uint8_t x, uint32_t m) {
|
||||
return (x * m) >> 16;
|
||||
}
|
||||
|
||||
static void ApplyAlphaMultiply4444(uint8_t* rgba4444,
|
||||
int w, int h, int stride) {
|
||||
while (h-- > 0) {
|
||||
int i;
|
||||
for (i = 0; i < w; ++i) {
|
||||
const uint8_t a = (rgba4444[2 * i + 1] & 0x0f);
|
||||
const uint32_t mult = MULTIPLIER(a);
|
||||
const uint8_t r = multiply(dither_hi(rgba4444[2 * i + 0]), mult);
|
||||
const uint8_t g = multiply(dither_lo(rgba4444[2 * i + 0]), mult);
|
||||
const uint8_t b = multiply(dither_hi(rgba4444[2 * i + 1]), mult);
|
||||
rgba4444[2 * i + 0] = (r & 0xf0) | ((g >> 4) & 0x0f);
|
||||
rgba4444[2 * i + 1] = (b & 0xf0) | a;
|
||||
}
|
||||
rgba4444 += stride;
|
||||
}
|
||||
}
|
||||
#undef MULTIPLIER
|
||||
|
||||
void (*WebPApplyAlphaMultiply)(uint8_t*, int, int, int, int)
|
||||
= ApplyAlphaMultiply;
|
||||
void (*WebPApplyAlphaMultiply4444)(uint8_t*, int, int, int)
|
||||
= ApplyAlphaMultiply4444;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main call
|
||||
|
||||
void WebPInitUpsamplers(void) {
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair;
|
||||
WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair;
|
||||
WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair;
|
||||
WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair;
|
||||
WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair;
|
||||
WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair;
|
||||
WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair;
|
||||
|
||||
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
||||
if (VP8GetCPUInfo != NULL) {
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
if (VP8GetCPUInfo(kSSE2)) {
|
||||
WebPInitUpsamplersSSE2();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif // FANCY_UPSAMPLING
|
||||
}
|
||||
|
||||
void WebPInitPremultiply(void) {
|
||||
WebPApplyAlphaMultiply = ApplyAlphaMultiply;
|
||||
WebPApplyAlphaMultiply4444 = ApplyAlphaMultiply4444;
|
||||
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair;
|
||||
WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair;
|
||||
WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair;
|
||||
WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair;
|
||||
|
||||
if (VP8GetCPUInfo != NULL) {
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
if (VP8GetCPUInfo(kSSE2)) {
|
||||
WebPInitPremultiplySSE2();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif // FANCY_UPSAMPLING
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,209 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// SSE2 version of YUV to RGB upsampling functions.
|
||||
//
|
||||
// Author: somnath@google.com (Somnath Banerjee)
|
||||
|
||||
#include "./dsp.h"
|
||||
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
|
||||
#include <assert.h>
|
||||
#include <emmintrin.h>
|
||||
#include <string.h>
|
||||
#include "./yuv.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
|
||||
// We compute (9*a + 3*b + 3*c + d + 8) / 16 as follows
|
||||
// u = (9*a + 3*b + 3*c + d + 8) / 16
|
||||
// = (a + (a + 3*b + 3*c + d) / 8 + 1) / 2
|
||||
// = (a + m + 1) / 2
|
||||
// where m = (a + 3*b + 3*c + d) / 8
|
||||
// = ((a + b + c + d) / 2 + b + c) / 4
|
||||
//
|
||||
// Let's say k = (a + b + c + d) / 4.
|
||||
// We can compute k as
|
||||
// k = (s + t + 1) / 2 - ((a^d) | (b^c) | (s^t)) & 1
|
||||
// where s = (a + d + 1) / 2 and t = (b + c + 1) / 2
|
||||
//
|
||||
// Then m can be written as
|
||||
// m = (k + t + 1) / 2 - (((b^c) & (s^t)) | (k^t)) & 1
|
||||
|
||||
// Computes out = (k + in + 1) / 2 - ((ij & (s^t)) | (k^in)) & 1
|
||||
#define GET_M(ij, in, out) do { \
|
||||
const __m128i tmp0 = _mm_avg_epu8(k, (in)); /* (k + in + 1) / 2 */ \
|
||||
const __m128i tmp1 = _mm_and_si128((ij), st); /* (ij) & (s^t) */ \
|
||||
const __m128i tmp2 = _mm_xor_si128(k, (in)); /* (k^in) */ \
|
||||
const __m128i tmp3 = _mm_or_si128(tmp1, tmp2); /* ((ij) & (s^t)) | (k^in) */\
|
||||
const __m128i tmp4 = _mm_and_si128(tmp3, one); /* & 1 -> lsb_correction */ \
|
||||
(out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \
|
||||
} while (0)
|
||||
|
||||
// pack and store two alterning pixel rows
|
||||
#define PACK_AND_STORE(a, b, da, db, out) do { \
|
||||
const __m128i ta = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \
|
||||
const __m128i tb = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \
|
||||
const __m128i t1 = _mm_unpacklo_epi8(ta, tb); \
|
||||
const __m128i t2 = _mm_unpackhi_epi8(ta, tb); \
|
||||
_mm_store_si128(((__m128i*)(out)) + 0, t1); \
|
||||
_mm_store_si128(((__m128i*)(out)) + 1, t2); \
|
||||
} while (0)
|
||||
|
||||
// Loads 17 pixels each from rows r1 and r2 and generates 32 pixels.
|
||||
#define UPSAMPLE_32PIXELS(r1, r2, out) { \
|
||||
const __m128i one = _mm_set1_epi8(1); \
|
||||
const __m128i a = _mm_loadu_si128((__m128i*)&(r1)[0]); \
|
||||
const __m128i b = _mm_loadu_si128((__m128i*)&(r1)[1]); \
|
||||
const __m128i c = _mm_loadu_si128((__m128i*)&(r2)[0]); \
|
||||
const __m128i d = _mm_loadu_si128((__m128i*)&(r2)[1]); \
|
||||
\
|
||||
const __m128i s = _mm_avg_epu8(a, d); /* s = (a + d + 1) / 2 */ \
|
||||
const __m128i t = _mm_avg_epu8(b, c); /* t = (b + c + 1) / 2 */ \
|
||||
const __m128i st = _mm_xor_si128(s, t); /* st = s^t */ \
|
||||
\
|
||||
const __m128i ad = _mm_xor_si128(a, d); /* ad = a^d */ \
|
||||
const __m128i bc = _mm_xor_si128(b, c); /* bc = b^c */ \
|
||||
\
|
||||
const __m128i t1 = _mm_or_si128(ad, bc); /* (a^d) | (b^c) */ \
|
||||
const __m128i t2 = _mm_or_si128(t1, st); /* (a^d) | (b^c) | (s^t) */ \
|
||||
const __m128i t3 = _mm_and_si128(t2, one); /* (a^d) | (b^c) | (s^t) & 1 */ \
|
||||
const __m128i t4 = _mm_avg_epu8(s, t); \
|
||||
const __m128i k = _mm_sub_epi8(t4, t3); /* k = (a + b + c + d) / 4 */ \
|
||||
__m128i diag1, diag2; \
|
||||
\
|
||||
GET_M(bc, t, diag1); /* diag1 = (a + 3b + 3c + d) / 8 */ \
|
||||
GET_M(ad, s, diag2); /* diag2 = (3a + b + c + 3d) / 8 */ \
|
||||
\
|
||||
/* pack the alternate pixels */ \
|
||||
PACK_AND_STORE(a, b, diag1, diag2, &(out)[0 * 32]); \
|
||||
PACK_AND_STORE(c, d, diag2, diag1, &(out)[2 * 32]); \
|
||||
}
|
||||
|
||||
// Turn the macro into a function for reducing code-size when non-critical
|
||||
static void Upsample32Pixels(const uint8_t r1[], const uint8_t r2[],
|
||||
uint8_t* const out) {
|
||||
UPSAMPLE_32PIXELS(r1, r2, out);
|
||||
}
|
||||
|
||||
#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \
|
||||
uint8_t r1[17], r2[17]; \
|
||||
memcpy(r1, (tb), (num_pixels)); \
|
||||
memcpy(r2, (bb), (num_pixels)); \
|
||||
/* replicate last byte */ \
|
||||
memset(r1 + (num_pixels), r1[(num_pixels) - 1], 17 - (num_pixels)); \
|
||||
memset(r2 + (num_pixels), r2[(num_pixels) - 1], 17 - (num_pixels)); \
|
||||
/* using the shared function instead of the macro saves ~3k code size */ \
|
||||
Upsample32Pixels(r1, r2, out); \
|
||||
}
|
||||
|
||||
#define CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, uv, \
|
||||
top_dst, bottom_dst, cur_x, num_pixels) { \
|
||||
int n; \
|
||||
if (top_y) { \
|
||||
for (n = 0; n < (num_pixels); ++n) { \
|
||||
FUNC(top_y[(cur_x) + n], (uv)[n], (uv)[32 + n], \
|
||||
top_dst + ((cur_x) + n) * XSTEP); \
|
||||
} \
|
||||
} \
|
||||
if (bottom_y) { \
|
||||
for (n = 0; n < (num_pixels); ++n) { \
|
||||
FUNC(bottom_y[(cur_x) + n], (uv)[64 + n], (uv)[64 + 32 + n], \
|
||||
bottom_dst + ((cur_x) + n) * XSTEP); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define SSE2_UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
|
||||
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
|
||||
const uint8_t* top_u, const uint8_t* top_v, \
|
||||
const uint8_t* cur_u, const uint8_t* cur_v, \
|
||||
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
|
||||
int b; \
|
||||
/* 16 byte aligned array to cache reconstructed u and v */ \
|
||||
uint8_t uv_buf[4 * 32 + 15]; \
|
||||
uint8_t* const r_uv = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \
|
||||
const int uv_len = (len + 1) >> 1; \
|
||||
/* 17 pixels must be read-able for each block */ \
|
||||
const int num_blocks = (uv_len - 1) >> 4; \
|
||||
const int leftover = uv_len - num_blocks * 16; \
|
||||
const int last_pos = 1 + 32 * num_blocks; \
|
||||
\
|
||||
const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \
|
||||
const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \
|
||||
\
|
||||
assert(len > 0); \
|
||||
/* Treat the first pixel in regular way */ \
|
||||
if (top_y) { \
|
||||
const int u0 = (top_u[0] + u_diag) >> 1; \
|
||||
const int v0 = (top_v[0] + v_diag) >> 1; \
|
||||
FUNC(top_y[0], u0, v0, top_dst); \
|
||||
} \
|
||||
if (bottom_y) { \
|
||||
const int u0 = (cur_u[0] + u_diag) >> 1; \
|
||||
const int v0 = (cur_v[0] + v_diag) >> 1; \
|
||||
FUNC(bottom_y[0], u0, v0, bottom_dst); \
|
||||
} \
|
||||
\
|
||||
for (b = 0; b < num_blocks; ++b) { \
|
||||
UPSAMPLE_32PIXELS(top_u, cur_u, r_uv + 0 * 32); \
|
||||
UPSAMPLE_32PIXELS(top_v, cur_v, r_uv + 1 * 32); \
|
||||
CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, r_uv, top_dst, bottom_dst, \
|
||||
32 * b + 1, 32) \
|
||||
top_u += 16; \
|
||||
cur_u += 16; \
|
||||
top_v += 16; \
|
||||
cur_v += 16; \
|
||||
} \
|
||||
\
|
||||
UPSAMPLE_LAST_BLOCK(top_u, cur_u, leftover, r_uv + 0 * 32); \
|
||||
UPSAMPLE_LAST_BLOCK(top_v, cur_v, leftover, r_uv + 1 * 32); \
|
||||
CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, r_uv, top_dst, bottom_dst, \
|
||||
last_pos, len - last_pos); \
|
||||
}
|
||||
|
||||
// SSE2 variants of the fancy upsampler.
|
||||
SSE2_UPSAMPLE_FUNC(UpsampleRgbLinePairSSE2, VP8YuvToRgb, 3)
|
||||
SSE2_UPSAMPLE_FUNC(UpsampleBgrLinePairSSE2, VP8YuvToBgr, 3)
|
||||
SSE2_UPSAMPLE_FUNC(UpsampleRgbaLinePairSSE2, VP8YuvToRgba, 4)
|
||||
SSE2_UPSAMPLE_FUNC(UpsampleBgraLinePairSSE2, VP8YuvToBgra, 4)
|
||||
|
||||
#undef GET_M
|
||||
#undef PACK_AND_STORE
|
||||
#undef UPSAMPLE_32PIXELS
|
||||
#undef UPSAMPLE_LAST_BLOCK
|
||||
#undef CONVERT2RGB
|
||||
#undef SSE2_UPSAMPLE_FUNC
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
|
||||
|
||||
void WebPInitUpsamplersSSE2(void) {
|
||||
WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePairSSE2;
|
||||
WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePairSSE2;
|
||||
WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePairSSE2;
|
||||
WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePairSSE2;
|
||||
}
|
||||
|
||||
void WebPInitPremultiplySSE2(void) {
|
||||
WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePairSSE2;
|
||||
WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePairSSE2;
|
||||
}
|
||||
|
||||
#endif // FANCY_UPSAMPLING
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_USE_SSE2
|
|
@ -1,52 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// YUV->RGB conversion function
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "./yuv.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
enum { YUV_HALF = 1 << (YUV_FIX - 1) };
|
||||
|
||||
int16_t VP8kVToR[256], VP8kUToB[256];
|
||||
int32_t VP8kVToG[256], VP8kUToG[256];
|
||||
uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
||||
uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
||||
|
||||
static int done = 0;
|
||||
|
||||
static WEBP_INLINE uint8_t clip(int v, int max_value) {
|
||||
return v < 0 ? 0 : v > max_value ? max_value : v;
|
||||
}
|
||||
|
||||
void VP8YUVInit(void) {
|
||||
int i;
|
||||
if (done) {
|
||||
return;
|
||||
}
|
||||
for (i = 0; i < 256; ++i) {
|
||||
VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX;
|
||||
VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF;
|
||||
VP8kVToG[i] = -45773 * (i - 128);
|
||||
VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX;
|
||||
}
|
||||
for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
|
||||
const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX;
|
||||
VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
|
||||
VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
|
||||
}
|
||||
done = 1;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,128 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// inline YUV<->RGB conversion function
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_DSP_YUV_H_
|
||||
#define WEBP_DSP_YUV_H_
|
||||
|
||||
#include "../dec/decode_vp8.h"
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// YUV -> RGB conversion
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
enum { YUV_FIX = 16, // fixed-point precision
|
||||
YUV_RANGE_MIN = -227, // min value of r/g/b output
|
||||
YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output
|
||||
};
|
||||
extern int16_t VP8kVToR[256], VP8kUToB[256];
|
||||
extern int32_t VP8kVToG[256], VP8kUToG[256];
|
||||
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
||||
extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgb) {
|
||||
const int r_off = VP8kVToR[v];
|
||||
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
||||
const int b_off = VP8kUToB[u];
|
||||
rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
||||
rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
||||
rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgb) {
|
||||
const int r_off = VP8kVToR[v];
|
||||
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
||||
const int b_off = VP8kUToB[u];
|
||||
rgb[0] = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
|
||||
(VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
|
||||
rgb[1] = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
|
||||
(VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const argb) {
|
||||
argb[0] = 0xff;
|
||||
VP8YuvToRgb(y, u, v, argb + 1);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const argb) {
|
||||
const int r_off = VP8kVToR[v];
|
||||
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
||||
const int b_off = VP8kUToB[u];
|
||||
// Don't update alpha (last 4 bits of argb[1])
|
||||
argb[0] = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
|
||||
VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
|
||||
argb[1] = 0x0f | (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const bgr) {
|
||||
const int r_off = VP8kVToR[v];
|
||||
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
||||
const int b_off = VP8kUToB[u];
|
||||
bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
||||
bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
||||
bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const bgra) {
|
||||
VP8YuvToBgr(y, u, v, bgra);
|
||||
bgra[3] = 0xff;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgba) {
|
||||
VP8YuvToRgb(y, u, v, rgba);
|
||||
rgba[3] = 0xff;
|
||||
}
|
||||
|
||||
// Must be called before everything, to initialize the tables.
|
||||
void VP8YUVInit(void);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RGB -> YUV conversion
|
||||
// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
|
||||
// More information at: http://en.wikipedia.org/wiki/YCbCr
|
||||
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
|
||||
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
|
||||
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
|
||||
// We use 16bit fixed point operations.
|
||||
|
||||
static WEBP_INLINE int VP8ClipUV(int v) {
|
||||
v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
|
||||
return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
||||
const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
|
||||
const int luma = 16839 * r + 33059 * g + 6420 * b;
|
||||
return (luma + kRound) >> YUV_FIX; // no need to clip
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
|
||||
return VP8ClipUV(-9719 * r - 19081 * g + 28800 * b);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
|
||||
return VP8ClipUV(+28800 * r - 24116 * g - 4684 * b);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_DSP_YUV_H_ */
|
|
@ -1,330 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Alpha-plane compression.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
#include "../utils/filters.h"
|
||||
#include "../utils/quant_levels.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Encodes the given alpha data via specified compression method 'method'.
|
||||
// The pre-processing (quantization) is performed if 'quality' is less than 100.
|
||||
// For such cases, the encoding is lossy. The valid range is [0, 100] for
|
||||
// 'quality' and [0, 1] for 'method':
|
||||
// 'method = 0' - No compression;
|
||||
// 'method = 1' - Use lossless coder on the alpha plane only
|
||||
// 'filter' values [0, 4] correspond to prediction modes none, horizontal,
|
||||
// vertical & gradient filters. The prediction mode 4 will try all the
|
||||
// prediction modes 0 to 3 and pick the best one.
|
||||
// 'effort_level': specifies how much effort must be spent to try and reduce
|
||||
// the compressed output size. In range 0 (quick) to 6 (slow).
|
||||
//
|
||||
// 'output' corresponds to the buffer containing compressed alpha data.
|
||||
// This buffer is allocated by this method and caller should call
|
||||
// free(*output) when done.
|
||||
// 'output_size' corresponds to size of this compressed alpha buffer.
|
||||
//
|
||||
// Returns 1 on successfully encoding the alpha and
|
||||
// 0 if either:
|
||||
// invalid quality or method, or
|
||||
// memory allocation for the compressed data fails.
|
||||
|
||||
#include "../enc/vp8li.h"
|
||||
|
||||
static int EncodeLossless(const uint8_t* const data, int width, int height,
|
||||
int effort_level, // in [0..6] range
|
||||
VP8BitWriter* const bw,
|
||||
WebPAuxStats* const stats) {
|
||||
int ok = 0;
|
||||
WebPConfig config;
|
||||
WebPPicture picture;
|
||||
VP8LBitWriter tmp_bw;
|
||||
|
||||
WebPPictureInit(&picture);
|
||||
picture.width = width;
|
||||
picture.height = height;
|
||||
picture.use_argb = 1;
|
||||
picture.stats = stats;
|
||||
if (!WebPPictureAlloc(&picture)) return 0;
|
||||
|
||||
// Transfer the alpha values to the green channel.
|
||||
{
|
||||
int i, j;
|
||||
uint32_t* dst = picture.argb;
|
||||
const uint8_t* src = data;
|
||||
for (j = 0; j < picture.height; ++j) {
|
||||
for (i = 0; i < picture.width; ++i) {
|
||||
dst[i] = (src[i] << 8) | 0xff000000u;
|
||||
}
|
||||
src += width;
|
||||
dst += picture.argb_stride;
|
||||
}
|
||||
}
|
||||
|
||||
WebPConfigInit(&config);
|
||||
config.lossless = 1;
|
||||
config.method = effort_level; // impact is very small
|
||||
// Set moderate default quality setting for alpha. Higher qualities (80 and
|
||||
// above) could be very slow.
|
||||
config.quality = 10.f + 15.f * effort_level;
|
||||
if (config.quality > 100.f) config.quality = 100.f;
|
||||
|
||||
ok = VP8LBitWriterInit(&tmp_bw, (width * height) >> 3);
|
||||
ok = ok && (VP8LEncodeStream(&config, &picture, &tmp_bw) == VP8_ENC_OK);
|
||||
WebPPictureFree(&picture);
|
||||
if (ok) {
|
||||
const uint8_t* const data = VP8LBitWriterFinish(&tmp_bw);
|
||||
const size_t data_size = VP8LBitWriterNumBytes(&tmp_bw);
|
||||
VP8BitWriterAppend(bw, data, data_size);
|
||||
}
|
||||
VP8LBitWriterDestroy(&tmp_bw);
|
||||
return ok && !bw->error_;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
static int EncodeAlphaInternal(const uint8_t* const data, int width, int height,
|
||||
int method, int filter, int reduce_levels,
|
||||
int effort_level, // in [0..6] range
|
||||
uint8_t* const tmp_alpha,
|
||||
VP8BitWriter* const bw,
|
||||
WebPAuxStats* const stats) {
|
||||
int ok = 0;
|
||||
const uint8_t* alpha_src;
|
||||
WebPFilterFunc filter_func;
|
||||
uint8_t header;
|
||||
size_t expected_size;
|
||||
const size_t data_size = width * height;
|
||||
|
||||
assert((uint64_t)data_size == (uint64_t)width * height); // as per spec
|
||||
assert(filter >= 0 && filter < WEBP_FILTER_LAST);
|
||||
assert(method >= ALPHA_NO_COMPRESSION);
|
||||
assert(method <= ALPHA_LOSSLESS_COMPRESSION);
|
||||
assert(sizeof(header) == ALPHA_HEADER_LEN);
|
||||
// TODO(skal): have a common function and #define's to validate alpha params.
|
||||
|
||||
expected_size =
|
||||
(method == ALPHA_NO_COMPRESSION) ? (ALPHA_HEADER_LEN + data_size)
|
||||
: (data_size >> 5);
|
||||
header = method | (filter << 2);
|
||||
if (reduce_levels) header |= ALPHA_PREPROCESSED_LEVELS << 4;
|
||||
|
||||
VP8BitWriterInit(bw, expected_size);
|
||||
VP8BitWriterAppend(bw, &header, ALPHA_HEADER_LEN);
|
||||
|
||||
filter_func = WebPFilters[filter];
|
||||
if (filter_func) {
|
||||
filter_func(data, width, height, 1, width, tmp_alpha);
|
||||
alpha_src = tmp_alpha;
|
||||
} else {
|
||||
alpha_src = data;
|
||||
}
|
||||
|
||||
if (method == ALPHA_NO_COMPRESSION) {
|
||||
ok = VP8BitWriterAppend(bw, alpha_src, width * height);
|
||||
ok = ok && !bw->error_;
|
||||
} else {
|
||||
ok = EncodeLossless(alpha_src, width, height, effort_level, bw, stats);
|
||||
VP8BitWriterFinish(bw);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// TODO(skal): move to dsp/ ?
|
||||
static void CopyPlane(const uint8_t* src, int src_stride,
|
||||
uint8_t* dst, int dst_stride, int width, int height) {
|
||||
while (height-- > 0) {
|
||||
memcpy(dst, src, width);
|
||||
src += src_stride;
|
||||
dst += dst_stride;
|
||||
}
|
||||
}
|
||||
|
||||
static int EncodeAlpha(VP8Encoder* const enc,
|
||||
int quality, int method, int filter,
|
||||
int effort_level,
|
||||
uint8_t** const output, size_t* const output_size) {
|
||||
const WebPPicture* const pic = enc->pic_;
|
||||
const int width = pic->width;
|
||||
const int height = pic->height;
|
||||
|
||||
uint8_t* quant_alpha = NULL;
|
||||
const size_t data_size = width * height;
|
||||
uint64_t sse = 0;
|
||||
int ok = 1;
|
||||
const int reduce_levels = (quality < 100);
|
||||
|
||||
// quick sanity checks
|
||||
assert((uint64_t)data_size == (uint64_t)width * height); // as per spec
|
||||
assert(enc != NULL && pic != NULL && pic->a != NULL);
|
||||
assert(output != NULL && output_size != NULL);
|
||||
assert(width > 0 && height > 0);
|
||||
assert(pic->a_stride >= width);
|
||||
assert(filter >= WEBP_FILTER_NONE && filter <= WEBP_FILTER_FAST);
|
||||
|
||||
if (quality < 0 || quality > 100) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (method < ALPHA_NO_COMPRESSION || method > ALPHA_LOSSLESS_COMPRESSION) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
quant_alpha = (uint8_t*)malloc(data_size);
|
||||
if (quant_alpha == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Extract alpha data (width x height) from raw_data (stride x height).
|
||||
CopyPlane(pic->a, pic->a_stride, quant_alpha, width, width, height);
|
||||
|
||||
if (reduce_levels) { // No Quantization required for 'quality = 100'.
|
||||
// 16 alpha levels gives quite a low MSE w.r.t original alpha plane hence
|
||||
// mapped to moderate quality 70. Hence Quality:[0, 70] -> Levels:[2, 16]
|
||||
// and Quality:]70, 100] -> Levels:]16, 256].
|
||||
const int alpha_levels = (quality <= 70) ? (2 + quality / 5)
|
||||
: (16 + (quality - 70) * 8);
|
||||
ok = QuantizeLevels(quant_alpha, width, height, alpha_levels, &sse);
|
||||
}
|
||||
|
||||
if (ok) {
|
||||
VP8BitWriter bw;
|
||||
int test_filter;
|
||||
uint8_t* filtered_alpha = NULL;
|
||||
|
||||
// We always test WEBP_FILTER_NONE first.
|
||||
ok = EncodeAlphaInternal(quant_alpha, width, height,
|
||||
method, WEBP_FILTER_NONE, reduce_levels,
|
||||
effort_level, NULL, &bw, pic->stats);
|
||||
if (!ok) {
|
||||
VP8BitWriterWipeOut(&bw);
|
||||
goto End;
|
||||
}
|
||||
|
||||
if (filter == WEBP_FILTER_FAST) { // Quick estimate of a second candidate?
|
||||
filter = EstimateBestFilter(quant_alpha, width, height, width);
|
||||
}
|
||||
// Stop?
|
||||
if (filter == WEBP_FILTER_NONE) {
|
||||
goto Ok;
|
||||
}
|
||||
|
||||
filtered_alpha = (uint8_t*)malloc(data_size);
|
||||
ok = (filtered_alpha != NULL);
|
||||
if (!ok) {
|
||||
goto End;
|
||||
}
|
||||
|
||||
// Try the other mode(s).
|
||||
{
|
||||
WebPAuxStats best_stats;
|
||||
size_t best_score = VP8BitWriterSize(&bw);
|
||||
|
||||
memset(&best_stats, 0, sizeof(best_stats)); // prevent spurious warning
|
||||
if (pic->stats != NULL) best_stats = *pic->stats;
|
||||
for (test_filter = WEBP_FILTER_HORIZONTAL;
|
||||
ok && (test_filter <= WEBP_FILTER_GRADIENT);
|
||||
++test_filter) {
|
||||
VP8BitWriter tmp_bw;
|
||||
if (filter != WEBP_FILTER_BEST && test_filter != filter) {
|
||||
continue;
|
||||
}
|
||||
ok = EncodeAlphaInternal(quant_alpha, width, height,
|
||||
method, test_filter, reduce_levels,
|
||||
effort_level, filtered_alpha, &tmp_bw,
|
||||
pic->stats);
|
||||
if (ok) {
|
||||
const size_t score = VP8BitWriterSize(&tmp_bw);
|
||||
if (score < best_score) {
|
||||
// swap bitwriter objects.
|
||||
VP8BitWriter tmp = tmp_bw;
|
||||
tmp_bw = bw;
|
||||
bw = tmp;
|
||||
best_score = score;
|
||||
if (pic->stats != NULL) best_stats = *pic->stats;
|
||||
}
|
||||
} else {
|
||||
VP8BitWriterWipeOut(&bw);
|
||||
}
|
||||
VP8BitWriterWipeOut(&tmp_bw);
|
||||
}
|
||||
if (pic->stats != NULL) *pic->stats = best_stats;
|
||||
}
|
||||
Ok:
|
||||
if (ok) {
|
||||
*output_size = VP8BitWriterSize(&bw);
|
||||
*output = VP8BitWriterBuf(&bw);
|
||||
if (pic->stats != NULL) { // need stats?
|
||||
pic->stats->coded_size += (int)(*output_size);
|
||||
enc->sse_[3] = sse;
|
||||
}
|
||||
}
|
||||
free(filtered_alpha);
|
||||
}
|
||||
End:
|
||||
free(quant_alpha);
|
||||
return ok;
|
||||
}
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main calls
|
||||
|
||||
void VP8EncInitAlpha(VP8Encoder* const enc) {
|
||||
enc->has_alpha_ = WebPPictureHasTransparency(enc->pic_);
|
||||
enc->alpha_data_ = NULL;
|
||||
enc->alpha_data_size_ = 0;
|
||||
}
|
||||
|
||||
int VP8EncFinishAlpha(VP8Encoder* const enc) {
|
||||
if (enc->has_alpha_) {
|
||||
const WebPConfig* config = enc->config_;
|
||||
uint8_t* tmp_data = NULL;
|
||||
size_t tmp_size = 0;
|
||||
const int effort_level = config->method; // maps to [0..6]
|
||||
const WEBP_FILTER_TYPE filter =
|
||||
(config->alpha_filtering == 0) ? WEBP_FILTER_NONE :
|
||||
(config->alpha_filtering == 1) ? WEBP_FILTER_FAST :
|
||||
WEBP_FILTER_BEST;
|
||||
|
||||
if (!EncodeAlpha(enc, config->alpha_quality, config->alpha_compression,
|
||||
filter, effort_level, &tmp_data, &tmp_size)) {
|
||||
return 0;
|
||||
}
|
||||
if (tmp_size != (uint32_t)tmp_size) { // Sanity check.
|
||||
free(tmp_data);
|
||||
return 0;
|
||||
}
|
||||
enc->alpha_data_size_ = (uint32_t)tmp_size;
|
||||
enc->alpha_data_ = tmp_data;
|
||||
}
|
||||
return WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
|
||||
}
|
||||
|
||||
void VP8EncDeleteAlpha(VP8Encoder* const enc) {
|
||||
free(enc->alpha_data_);
|
||||
enc->alpha_data_ = NULL;
|
||||
enc->alpha_data_size_ = 0;
|
||||
enc->has_alpha_ = 0;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,364 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Macroblock analysis
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
#include "./cost.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define MAX_ITERS_K_MEANS 6
|
||||
|
||||
static int ClipAlpha(int alpha) {
|
||||
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Smooth the segment map by replacing isolated block by the majority of its
|
||||
// neighbours.
|
||||
|
||||
static void SmoothSegmentMap(VP8Encoder* const enc) {
|
||||
int n, x, y;
|
||||
const int w = enc->mb_w_;
|
||||
const int h = enc->mb_h_;
|
||||
const int majority_cnt_3_x_3_grid = 5;
|
||||
uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
|
||||
assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
|
||||
|
||||
if (tmp == NULL) return;
|
||||
for (y = 1; y < h - 1; ++y) {
|
||||
for (x = 1; x < w - 1; ++x) {
|
||||
int cnt[NUM_MB_SEGMENTS] = { 0 };
|
||||
const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
|
||||
int majority_seg = mb->segment_;
|
||||
// Check the 8 neighbouring segment values.
|
||||
cnt[mb[-w - 1].segment_]++; // top-left
|
||||
cnt[mb[-w + 0].segment_]++; // top
|
||||
cnt[mb[-w + 1].segment_]++; // top-right
|
||||
cnt[mb[ - 1].segment_]++; // left
|
||||
cnt[mb[ + 1].segment_]++; // right
|
||||
cnt[mb[ w - 1].segment_]++; // bottom-left
|
||||
cnt[mb[ w + 0].segment_]++; // bottom
|
||||
cnt[mb[ w + 1].segment_]++; // bottom-right
|
||||
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
|
||||
if (cnt[n] >= majority_cnt_3_x_3_grid) {
|
||||
majority_seg = n;
|
||||
}
|
||||
}
|
||||
tmp[x + y * w] = majority_seg;
|
||||
}
|
||||
}
|
||||
for (y = 1; y < h - 1; ++y) {
|
||||
for (x = 1; x < w - 1; ++x) {
|
||||
VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
|
||||
mb->segment_ = tmp[x + y * w];
|
||||
}
|
||||
}
|
||||
free(tmp);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Finalize Segment probability based on the coding tree
|
||||
|
||||
static int GetProba(int a, int b) {
|
||||
int proba;
|
||||
const int total = a + b;
|
||||
if (total == 0) return 255; // that's the default probability.
|
||||
proba = (255 * a + total / 2) / total;
|
||||
return proba;
|
||||
}
|
||||
|
||||
static void SetSegmentProbas(VP8Encoder* const enc) {
|
||||
int p[NUM_MB_SEGMENTS] = { 0 };
|
||||
int n;
|
||||
|
||||
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
||||
const VP8MBInfo* const mb = &enc->mb_info_[n];
|
||||
p[mb->segment_]++;
|
||||
}
|
||||
if (enc->pic_->stats) {
|
||||
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
|
||||
enc->pic_->stats->segment_size[n] = p[n];
|
||||
}
|
||||
}
|
||||
if (enc->segment_hdr_.num_segments_ > 1) {
|
||||
uint8_t* const probas = enc->proba_.segments_;
|
||||
probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
|
||||
probas[1] = GetProba(p[0], p[1]);
|
||||
probas[2] = GetProba(p[2], p[3]);
|
||||
|
||||
enc->segment_hdr_.update_map_ =
|
||||
(probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
|
||||
enc->segment_hdr_.size_ =
|
||||
p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
|
||||
p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
|
||||
p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
|
||||
p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
|
||||
} else {
|
||||
enc->segment_hdr_.update_map_ = 0;
|
||||
enc->segment_hdr_.size_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE int clip(int v, int m, int M) {
|
||||
return v < m ? m : v > M ? M : v;
|
||||
}
|
||||
|
||||
static void SetSegmentAlphas(VP8Encoder* const enc,
|
||||
const int centers[NUM_MB_SEGMENTS],
|
||||
int mid) {
|
||||
const int nb = enc->segment_hdr_.num_segments_;
|
||||
int min = centers[0], max = centers[0];
|
||||
int n;
|
||||
|
||||
if (nb > 1) {
|
||||
for (n = 0; n < nb; ++n) {
|
||||
if (min > centers[n]) min = centers[n];
|
||||
if (max < centers[n]) max = centers[n];
|
||||
}
|
||||
}
|
||||
if (max == min) max = min + 1;
|
||||
assert(mid <= max && mid >= min);
|
||||
for (n = 0; n < nb; ++n) {
|
||||
const int alpha = 255 * (centers[n] - mid) / (max - min);
|
||||
const int beta = 255 * (centers[n] - min) / (max - min);
|
||||
enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
|
||||
enc->dqm_[n].beta_ = clip(beta, 0, 255);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Simplified k-Means, to assign Nb segments based on alpha-histogram
|
||||
|
||||
static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
|
||||
const int nb = enc->segment_hdr_.num_segments_;
|
||||
int centers[NUM_MB_SEGMENTS];
|
||||
int weighted_average = 0;
|
||||
int map[256];
|
||||
int a, n, k;
|
||||
int min_a = 0, max_a = 255, range_a;
|
||||
// 'int' type is ok for histo, and won't overflow
|
||||
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
|
||||
|
||||
// bracket the input
|
||||
for (n = 0; n < 256 && alphas[n] == 0; ++n) {}
|
||||
min_a = n;
|
||||
for (n = 255; n > min_a && alphas[n] == 0; --n) {}
|
||||
max_a = n;
|
||||
range_a = max_a - min_a;
|
||||
|
||||
// Spread initial centers evenly
|
||||
for (n = 1, k = 0; n < 2 * nb; n += 2) {
|
||||
centers[k++] = min_a + (n * range_a) / (2 * nb);
|
||||
}
|
||||
|
||||
for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
|
||||
int total_weight;
|
||||
int displaced;
|
||||
// Reset stats
|
||||
for (n = 0; n < nb; ++n) {
|
||||
accum[n] = 0;
|
||||
dist_accum[n] = 0;
|
||||
}
|
||||
// Assign nearest center for each 'a'
|
||||
n = 0; // track the nearest center for current 'a'
|
||||
for (a = min_a; a <= max_a; ++a) {
|
||||
if (alphas[a]) {
|
||||
while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
|
||||
n++;
|
||||
}
|
||||
map[a] = n;
|
||||
// accumulate contribution into best centroid
|
||||
dist_accum[n] += a * alphas[a];
|
||||
accum[n] += alphas[a];
|
||||
}
|
||||
}
|
||||
// All point are classified. Move the centroids to the
|
||||
// center of their respective cloud.
|
||||
displaced = 0;
|
||||
weighted_average = 0;
|
||||
total_weight = 0;
|
||||
for (n = 0; n < nb; ++n) {
|
||||
if (accum[n]) {
|
||||
const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
|
||||
displaced += abs(centers[n] - new_center);
|
||||
centers[n] = new_center;
|
||||
weighted_average += new_center * accum[n];
|
||||
total_weight += accum[n];
|
||||
}
|
||||
}
|
||||
weighted_average = (weighted_average + total_weight / 2) / total_weight;
|
||||
if (displaced < 5) break; // no need to keep on looping...
|
||||
}
|
||||
|
||||
// Map each original value to the closest centroid
|
||||
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
||||
VP8MBInfo* const mb = &enc->mb_info_[n];
|
||||
const int alpha = mb->alpha_;
|
||||
mb->segment_ = map[alpha];
|
||||
mb->alpha_ = centers[map[alpha]]; // just for the record.
|
||||
}
|
||||
|
||||
if (nb > 1) {
|
||||
const int smooth = (enc->config_->preprocessing & 1);
|
||||
if (smooth) SmoothSegmentMap(enc);
|
||||
}
|
||||
|
||||
SetSegmentProbas(enc); // Assign final proba
|
||||
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Macroblock analysis: collect histogram for each mode, deduce the maximal
|
||||
// susceptibility and set best modes for this macroblock.
|
||||
// Segment assignment is done later.
|
||||
|
||||
// Number of modes to inspect for alpha_ evaluation. For high-quality settings,
|
||||
// we don't need to test all the possible modes during the analysis phase.
|
||||
#define MAX_INTRA16_MODE 2
|
||||
#define MAX_INTRA4_MODE 2
|
||||
#define MAX_UV_MODE 2
|
||||
|
||||
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
|
||||
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
|
||||
int mode;
|
||||
int best_alpha = -1;
|
||||
int best_mode = 0;
|
||||
|
||||
VP8MakeLuma16Preds(it);
|
||||
for (mode = 0; mode < max_mode; ++mode) {
|
||||
const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF,
|
||||
it->yuv_p_ + VP8I16ModeOffsets[mode],
|
||||
0, 16);
|
||||
if (alpha > best_alpha) {
|
||||
best_alpha = alpha;
|
||||
best_mode = mode;
|
||||
}
|
||||
}
|
||||
VP8SetIntra16Mode(it, best_mode);
|
||||
return best_alpha;
|
||||
}
|
||||
|
||||
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
|
||||
int best_alpha) {
|
||||
uint8_t modes[16];
|
||||
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
|
||||
int i4_alpha = 0;
|
||||
VP8IteratorStartI4(it);
|
||||
do {
|
||||
int mode;
|
||||
int best_mode_alpha = -1;
|
||||
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
||||
|
||||
VP8MakeIntra4Preds(it);
|
||||
for (mode = 0; mode < max_mode; ++mode) {
|
||||
const int alpha = VP8CollectHistogram(src,
|
||||
it->yuv_p_ + VP8I4ModeOffsets[mode],
|
||||
0, 1);
|
||||
if (alpha > best_mode_alpha) {
|
||||
best_mode_alpha = alpha;
|
||||
modes[it->i4_] = mode;
|
||||
}
|
||||
}
|
||||
i4_alpha += best_mode_alpha;
|
||||
// Note: we reuse the original samples for predictors
|
||||
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
|
||||
|
||||
if (i4_alpha > best_alpha) {
|
||||
VP8SetIntra4Mode(it, modes);
|
||||
best_alpha = ClipAlpha(i4_alpha);
|
||||
}
|
||||
return best_alpha;
|
||||
}
|
||||
|
||||
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
|
||||
int best_alpha = -1;
|
||||
int best_mode = 0;
|
||||
const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
|
||||
int mode;
|
||||
VP8MakeChroma8Preds(it);
|
||||
for (mode = 0; mode < max_mode; ++mode) {
|
||||
const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF,
|
||||
it->yuv_p_ + VP8UVModeOffsets[mode],
|
||||
16, 16 + 4 + 4);
|
||||
if (alpha > best_alpha) {
|
||||
best_alpha = alpha;
|
||||
best_mode = mode;
|
||||
}
|
||||
}
|
||||
VP8SetIntraUVMode(it, best_mode);
|
||||
return best_alpha;
|
||||
}
|
||||
|
||||
static void MBAnalyze(VP8EncIterator* const it,
|
||||
int alphas[256], int* const uv_alpha) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
int best_alpha, best_uv_alpha;
|
||||
|
||||
VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
|
||||
VP8SetSkip(it, 0); // not skipped
|
||||
VP8SetSegment(it, 0); // default segment, spec-wise.
|
||||
|
||||
best_alpha = MBAnalyzeBestIntra16Mode(it);
|
||||
if (enc->method_ != 3) {
|
||||
// We go and make a fast decision for intra4/intra16.
|
||||
// It's usually not a good and definitive pick, but helps seeding the stats
|
||||
// about level bit-cost.
|
||||
// TODO(skal): improve criterion.
|
||||
best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
|
||||
}
|
||||
best_uv_alpha = MBAnalyzeBestUVMode(it);
|
||||
|
||||
// Final susceptibility mix
|
||||
best_alpha = (best_alpha + best_uv_alpha + 1) / 2;
|
||||
alphas[best_alpha]++;
|
||||
*uv_alpha += best_uv_alpha;
|
||||
it->mb_->alpha_ = best_alpha; // Informative only.
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main analysis loop:
|
||||
// Collect all susceptibilities for each macroblock and record their
|
||||
// distribution in alphas[]. Segments is assigned a-posteriori, based on
|
||||
// this histogram.
|
||||
// We also pick an intra16 prediction mode, which shouldn't be considered
|
||||
// final except for fast-encode settings. We can also pick some intra4 modes
|
||||
// and decide intra4/intra16, but that's usually almost always a bad choice at
|
||||
// this stage.
|
||||
|
||||
int VP8EncAnalyze(VP8Encoder* const enc) {
|
||||
int ok = 1;
|
||||
int alphas[256] = { 0 };
|
||||
VP8EncIterator it;
|
||||
|
||||
VP8IteratorInit(enc, &it);
|
||||
enc->uv_alpha_ = 0;
|
||||
do {
|
||||
VP8IteratorImport(&it);
|
||||
MBAnalyze(&it, alphas, &enc->uv_alpha_);
|
||||
ok = VP8IteratorProgress(&it, 20);
|
||||
// Let's pretend we have perfect lossless reconstruction.
|
||||
} while (ok && VP8IteratorNext(&it, it.yuv_in_));
|
||||
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
|
||||
if (ok) AssignSegments(enc, alphas);
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,874 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
//
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "./backward_references.h"
|
||||
#include "./histogram.h"
|
||||
#include "../dsp/lossless.h"
|
||||
#include "../utils/color_cache.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
#define VALUES_IN_BYTE 256
|
||||
|
||||
#define HASH_BITS 18
|
||||
#define HASH_SIZE (1 << HASH_BITS)
|
||||
#define HASH_MULTIPLIER (0xc6a4a7935bd1e995ULL)
|
||||
|
||||
// 1M window (4M bytes) minus 120 special codes for short distances.
|
||||
#define WINDOW_SIZE ((1 << 20) - 120)
|
||||
|
||||
// Bounds for the match length.
|
||||
#define MIN_LENGTH 2
|
||||
#define MAX_LENGTH 4096
|
||||
|
||||
typedef struct {
|
||||
// Stores the most recently added position with the given hash value.
|
||||
int32_t hash_to_first_index_[HASH_SIZE];
|
||||
// chain_[pos] stores the previous position with the same hash value
|
||||
// for every pixel in the image.
|
||||
int32_t* chain_;
|
||||
} HashChain;
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
static const uint8_t plane_to_code_lut[128] = {
|
||||
96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79,
|
||||
102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87,
|
||||
105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91,
|
||||
110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100,
|
||||
115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109,
|
||||
118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114,
|
||||
119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117
|
||||
};
|
||||
|
||||
static int DistanceToPlaneCode(int xsize, int dist) {
|
||||
const int yoffset = dist / xsize;
|
||||
const int xoffset = dist - yoffset * xsize;
|
||||
if (xoffset <= 8 && yoffset < 8) {
|
||||
return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
|
||||
} else if (xoffset > xsize - 8 && yoffset < 7) {
|
||||
return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
|
||||
}
|
||||
return dist + 120;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
|
||||
const uint32_t* const array2,
|
||||
const int max_limit) {
|
||||
int match_len = 0;
|
||||
while (match_len < max_limit && array1[match_len] == array2[match_len]) {
|
||||
++match_len;
|
||||
}
|
||||
return match_len;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// VP8LBackwardRefs
|
||||
|
||||
void VP8LInitBackwardRefs(VP8LBackwardRefs* const refs) {
|
||||
if (refs != NULL) {
|
||||
refs->refs = NULL;
|
||||
refs->size = 0;
|
||||
refs->max_size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) {
|
||||
if (refs != NULL) {
|
||||
free(refs->refs);
|
||||
VP8LInitBackwardRefs(refs);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8LBackwardRefsAlloc(VP8LBackwardRefs* const refs, int max_size) {
|
||||
assert(refs != NULL);
|
||||
refs->size = 0;
|
||||
refs->max_size = 0;
|
||||
refs->refs = (PixOrCopy*)WebPSafeMalloc((uint64_t)max_size,
|
||||
sizeof(*refs->refs));
|
||||
if (refs->refs == NULL) return 0;
|
||||
refs->max_size = max_size;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Hash chains
|
||||
|
||||
static WEBP_INLINE uint64_t GetPixPairHash64(const uint32_t* const argb) {
|
||||
uint64_t key = ((uint64_t)(argb[1]) << 32) | argb[0];
|
||||
key = (key * HASH_MULTIPLIER) >> (64 - HASH_BITS);
|
||||
return key;
|
||||
}
|
||||
|
||||
static int HashChainInit(HashChain* const p, int size) {
|
||||
int i;
|
||||
p->chain_ = (int*)WebPSafeMalloc((uint64_t)size, sizeof(*p->chain_));
|
||||
if (p->chain_ == NULL) {
|
||||
return 0;
|
||||
}
|
||||
for (i = 0; i < size; ++i) {
|
||||
p->chain_[i] = -1;
|
||||
}
|
||||
for (i = 0; i < HASH_SIZE; ++i) {
|
||||
p->hash_to_first_index_[i] = -1;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void HashChainDelete(HashChain* const p) {
|
||||
if (p != NULL) {
|
||||
free(p->chain_);
|
||||
free(p);
|
||||
}
|
||||
}
|
||||
|
||||
// Insertion of two pixels at a time.
|
||||
static void HashChainInsert(HashChain* const p,
|
||||
const uint32_t* const argb, int pos) {
|
||||
const uint64_t hash_code = GetPixPairHash64(argb);
|
||||
p->chain_[pos] = p->hash_to_first_index_[hash_code];
|
||||
p->hash_to_first_index_[hash_code] = pos;
|
||||
}
|
||||
|
||||
static int HashChainFindCopy(const HashChain* const p,
|
||||
int quality, int index, int xsize,
|
||||
const uint32_t* const argb, int maxlen,
|
||||
int* const distance_ptr,
|
||||
int* const length_ptr) {
|
||||
const uint64_t hash_code = GetPixPairHash64(&argb[index]);
|
||||
int prev_length = 0;
|
||||
int64_t best_val = 0;
|
||||
int best_length = 0;
|
||||
int best_distance = 0;
|
||||
const uint32_t* const argb_start = argb + index;
|
||||
const int iter_min_mult = (quality < 50) ? 2 : (quality < 75) ? 4 : 8;
|
||||
const int iter_min = -quality * iter_min_mult;
|
||||
int iter_cnt = 10 + (quality >> 1);
|
||||
const int min_pos = (index > WINDOW_SIZE) ? index - WINDOW_SIZE : 0;
|
||||
int pos;
|
||||
|
||||
assert(xsize > 0);
|
||||
for (pos = p->hash_to_first_index_[hash_code];
|
||||
pos >= min_pos;
|
||||
pos = p->chain_[pos]) {
|
||||
int64_t val;
|
||||
int curr_length;
|
||||
if (iter_cnt < 0) {
|
||||
if (iter_cnt < iter_min || best_val >= 0xff0000) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
--iter_cnt;
|
||||
if (best_length != 0 &&
|
||||
argb[pos + best_length - 1] != argb_start[best_length - 1]) {
|
||||
continue;
|
||||
}
|
||||
curr_length = FindMatchLength(argb + pos, argb_start, maxlen);
|
||||
if (curr_length < prev_length) {
|
||||
continue;
|
||||
}
|
||||
val = 65536 * curr_length;
|
||||
// Favoring 2d locality here gives savings for certain images.
|
||||
if (index - pos < 9 * xsize) {
|
||||
const int y = (index - pos) / xsize;
|
||||
int x = (index - pos) % xsize;
|
||||
if (x > xsize / 2) {
|
||||
x = xsize - x;
|
||||
}
|
||||
if (x <= 7 && x >= -8) {
|
||||
val -= y * y + x * x;
|
||||
} else {
|
||||
val -= 9 * 9 + 9 * 9;
|
||||
}
|
||||
} else {
|
||||
val -= 9 * 9 + 9 * 9;
|
||||
}
|
||||
if (best_val < val) {
|
||||
prev_length = curr_length;
|
||||
best_val = val;
|
||||
best_length = curr_length;
|
||||
best_distance = index - pos;
|
||||
if (curr_length >= MAX_LENGTH) {
|
||||
break;
|
||||
}
|
||||
if ((best_distance == 1 || best_distance == xsize) &&
|
||||
best_length >= 128) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
*distance_ptr = best_distance;
|
||||
*length_ptr = best_length;
|
||||
return (best_length >= MIN_LENGTH);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void PushBackCopy(VP8LBackwardRefs* const refs, int length) {
|
||||
int size = refs->size;
|
||||
while (length >= MAX_LENGTH) {
|
||||
refs->refs[size++] = PixOrCopyCreateCopy(1, MAX_LENGTH);
|
||||
length -= MAX_LENGTH;
|
||||
}
|
||||
if (length > 0) {
|
||||
refs->refs[size++] = PixOrCopyCreateCopy(1, length);
|
||||
}
|
||||
refs->size = size;
|
||||
}
|
||||
|
||||
static void BackwardReferencesRle(int xsize, int ysize,
|
||||
const uint32_t* const argb,
|
||||
VP8LBackwardRefs* const refs) {
|
||||
const int pix_count = xsize * ysize;
|
||||
int match_len = 0;
|
||||
int i;
|
||||
refs->size = 0;
|
||||
PushBackCopy(refs, match_len); // i=0 case
|
||||
refs->refs[refs->size++] = PixOrCopyCreateLiteral(argb[0]);
|
||||
for (i = 1; i < pix_count; ++i) {
|
||||
if (argb[i] == argb[i - 1]) {
|
||||
++match_len;
|
||||
} else {
|
||||
PushBackCopy(refs, match_len);
|
||||
match_len = 0;
|
||||
refs->refs[refs->size++] = PixOrCopyCreateLiteral(argb[i]);
|
||||
}
|
||||
}
|
||||
PushBackCopy(refs, match_len);
|
||||
}
|
||||
|
||||
static int BackwardReferencesHashChain(int xsize, int ysize,
|
||||
const uint32_t* const argb,
|
||||
int cache_bits, int quality,
|
||||
VP8LBackwardRefs* const refs) {
|
||||
int i;
|
||||
int ok = 0;
|
||||
int cc_init = 0;
|
||||
const int use_color_cache = (cache_bits > 0);
|
||||
const int pix_count = xsize * ysize;
|
||||
HashChain* const hash_chain = (HashChain*)malloc(sizeof(*hash_chain));
|
||||
VP8LColorCache hashers;
|
||||
|
||||
if (hash_chain == NULL) return 0;
|
||||
if (use_color_cache) {
|
||||
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
||||
if (!cc_init) goto Error;
|
||||
}
|
||||
|
||||
if (!HashChainInit(hash_chain, pix_count)) goto Error;
|
||||
|
||||
refs->size = 0;
|
||||
for (i = 0; i < pix_count; ) {
|
||||
// Alternative#1: Code the pixels starting at 'i' using backward reference.
|
||||
int offset = 0;
|
||||
int len = 0;
|
||||
if (i < pix_count - 1) { // FindCopy(i,..) reads pixels at [i] and [i + 1].
|
||||
int maxlen = pix_count - i;
|
||||
if (maxlen > MAX_LENGTH) {
|
||||
maxlen = MAX_LENGTH;
|
||||
}
|
||||
HashChainFindCopy(hash_chain, quality, i, xsize, argb, maxlen,
|
||||
&offset, &len);
|
||||
}
|
||||
if (len >= MIN_LENGTH) {
|
||||
// Alternative#2: Insert the pixel at 'i' as literal, and code the
|
||||
// pixels starting at 'i + 1' using backward reference.
|
||||
int offset2 = 0;
|
||||
int len2 = 0;
|
||||
int k;
|
||||
HashChainInsert(hash_chain, &argb[i], i);
|
||||
if (i < pix_count - 2) { // FindCopy(i+1,..) reads [i + 1] and [i + 2].
|
||||
int maxlen = pix_count - (i + 1);
|
||||
if (maxlen > MAX_LENGTH) {
|
||||
maxlen = MAX_LENGTH;
|
||||
}
|
||||
HashChainFindCopy(hash_chain, quality,
|
||||
i + 1, xsize, argb, maxlen, &offset2, &len2);
|
||||
if (len2 > len + 1) {
|
||||
const uint32_t pixel = argb[i];
|
||||
// Alternative#2 is a better match. So push pixel at 'i' as literal.
|
||||
if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) {
|
||||
const int ix = VP8LColorCacheGetIndex(&hashers, pixel);
|
||||
refs->refs[refs->size] = PixOrCopyCreateCacheIdx(ix);
|
||||
} else {
|
||||
refs->refs[refs->size] = PixOrCopyCreateLiteral(pixel);
|
||||
}
|
||||
++refs->size;
|
||||
if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel);
|
||||
i++; // Backward reference to be done for next pixel.
|
||||
len = len2;
|
||||
offset = offset2;
|
||||
}
|
||||
}
|
||||
if (len >= MAX_LENGTH) {
|
||||
len = MAX_LENGTH - 1;
|
||||
}
|
||||
refs->refs[refs->size++] = PixOrCopyCreateCopy(offset, len);
|
||||
if (use_color_cache) {
|
||||
for (k = 0; k < len; ++k) {
|
||||
VP8LColorCacheInsert(&hashers, argb[i + k]);
|
||||
}
|
||||
}
|
||||
// Add to the hash_chain (but cannot add the last pixel).
|
||||
{
|
||||
const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i;
|
||||
for (k = 1; k < last; ++k) {
|
||||
HashChainInsert(hash_chain, &argb[i + k], i + k);
|
||||
}
|
||||
}
|
||||
i += len;
|
||||
} else {
|
||||
const uint32_t pixel = argb[i];
|
||||
if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) {
|
||||
// push pixel as a PixOrCopyCreateCacheIdx pixel
|
||||
const int ix = VP8LColorCacheGetIndex(&hashers, pixel);
|
||||
refs->refs[refs->size] = PixOrCopyCreateCacheIdx(ix);
|
||||
} else {
|
||||
refs->refs[refs->size] = PixOrCopyCreateLiteral(pixel);
|
||||
}
|
||||
++refs->size;
|
||||
if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel);
|
||||
if (i + 1 < pix_count) {
|
||||
HashChainInsert(hash_chain, &argb[i], i);
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
Error:
|
||||
if (cc_init) VP8LColorCacheClear(&hashers);
|
||||
HashChainDelete(hash_chain);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
typedef struct {
|
||||
double alpha_[VALUES_IN_BYTE];
|
||||
double red_[VALUES_IN_BYTE];
|
||||
double literal_[PIX_OR_COPY_CODES_MAX];
|
||||
double blue_[VALUES_IN_BYTE];
|
||||
double distance_[NUM_DISTANCE_CODES];
|
||||
} CostModel;
|
||||
|
||||
static int BackwardReferencesTraceBackwards(
|
||||
int xsize, int ysize, int recursive_cost_model,
|
||||
const uint32_t* const argb, int cache_bits, VP8LBackwardRefs* const refs);
|
||||
|
||||
static void ConvertPopulationCountTableToBitEstimates(
|
||||
int num_symbols, const int population_counts[], double output[]) {
|
||||
int sum = 0;
|
||||
int nonzeros = 0;
|
||||
int i;
|
||||
for (i = 0; i < num_symbols; ++i) {
|
||||
sum += population_counts[i];
|
||||
if (population_counts[i] > 0) {
|
||||
++nonzeros;
|
||||
}
|
||||
}
|
||||
if (nonzeros <= 1) {
|
||||
memset(output, 0, num_symbols * sizeof(*output));
|
||||
} else {
|
||||
const double logsum = VP8LFastLog2(sum);
|
||||
for (i = 0; i < num_symbols; ++i) {
|
||||
output[i] = logsum - VP8LFastLog2(population_counts[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int CostModelBuild(CostModel* const m, int xsize, int ysize,
|
||||
int recursion_level, const uint32_t* const argb,
|
||||
int cache_bits) {
|
||||
int ok = 0;
|
||||
VP8LHistogram histo;
|
||||
VP8LBackwardRefs refs;
|
||||
const int quality = 100;
|
||||
|
||||
if (!VP8LBackwardRefsAlloc(&refs, xsize * ysize)) goto Error;
|
||||
|
||||
if (recursion_level > 0) {
|
||||
if (!BackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1,
|
||||
argb, cache_bits, &refs)) {
|
||||
goto Error;
|
||||
}
|
||||
} else {
|
||||
if (!BackwardReferencesHashChain(xsize, ysize, argb, cache_bits, quality,
|
||||
&refs)) {
|
||||
goto Error;
|
||||
}
|
||||
}
|
||||
VP8LHistogramCreate(&histo, &refs, cache_bits);
|
||||
ConvertPopulationCountTableToBitEstimates(
|
||||
VP8LHistogramNumCodes(&histo), histo.literal_, m->literal_);
|
||||
ConvertPopulationCountTableToBitEstimates(
|
||||
VALUES_IN_BYTE, histo.red_, m->red_);
|
||||
ConvertPopulationCountTableToBitEstimates(
|
||||
VALUES_IN_BYTE, histo.blue_, m->blue_);
|
||||
ConvertPopulationCountTableToBitEstimates(
|
||||
VALUES_IN_BYTE, histo.alpha_, m->alpha_);
|
||||
ConvertPopulationCountTableToBitEstimates(
|
||||
NUM_DISTANCE_CODES, histo.distance_, m->distance_);
|
||||
ok = 1;
|
||||
|
||||
Error:
|
||||
VP8LClearBackwardRefs(&refs);
|
||||
return ok;
|
||||
}
|
||||
|
||||
static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
|
||||
return m->alpha_[v >> 24] +
|
||||
m->red_[(v >> 16) & 0xff] +
|
||||
m->literal_[(v >> 8) & 0xff] +
|
||||
m->blue_[v & 0xff];
|
||||
}
|
||||
|
||||
static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
|
||||
const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
|
||||
return m->literal_[literal_idx];
|
||||
}
|
||||
|
||||
static WEBP_INLINE double GetLengthCost(const CostModel* const m,
|
||||
uint32_t length) {
|
||||
int code, extra_bits_count, extra_bits_value;
|
||||
PrefixEncode(length, &code, &extra_bits_count, &extra_bits_value);
|
||||
return m->literal_[VALUES_IN_BYTE + code] + extra_bits_count;
|
||||
}
|
||||
|
||||
static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
|
||||
uint32_t distance) {
|
||||
int code, extra_bits_count, extra_bits_value;
|
||||
PrefixEncode(distance, &code, &extra_bits_count, &extra_bits_value);
|
||||
return m->distance_[code] + extra_bits_count;
|
||||
}
|
||||
|
||||
static int BackwardReferencesHashChainDistanceOnly(
|
||||
int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb,
|
||||
int cache_bits, uint32_t* const dist_array) {
|
||||
int i;
|
||||
int ok = 0;
|
||||
int cc_init = 0;
|
||||
const int quality = 100;
|
||||
const int pix_count = xsize * ysize;
|
||||
const int use_color_cache = (cache_bits > 0);
|
||||
double* const cost =
|
||||
(double*)WebPSafeMalloc((uint64_t)pix_count, sizeof(*cost));
|
||||
CostModel* cost_model = (CostModel*)malloc(sizeof(*cost_model));
|
||||
HashChain* hash_chain = (HashChain*)malloc(sizeof(*hash_chain));
|
||||
VP8LColorCache hashers;
|
||||
const double mul0 = (recursive_cost_model != 0) ? 1.0 : 0.68;
|
||||
const double mul1 = (recursive_cost_model != 0) ? 1.0 : 0.82;
|
||||
|
||||
if (cost == NULL || cost_model == NULL || hash_chain == NULL) goto Error;
|
||||
|
||||
if (!HashChainInit(hash_chain, pix_count)) goto Error;
|
||||
|
||||
if (use_color_cache) {
|
||||
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
||||
if (!cc_init) goto Error;
|
||||
}
|
||||
|
||||
if (!CostModelBuild(cost_model, xsize, ysize, recursive_cost_model, argb,
|
||||
cache_bits)) {
|
||||
goto Error;
|
||||
}
|
||||
|
||||
for (i = 0; i < pix_count; ++i) cost[i] = 1e100;
|
||||
|
||||
// We loop one pixel at a time, but store all currently best points to
|
||||
// non-processed locations from this point.
|
||||
dist_array[0] = 0;
|
||||
for (i = 0; i < pix_count; ++i) {
|
||||
double prev_cost = 0.0;
|
||||
int shortmax;
|
||||
if (i > 0) {
|
||||
prev_cost = cost[i - 1];
|
||||
}
|
||||
for (shortmax = 0; shortmax < 2; ++shortmax) {
|
||||
int offset = 0;
|
||||
int len = 0;
|
||||
if (i < pix_count - 1) { // FindCopy reads pixels at [i] and [i + 1].
|
||||
int maxlen = shortmax ? 2 : MAX_LENGTH;
|
||||
if (maxlen > pix_count - i) {
|
||||
maxlen = pix_count - i;
|
||||
}
|
||||
HashChainFindCopy(hash_chain, quality, i, xsize, argb, maxlen,
|
||||
&offset, &len);
|
||||
}
|
||||
if (len >= MIN_LENGTH) {
|
||||
const int code = DistanceToPlaneCode(xsize, offset);
|
||||
const double distance_cost =
|
||||
prev_cost + GetDistanceCost(cost_model, code);
|
||||
int k;
|
||||
for (k = 1; k < len; ++k) {
|
||||
const double cost_val =
|
||||
distance_cost + GetLengthCost(cost_model, k);
|
||||
if (cost[i + k] > cost_val) {
|
||||
cost[i + k] = cost_val;
|
||||
dist_array[i + k] = k + 1;
|
||||
}
|
||||
}
|
||||
// This if is for speedup only. It roughly doubles the speed, and
|
||||
// makes compression worse by .1 %.
|
||||
if (len >= 128 && code < 2) {
|
||||
// Long copy for short distances, let's skip the middle
|
||||
// lookups for better copies.
|
||||
// 1) insert the hashes.
|
||||
if (use_color_cache) {
|
||||
for (k = 0; k < len; ++k) {
|
||||
VP8LColorCacheInsert(&hashers, argb[i + k]);
|
||||
}
|
||||
}
|
||||
// 2) Add to the hash_chain (but cannot add the last pixel)
|
||||
{
|
||||
const int last = (len < pix_count - 1 - i) ? len
|
||||
: pix_count - 1 - i;
|
||||
for (k = 0; k < last; ++k) {
|
||||
HashChainInsert(hash_chain, &argb[i + k], i + k);
|
||||
}
|
||||
}
|
||||
// 3) jump.
|
||||
i += len - 1; // for loop does ++i, thus -1 here.
|
||||
goto next_symbol;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (i < pix_count - 1) {
|
||||
HashChainInsert(hash_chain, &argb[i], i);
|
||||
}
|
||||
{
|
||||
// inserting a literal pixel
|
||||
double cost_val = prev_cost;
|
||||
if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
|
||||
const int ix = VP8LColorCacheGetIndex(&hashers, argb[i]);
|
||||
cost_val += GetCacheCost(cost_model, ix) * mul0;
|
||||
} else {
|
||||
cost_val += GetLiteralCost(cost_model, argb[i]) * mul1;
|
||||
}
|
||||
if (cost[i] > cost_val) {
|
||||
cost[i] = cost_val;
|
||||
dist_array[i] = 1; // only one is inserted.
|
||||
}
|
||||
if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
|
||||
}
|
||||
next_symbol: ;
|
||||
}
|
||||
// Last pixel still to do, it can only be a single step if not reached
|
||||
// through cheaper means already.
|
||||
ok = 1;
|
||||
Error:
|
||||
if (cc_init) VP8LColorCacheClear(&hashers);
|
||||
HashChainDelete(hash_chain);
|
||||
free(cost_model);
|
||||
free(cost);
|
||||
return ok;
|
||||
}
|
||||
|
||||
static int TraceBackwards(const uint32_t* const dist_array,
|
||||
int dist_array_size,
|
||||
uint32_t** const chosen_path,
|
||||
int* const chosen_path_size) {
|
||||
int i;
|
||||
// Count how many.
|
||||
int count = 0;
|
||||
for (i = dist_array_size - 1; i >= 0; ) {
|
||||
int k = dist_array[i];
|
||||
assert(k >= 1);
|
||||
++count;
|
||||
i -= k;
|
||||
}
|
||||
// Allocate.
|
||||
*chosen_path_size = count;
|
||||
*chosen_path =
|
||||
(uint32_t*)WebPSafeMalloc((uint64_t)count, sizeof(**chosen_path));
|
||||
if (*chosen_path == NULL) return 0;
|
||||
|
||||
// Write in reverse order.
|
||||
for (i = dist_array_size - 1; i >= 0; ) {
|
||||
int k = dist_array[i];
|
||||
assert(k >= 1);
|
||||
(*chosen_path)[--count] = k;
|
||||
i -= k;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int BackwardReferencesHashChainFollowChosenPath(
|
||||
int xsize, int ysize, const uint32_t* const argb, int cache_bits,
|
||||
const uint32_t* const chosen_path, int chosen_path_size,
|
||||
VP8LBackwardRefs* const refs) {
|
||||
const int quality = 100;
|
||||
const int pix_count = xsize * ysize;
|
||||
const int use_color_cache = (cache_bits > 0);
|
||||
int size = 0;
|
||||
int i = 0;
|
||||
int k;
|
||||
int ix;
|
||||
int ok = 0;
|
||||
int cc_init = 0;
|
||||
HashChain* hash_chain = (HashChain*)malloc(sizeof(*hash_chain));
|
||||
VP8LColorCache hashers;
|
||||
|
||||
if (hash_chain == NULL || !HashChainInit(hash_chain, pix_count)) {
|
||||
goto Error;
|
||||
}
|
||||
if (use_color_cache) {
|
||||
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
||||
if (!cc_init) goto Error;
|
||||
}
|
||||
|
||||
refs->size = 0;
|
||||
for (ix = 0; ix < chosen_path_size; ++ix, ++size) {
|
||||
int offset = 0;
|
||||
int len = 0;
|
||||
int maxlen = chosen_path[ix];
|
||||
if (maxlen != 1) {
|
||||
HashChainFindCopy(hash_chain, quality,
|
||||
i, xsize, argb, maxlen, &offset, &len);
|
||||
assert(len == maxlen);
|
||||
refs->refs[size] = PixOrCopyCreateCopy(offset, len);
|
||||
if (use_color_cache) {
|
||||
for (k = 0; k < len; ++k) {
|
||||
VP8LColorCacheInsert(&hashers, argb[i + k]);
|
||||
}
|
||||
}
|
||||
{
|
||||
const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i;
|
||||
for (k = 0; k < last; ++k) {
|
||||
HashChainInsert(hash_chain, &argb[i + k], i + k);
|
||||
}
|
||||
}
|
||||
i += len;
|
||||
} else {
|
||||
if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
|
||||
// push pixel as a color cache index
|
||||
const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]);
|
||||
refs->refs[size] = PixOrCopyCreateCacheIdx(idx);
|
||||
} else {
|
||||
refs->refs[size] = PixOrCopyCreateLiteral(argb[i]);
|
||||
}
|
||||
if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
|
||||
if (i + 1 < pix_count) {
|
||||
HashChainInsert(hash_chain, &argb[i], i);
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
assert(size <= refs->max_size);
|
||||
refs->size = size;
|
||||
ok = 1;
|
||||
Error:
|
||||
if (cc_init) VP8LColorCacheClear(&hashers);
|
||||
HashChainDelete(hash_chain);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Returns 1 on success.
|
||||
static int BackwardReferencesTraceBackwards(int xsize, int ysize,
|
||||
int recursive_cost_model,
|
||||
const uint32_t* const argb,
|
||||
int cache_bits,
|
||||
VP8LBackwardRefs* const refs) {
|
||||
int ok = 0;
|
||||
const int dist_array_size = xsize * ysize;
|
||||
uint32_t* chosen_path = NULL;
|
||||
int chosen_path_size = 0;
|
||||
uint32_t* dist_array =
|
||||
(uint32_t*)WebPSafeMalloc((uint64_t)dist_array_size, sizeof(*dist_array));
|
||||
|
||||
if (dist_array == NULL) goto Error;
|
||||
|
||||
if (!BackwardReferencesHashChainDistanceOnly(
|
||||
xsize, ysize, recursive_cost_model, argb, cache_bits, dist_array)) {
|
||||
goto Error;
|
||||
}
|
||||
if (!TraceBackwards(dist_array, dist_array_size,
|
||||
&chosen_path, &chosen_path_size)) {
|
||||
goto Error;
|
||||
}
|
||||
free(dist_array); // no need to retain this memory any longer
|
||||
dist_array = NULL;
|
||||
if (!BackwardReferencesHashChainFollowChosenPath(
|
||||
xsize, ysize, argb, cache_bits, chosen_path, chosen_path_size, refs)) {
|
||||
goto Error;
|
||||
}
|
||||
ok = 1;
|
||||
Error:
|
||||
free(chosen_path);
|
||||
free(dist_array);
|
||||
return ok;
|
||||
}
|
||||
|
||||
static void BackwardReferences2DLocality(int xsize,
|
||||
VP8LBackwardRefs* const refs) {
|
||||
int i;
|
||||
for (i = 0; i < refs->size; ++i) {
|
||||
if (PixOrCopyIsCopy(&refs->refs[i])) {
|
||||
const int dist = refs->refs[i].argb_or_distance;
|
||||
const int transformed_dist = DistanceToPlaneCode(xsize, dist);
|
||||
refs->refs[i].argb_or_distance = transformed_dist;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int VP8LGetBackwardReferences(int width, int height,
|
||||
const uint32_t* const argb,
|
||||
int quality, int cache_bits, int use_2d_locality,
|
||||
VP8LBackwardRefs* const best) {
|
||||
int ok = 0;
|
||||
int lz77_is_useful;
|
||||
VP8LBackwardRefs refs_rle, refs_lz77;
|
||||
const int num_pix = width * height;
|
||||
|
||||
VP8LBackwardRefsAlloc(&refs_rle, num_pix);
|
||||
VP8LBackwardRefsAlloc(&refs_lz77, num_pix);
|
||||
VP8LInitBackwardRefs(best);
|
||||
if (refs_rle.refs == NULL || refs_lz77.refs == NULL) {
|
||||
Error1:
|
||||
VP8LClearBackwardRefs(&refs_rle);
|
||||
VP8LClearBackwardRefs(&refs_lz77);
|
||||
goto End;
|
||||
}
|
||||
|
||||
if (!BackwardReferencesHashChain(width, height, argb, cache_bits, quality,
|
||||
&refs_lz77)) {
|
||||
goto End;
|
||||
}
|
||||
// Backward Reference using RLE only.
|
||||
BackwardReferencesRle(width, height, argb, &refs_rle);
|
||||
|
||||
{
|
||||
double bit_cost_lz77, bit_cost_rle;
|
||||
VP8LHistogram* const histo = (VP8LHistogram*)malloc(sizeof(*histo));
|
||||
if (histo == NULL) goto Error1;
|
||||
// Evaluate lz77 coding
|
||||
VP8LHistogramCreate(histo, &refs_lz77, cache_bits);
|
||||
bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
|
||||
// Evaluate RLE coding
|
||||
VP8LHistogramCreate(histo, &refs_rle, cache_bits);
|
||||
bit_cost_rle = VP8LHistogramEstimateBits(histo);
|
||||
// Decide if LZ77 is useful.
|
||||
lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
|
||||
free(histo);
|
||||
}
|
||||
|
||||
// Choose appropriate backward reference.
|
||||
if (lz77_is_useful) {
|
||||
// TraceBackwards is costly. Run it for higher qualities.
|
||||
const int try_lz77_trace_backwards = (quality >= 75);
|
||||
*best = refs_lz77; // default guess: lz77 is better
|
||||
VP8LClearBackwardRefs(&refs_rle);
|
||||
if (try_lz77_trace_backwards) {
|
||||
const int recursion_level = (num_pix < 320 * 200) ? 1 : 0;
|
||||
VP8LBackwardRefs refs_trace;
|
||||
if (!VP8LBackwardRefsAlloc(&refs_trace, num_pix)) {
|
||||
goto End;
|
||||
}
|
||||
if (BackwardReferencesTraceBackwards(
|
||||
width, height, recursion_level, argb, cache_bits, &refs_trace)) {
|
||||
VP8LClearBackwardRefs(&refs_lz77);
|
||||
*best = refs_trace;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
VP8LClearBackwardRefs(&refs_lz77);
|
||||
*best = refs_rle;
|
||||
}
|
||||
|
||||
if (use_2d_locality) BackwardReferences2DLocality(width, best);
|
||||
|
||||
ok = 1;
|
||||
|
||||
End:
|
||||
if (!ok) {
|
||||
VP8LClearBackwardRefs(best);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Returns 1 on success.
|
||||
static int ComputeCacheHistogram(const uint32_t* const argb,
|
||||
int xsize, int ysize,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int cache_bits,
|
||||
VP8LHistogram* const histo) {
|
||||
int pixel_index = 0;
|
||||
int i;
|
||||
uint32_t k;
|
||||
VP8LColorCache hashers;
|
||||
const int use_color_cache = (cache_bits > 0);
|
||||
int cc_init = 0;
|
||||
|
||||
if (use_color_cache) {
|
||||
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
||||
if (!cc_init) return 0;
|
||||
}
|
||||
|
||||
for (i = 0; i < refs->size; ++i) {
|
||||
const PixOrCopy* const v = &refs->refs[i];
|
||||
if (PixOrCopyIsLiteral(v)) {
|
||||
if (use_color_cache &&
|
||||
VP8LColorCacheContains(&hashers, argb[pixel_index])) {
|
||||
// push pixel as a cache index
|
||||
const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]);
|
||||
const PixOrCopy token = PixOrCopyCreateCacheIdx(ix);
|
||||
VP8LHistogramAddSinglePixOrCopy(histo, &token);
|
||||
} else {
|
||||
VP8LHistogramAddSinglePixOrCopy(histo, v);
|
||||
}
|
||||
} else {
|
||||
VP8LHistogramAddSinglePixOrCopy(histo, v);
|
||||
}
|
||||
if (use_color_cache) {
|
||||
for (k = 0; k < PixOrCopyLength(v); ++k) {
|
||||
VP8LColorCacheInsert(&hashers, argb[pixel_index + k]);
|
||||
}
|
||||
}
|
||||
pixel_index += PixOrCopyLength(v);
|
||||
}
|
||||
assert(pixel_index == xsize * ysize);
|
||||
(void)xsize; // xsize is not used in non-debug compilations otherwise.
|
||||
(void)ysize; // ysize is not used in non-debug compilations otherwise.
|
||||
if (cc_init) VP8LColorCacheClear(&hashers);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Returns how many bits are to be used for a color cache.
|
||||
int VP8LCalculateEstimateForCacheSize(const uint32_t* const argb,
|
||||
int xsize, int ysize,
|
||||
int* const best_cache_bits) {
|
||||
int ok = 0;
|
||||
int cache_bits;
|
||||
double lowest_entropy = 1e99;
|
||||
VP8LBackwardRefs refs;
|
||||
static const double kSmallPenaltyForLargeCache = 4.0;
|
||||
static const int quality = 30;
|
||||
if (!VP8LBackwardRefsAlloc(&refs, xsize * ysize) ||
|
||||
!BackwardReferencesHashChain(xsize, ysize, argb, 0, quality, &refs)) {
|
||||
goto Error;
|
||||
}
|
||||
for (cache_bits = 0; cache_bits <= MAX_COLOR_CACHE_BITS; ++cache_bits) {
|
||||
double cur_entropy;
|
||||
VP8LHistogram histo;
|
||||
VP8LHistogramInit(&histo, cache_bits);
|
||||
ComputeCacheHistogram(argb, xsize, ysize, &refs, cache_bits, &histo);
|
||||
cur_entropy = VP8LHistogramEstimateBits(&histo) +
|
||||
kSmallPenaltyForLargeCache * cache_bits;
|
||||
if (cache_bits == 0 || cur_entropy < lowest_entropy) {
|
||||
*best_cache_bits = cache_bits;
|
||||
lowest_entropy = cur_entropy;
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
Error:
|
||||
VP8LClearBackwardRefs(&refs);
|
||||
return ok;
|
||||
}
|
|
@ -1,212 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
//
|
||||
|
||||
#ifndef WEBP_ENC_BACKWARD_REFERENCES_H_
|
||||
#define WEBP_ENC_BACKWARD_REFERENCES_H_
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "../types.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// The spec allows 11, we use 9 bits to reduce memory consumption in encoding.
|
||||
// Having 9 instead of 11 only removes about 0.25 % of compression density.
|
||||
#define MAX_COLOR_CACHE_BITS 9
|
||||
|
||||
// Max ever number of codes we'll use:
|
||||
#define PIX_OR_COPY_CODES_MAX \
|
||||
(NUM_LITERAL_CODES + NUM_LENGTH_CODES + (1 << MAX_COLOR_CACHE_BITS))
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// PrefixEncode()
|
||||
|
||||
// use GNU builtins where available.
|
||||
#if defined(__GNUC__) && \
|
||||
((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
|
||||
static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
|
||||
return n == 0 ? -1 : 31 ^ __builtin_clz(n);
|
||||
}
|
||||
#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
|
||||
#include <intrin.h>
|
||||
#pragma intrinsic(_BitScanReverse)
|
||||
|
||||
static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
|
||||
unsigned long first_set_bit;
|
||||
return _BitScanReverse(&first_set_bit, n) ? first_set_bit : -1;
|
||||
}
|
||||
#else
|
||||
static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
|
||||
int log = 0;
|
||||
uint32_t value = n;
|
||||
int i;
|
||||
|
||||
if (value == 0) return -1;
|
||||
for (i = 4; i >= 0; --i) {
|
||||
const int shift = (1 << i);
|
||||
const uint32_t x = value >> shift;
|
||||
if (x != 0) {
|
||||
value = x;
|
||||
log += shift;
|
||||
}
|
||||
}
|
||||
return log;
|
||||
}
|
||||
#endif
|
||||
|
||||
static WEBP_INLINE int VP8LBitsLog2Ceiling(uint32_t n) {
|
||||
const int floor = BitsLog2Floor(n);
|
||||
if (n == (n & ~(n - 1))) // zero or a power of two.
|
||||
return floor;
|
||||
else
|
||||
return floor + 1;
|
||||
}
|
||||
|
||||
// Splitting of distance and length codes into prefixes and
|
||||
// extra bits. The prefixes are encoded with an entropy code
|
||||
// while the extra bits are stored just as normal bits.
|
||||
static WEBP_INLINE void PrefixEncode(int distance, int* const code,
|
||||
int* const extra_bits_count,
|
||||
int* const extra_bits_value) {
|
||||
// Collect the two most significant bits where the highest bit is 1.
|
||||
const int highest_bit = BitsLog2Floor(--distance);
|
||||
// & 0x3f is to make behavior well defined when highest_bit
|
||||
// does not exist or is the least significant bit.
|
||||
const int second_highest_bit =
|
||||
(distance >> ((highest_bit - 1) & 0x3f)) & 1;
|
||||
*extra_bits_count = (highest_bit > 0) ? (highest_bit - 1) : 0;
|
||||
*extra_bits_value = distance & ((1 << *extra_bits_count) - 1);
|
||||
*code = (highest_bit > 0) ? (2 * highest_bit + second_highest_bit)
|
||||
: (highest_bit == 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// PixOrCopy
|
||||
|
||||
enum Mode {
|
||||
kLiteral,
|
||||
kCacheIdx,
|
||||
kCopy,
|
||||
kNone
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
// mode as uint8_t to make the memory layout to be exactly 8 bytes.
|
||||
uint8_t mode;
|
||||
uint16_t len;
|
||||
uint32_t argb_or_distance;
|
||||
} PixOrCopy;
|
||||
|
||||
static WEBP_INLINE PixOrCopy PixOrCopyCreateCopy(uint32_t distance,
|
||||
uint16_t len) {
|
||||
PixOrCopy retval;
|
||||
retval.mode = kCopy;
|
||||
retval.argb_or_distance = distance;
|
||||
retval.len = len;
|
||||
return retval;
|
||||
}
|
||||
|
||||
static WEBP_INLINE PixOrCopy PixOrCopyCreateCacheIdx(int idx) {
|
||||
PixOrCopy retval;
|
||||
assert(idx >= 0);
|
||||
assert(idx < (1 << MAX_COLOR_CACHE_BITS));
|
||||
retval.mode = kCacheIdx;
|
||||
retval.argb_or_distance = idx;
|
||||
retval.len = 1;
|
||||
return retval;
|
||||
}
|
||||
|
||||
static WEBP_INLINE PixOrCopy PixOrCopyCreateLiteral(uint32_t argb) {
|
||||
PixOrCopy retval;
|
||||
retval.mode = kLiteral;
|
||||
retval.argb_or_distance = argb;
|
||||
retval.len = 1;
|
||||
return retval;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int PixOrCopyIsLiteral(const PixOrCopy* const p) {
|
||||
return (p->mode == kLiteral);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int PixOrCopyIsCacheIdx(const PixOrCopy* const p) {
|
||||
return (p->mode == kCacheIdx);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int PixOrCopyIsCopy(const PixOrCopy* const p) {
|
||||
return (p->mode == kCopy);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t PixOrCopyLiteral(const PixOrCopy* const p,
|
||||
int component) {
|
||||
assert(p->mode == kLiteral);
|
||||
return (p->argb_or_distance >> (component * 8)) & 0xff;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t PixOrCopyLength(const PixOrCopy* const p) {
|
||||
return p->len;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t PixOrCopyArgb(const PixOrCopy* const p) {
|
||||
assert(p->mode == kLiteral);
|
||||
return p->argb_or_distance;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t PixOrCopyCacheIdx(const PixOrCopy* const p) {
|
||||
assert(p->mode == kCacheIdx);
|
||||
assert(p->argb_or_distance < (1U << MAX_COLOR_CACHE_BITS));
|
||||
return p->argb_or_distance;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t PixOrCopyDistance(const PixOrCopy* const p) {
|
||||
assert(p->mode == kCopy);
|
||||
return p->argb_or_distance;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// VP8LBackwardRefs
|
||||
|
||||
typedef struct {
|
||||
PixOrCopy* refs;
|
||||
int size; // currently used
|
||||
int max_size; // maximum capacity
|
||||
} VP8LBackwardRefs;
|
||||
|
||||
// Initialize the object. Must be called first. 'refs' can be NULL.
|
||||
void VP8LInitBackwardRefs(VP8LBackwardRefs* const refs);
|
||||
|
||||
// Release memory and re-initialize the object. 'refs' can be NULL.
|
||||
void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs);
|
||||
|
||||
// Allocate 'max_size' references. Returns false in case of memory error.
|
||||
int VP8LBackwardRefsAlloc(VP8LBackwardRefs* const refs, int max_size);
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Main entry points
|
||||
|
||||
// Evaluates best possible backward references for specified quality.
|
||||
// Further optimize for 2D locality if use_2d_locality flag is set.
|
||||
int VP8LGetBackwardReferences(int width, int height,
|
||||
const uint32_t* const argb,
|
||||
int quality, int cache_bits, int use_2d_locality,
|
||||
VP8LBackwardRefs* const best);
|
||||
|
||||
// Produce an estimate for a good color cache size for the image.
|
||||
int VP8LCalculateEstimateForCacheSize(const uint32_t* const argb,
|
||||
int xsize, int ysize,
|
||||
int* const best_cache_bits);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // WEBP_ENC_BACKWARD_REFERENCES_H_
|
|
@ -1,132 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Coding tools configuration
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "../encode.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPConfig
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int WebPConfigInitInternal(WebPConfig* config,
|
||||
WebPPreset preset, float quality, int version) {
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_ENCODER_ABI_VERSION)) {
|
||||
return 0; // caller/system version mismatch!
|
||||
}
|
||||
if (config == NULL) return 0;
|
||||
|
||||
config->quality = quality;
|
||||
config->target_size = 0;
|
||||
config->target_PSNR = 0.;
|
||||
config->method = 4;
|
||||
config->sns_strength = 50;
|
||||
config->filter_strength = 20; // default: light filtering
|
||||
config->filter_sharpness = 0;
|
||||
config->filter_type = 0; // default: simple
|
||||
config->partitions = 0;
|
||||
config->segments = 4;
|
||||
config->pass = 1;
|
||||
config->show_compressed = 0;
|
||||
config->preprocessing = 0;
|
||||
config->autofilter = 0;
|
||||
config->partition_limit = 0;
|
||||
config->alpha_compression = 1;
|
||||
config->alpha_filtering = 1;
|
||||
config->alpha_quality = 100;
|
||||
config->lossless = 0;
|
||||
config->image_hint = WEBP_HINT_DEFAULT;
|
||||
|
||||
// TODO(skal): tune.
|
||||
switch (preset) {
|
||||
case WEBP_PRESET_PICTURE:
|
||||
config->sns_strength = 80;
|
||||
config->filter_sharpness = 4;
|
||||
config->filter_strength = 35;
|
||||
break;
|
||||
case WEBP_PRESET_PHOTO:
|
||||
config->sns_strength = 80;
|
||||
config->filter_sharpness = 3;
|
||||
config->filter_strength = 30;
|
||||
break;
|
||||
case WEBP_PRESET_DRAWING:
|
||||
config->sns_strength = 25;
|
||||
config->filter_sharpness = 6;
|
||||
config->filter_strength = 10;
|
||||
break;
|
||||
case WEBP_PRESET_ICON:
|
||||
config->sns_strength = 0;
|
||||
config->filter_strength = 0; // disable filtering to retain sharpness
|
||||
break;
|
||||
case WEBP_PRESET_TEXT:
|
||||
config->sns_strength = 0;
|
||||
config->filter_strength = 0; // disable filtering to retain sharpness
|
||||
config->segments = 2;
|
||||
break;
|
||||
case WEBP_PRESET_DEFAULT:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return WebPValidateConfig(config);
|
||||
}
|
||||
|
||||
int WebPValidateConfig(const WebPConfig* config) {
|
||||
if (config == NULL) return 0;
|
||||
if (config->quality < 0 || config->quality > 100)
|
||||
return 0;
|
||||
if (config->target_size < 0)
|
||||
return 0;
|
||||
if (config->target_PSNR < 0)
|
||||
return 0;
|
||||
if (config->method < 0 || config->method > 6)
|
||||
return 0;
|
||||
if (config->segments < 1 || config->segments > 4)
|
||||
return 0;
|
||||
if (config->sns_strength < 0 || config->sns_strength > 100)
|
||||
return 0;
|
||||
if (config->filter_strength < 0 || config->filter_strength > 100)
|
||||
return 0;
|
||||
if (config->filter_sharpness < 0 || config->filter_sharpness > 7)
|
||||
return 0;
|
||||
if (config->filter_type < 0 || config->filter_type > 1)
|
||||
return 0;
|
||||
if (config->autofilter < 0 || config->autofilter > 1)
|
||||
return 0;
|
||||
if (config->pass < 1 || config->pass > 10)
|
||||
return 0;
|
||||
if (config->show_compressed < 0 || config->show_compressed > 1)
|
||||
return 0;
|
||||
if (config->preprocessing < 0 || config->preprocessing > 1)
|
||||
return 0;
|
||||
if (config->partitions < 0 || config->partitions > 3)
|
||||
return 0;
|
||||
if (config->partition_limit < 0 || config->partition_limit > 100)
|
||||
return 0;
|
||||
if (config->alpha_compression < 0)
|
||||
return 0;
|
||||
if (config->alpha_filtering < 0)
|
||||
return 0;
|
||||
if (config->alpha_quality < 0 || config->alpha_quality > 100)
|
||||
return 0;
|
||||
if (config->lossless < 0 || config->lossless > 1)
|
||||
return 0;
|
||||
if (config->image_hint >= WEBP_HINT_LAST)
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,494 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Cost tables for level and modes
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "./cost.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Boolean-cost cost table
|
||||
|
||||
const uint16_t VP8EntropyCost[256] = {
|
||||
1792, 1792, 1792, 1536, 1536, 1408, 1366, 1280, 1280, 1216,
|
||||
1178, 1152, 1110, 1076, 1061, 1024, 1024, 992, 968, 951,
|
||||
939, 911, 896, 878, 871, 854, 838, 820, 811, 794,
|
||||
786, 768, 768, 752, 740, 732, 720, 709, 704, 690,
|
||||
683, 672, 666, 655, 647, 640, 631, 622, 615, 607,
|
||||
598, 592, 586, 576, 572, 564, 559, 555, 547, 541,
|
||||
534, 528, 522, 512, 512, 504, 500, 494, 488, 483,
|
||||
477, 473, 467, 461, 458, 452, 448, 443, 438, 434,
|
||||
427, 424, 419, 415, 410, 406, 403, 399, 394, 390,
|
||||
384, 384, 377, 374, 370, 366, 362, 359, 355, 351,
|
||||
347, 342, 342, 336, 333, 330, 326, 323, 320, 316,
|
||||
312, 308, 305, 302, 299, 296, 293, 288, 287, 283,
|
||||
280, 277, 274, 272, 268, 266, 262, 256, 256, 256,
|
||||
251, 248, 245, 242, 240, 237, 234, 232, 228, 226,
|
||||
223, 221, 218, 216, 214, 211, 208, 205, 203, 201,
|
||||
198, 196, 192, 191, 188, 187, 183, 181, 179, 176,
|
||||
175, 171, 171, 168, 165, 163, 160, 159, 156, 154,
|
||||
152, 150, 148, 146, 144, 142, 139, 138, 135, 133,
|
||||
131, 128, 128, 125, 123, 121, 119, 117, 115, 113,
|
||||
111, 110, 107, 105, 103, 102, 100, 98, 96, 94,
|
||||
92, 91, 89, 86, 86, 83, 82, 80, 77, 76,
|
||||
74, 73, 71, 69, 67, 66, 64, 63, 61, 59,
|
||||
57, 55, 54, 52, 51, 49, 47, 46, 44, 43,
|
||||
41, 40, 38, 36, 35, 33, 32, 30, 29, 27,
|
||||
25, 24, 22, 21, 19, 18, 16, 15, 13, 12,
|
||||
10, 9, 7, 6, 4, 3
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Level cost tables
|
||||
|
||||
// For each given level, the following table gives the pattern of contexts to
|
||||
// use for coding it (in [][0]) as well as the bit value to use for each
|
||||
// context (in [][1]).
|
||||
const uint16_t VP8LevelCodes[MAX_VARIABLE_LEVEL][2] = {
|
||||
{0x001, 0x000}, {0x007, 0x001}, {0x00f, 0x005},
|
||||
{0x00f, 0x00d}, {0x033, 0x003}, {0x033, 0x003}, {0x033, 0x023},
|
||||
{0x033, 0x023}, {0x033, 0x023}, {0x033, 0x023}, {0x0d3, 0x013},
|
||||
{0x0d3, 0x013}, {0x0d3, 0x013}, {0x0d3, 0x013}, {0x0d3, 0x013},
|
||||
{0x0d3, 0x013}, {0x0d3, 0x013}, {0x0d3, 0x013}, {0x0d3, 0x093},
|
||||
{0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093},
|
||||
{0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093},
|
||||
{0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093},
|
||||
{0x0d3, 0x093}, {0x0d3, 0x093}, {0x0d3, 0x093}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053},
|
||||
{0x153, 0x053}, {0x153, 0x053}, {0x153, 0x053}, {0x153, 0x153}
|
||||
};
|
||||
|
||||
// fixed costs for coding levels, deduce from the coding tree.
|
||||
// This is only the part that doesn't depend on the probability state.
|
||||
const uint16_t VP8LevelFixedCosts[2048] = {
|
||||
0, 256, 256, 256, 256, 432, 618, 630,
|
||||
731, 640, 640, 828, 901, 948, 1021, 1101,
|
||||
1174, 1221, 1294, 1042, 1085, 1115, 1158, 1202,
|
||||
1245, 1275, 1318, 1337, 1380, 1410, 1453, 1497,
|
||||
1540, 1570, 1613, 1280, 1295, 1317, 1332, 1358,
|
||||
1373, 1395, 1410, 1454, 1469, 1491, 1506, 1532,
|
||||
1547, 1569, 1584, 1601, 1616, 1638, 1653, 1679,
|
||||
1694, 1716, 1731, 1775, 1790, 1812, 1827, 1853,
|
||||
1868, 1890, 1905, 1727, 1733, 1742, 1748, 1759,
|
||||
1765, 1774, 1780, 1800, 1806, 1815, 1821, 1832,
|
||||
1838, 1847, 1853, 1878, 1884, 1893, 1899, 1910,
|
||||
1916, 1925, 1931, 1951, 1957, 1966, 1972, 1983,
|
||||
1989, 1998, 2004, 2027, 2033, 2042, 2048, 2059,
|
||||
2065, 2074, 2080, 2100, 2106, 2115, 2121, 2132,
|
||||
2138, 2147, 2153, 2178, 2184, 2193, 2199, 2210,
|
||||
2216, 2225, 2231, 2251, 2257, 2266, 2272, 2283,
|
||||
2289, 2298, 2304, 2168, 2174, 2183, 2189, 2200,
|
||||
2206, 2215, 2221, 2241, 2247, 2256, 2262, 2273,
|
||||
2279, 2288, 2294, 2319, 2325, 2334, 2340, 2351,
|
||||
2357, 2366, 2372, 2392, 2398, 2407, 2413, 2424,
|
||||
2430, 2439, 2445, 2468, 2474, 2483, 2489, 2500,
|
||||
2506, 2515, 2521, 2541, 2547, 2556, 2562, 2573,
|
||||
2579, 2588, 2594, 2619, 2625, 2634, 2640, 2651,
|
||||
2657, 2666, 2672, 2692, 2698, 2707, 2713, 2724,
|
||||
2730, 2739, 2745, 2540, 2546, 2555, 2561, 2572,
|
||||
2578, 2587, 2593, 2613, 2619, 2628, 2634, 2645,
|
||||
2651, 2660, 2666, 2691, 2697, 2706, 2712, 2723,
|
||||
2729, 2738, 2744, 2764, 2770, 2779, 2785, 2796,
|
||||
2802, 2811, 2817, 2840, 2846, 2855, 2861, 2872,
|
||||
2878, 2887, 2893, 2913, 2919, 2928, 2934, 2945,
|
||||
2951, 2960, 2966, 2991, 2997, 3006, 3012, 3023,
|
||||
3029, 3038, 3044, 3064, 3070, 3079, 3085, 3096,
|
||||
3102, 3111, 3117, 2981, 2987, 2996, 3002, 3013,
|
||||
3019, 3028, 3034, 3054, 3060, 3069, 3075, 3086,
|
||||
3092, 3101, 3107, 3132, 3138, 3147, 3153, 3164,
|
||||
3170, 3179, 3185, 3205, 3211, 3220, 3226, 3237,
|
||||
3243, 3252, 3258, 3281, 3287, 3296, 3302, 3313,
|
||||
3319, 3328, 3334, 3354, 3360, 3369, 3375, 3386,
|
||||
3392, 3401, 3407, 3432, 3438, 3447, 3453, 3464,
|
||||
3470, 3479, 3485, 3505, 3511, 3520, 3526, 3537,
|
||||
3543, 3552, 3558, 2816, 2822, 2831, 2837, 2848,
|
||||
2854, 2863, 2869, 2889, 2895, 2904, 2910, 2921,
|
||||
2927, 2936, 2942, 2967, 2973, 2982, 2988, 2999,
|
||||
3005, 3014, 3020, 3040, 3046, 3055, 3061, 3072,
|
||||
3078, 3087, 3093, 3116, 3122, 3131, 3137, 3148,
|
||||
3154, 3163, 3169, 3189, 3195, 3204, 3210, 3221,
|
||||
3227, 3236, 3242, 3267, 3273, 3282, 3288, 3299,
|
||||
3305, 3314, 3320, 3340, 3346, 3355, 3361, 3372,
|
||||
3378, 3387, 3393, 3257, 3263, 3272, 3278, 3289,
|
||||
3295, 3304, 3310, 3330, 3336, 3345, 3351, 3362,
|
||||
3368, 3377, 3383, 3408, 3414, 3423, 3429, 3440,
|
||||
3446, 3455, 3461, 3481, 3487, 3496, 3502, 3513,
|
||||
3519, 3528, 3534, 3557, 3563, 3572, 3578, 3589,
|
||||
3595, 3604, 3610, 3630, 3636, 3645, 3651, 3662,
|
||||
3668, 3677, 3683, 3708, 3714, 3723, 3729, 3740,
|
||||
3746, 3755, 3761, 3781, 3787, 3796, 3802, 3813,
|
||||
3819, 3828, 3834, 3629, 3635, 3644, 3650, 3661,
|
||||
3667, 3676, 3682, 3702, 3708, 3717, 3723, 3734,
|
||||
3740, 3749, 3755, 3780, 3786, 3795, 3801, 3812,
|
||||
3818, 3827, 3833, 3853, 3859, 3868, 3874, 3885,
|
||||
3891, 3900, 3906, 3929, 3935, 3944, 3950, 3961,
|
||||
3967, 3976, 3982, 4002, 4008, 4017, 4023, 4034,
|
||||
4040, 4049, 4055, 4080, 4086, 4095, 4101, 4112,
|
||||
4118, 4127, 4133, 4153, 4159, 4168, 4174, 4185,
|
||||
4191, 4200, 4206, 4070, 4076, 4085, 4091, 4102,
|
||||
4108, 4117, 4123, 4143, 4149, 4158, 4164, 4175,
|
||||
4181, 4190, 4196, 4221, 4227, 4236, 4242, 4253,
|
||||
4259, 4268, 4274, 4294, 4300, 4309, 4315, 4326,
|
||||
4332, 4341, 4347, 4370, 4376, 4385, 4391, 4402,
|
||||
4408, 4417, 4423, 4443, 4449, 4458, 4464, 4475,
|
||||
4481, 4490, 4496, 4521, 4527, 4536, 4542, 4553,
|
||||
4559, 4568, 4574, 4594, 4600, 4609, 4615, 4626,
|
||||
4632, 4641, 4647, 3515, 3521, 3530, 3536, 3547,
|
||||
3553, 3562, 3568, 3588, 3594, 3603, 3609, 3620,
|
||||
3626, 3635, 3641, 3666, 3672, 3681, 3687, 3698,
|
||||
3704, 3713, 3719, 3739, 3745, 3754, 3760, 3771,
|
||||
3777, 3786, 3792, 3815, 3821, 3830, 3836, 3847,
|
||||
3853, 3862, 3868, 3888, 3894, 3903, 3909, 3920,
|
||||
3926, 3935, 3941, 3966, 3972, 3981, 3987, 3998,
|
||||
4004, 4013, 4019, 4039, 4045, 4054, 4060, 4071,
|
||||
4077, 4086, 4092, 3956, 3962, 3971, 3977, 3988,
|
||||
3994, 4003, 4009, 4029, 4035, 4044, 4050, 4061,
|
||||
4067, 4076, 4082, 4107, 4113, 4122, 4128, 4139,
|
||||
4145, 4154, 4160, 4180, 4186, 4195, 4201, 4212,
|
||||
4218, 4227, 4233, 4256, 4262, 4271, 4277, 4288,
|
||||
4294, 4303, 4309, 4329, 4335, 4344, 4350, 4361,
|
||||
4367, 4376, 4382, 4407, 4413, 4422, 4428, 4439,
|
||||
4445, 4454, 4460, 4480, 4486, 4495, 4501, 4512,
|
||||
4518, 4527, 4533, 4328, 4334, 4343, 4349, 4360,
|
||||
4366, 4375, 4381, 4401, 4407, 4416, 4422, 4433,
|
||||
4439, 4448, 4454, 4479, 4485, 4494, 4500, 4511,
|
||||
4517, 4526, 4532, 4552, 4558, 4567, 4573, 4584,
|
||||
4590, 4599, 4605, 4628, 4634, 4643, 4649, 4660,
|
||||
4666, 4675, 4681, 4701, 4707, 4716, 4722, 4733,
|
||||
4739, 4748, 4754, 4779, 4785, 4794, 4800, 4811,
|
||||
4817, 4826, 4832, 4852, 4858, 4867, 4873, 4884,
|
||||
4890, 4899, 4905, 4769, 4775, 4784, 4790, 4801,
|
||||
4807, 4816, 4822, 4842, 4848, 4857, 4863, 4874,
|
||||
4880, 4889, 4895, 4920, 4926, 4935, 4941, 4952,
|
||||
4958, 4967, 4973, 4993, 4999, 5008, 5014, 5025,
|
||||
5031, 5040, 5046, 5069, 5075, 5084, 5090, 5101,
|
||||
5107, 5116, 5122, 5142, 5148, 5157, 5163, 5174,
|
||||
5180, 5189, 5195, 5220, 5226, 5235, 5241, 5252,
|
||||
5258, 5267, 5273, 5293, 5299, 5308, 5314, 5325,
|
||||
5331, 5340, 5346, 4604, 4610, 4619, 4625, 4636,
|
||||
4642, 4651, 4657, 4677, 4683, 4692, 4698, 4709,
|
||||
4715, 4724, 4730, 4755, 4761, 4770, 4776, 4787,
|
||||
4793, 4802, 4808, 4828, 4834, 4843, 4849, 4860,
|
||||
4866, 4875, 4881, 4904, 4910, 4919, 4925, 4936,
|
||||
4942, 4951, 4957, 4977, 4983, 4992, 4998, 5009,
|
||||
5015, 5024, 5030, 5055, 5061, 5070, 5076, 5087,
|
||||
5093, 5102, 5108, 5128, 5134, 5143, 5149, 5160,
|
||||
5166, 5175, 5181, 5045, 5051, 5060, 5066, 5077,
|
||||
5083, 5092, 5098, 5118, 5124, 5133, 5139, 5150,
|
||||
5156, 5165, 5171, 5196, 5202, 5211, 5217, 5228,
|
||||
5234, 5243, 5249, 5269, 5275, 5284, 5290, 5301,
|
||||
5307, 5316, 5322, 5345, 5351, 5360, 5366, 5377,
|
||||
5383, 5392, 5398, 5418, 5424, 5433, 5439, 5450,
|
||||
5456, 5465, 5471, 5496, 5502, 5511, 5517, 5528,
|
||||
5534, 5543, 5549, 5569, 5575, 5584, 5590, 5601,
|
||||
5607, 5616, 5622, 5417, 5423, 5432, 5438, 5449,
|
||||
5455, 5464, 5470, 5490, 5496, 5505, 5511, 5522,
|
||||
5528, 5537, 5543, 5568, 5574, 5583, 5589, 5600,
|
||||
5606, 5615, 5621, 5641, 5647, 5656, 5662, 5673,
|
||||
5679, 5688, 5694, 5717, 5723, 5732, 5738, 5749,
|
||||
5755, 5764, 5770, 5790, 5796, 5805, 5811, 5822,
|
||||
5828, 5837, 5843, 5868, 5874, 5883, 5889, 5900,
|
||||
5906, 5915, 5921, 5941, 5947, 5956, 5962, 5973,
|
||||
5979, 5988, 5994, 5858, 5864, 5873, 5879, 5890,
|
||||
5896, 5905, 5911, 5931, 5937, 5946, 5952, 5963,
|
||||
5969, 5978, 5984, 6009, 6015, 6024, 6030, 6041,
|
||||
6047, 6056, 6062, 6082, 6088, 6097, 6103, 6114,
|
||||
6120, 6129, 6135, 6158, 6164, 6173, 6179, 6190,
|
||||
6196, 6205, 6211, 6231, 6237, 6246, 6252, 6263,
|
||||
6269, 6278, 6284, 6309, 6315, 6324, 6330, 6341,
|
||||
6347, 6356, 6362, 6382, 6388, 6397, 6403, 6414,
|
||||
6420, 6429, 6435, 3515, 3521, 3530, 3536, 3547,
|
||||
3553, 3562, 3568, 3588, 3594, 3603, 3609, 3620,
|
||||
3626, 3635, 3641, 3666, 3672, 3681, 3687, 3698,
|
||||
3704, 3713, 3719, 3739, 3745, 3754, 3760, 3771,
|
||||
3777, 3786, 3792, 3815, 3821, 3830, 3836, 3847,
|
||||
3853, 3862, 3868, 3888, 3894, 3903, 3909, 3920,
|
||||
3926, 3935, 3941, 3966, 3972, 3981, 3987, 3998,
|
||||
4004, 4013, 4019, 4039, 4045, 4054, 4060, 4071,
|
||||
4077, 4086, 4092, 3956, 3962, 3971, 3977, 3988,
|
||||
3994, 4003, 4009, 4029, 4035, 4044, 4050, 4061,
|
||||
4067, 4076, 4082, 4107, 4113, 4122, 4128, 4139,
|
||||
4145, 4154, 4160, 4180, 4186, 4195, 4201, 4212,
|
||||
4218, 4227, 4233, 4256, 4262, 4271, 4277, 4288,
|
||||
4294, 4303, 4309, 4329, 4335, 4344, 4350, 4361,
|
||||
4367, 4376, 4382, 4407, 4413, 4422, 4428, 4439,
|
||||
4445, 4454, 4460, 4480, 4486, 4495, 4501, 4512,
|
||||
4518, 4527, 4533, 4328, 4334, 4343, 4349, 4360,
|
||||
4366, 4375, 4381, 4401, 4407, 4416, 4422, 4433,
|
||||
4439, 4448, 4454, 4479, 4485, 4494, 4500, 4511,
|
||||
4517, 4526, 4532, 4552, 4558, 4567, 4573, 4584,
|
||||
4590, 4599, 4605, 4628, 4634, 4643, 4649, 4660,
|
||||
4666, 4675, 4681, 4701, 4707, 4716, 4722, 4733,
|
||||
4739, 4748, 4754, 4779, 4785, 4794, 4800, 4811,
|
||||
4817, 4826, 4832, 4852, 4858, 4867, 4873, 4884,
|
||||
4890, 4899, 4905, 4769, 4775, 4784, 4790, 4801,
|
||||
4807, 4816, 4822, 4842, 4848, 4857, 4863, 4874,
|
||||
4880, 4889, 4895, 4920, 4926, 4935, 4941, 4952,
|
||||
4958, 4967, 4973, 4993, 4999, 5008, 5014, 5025,
|
||||
5031, 5040, 5046, 5069, 5075, 5084, 5090, 5101,
|
||||
5107, 5116, 5122, 5142, 5148, 5157, 5163, 5174,
|
||||
5180, 5189, 5195, 5220, 5226, 5235, 5241, 5252,
|
||||
5258, 5267, 5273, 5293, 5299, 5308, 5314, 5325,
|
||||
5331, 5340, 5346, 4604, 4610, 4619, 4625, 4636,
|
||||
4642, 4651, 4657, 4677, 4683, 4692, 4698, 4709,
|
||||
4715, 4724, 4730, 4755, 4761, 4770, 4776, 4787,
|
||||
4793, 4802, 4808, 4828, 4834, 4843, 4849, 4860,
|
||||
4866, 4875, 4881, 4904, 4910, 4919, 4925, 4936,
|
||||
4942, 4951, 4957, 4977, 4983, 4992, 4998, 5009,
|
||||
5015, 5024, 5030, 5055, 5061, 5070, 5076, 5087,
|
||||
5093, 5102, 5108, 5128, 5134, 5143, 5149, 5160,
|
||||
5166, 5175, 5181, 5045, 5051, 5060, 5066, 5077,
|
||||
5083, 5092, 5098, 5118, 5124, 5133, 5139, 5150,
|
||||
5156, 5165, 5171, 5196, 5202, 5211, 5217, 5228,
|
||||
5234, 5243, 5249, 5269, 5275, 5284, 5290, 5301,
|
||||
5307, 5316, 5322, 5345, 5351, 5360, 5366, 5377,
|
||||
5383, 5392, 5398, 5418, 5424, 5433, 5439, 5450,
|
||||
5456, 5465, 5471, 5496, 5502, 5511, 5517, 5528,
|
||||
5534, 5543, 5549, 5569, 5575, 5584, 5590, 5601,
|
||||
5607, 5616, 5622, 5417, 5423, 5432, 5438, 5449,
|
||||
5455, 5464, 5470, 5490, 5496, 5505, 5511, 5522,
|
||||
5528, 5537, 5543, 5568, 5574, 5583, 5589, 5600,
|
||||
5606, 5615, 5621, 5641, 5647, 5656, 5662, 5673,
|
||||
5679, 5688, 5694, 5717, 5723, 5732, 5738, 5749,
|
||||
5755, 5764, 5770, 5790, 5796, 5805, 5811, 5822,
|
||||
5828, 5837, 5843, 5868, 5874, 5883, 5889, 5900,
|
||||
5906, 5915, 5921, 5941, 5947, 5956, 5962, 5973,
|
||||
5979, 5988, 5994, 5858, 5864, 5873, 5879, 5890,
|
||||
5896, 5905, 5911, 5931, 5937, 5946, 5952, 5963,
|
||||
5969, 5978, 5984, 6009, 6015, 6024, 6030, 6041,
|
||||
6047, 6056, 6062, 6082, 6088, 6097, 6103, 6114,
|
||||
6120, 6129, 6135, 6158, 6164, 6173, 6179, 6190,
|
||||
6196, 6205, 6211, 6231, 6237, 6246, 6252, 6263,
|
||||
6269, 6278, 6284, 6309, 6315, 6324, 6330, 6341,
|
||||
6347, 6356, 6362, 6382, 6388, 6397, 6403, 6414,
|
||||
6420, 6429, 6435, 5303, 5309, 5318, 5324, 5335,
|
||||
5341, 5350, 5356, 5376, 5382, 5391, 5397, 5408,
|
||||
5414, 5423, 5429, 5454, 5460, 5469, 5475, 5486,
|
||||
5492, 5501, 5507, 5527, 5533, 5542, 5548, 5559,
|
||||
5565, 5574, 5580, 5603, 5609, 5618, 5624, 5635,
|
||||
5641, 5650, 5656, 5676, 5682, 5691, 5697, 5708,
|
||||
5714, 5723, 5729, 5754, 5760, 5769, 5775, 5786,
|
||||
5792, 5801, 5807, 5827, 5833, 5842, 5848, 5859,
|
||||
5865, 5874, 5880, 5744, 5750, 5759, 5765, 5776,
|
||||
5782, 5791, 5797, 5817, 5823, 5832, 5838, 5849,
|
||||
5855, 5864, 5870, 5895, 5901, 5910, 5916, 5927,
|
||||
5933, 5942, 5948, 5968, 5974, 5983, 5989, 6000,
|
||||
6006, 6015, 6021, 6044, 6050, 6059, 6065, 6076,
|
||||
6082, 6091, 6097, 6117, 6123, 6132, 6138, 6149,
|
||||
6155, 6164, 6170, 6195, 6201, 6210, 6216, 6227,
|
||||
6233, 6242, 6248, 6268, 6274, 6283, 6289, 6300,
|
||||
6306, 6315, 6321, 6116, 6122, 6131, 6137, 6148,
|
||||
6154, 6163, 6169, 6189, 6195, 6204, 6210, 6221,
|
||||
6227, 6236, 6242, 6267, 6273, 6282, 6288, 6299,
|
||||
6305, 6314, 6320, 6340, 6346, 6355, 6361, 6372,
|
||||
6378, 6387, 6393, 6416, 6422, 6431, 6437, 6448,
|
||||
6454, 6463, 6469, 6489, 6495, 6504, 6510, 6521,
|
||||
6527, 6536, 6542, 6567, 6573, 6582, 6588, 6599,
|
||||
6605, 6614, 6620, 6640, 6646, 6655, 6661, 6672,
|
||||
6678, 6687, 6693, 6557, 6563, 6572, 6578, 6589,
|
||||
6595, 6604, 6610, 6630, 6636, 6645, 6651, 6662,
|
||||
6668, 6677, 6683, 6708, 6714, 6723, 6729, 6740,
|
||||
6746, 6755, 6761, 6781, 6787, 6796, 6802, 6813,
|
||||
6819, 6828, 6834, 6857, 6863, 6872, 6878, 6889,
|
||||
6895, 6904, 6910, 6930, 6936, 6945, 6951, 6962,
|
||||
6968, 6977, 6983, 7008, 7014, 7023, 7029, 7040,
|
||||
7046, 7055, 7061, 7081, 7087, 7096, 7102, 7113,
|
||||
7119, 7128, 7134, 6392, 6398, 6407, 6413, 6424,
|
||||
6430, 6439, 6445, 6465, 6471, 6480, 6486, 6497,
|
||||
6503, 6512, 6518, 6543, 6549, 6558, 6564, 6575,
|
||||
6581, 6590, 6596, 6616, 6622, 6631, 6637, 6648,
|
||||
6654, 6663, 6669, 6692, 6698, 6707, 6713, 6724,
|
||||
6730, 6739, 6745, 6765, 6771, 6780, 6786, 6797,
|
||||
6803, 6812, 6818, 6843, 6849, 6858, 6864, 6875,
|
||||
6881, 6890, 6896, 6916, 6922, 6931, 6937, 6948,
|
||||
6954, 6963, 6969, 6833, 6839, 6848, 6854, 6865,
|
||||
6871, 6880, 6886, 6906, 6912, 6921, 6927, 6938,
|
||||
6944, 6953, 6959, 6984, 6990, 6999, 7005, 7016,
|
||||
7022, 7031, 7037, 7057, 7063, 7072, 7078, 7089,
|
||||
7095, 7104, 7110, 7133, 7139, 7148, 7154, 7165,
|
||||
7171, 7180, 7186, 7206, 7212, 7221, 7227, 7238,
|
||||
7244, 7253, 7259, 7284, 7290, 7299, 7305, 7316,
|
||||
7322, 7331, 7337, 7357, 7363, 7372, 7378, 7389,
|
||||
7395, 7404, 7410, 7205, 7211, 7220, 7226, 7237,
|
||||
7243, 7252, 7258, 7278, 7284, 7293, 7299, 7310,
|
||||
7316, 7325, 7331, 7356, 7362, 7371, 7377, 7388,
|
||||
7394, 7403, 7409, 7429, 7435, 7444, 7450, 7461,
|
||||
7467, 7476, 7482, 7505, 7511, 7520, 7526, 7537,
|
||||
7543, 7552, 7558, 7578, 7584, 7593, 7599, 7610,
|
||||
7616, 7625, 7631, 7656, 7662, 7671, 7677, 7688,
|
||||
7694, 7703, 7709, 7729, 7735, 7744, 7750, 7761
|
||||
};
|
||||
|
||||
static int VariableLevelCost(int level, const uint8_t probas[NUM_PROBAS]) {
|
||||
int pattern = VP8LevelCodes[level - 1][0];
|
||||
int bits = VP8LevelCodes[level - 1][1];
|
||||
int cost = 0;
|
||||
int i;
|
||||
for (i = 2; pattern; ++i) {
|
||||
if (pattern & 1) {
|
||||
cost += VP8BitCost(bits & 1, probas[i]);
|
||||
}
|
||||
bits >>= 1;
|
||||
pattern >>= 1;
|
||||
}
|
||||
return cost;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Pre-calc level costs once for all
|
||||
|
||||
void VP8CalculateLevelCosts(VP8Proba* const proba) {
|
||||
int ctype, band, ctx;
|
||||
|
||||
if (!proba->dirty_) return; // nothing to do.
|
||||
|
||||
for (ctype = 0; ctype < NUM_TYPES; ++ctype) {
|
||||
for (band = 0; band < NUM_BANDS; ++band) {
|
||||
for(ctx = 0; ctx < NUM_CTX; ++ctx) {
|
||||
const uint8_t* const p = proba->coeffs_[ctype][band][ctx];
|
||||
uint16_t* const table = proba->level_cost_[ctype][band][ctx];
|
||||
const int cost_base = VP8BitCost(1, p[1]);
|
||||
int v;
|
||||
table[0] = VP8BitCost(0, p[1]);
|
||||
for (v = 1; v <= MAX_VARIABLE_LEVEL; ++v) {
|
||||
table[v] = cost_base + VariableLevelCost(v, p);
|
||||
}
|
||||
// Starting at level 67 and up, the variable part of the cost is
|
||||
// actually constant.
|
||||
}
|
||||
}
|
||||
}
|
||||
proba->dirty_ = 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Mode cost tables.
|
||||
|
||||
// These are the fixed probabilities (in the coding trees) turned into bit-cost
|
||||
// by calling VP8BitCost().
|
||||
const uint16_t VP8FixedCostsUV[4] = { 302, 984, 439, 642 };
|
||||
// note: these values include the fixed VP8BitCost(1, 145) mode selection cost.
|
||||
const uint16_t VP8FixedCostsI16[4] = { 663, 919, 872, 919 };
|
||||
const uint16_t VP8FixedCostsI4[NUM_BMODES][NUM_BMODES][NUM_BMODES] = {
|
||||
{ { 251, 1362, 1934, 2085, 2314, 2230, 1839, 1988, 2437, 2348 },
|
||||
{ 403, 680, 1507, 1519, 2060, 2005, 1992, 1914, 1924, 1733 },
|
||||
{ 353, 1121, 973, 1895, 2060, 1787, 1671, 1516, 2012, 1868 },
|
||||
{ 770, 852, 1581, 632, 1393, 1780, 1823, 1936, 1074, 1218 },
|
||||
{ 510, 1270, 1467, 1319, 847, 1279, 1792, 2094, 1080, 1353 },
|
||||
{ 488, 1322, 918, 1573, 1300, 883, 1814, 1752, 1756, 1502 },
|
||||
{ 425, 992, 1820, 1514, 1843, 2440, 937, 1771, 1924, 1129 },
|
||||
{ 363, 1248, 1257, 1970, 2194, 2385, 1569, 953, 1951, 1601 },
|
||||
{ 723, 1257, 1631, 964, 963, 1508, 1697, 1824, 671, 1418 },
|
||||
{ 635, 1038, 1573, 930, 1673, 1413, 1410, 1687, 1410, 749 } },
|
||||
{ { 451, 613, 1345, 1702, 1870, 1716, 1728, 1766, 2190, 2310 },
|
||||
{ 678, 453, 1171, 1443, 1925, 1831, 2045, 1781, 1887, 1602 },
|
||||
{ 711, 666, 674, 1718, 1910, 1493, 1775, 1193, 2325, 2325 },
|
||||
{ 883, 854, 1583, 542, 1800, 1878, 1664, 2149, 1207, 1087 },
|
||||
{ 669, 994, 1248, 1122, 949, 1179, 1376, 1729, 1070, 1244 },
|
||||
{ 715, 1026, 715, 1350, 1430, 930, 1717, 1296, 1479, 1479 },
|
||||
{ 544, 841, 1656, 1450, 2094, 3883, 1010, 1759, 2076, 809 },
|
||||
{ 610, 855, 957, 1553, 2067, 1561, 1704, 824, 2066, 1226 },
|
||||
{ 833, 960, 1416, 819, 1277, 1619, 1501, 1617, 757, 1182 },
|
||||
{ 711, 964, 1252, 879, 1441, 1828, 1508, 1636, 1594, 734 } },
|
||||
{ { 605, 764, 734, 1713, 1747, 1192, 1819, 1353, 1877, 2392 },
|
||||
{ 866, 641, 586, 1622, 2072, 1431, 1888, 1346, 2189, 1764 },
|
||||
{ 901, 851, 456, 2165, 2281, 1405, 1739, 1193, 2183, 2443 },
|
||||
{ 770, 1045, 952, 1078, 1342, 1191, 1436, 1063, 1303, 995 },
|
||||
{ 901, 1086, 727, 1170, 884, 1105, 1267, 1401, 1739, 1337 },
|
||||
{ 951, 1162, 595, 1488, 1388, 703, 1790, 1366, 2057, 1724 },
|
||||
{ 534, 986, 1273, 1987, 3273, 1485, 1024, 1399, 1583, 866 },
|
||||
{ 699, 1182, 695, 1978, 1726, 1986, 1326, 714, 1750, 1672 },
|
||||
{ 951, 1217, 1209, 920, 1062, 1441, 1548, 999, 952, 932 },
|
||||
{ 733, 1284, 784, 1256, 1557, 1098, 1257, 1357, 1414, 908 } },
|
||||
{ { 316, 1075, 1653, 1220, 2145, 2051, 1730, 2131, 1884, 1790 },
|
||||
{ 745, 516, 1404, 894, 1599, 2375, 2013, 2105, 1475, 1381 },
|
||||
{ 516, 729, 1088, 1319, 1637, 3426, 1636, 1275, 1531, 1453 },
|
||||
{ 894, 943, 2138, 468, 1704, 2259, 2069, 1763, 1266, 1158 },
|
||||
{ 605, 1025, 1235, 871, 1170, 1767, 1493, 1500, 1104, 1258 },
|
||||
{ 739, 826, 1207, 1151, 1412, 846, 1305, 2726, 1014, 1569 },
|
||||
{ 558, 825, 1820, 1398, 3344, 1556, 1218, 1550, 1228, 878 },
|
||||
{ 429, 951, 1089, 1816, 3861, 3861, 1556, 969, 1568, 1828 },
|
||||
{ 883, 961, 1752, 769, 1468, 1810, 2081, 2346, 613, 1298 },
|
||||
{ 803, 895, 1372, 641, 1303, 1708, 1686, 1700, 1306, 1033 } },
|
||||
{ { 439, 1267, 1270, 1579, 963, 1193, 1723, 1729, 1198, 1993 },
|
||||
{ 705, 725, 1029, 1153, 1176, 1103, 1821, 1567, 1259, 1574 },
|
||||
{ 723, 859, 802, 1253, 972, 1202, 1407, 1665, 1520, 1674 },
|
||||
{ 894, 960, 1254, 887, 1052, 1607, 1344, 1349, 865, 1150 },
|
||||
{ 833, 1312, 1337, 1205, 572, 1288, 1414, 1529, 1088, 1430 },
|
||||
{ 842, 1279, 1068, 1861, 862, 688, 1861, 1630, 1039, 1381 },
|
||||
{ 766, 938, 1279, 1546, 3338, 1550, 1031, 1542, 1288, 640 },
|
||||
{ 715, 1090, 835, 1609, 1100, 1100, 1603, 1019, 1102, 1617 },
|
||||
{ 894, 1813, 1500, 1188, 789, 1194, 1491, 1919, 617, 1333 },
|
||||
{ 610, 1076, 1644, 1281, 1283, 975, 1179, 1688, 1434, 889 } },
|
||||
{ { 544, 971, 1146, 1849, 1221, 740, 1857, 1621, 1683, 2430 },
|
||||
{ 723, 705, 961, 1371, 1426, 821, 2081, 2079, 1839, 1380 },
|
||||
{ 783, 857, 703, 2145, 1419, 814, 1791, 1310, 1609, 2206 },
|
||||
{ 997, 1000, 1153, 792, 1229, 1162, 1810, 1418, 942, 979 },
|
||||
{ 901, 1226, 883, 1289, 793, 715, 1904, 1649, 1319, 3108 },
|
||||
{ 979, 1478, 782, 2216, 1454, 455, 3092, 1591, 1997, 1664 },
|
||||
{ 663, 1110, 1504, 1114, 1522, 3311, 676, 1522, 1530, 1024 },
|
||||
{ 605, 1138, 1153, 1314, 1569, 1315, 1157, 804, 1574, 1320 },
|
||||
{ 770, 1216, 1218, 1227, 869, 1384, 1232, 1375, 834, 1239 },
|
||||
{ 775, 1007, 843, 1216, 1225, 1074, 2527, 1479, 1149, 975 } },
|
||||
{ { 477, 817, 1309, 1439, 1708, 1454, 1159, 1241, 1945, 1672 },
|
||||
{ 577, 796, 1112, 1271, 1618, 1458, 1087, 1345, 1831, 1265 },
|
||||
{ 663, 776, 753, 1940, 1690, 1690, 1227, 1097, 3149, 1361 },
|
||||
{ 766, 1299, 1744, 1161, 1565, 1106, 1045, 1230, 1232, 707 },
|
||||
{ 915, 1026, 1404, 1182, 1184, 851, 1428, 2425, 1043, 789 },
|
||||
{ 883, 1456, 790, 1082, 1086, 985, 1083, 1484, 1238, 1160 },
|
||||
{ 507, 1345, 2261, 1995, 1847, 3636, 653, 1761, 2287, 933 },
|
||||
{ 553, 1193, 1470, 2057, 2059, 2059, 833, 779, 2058, 1263 },
|
||||
{ 766, 1275, 1515, 1039, 957, 1554, 1286, 1540, 1289, 705 },
|
||||
{ 499, 1378, 1496, 1385, 1850, 1850, 1044, 2465, 1515, 720 } },
|
||||
{ { 553, 930, 978, 2077, 1968, 1481, 1457, 761, 1957, 2362 },
|
||||
{ 694, 864, 905, 1720, 1670, 1621, 1429, 718, 2125, 1477 },
|
||||
{ 699, 968, 658, 3190, 2024, 1479, 1865, 750, 2060, 2320 },
|
||||
{ 733, 1308, 1296, 1062, 1576, 1322, 1062, 1112, 1172, 816 },
|
||||
{ 920, 927, 1052, 939, 947, 1156, 1152, 1073, 3056, 1268 },
|
||||
{ 723, 1534, 711, 1547, 1294, 892, 1553, 928, 1815, 1561 },
|
||||
{ 663, 1366, 1583, 2111, 1712, 3501, 522, 1155, 2130, 1133 },
|
||||
{ 614, 1731, 1188, 2343, 1944, 3733, 1287, 487, 3546, 1758 },
|
||||
{ 770, 1585, 1312, 826, 884, 2673, 1185, 1006, 1195, 1195 },
|
||||
{ 758, 1333, 1273, 1023, 1621, 1162, 1351, 833, 1479, 862 } },
|
||||
{ { 376, 1193, 1446, 1149, 1545, 1577, 1870, 1789, 1175, 1823 },
|
||||
{ 803, 633, 1136, 1058, 1350, 1323, 1598, 2247, 1072, 1252 },
|
||||
{ 614, 1048, 943, 981, 1152, 1869, 1461, 1020, 1618, 1618 },
|
||||
{ 1107, 1085, 1282, 592, 1779, 1933, 1648, 2403, 691, 1246 },
|
||||
{ 851, 1309, 1223, 1243, 895, 1593, 1792, 2317, 627, 1076 },
|
||||
{ 770, 1216, 1030, 1125, 921, 981, 1629, 1131, 1049, 1646 },
|
||||
{ 626, 1469, 1456, 1081, 1489, 3278, 981, 1232, 1498, 733 },
|
||||
{ 617, 1201, 812, 1220, 1476, 1476, 1478, 970, 1228, 1488 },
|
||||
{ 1179, 1393, 1540, 999, 1243, 1503, 1916, 1925, 414, 1614 },
|
||||
{ 943, 1088, 1490, 682, 1112, 1372, 1756, 1505, 966, 966 } },
|
||||
{ { 322, 1142, 1589, 1396, 2144, 1859, 1359, 1925, 2084, 1518 },
|
||||
{ 617, 625, 1241, 1234, 2121, 1615, 1524, 1858, 1720, 1004 },
|
||||
{ 553, 851, 786, 1299, 1452, 1560, 1372, 1561, 1967, 1713 },
|
||||
{ 770, 977, 1396, 568, 1893, 1639, 1540, 2108, 1430, 1013 },
|
||||
{ 684, 1120, 1375, 982, 930, 2719, 1638, 1643, 933, 993 },
|
||||
{ 553, 1103, 996, 1356, 1361, 1005, 1507, 1761, 1184, 1268 },
|
||||
{ 419, 1247, 1537, 1554, 1817, 3606, 1026, 1666, 1829, 923 },
|
||||
{ 439, 1139, 1101, 1257, 3710, 1922, 1205, 1040, 1931, 1529 },
|
||||
{ 979, 935, 1269, 847, 1202, 1286, 1530, 1535, 827, 1036 },
|
||||
{ 516, 1378, 1569, 1110, 1798, 1798, 1198, 2199, 1543, 712 } },
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,48 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Cost tables for level and modes.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_ENC_COST_H_
|
||||
#define WEBP_ENC_COST_H_
|
||||
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
extern const uint16_t VP8LevelFixedCosts[2048]; // approximate cost per level
|
||||
extern const uint16_t VP8EntropyCost[256]; // 8bit fixed-point log(p)
|
||||
|
||||
// Cost of coding one event with probability 'proba'.
|
||||
static WEBP_INLINE int VP8BitCost(int bit, uint8_t proba) {
|
||||
return !bit ? VP8EntropyCost[proba] : VP8EntropyCost[255 - proba];
|
||||
}
|
||||
|
||||
// Level cost calculations
|
||||
extern const uint16_t VP8LevelCodes[MAX_VARIABLE_LEVEL][2];
|
||||
void VP8CalculateLevelCosts(VP8Proba* const proba);
|
||||
static WEBP_INLINE int VP8LevelCost(const uint16_t* const table, int level) {
|
||||
return VP8LevelFixedCosts[level]
|
||||
+ table[(level > MAX_VARIABLE_LEVEL) ? MAX_VARIABLE_LEVEL : level];
|
||||
}
|
||||
|
||||
// Mode costs
|
||||
extern const uint16_t VP8FixedCostsUV[4];
|
||||
extern const uint16_t VP8FixedCostsI16[4];
|
||||
extern const uint16_t VP8FixedCostsI4[NUM_BMODES][NUM_BMODES][NUM_BMODES];
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_ENC_COST_H_ */
|
|
@ -1,409 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Selecting filter level
|
||||
//
|
||||
// Author: somnath@google.com (Somnath Banerjee)
|
||||
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// NOTE: clip1, tables and InitTables are repeated entries of dsp.c
|
||||
static uint8_t abs0[255 + 255 + 1]; // abs(i)
|
||||
static uint8_t abs1[255 + 255 + 1]; // abs(i)>>1
|
||||
static int8_t sclip1[1020 + 1020 + 1]; // clips [-1020, 1020] to [-128, 127]
|
||||
static int8_t sclip2[112 + 112 + 1]; // clips [-112, 112] to [-16, 15]
|
||||
static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
|
||||
|
||||
static int tables_ok = 0;
|
||||
|
||||
static void InitTables(void) {
|
||||
if (!tables_ok) {
|
||||
int i;
|
||||
for (i = -255; i <= 255; ++i) {
|
||||
abs0[255 + i] = (i < 0) ? -i : i;
|
||||
abs1[255 + i] = abs0[255 + i] >> 1;
|
||||
}
|
||||
for (i = -1020; i <= 1020; ++i) {
|
||||
sclip1[1020 + i] = (i < -128) ? -128 : (i > 127) ? 127 : i;
|
||||
}
|
||||
for (i = -112; i <= 112; ++i) {
|
||||
sclip2[112 + i] = (i < -16) ? -16 : (i > 15) ? 15 : i;
|
||||
}
|
||||
for (i = -255; i <= 255 + 255; ++i) {
|
||||
clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
|
||||
}
|
||||
tables_ok = 1;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Edge filtering functions
|
||||
|
||||
// 4 pixels in, 2 pixels out
|
||||
static WEBP_INLINE void do_filter2(uint8_t* p, int step) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
const int a = 3 * (q0 - p0) + sclip1[1020 + p1 - q1];
|
||||
const int a1 = sclip2[112 + ((a + 4) >> 3)];
|
||||
const int a2 = sclip2[112 + ((a + 3) >> 3)];
|
||||
p[-step] = clip1[255 + p0 + a2];
|
||||
p[ 0] = clip1[255 + q0 - a1];
|
||||
}
|
||||
|
||||
// 4 pixels in, 4 pixels out
|
||||
static WEBP_INLINE void do_filter4(uint8_t* p, int step) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
const int a = 3 * (q0 - p0);
|
||||
const int a1 = sclip2[112 + ((a + 4) >> 3)];
|
||||
const int a2 = sclip2[112 + ((a + 3) >> 3)];
|
||||
const int a3 = (a1 + 1) >> 1;
|
||||
p[-2*step] = clip1[255 + p1 + a3];
|
||||
p[- step] = clip1[255 + p0 + a2];
|
||||
p[ 0] = clip1[255 + q0 - a1];
|
||||
p[ step] = clip1[255 + q1 - a3];
|
||||
}
|
||||
|
||||
// high edge-variance
|
||||
static WEBP_INLINE int hev(const uint8_t* p, int step, int thresh) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
return (abs0[255 + p1 - p0] > thresh) || (abs0[255 + q1 - q0] > thresh);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int needs_filter(const uint8_t* p, int step, int thresh) {
|
||||
const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
|
||||
return (2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) <= thresh;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int needs_filter2(const uint8_t* p,
|
||||
int step, int t, int it) {
|
||||
const int p3 = p[-4*step], p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step];
|
||||
const int q0 = p[0], q1 = p[step], q2 = p[2*step], q3 = p[3*step];
|
||||
if ((2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) > t)
|
||||
return 0;
|
||||
return abs0[255 + p3 - p2] <= it && abs0[255 + p2 - p1] <= it &&
|
||||
abs0[255 + p1 - p0] <= it && abs0[255 + q3 - q2] <= it &&
|
||||
abs0[255 + q2 - q1] <= it && abs0[255 + q1 - q0] <= it;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Simple In-loop filtering (Paragraph 15.2)
|
||||
|
||||
static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
|
||||
int i;
|
||||
for (i = 0; i < 16; ++i) {
|
||||
if (needs_filter(p + i, stride, thresh)) {
|
||||
do_filter2(p + i, stride);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
|
||||
int i;
|
||||
for (i = 0; i < 16; ++i) {
|
||||
if (needs_filter(p + i * stride, 1, thresh)) {
|
||||
do_filter2(p + i * stride, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4 * stride;
|
||||
SimpleVFilter16(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4;
|
||||
SimpleHFilter16(p, stride, thresh);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Complex In-loop filtering (Paragraph 15.3)
|
||||
|
||||
static WEBP_INLINE void FilterLoop24(uint8_t* p,
|
||||
int hstride, int vstride, int size,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
while (size-- > 0) {
|
||||
if (needs_filter2(p, hstride, thresh, ithresh)) {
|
||||
if (hev(p, hstride, hev_thresh)) {
|
||||
do_filter2(p, hstride);
|
||||
} else {
|
||||
do_filter4(p, hstride);
|
||||
}
|
||||
}
|
||||
p += vstride;
|
||||
}
|
||||
}
|
||||
|
||||
// on three inner edges
|
||||
static void VFilter16i(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4 * stride;
|
||||
FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void HFilter16i(uint8_t* p, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
int k;
|
||||
for (k = 3; k > 0; --k) {
|
||||
p += 4;
|
||||
FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
|
||||
FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
|
||||
int thresh, int ithresh, int hev_thresh) {
|
||||
FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
|
||||
FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
void (*VP8EncVFilter16i)(uint8_t*, int, int, int, int) = VFilter16i;
|
||||
void (*VP8EncHFilter16i)(uint8_t*, int, int, int, int) = HFilter16i;
|
||||
void (*VP8EncVFilter8i)(uint8_t*, uint8_t*, int, int, int, int) = VFilter8i;
|
||||
void (*VP8EncHFilter8i)(uint8_t*, uint8_t*, int, int, int, int) = HFilter8i;
|
||||
|
||||
void (*VP8EncSimpleVFilter16i)(uint8_t*, int, int) = SimpleVFilter16i;
|
||||
void (*VP8EncSimpleHFilter16i)(uint8_t*, int, int) = SimpleHFilter16i;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Paragraph 15.4: compute the inner-edge filtering strength
|
||||
|
||||
static int GetILevel(int sharpness, int level) {
|
||||
if (sharpness > 0) {
|
||||
if (sharpness > 4) {
|
||||
level >>= 2;
|
||||
} else {
|
||||
level >>= 1;
|
||||
}
|
||||
if (level > 9 - sharpness) {
|
||||
level = 9 - sharpness;
|
||||
}
|
||||
}
|
||||
if (level < 1) level = 1;
|
||||
return level;
|
||||
}
|
||||
|
||||
static void DoFilter(const VP8EncIterator* const it, int level) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const int ilevel = GetILevel(enc->config_->filter_sharpness, level);
|
||||
const int limit = 2 * level + ilevel;
|
||||
|
||||
uint8_t* const y_dst = it->yuv_out2_ + Y_OFF;
|
||||
uint8_t* const u_dst = it->yuv_out2_ + U_OFF;
|
||||
uint8_t* const v_dst = it->yuv_out2_ + V_OFF;
|
||||
|
||||
// copy current block to yuv_out2_
|
||||
memcpy(y_dst, it->yuv_out_, YUV_SIZE * sizeof(uint8_t));
|
||||
|
||||
if (enc->filter_hdr_.simple_ == 1) { // simple
|
||||
VP8EncSimpleHFilter16i(y_dst, BPS, limit);
|
||||
VP8EncSimpleVFilter16i(y_dst, BPS, limit);
|
||||
} else { // complex
|
||||
const int hev_thresh = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
|
||||
VP8EncHFilter16i(y_dst, BPS, limit, ilevel, hev_thresh);
|
||||
VP8EncHFilter8i(u_dst, v_dst, BPS, limit, ilevel, hev_thresh);
|
||||
VP8EncVFilter16i(y_dst, BPS, limit, ilevel, hev_thresh);
|
||||
VP8EncVFilter8i(u_dst, v_dst, BPS, limit, ilevel, hev_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// SSIM metric
|
||||
|
||||
enum { KERNEL = 3 };
|
||||
static const double kMinValue = 1.e-10; // minimal threshold
|
||||
|
||||
void VP8SSIMAddStats(const DistoStats* const src, DistoStats* const dst) {
|
||||
dst->w += src->w;
|
||||
dst->xm += src->xm;
|
||||
dst->ym += src->ym;
|
||||
dst->xxm += src->xxm;
|
||||
dst->xym += src->xym;
|
||||
dst->yym += src->yym;
|
||||
}
|
||||
|
||||
static void VP8SSIMAccumulate(const uint8_t* src1, int stride1,
|
||||
const uint8_t* src2, int stride2,
|
||||
int xo, int yo, int W, int H,
|
||||
DistoStats* const stats) {
|
||||
const int ymin = (yo - KERNEL < 0) ? 0 : yo - KERNEL;
|
||||
const int ymax = (yo + KERNEL > H - 1) ? H - 1 : yo + KERNEL;
|
||||
const int xmin = (xo - KERNEL < 0) ? 0 : xo - KERNEL;
|
||||
const int xmax = (xo + KERNEL > W - 1) ? W - 1 : xo + KERNEL;
|
||||
int x, y;
|
||||
src1 += ymin * stride1;
|
||||
src2 += ymin * stride2;
|
||||
for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) {
|
||||
for (x = xmin; x <= xmax; ++x) {
|
||||
const int s1 = src1[x];
|
||||
const int s2 = src2[x];
|
||||
stats->w += 1;
|
||||
stats->xm += s1;
|
||||
stats->ym += s2;
|
||||
stats->xxm += s1 * s1;
|
||||
stats->xym += s1 * s2;
|
||||
stats->yym += s2 * s2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double VP8SSIMGet(const DistoStats* const stats) {
|
||||
const double xmxm = stats->xm * stats->xm;
|
||||
const double ymym = stats->ym * stats->ym;
|
||||
const double xmym = stats->xm * stats->ym;
|
||||
const double w2 = stats->w * stats->w;
|
||||
double sxx = stats->xxm * stats->w - xmxm;
|
||||
double syy = stats->yym * stats->w - ymym;
|
||||
double sxy = stats->xym * stats->w - xmym;
|
||||
double C1, C2;
|
||||
double fnum;
|
||||
double fden;
|
||||
// small errors are possible, due to rounding. Clamp to zero.
|
||||
if (sxx < 0.) sxx = 0.;
|
||||
if (syy < 0.) syy = 0.;
|
||||
C1 = 6.5025 * w2;
|
||||
C2 = 58.5225 * w2;
|
||||
fnum = (2 * xmym + C1) * (2 * sxy + C2);
|
||||
fden = (xmxm + ymym + C1) * (sxx + syy + C2);
|
||||
return (fden != 0.) ? fnum / fden : kMinValue;
|
||||
}
|
||||
|
||||
double VP8SSIMGetSquaredError(const DistoStats* const s) {
|
||||
if (s->w > 0.) {
|
||||
const double iw2 = 1. / (s->w * s->w);
|
||||
const double sxx = s->xxm * s->w - s->xm * s->xm;
|
||||
const double syy = s->yym * s->w - s->ym * s->ym;
|
||||
const double sxy = s->xym * s->w - s->xm * s->ym;
|
||||
const double SSE = iw2 * (sxx + syy - 2. * sxy);
|
||||
if (SSE > kMinValue) return SSE;
|
||||
}
|
||||
return kMinValue;
|
||||
}
|
||||
|
||||
void VP8SSIMAccumulatePlane(const uint8_t* src1, int stride1,
|
||||
const uint8_t* src2, int stride2,
|
||||
int W, int H, DistoStats* const stats) {
|
||||
int x, y;
|
||||
for (y = 0; y < H; ++y) {
|
||||
for (x = 0; x < W; ++x) {
|
||||
VP8SSIMAccumulate(src1, stride1, src2, stride2, x, y, W, H, stats);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static double GetMBSSIM(const uint8_t* yuv1, const uint8_t* yuv2) {
|
||||
int x, y;
|
||||
DistoStats s = { .0, .0, .0, .0, .0, .0 };
|
||||
|
||||
// compute SSIM in a 10 x 10 window
|
||||
for (x = 3; x < 13; x++) {
|
||||
for (y = 3; y < 13; y++) {
|
||||
VP8SSIMAccumulate(yuv1 + Y_OFF, BPS, yuv2 + Y_OFF, BPS, x, y, 16, 16, &s);
|
||||
}
|
||||
}
|
||||
for (x = 1; x < 7; x++) {
|
||||
for (y = 1; y < 7; y++) {
|
||||
VP8SSIMAccumulate(yuv1 + U_OFF, BPS, yuv2 + U_OFF, BPS, x, y, 8, 8, &s);
|
||||
VP8SSIMAccumulate(yuv1 + V_OFF, BPS, yuv2 + V_OFF, BPS, x, y, 8, 8, &s);
|
||||
}
|
||||
}
|
||||
return VP8SSIMGet(&s);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Exposed APIs: Encoder should call the following 3 functions to adjust
|
||||
// loop filter strength
|
||||
|
||||
void VP8InitFilter(VP8EncIterator* const it) {
|
||||
int s, i;
|
||||
if (!it->lf_stats_) return;
|
||||
|
||||
InitTables();
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; s++) {
|
||||
for (i = 0; i < MAX_LF_LEVELS; i++) {
|
||||
(*it->lf_stats_)[s][i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void VP8StoreFilterStats(VP8EncIterator* const it) {
|
||||
int d;
|
||||
const int s = it->mb_->segment_;
|
||||
const int level0 = it->enc_->dqm_[s].fstrength_; // TODO: ref_lf_delta[]
|
||||
|
||||
// explore +/-quant range of values around level0
|
||||
const int delta_min = -it->enc_->dqm_[s].quant_;
|
||||
const int delta_max = it->enc_->dqm_[s].quant_;
|
||||
const int step_size = (delta_max - delta_min >= 4) ? 4 : 1;
|
||||
|
||||
if (!it->lf_stats_) return;
|
||||
|
||||
// NOTE: Currently we are applying filter only across the sublock edges
|
||||
// There are two reasons for that.
|
||||
// 1. Applying filter on macro block edges will change the pixels in
|
||||
// the left and top macro blocks. That will be hard to restore
|
||||
// 2. Macro Blocks on the bottom and right are not yet compressed. So we
|
||||
// cannot apply filter on the right and bottom macro block edges.
|
||||
if (it->mb_->type_ == 1 && it->mb_->skip_) return;
|
||||
|
||||
// Always try filter level zero
|
||||
(*it->lf_stats_)[s][0] += GetMBSSIM(it->yuv_in_, it->yuv_out_);
|
||||
|
||||
for (d = delta_min; d <= delta_max; d += step_size) {
|
||||
const int level = level0 + d;
|
||||
if (level <= 0 || level >= MAX_LF_LEVELS) {
|
||||
continue;
|
||||
}
|
||||
DoFilter(it, level);
|
||||
(*it->lf_stats_)[s][level] += GetMBSSIM(it->yuv_in_, it->yuv_out2_);
|
||||
}
|
||||
}
|
||||
|
||||
void VP8AdjustFilterStrength(VP8EncIterator* const it) {
|
||||
int s;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
|
||||
if (!it->lf_stats_) {
|
||||
return;
|
||||
}
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; s++) {
|
||||
int i, best_level = 0;
|
||||
// Improvement over filter level 0 should be at least 1e-5 (relatively)
|
||||
double best_v = 1.00001 * (*it->lf_stats_)[s][0];
|
||||
for (i = 1; i < MAX_LF_LEVELS; i++) {
|
||||
const double v = (*it->lf_stats_)[s][i];
|
||||
if (v > best_v) {
|
||||
best_v = v;
|
||||
best_level = i;
|
||||
}
|
||||
}
|
||||
enc->dqm_[s].fstrength_ = best_level;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,939 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// frame coding and analysis
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
#include "./cost.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define SEGMENT_VISU 0
|
||||
#define DEBUG_SEARCH 0 // useful to track search convergence
|
||||
|
||||
// On-the-fly info about the current set of residuals. Handy to avoid
|
||||
// passing zillions of params.
|
||||
typedef struct {
|
||||
int first;
|
||||
int last;
|
||||
const int16_t* coeffs;
|
||||
|
||||
int coeff_type;
|
||||
ProbaArray* prob;
|
||||
StatsArray* stats;
|
||||
CostArray* cost;
|
||||
} VP8Residual;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Tables for level coding
|
||||
|
||||
const uint8_t VP8EncBands[16 + 1] = {
|
||||
0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
|
||||
0 // sentinel
|
||||
};
|
||||
|
||||
static const uint8_t kCat3[] = { 173, 148, 140 };
|
||||
static const uint8_t kCat4[] = { 176, 155, 140, 135 };
|
||||
static const uint8_t kCat5[] = { 180, 157, 141, 134, 130 };
|
||||
static const uint8_t kCat6[] =
|
||||
{ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 };
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Reset the statistics about: number of skips, token proba, level cost,...
|
||||
|
||||
static void ResetStats(VP8Encoder* const enc) {
|
||||
VP8Proba* const proba = &enc->proba_;
|
||||
VP8CalculateLevelCosts(proba);
|
||||
proba->nb_skip_ = 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Skip decision probability
|
||||
|
||||
#define SKIP_PROBA_THRESHOLD 250 // value below which using skip_proba is OK.
|
||||
|
||||
static int CalcSkipProba(uint64_t nb, uint64_t total) {
|
||||
return (int)(total ? (total - nb) * 255 / total : 255);
|
||||
}
|
||||
|
||||
// Returns the bit-cost for coding the skip probability.
|
||||
static int FinalizeSkipProba(VP8Encoder* const enc) {
|
||||
VP8Proba* const proba = &enc->proba_;
|
||||
const int nb_mbs = enc->mb_w_ * enc->mb_h_;
|
||||
const int nb_events = proba->nb_skip_;
|
||||
int size;
|
||||
proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs);
|
||||
proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD);
|
||||
size = 256; // 'use_skip_proba' bit
|
||||
if (proba->use_skip_proba_) {
|
||||
size += nb_events * VP8BitCost(1, proba->skip_proba_)
|
||||
+ (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_);
|
||||
size += 8 * 256; // cost of signaling the skip_proba_ itself.
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Recording of token probabilities.
|
||||
|
||||
static void ResetTokenStats(VP8Encoder* const enc) {
|
||||
VP8Proba* const proba = &enc->proba_;
|
||||
memset(proba->stats_, 0, sizeof(proba->stats_));
|
||||
}
|
||||
|
||||
// Record proba context used
|
||||
static int Record(int bit, proba_t* const stats) {
|
||||
proba_t p = *stats;
|
||||
if (p >= 0xffff0000u) { // an overflow is inbound.
|
||||
p = ((p + 1u) >> 1) & 0x7fff7fffu; // -> divide the stats by 2.
|
||||
}
|
||||
// record bit count (lower 16 bits) and increment total count (upper 16 bits).
|
||||
p += 0x00010000u + bit;
|
||||
*stats = p;
|
||||
return bit;
|
||||
}
|
||||
|
||||
// We keep the table free variant around for reference, in case.
|
||||
#define USE_LEVEL_CODE_TABLE
|
||||
|
||||
// Simulate block coding, but only record statistics.
|
||||
// Note: no need to record the fixed probas.
|
||||
static int RecordCoeffs(int ctx, const VP8Residual* const res) {
|
||||
int n = res->first;
|
||||
proba_t* s = res->stats[VP8EncBands[n]][ctx];
|
||||
if (res->last < 0) {
|
||||
Record(0, s + 0);
|
||||
return 0;
|
||||
}
|
||||
while (n <= res->last) {
|
||||
int v;
|
||||
Record(1, s + 0);
|
||||
while ((v = res->coeffs[n++]) == 0) {
|
||||
Record(0, s + 1);
|
||||
s = res->stats[VP8EncBands[n]][0];
|
||||
}
|
||||
Record(1, s + 1);
|
||||
if (!Record(2u < (unsigned int)(v + 1), s + 2)) { // v = -1 or 1
|
||||
s = res->stats[VP8EncBands[n]][1];
|
||||
} else {
|
||||
v = abs(v);
|
||||
#if !defined(USE_LEVEL_CODE_TABLE)
|
||||
if (!Record(v > 4, s + 3)) {
|
||||
if (Record(v != 2, s + 4))
|
||||
Record(v == 4, s + 5);
|
||||
} else if (!Record(v > 10, s + 6)) {
|
||||
Record(v > 6, s + 7);
|
||||
} else if (!Record((v >= 3 + (8 << 2)), s + 8)) {
|
||||
Record((v >= 3 + (8 << 1)), s + 9);
|
||||
} else {
|
||||
Record((v >= 3 + (8 << 3)), s + 10);
|
||||
}
|
||||
#else
|
||||
if (v > MAX_VARIABLE_LEVEL)
|
||||
v = MAX_VARIABLE_LEVEL;
|
||||
|
||||
{
|
||||
const int bits = VP8LevelCodes[v - 1][1];
|
||||
int pattern = VP8LevelCodes[v - 1][0];
|
||||
int i;
|
||||
for (i = 0; (pattern >>= 1) != 0; ++i) {
|
||||
const int mask = 2 << i;
|
||||
if (pattern & 1) Record(!!(bits & mask), s + 3 + i);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
s = res->stats[VP8EncBands[n]][2];
|
||||
}
|
||||
}
|
||||
if (n < 16) Record(0, s + 0);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Collect statistics and deduce probabilities for next coding pass.
|
||||
// Return the total bit-cost for coding the probability updates.
|
||||
static int CalcTokenProba(int nb, int total) {
|
||||
assert(nb <= total);
|
||||
return nb ? (255 - nb * 255 / total) : 255;
|
||||
}
|
||||
|
||||
// Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability.
|
||||
static int BranchCost(int nb, int total, int proba) {
|
||||
return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba);
|
||||
}
|
||||
|
||||
static int FinalizeTokenProbas(VP8Encoder* const enc) {
|
||||
VP8Proba* const proba = &enc->proba_;
|
||||
int has_changed = 0;
|
||||
int size = 0;
|
||||
int t, b, c, p;
|
||||
for (t = 0; t < NUM_TYPES; ++t) {
|
||||
for (b = 0; b < NUM_BANDS; ++b) {
|
||||
for (c = 0; c < NUM_CTX; ++c) {
|
||||
for (p = 0; p < NUM_PROBAS; ++p) {
|
||||
const proba_t stats = proba->stats_[t][b][c][p];
|
||||
const int nb = (stats >> 0) & 0xffff;
|
||||
const int total = (stats >> 16) & 0xffff;
|
||||
const int update_proba = VP8CoeffsUpdateProba[t][b][c][p];
|
||||
const int old_p = VP8CoeffsProba0[t][b][c][p];
|
||||
const int new_p = CalcTokenProba(nb, total);
|
||||
const int old_cost = BranchCost(nb, total, old_p)
|
||||
+ VP8BitCost(0, update_proba);
|
||||
const int new_cost = BranchCost(nb, total, new_p)
|
||||
+ VP8BitCost(1, update_proba)
|
||||
+ 8 * 256;
|
||||
const int use_new_p = (old_cost > new_cost);
|
||||
size += VP8BitCost(use_new_p, update_proba);
|
||||
if (use_new_p) { // only use proba that seem meaningful enough.
|
||||
proba->coeffs_[t][b][c][p] = new_p;
|
||||
has_changed |= (new_p != old_p);
|
||||
size += 8 * 256;
|
||||
} else {
|
||||
proba->coeffs_[t][b][c][p] = old_p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
proba->dirty_ = has_changed;
|
||||
return size;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// helper functions for residuals struct VP8Residual.
|
||||
|
||||
static void InitResidual(int first, int coeff_type,
|
||||
VP8Encoder* const enc, VP8Residual* const res) {
|
||||
res->coeff_type = coeff_type;
|
||||
res->prob = enc->proba_.coeffs_[coeff_type];
|
||||
res->stats = enc->proba_.stats_[coeff_type];
|
||||
res->cost = enc->proba_.level_cost_[coeff_type];
|
||||
res->first = first;
|
||||
}
|
||||
|
||||
static void SetResidualCoeffs(const int16_t* const coeffs,
|
||||
VP8Residual* const res) {
|
||||
int n;
|
||||
res->last = -1;
|
||||
for (n = 15; n >= res->first; --n) {
|
||||
if (coeffs[n]) {
|
||||
res->last = n;
|
||||
break;
|
||||
}
|
||||
}
|
||||
res->coeffs = coeffs;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Mode costs
|
||||
|
||||
static int GetResidualCost(int ctx, const VP8Residual* const res) {
|
||||
int n = res->first;
|
||||
int p0 = res->prob[VP8EncBands[n]][ctx][0];
|
||||
const uint16_t* t = res->cost[VP8EncBands[n]][ctx];
|
||||
int cost;
|
||||
|
||||
if (res->last < 0) {
|
||||
return VP8BitCost(0, p0);
|
||||
}
|
||||
cost = 0;
|
||||
while (n <= res->last) {
|
||||
const int v = res->coeffs[n];
|
||||
const int b = VP8EncBands[n + 1];
|
||||
++n;
|
||||
if (v == 0) {
|
||||
// short-case for VP8LevelCost(t, 0) (note: VP8LevelFixedCosts[0] == 0):
|
||||
cost += t[0];
|
||||
t = res->cost[b][0];
|
||||
continue;
|
||||
}
|
||||
cost += VP8BitCost(1, p0);
|
||||
if (2u >= (unsigned int)(v + 1)) { // v = -1 or 1
|
||||
// short-case for "VP8LevelCost(t, 1)" (256 is VP8LevelFixedCosts[1]):
|
||||
cost += 256 + t[1];
|
||||
p0 = res->prob[b][1][0];
|
||||
t = res->cost[b][1];
|
||||
} else {
|
||||
cost += VP8LevelCost(t, abs(v));
|
||||
p0 = res->prob[b][2][0];
|
||||
t = res->cost[b][2];
|
||||
}
|
||||
}
|
||||
if (n < 16) cost += VP8BitCost(0, p0);
|
||||
return cost;
|
||||
}
|
||||
|
||||
int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]) {
|
||||
const int x = (it->i4_ & 3), y = (it->i4_ >> 2);
|
||||
VP8Residual res;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
int R = 0;
|
||||
int ctx;
|
||||
|
||||
InitResidual(0, 3, enc, &res);
|
||||
ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
SetResidualCoeffs(levels, &res);
|
||||
R += GetResidualCost(ctx, &res);
|
||||
return R;
|
||||
}
|
||||
|
||||
int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd) {
|
||||
VP8Residual res;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
int x, y;
|
||||
int R = 0;
|
||||
|
||||
VP8IteratorNzToBytes(it); // re-import the non-zero context
|
||||
|
||||
// DC
|
||||
InitResidual(0, 1, enc, &res);
|
||||
SetResidualCoeffs(rd->y_dc_levels, &res);
|
||||
R += GetResidualCost(it->top_nz_[8] + it->left_nz_[8], &res);
|
||||
|
||||
// AC
|
||||
InitResidual(1, 0, enc, &res);
|
||||
for (y = 0; y < 4; ++y) {
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
||||
R += GetResidualCost(ctx, &res);
|
||||
it->top_nz_[x] = it->left_nz_[y] = (res.last >= 0);
|
||||
}
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd) {
|
||||
VP8Residual res;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
int ch, x, y;
|
||||
int R = 0;
|
||||
|
||||
VP8IteratorNzToBytes(it); // re-import the non-zero context
|
||||
|
||||
InitResidual(0, 2, enc, &res);
|
||||
for (ch = 0; ch <= 2; ch += 2) {
|
||||
for (y = 0; y < 2; ++y) {
|
||||
for (x = 0; x < 2; ++x) {
|
||||
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
||||
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
||||
R += GetResidualCost(ctx, &res);
|
||||
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = (res.last >= 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Coefficient coding
|
||||
|
||||
static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) {
|
||||
int n = res->first;
|
||||
const uint8_t* p = res->prob[VP8EncBands[n]][ctx];
|
||||
if (!VP8PutBit(bw, res->last >= 0, p[0])) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (n < 16) {
|
||||
const int c = res->coeffs[n++];
|
||||
const int sign = c < 0;
|
||||
int v = sign ? -c : c;
|
||||
if (!VP8PutBit(bw, v != 0, p[1])) {
|
||||
p = res->prob[VP8EncBands[n]][0];
|
||||
continue;
|
||||
}
|
||||
if (!VP8PutBit(bw, v > 1, p[2])) {
|
||||
p = res->prob[VP8EncBands[n]][1];
|
||||
} else {
|
||||
if (!VP8PutBit(bw, v > 4, p[3])) {
|
||||
if (VP8PutBit(bw, v != 2, p[4]))
|
||||
VP8PutBit(bw, v == 4, p[5]);
|
||||
} else if (!VP8PutBit(bw, v > 10, p[6])) {
|
||||
if (!VP8PutBit(bw, v > 6, p[7])) {
|
||||
VP8PutBit(bw, v == 6, 159);
|
||||
} else {
|
||||
VP8PutBit(bw, v >= 9, 165);
|
||||
VP8PutBit(bw, !(v & 1), 145);
|
||||
}
|
||||
} else {
|
||||
int mask;
|
||||
const uint8_t* tab;
|
||||
if (v < 3 + (8 << 1)) { // kCat3 (3b)
|
||||
VP8PutBit(bw, 0, p[8]);
|
||||
VP8PutBit(bw, 0, p[9]);
|
||||
v -= 3 + (8 << 0);
|
||||
mask = 1 << 2;
|
||||
tab = kCat3;
|
||||
} else if (v < 3 + (8 << 2)) { // kCat4 (4b)
|
||||
VP8PutBit(bw, 0, p[8]);
|
||||
VP8PutBit(bw, 1, p[9]);
|
||||
v -= 3 + (8 << 1);
|
||||
mask = 1 << 3;
|
||||
tab = kCat4;
|
||||
} else if (v < 3 + (8 << 3)) { // kCat5 (5b)
|
||||
VP8PutBit(bw, 1, p[8]);
|
||||
VP8PutBit(bw, 0, p[10]);
|
||||
v -= 3 + (8 << 2);
|
||||
mask = 1 << 4;
|
||||
tab = kCat5;
|
||||
} else { // kCat6 (11b)
|
||||
VP8PutBit(bw, 1, p[8]);
|
||||
VP8PutBit(bw, 1, p[10]);
|
||||
v -= 3 + (8 << 3);
|
||||
mask = 1 << 10;
|
||||
tab = kCat6;
|
||||
}
|
||||
while (mask) {
|
||||
VP8PutBit(bw, !!(v & mask), *tab++);
|
||||
mask >>= 1;
|
||||
}
|
||||
}
|
||||
p = res->prob[VP8EncBands[n]][2];
|
||||
}
|
||||
VP8PutBitUniform(bw, sign);
|
||||
if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) {
|
||||
return 1; // EOB
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void CodeResiduals(VP8BitWriter* const bw,
|
||||
VP8EncIterator* const it,
|
||||
const VP8ModeScore* const rd) {
|
||||
int x, y, ch;
|
||||
VP8Residual res;
|
||||
uint64_t pos1, pos2, pos3;
|
||||
const int i16 = (it->mb_->type_ == 1);
|
||||
const int segment = it->mb_->segment_;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
|
||||
VP8IteratorNzToBytes(it);
|
||||
|
||||
pos1 = VP8BitWriterPos(bw);
|
||||
if (i16) {
|
||||
InitResidual(0, 1, enc, &res);
|
||||
SetResidualCoeffs(rd->y_dc_levels, &res);
|
||||
it->top_nz_[8] = it->left_nz_[8] =
|
||||
PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res);
|
||||
InitResidual(1, 0, enc, &res);
|
||||
} else {
|
||||
InitResidual(0, 3, enc, &res);
|
||||
}
|
||||
|
||||
// luma-AC
|
||||
for (y = 0; y < 4; ++y) {
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
||||
it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res);
|
||||
}
|
||||
}
|
||||
pos2 = VP8BitWriterPos(bw);
|
||||
|
||||
// U/V
|
||||
InitResidual(0, 2, enc, &res);
|
||||
for (ch = 0; ch <= 2; ch += 2) {
|
||||
for (y = 0; y < 2; ++y) {
|
||||
for (x = 0; x < 2; ++x) {
|
||||
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
||||
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
||||
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
||||
PutCoeffs(bw, ctx, &res);
|
||||
}
|
||||
}
|
||||
}
|
||||
pos3 = VP8BitWriterPos(bw);
|
||||
it->luma_bits_ = pos2 - pos1;
|
||||
it->uv_bits_ = pos3 - pos2;
|
||||
it->bit_count_[segment][i16] += it->luma_bits_;
|
||||
it->bit_count_[segment][2] += it->uv_bits_;
|
||||
VP8IteratorBytesToNz(it);
|
||||
}
|
||||
|
||||
// Same as CodeResiduals, but doesn't actually write anything.
|
||||
// Instead, it just records the event distribution.
|
||||
static void RecordResiduals(VP8EncIterator* const it,
|
||||
const VP8ModeScore* const rd) {
|
||||
int x, y, ch;
|
||||
VP8Residual res;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
|
||||
VP8IteratorNzToBytes(it);
|
||||
|
||||
if (it->mb_->type_ == 1) { // i16x16
|
||||
InitResidual(0, 1, enc, &res);
|
||||
SetResidualCoeffs(rd->y_dc_levels, &res);
|
||||
it->top_nz_[8] = it->left_nz_[8] =
|
||||
RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res);
|
||||
InitResidual(1, 0, enc, &res);
|
||||
} else {
|
||||
InitResidual(0, 3, enc, &res);
|
||||
}
|
||||
|
||||
// luma-AC
|
||||
for (y = 0; y < 4; ++y) {
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
||||
it->top_nz_[x] = it->left_nz_[y] = RecordCoeffs(ctx, &res);
|
||||
}
|
||||
}
|
||||
|
||||
// U/V
|
||||
InitResidual(0, 2, enc, &res);
|
||||
for (ch = 0; ch <= 2; ch += 2) {
|
||||
for (y = 0; y < 2; ++y) {
|
||||
for (x = 0; x < 2; ++x) {
|
||||
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
||||
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
||||
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
||||
RecordCoeffs(ctx, &res);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
VP8IteratorBytesToNz(it);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Token buffer
|
||||
|
||||
#ifdef USE_TOKEN_BUFFER
|
||||
|
||||
void VP8TBufferInit(VP8TBuffer* const b) {
|
||||
b->rows_ = NULL;
|
||||
b->tokens_ = NULL;
|
||||
b->last_ = &b->rows_;
|
||||
b->left_ = 0;
|
||||
b->error_ = 0;
|
||||
}
|
||||
|
||||
int VP8TBufferNewPage(VP8TBuffer* const b) {
|
||||
VP8Tokens* const page = b->error_ ? NULL : (VP8Tokens*)malloc(sizeof(*page));
|
||||
if (page == NULL) {
|
||||
b->error_ = 1;
|
||||
return 0;
|
||||
}
|
||||
*b->last_ = page;
|
||||
b->last_ = &page->next_;
|
||||
b->left_ = MAX_NUM_TOKEN;
|
||||
b->tokens_ = page->tokens_;
|
||||
return 1;
|
||||
}
|
||||
|
||||
void VP8TBufferClear(VP8TBuffer* const b) {
|
||||
if (b != NULL) {
|
||||
const VP8Tokens* p = b->rows_;
|
||||
while (p != NULL) {
|
||||
const VP8Tokens* const next = p->next_;
|
||||
free((void*)p);
|
||||
p = next;
|
||||
}
|
||||
VP8TBufferInit(b);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8EmitTokens(const VP8TBuffer* const b, VP8BitWriter* const bw,
|
||||
const uint8_t* const probas) {
|
||||
VP8Tokens* p = b->rows_;
|
||||
if (b->error_) return 0;
|
||||
while (p != NULL) {
|
||||
const int N = (p->next_ == NULL) ? b->left_ : 0;
|
||||
int n = MAX_NUM_TOKEN;
|
||||
while (n-- > N) {
|
||||
VP8PutBit(bw, (p->tokens_[n] >> 15) & 1, probas[p->tokens_[n] & 0x7fff]);
|
||||
}
|
||||
p = p->next_;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
#define TOKEN_ID(b, ctx, p) ((p) + NUM_PROBAS * ((ctx) + (b) * NUM_CTX))
|
||||
|
||||
static int RecordCoeffTokens(int ctx, const VP8Residual* const res,
|
||||
VP8TBuffer* tokens) {
|
||||
int n = res->first;
|
||||
int b = VP8EncBands[n];
|
||||
if (!VP8AddToken(tokens, res->last >= 0, TOKEN_ID(b, ctx, 0))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (n < 16) {
|
||||
const int c = res->coeffs[n++];
|
||||
const int sign = c < 0;
|
||||
int v = sign ? -c : c;
|
||||
const int base_id = TOKEN_ID(b, ctx, 0);
|
||||
if (!VP8AddToken(tokens, v != 0, base_id + 1)) {
|
||||
b = VP8EncBands[n];
|
||||
ctx = 0;
|
||||
continue;
|
||||
}
|
||||
if (!VP8AddToken(tokens, v > 1, base_id + 2)) {
|
||||
b = VP8EncBands[n];
|
||||
ctx = 1;
|
||||
} else {
|
||||
if (!VP8AddToken(tokens, v > 4, base_id + 3)) {
|
||||
if (VP8AddToken(tokens, v != 2, base_id + 4))
|
||||
VP8AddToken(tokens, v == 4, base_id + 5);
|
||||
} else if (!VP8AddToken(tokens, v > 10, base_id + 6)) {
|
||||
if (!VP8AddToken(tokens, v > 6, base_id + 7)) {
|
||||
// VP8AddToken(tokens, v == 6, 159);
|
||||
} else {
|
||||
// VP8AddToken(tokens, v >= 9, 165);
|
||||
// VP8AddToken(tokens, !(v & 1), 145);
|
||||
}
|
||||
} else {
|
||||
int mask;
|
||||
const uint8_t* tab;
|
||||
if (v < 3 + (8 << 1)) { // kCat3 (3b)
|
||||
VP8AddToken(tokens, 0, base_id + 8);
|
||||
VP8AddToken(tokens, 0, base_id + 9);
|
||||
v -= 3 + (8 << 0);
|
||||
mask = 1 << 2;
|
||||
tab = kCat3;
|
||||
} else if (v < 3 + (8 << 2)) { // kCat4 (4b)
|
||||
VP8AddToken(tokens, 0, base_id + 8);
|
||||
VP8AddToken(tokens, 1, base_id + 9);
|
||||
v -= 3 + (8 << 1);
|
||||
mask = 1 << 3;
|
||||
tab = kCat4;
|
||||
} else if (v < 3 + (8 << 3)) { // kCat5 (5b)
|
||||
VP8AddToken(tokens, 1, base_id + 8);
|
||||
VP8AddToken(tokens, 0, base_id + 10);
|
||||
v -= 3 + (8 << 2);
|
||||
mask = 1 << 4;
|
||||
tab = kCat5;
|
||||
} else { // kCat6 (11b)
|
||||
VP8AddToken(tokens, 1, base_id + 8);
|
||||
VP8AddToken(tokens, 1, base_id + 10);
|
||||
v -= 3 + (8 << 3);
|
||||
mask = 1 << 10;
|
||||
tab = kCat6;
|
||||
}
|
||||
while (mask) {
|
||||
// VP8AddToken(tokens, !!(v & mask), *tab++);
|
||||
mask >>= 1;
|
||||
}
|
||||
}
|
||||
ctx = 2;
|
||||
}
|
||||
b = VP8EncBands[n];
|
||||
// VP8PutBitUniform(bw, sign);
|
||||
if (n == 16 || !VP8AddToken(tokens, n <= res->last, TOKEN_ID(b, ctx, 0))) {
|
||||
return 1; // EOB
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void RecordTokens(VP8EncIterator* const it,
|
||||
const VP8ModeScore* const rd, VP8TBuffer tokens[2]) {
|
||||
int x, y, ch;
|
||||
VP8Residual res;
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
|
||||
VP8IteratorNzToBytes(it);
|
||||
if (it->mb_->type_ == 1) { // i16x16
|
||||
InitResidual(0, 1, enc, &res);
|
||||
SetResidualCoeffs(rd->y_dc_levels, &res);
|
||||
// TODO(skal): FIX -> it->top_nz_[8] = it->left_nz_[8] =
|
||||
RecordCoeffTokens(it->top_nz_[8] + it->left_nz_[8], &res, &tokens[0]);
|
||||
InitResidual(1, 0, enc, &res);
|
||||
} else {
|
||||
InitResidual(0, 3, enc, &res);
|
||||
}
|
||||
|
||||
// luma-AC
|
||||
for (y = 0; y < 4; ++y) {
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
||||
it->top_nz_[x] = it->left_nz_[y] =
|
||||
RecordCoeffTokens(ctx, &res, &tokens[0]);
|
||||
}
|
||||
}
|
||||
|
||||
// U/V
|
||||
InitResidual(0, 2, enc, &res);
|
||||
for (ch = 0; ch <= 2; ch += 2) {
|
||||
for (y = 0; y < 2; ++y) {
|
||||
for (x = 0; x < 2; ++x) {
|
||||
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
||||
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
||||
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
||||
RecordCoeffTokens(ctx, &res, &tokens[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // USE_TOKEN_BUFFER
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// ExtraInfo map / Debug function
|
||||
|
||||
#if SEGMENT_VISU
|
||||
static void SetBlock(uint8_t* p, int value, int size) {
|
||||
int y;
|
||||
for (y = 0; y < size; ++y) {
|
||||
memset(p, value, size);
|
||||
p += BPS;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ResetSSE(VP8Encoder* const enc) {
|
||||
memset(enc->sse_, 0, sizeof(enc->sse_));
|
||||
enc->sse_count_ = 0;
|
||||
}
|
||||
|
||||
static void StoreSSE(const VP8EncIterator* const it) {
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
const uint8_t* const in = it->yuv_in_;
|
||||
const uint8_t* const out = it->yuv_out_;
|
||||
// Note: not totally accurate at boundary. And doesn't include in-loop filter.
|
||||
enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF);
|
||||
enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF);
|
||||
enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF);
|
||||
enc->sse_count_ += 16 * 16;
|
||||
}
|
||||
|
||||
static void StoreSideInfo(const VP8EncIterator* const it) {
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
const VP8MBInfo* const mb = it->mb_;
|
||||
WebPPicture* const pic = enc->pic_;
|
||||
|
||||
if (pic->stats != NULL) {
|
||||
StoreSSE(it);
|
||||
enc->block_count_[0] += (mb->type_ == 0);
|
||||
enc->block_count_[1] += (mb->type_ == 1);
|
||||
enc->block_count_[2] += (mb->skip_ != 0);
|
||||
}
|
||||
|
||||
if (pic->extra_info != NULL) {
|
||||
uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_];
|
||||
switch (pic->extra_info_type) {
|
||||
case 1: *info = mb->type_; break;
|
||||
case 2: *info = mb->segment_; break;
|
||||
case 3: *info = enc->dqm_[mb->segment_].quant_; break;
|
||||
case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break;
|
||||
case 5: *info = mb->uv_mode_; break;
|
||||
case 6: {
|
||||
const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3);
|
||||
*info = (b > 255) ? 255 : b; break;
|
||||
}
|
||||
default: *info = 0; break;
|
||||
};
|
||||
}
|
||||
#if SEGMENT_VISU // visualize segments and prediction modes
|
||||
SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16);
|
||||
SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8);
|
||||
SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8);
|
||||
#endif
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main loops
|
||||
//
|
||||
// VP8EncLoop(): does the final bitstream coding.
|
||||
|
||||
static void ResetAfterSkip(VP8EncIterator* const it) {
|
||||
if (it->mb_->type_ == 1) {
|
||||
*it->nz_ = 0; // reset all predictors
|
||||
it->left_nz_[8] = 0;
|
||||
} else {
|
||||
*it->nz_ &= (1 << 24); // preserve the dc_nz bit
|
||||
}
|
||||
}
|
||||
|
||||
int VP8EncLoop(VP8Encoder* const enc) {
|
||||
int i, s, p;
|
||||
int ok = 1;
|
||||
VP8EncIterator it;
|
||||
VP8ModeScore info;
|
||||
const int dont_use_skip = !enc->proba_.use_skip_proba_;
|
||||
const int rd_opt = enc->rd_opt_level_;
|
||||
const int kAverageBytesPerMB = 5; // TODO: have a kTable[quality/10]
|
||||
const int bytes_per_parts =
|
||||
enc->mb_w_ * enc->mb_h_ * kAverageBytesPerMB / enc->num_parts_;
|
||||
|
||||
// Initialize the bit-writers
|
||||
for (p = 0; p < enc->num_parts_; ++p) {
|
||||
VP8BitWriterInit(enc->parts_ + p, bytes_per_parts);
|
||||
}
|
||||
|
||||
ResetStats(enc);
|
||||
ResetSSE(enc);
|
||||
|
||||
VP8IteratorInit(enc, &it);
|
||||
VP8InitFilter(&it);
|
||||
do {
|
||||
VP8IteratorImport(&it);
|
||||
// Warning! order is important: first call VP8Decimate() and
|
||||
// *then* decide how to code the skip decision if there's one.
|
||||
if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) {
|
||||
CodeResiduals(it.bw_, &it, &info);
|
||||
} else { // reset predictors after a skip
|
||||
ResetAfterSkip(&it);
|
||||
}
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
if (enc->use_layer_) {
|
||||
VP8EncCodeLayerBlock(&it);
|
||||
}
|
||||
#endif
|
||||
StoreSideInfo(&it);
|
||||
VP8StoreFilterStats(&it);
|
||||
VP8IteratorExport(&it);
|
||||
ok = VP8IteratorProgress(&it, 20);
|
||||
} while (ok && VP8IteratorNext(&it, it.yuv_out_));
|
||||
|
||||
if (ok) { // Finalize the partitions, check for extra errors.
|
||||
for (p = 0; p < enc->num_parts_; ++p) {
|
||||
VP8BitWriterFinish(enc->parts_ + p);
|
||||
ok &= !enc->parts_[p].error_;
|
||||
}
|
||||
}
|
||||
|
||||
if (ok) { // All good. Finish up.
|
||||
if (enc->pic_->stats) { // finalize byte counters...
|
||||
for (i = 0; i <= 2; ++i) {
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
||||
enc->residual_bytes_[i][s] = (int)((it.bit_count_[s][i] + 7) >> 3);
|
||||
}
|
||||
}
|
||||
}
|
||||
VP8AdjustFilterStrength(&it); // ...and store filter stats.
|
||||
} else {
|
||||
// Something bad happened -> need to do some memory cleanup.
|
||||
VP8EncFreeBitWriters(enc);
|
||||
}
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8StatLoop(): only collect statistics (number of skips, token usage, ...)
|
||||
// This is used for deciding optimal probabilities. It also
|
||||
// modifies the quantizer value if some target (size, PNSR)
|
||||
// was specified.
|
||||
|
||||
#define kHeaderSizeEstimate (15 + 20 + 10) // TODO: fix better
|
||||
|
||||
static int OneStatPass(VP8Encoder* const enc, float q, int rd_opt, int nb_mbs,
|
||||
float* const PSNR, int percent_delta) {
|
||||
VP8EncIterator it;
|
||||
uint64_t size = 0;
|
||||
uint64_t distortion = 0;
|
||||
const uint64_t pixel_count = nb_mbs * 384;
|
||||
|
||||
// Make sure the quality parameter is inside valid bounds
|
||||
if (q < 0.) {
|
||||
q = 0;
|
||||
} else if (q > 100.) {
|
||||
q = 100;
|
||||
}
|
||||
|
||||
VP8SetSegmentParams(enc, q); // setup segment quantizations and filters
|
||||
|
||||
ResetStats(enc);
|
||||
ResetTokenStats(enc);
|
||||
|
||||
VP8IteratorInit(enc, &it);
|
||||
do {
|
||||
VP8ModeScore info;
|
||||
VP8IteratorImport(&it);
|
||||
if (VP8Decimate(&it, &info, rd_opt)) {
|
||||
// Just record the number of skips and act like skip_proba is not used.
|
||||
enc->proba_.nb_skip_++;
|
||||
}
|
||||
RecordResiduals(&it, &info);
|
||||
size += info.R;
|
||||
distortion += info.D;
|
||||
if (percent_delta && !VP8IteratorProgress(&it, percent_delta))
|
||||
return 0;
|
||||
} while (VP8IteratorNext(&it, it.yuv_out_) && --nb_mbs > 0);
|
||||
size += FinalizeSkipProba(enc);
|
||||
size += FinalizeTokenProbas(enc);
|
||||
size += enc->segment_hdr_.size_;
|
||||
size = ((size + 1024) >> 11) + kHeaderSizeEstimate;
|
||||
|
||||
if (PSNR) {
|
||||
*PSNR = (float)(10.* log10(255. * 255. * pixel_count / distortion));
|
||||
}
|
||||
return (int)size;
|
||||
}
|
||||
|
||||
// successive refinement increments.
|
||||
static const int dqs[] = { 20, 15, 10, 8, 6, 4, 2, 1, 0 };
|
||||
|
||||
int VP8StatLoop(VP8Encoder* const enc) {
|
||||
const int do_search =
|
||||
(enc->config_->target_size > 0 || enc->config_->target_PSNR > 0);
|
||||
const int fast_probe = (enc->method_ < 2 && !do_search);
|
||||
float q = enc->config_->quality;
|
||||
const int max_passes = enc->config_->pass;
|
||||
const int task_percent = 20;
|
||||
const int percent_per_pass = (task_percent + max_passes / 2) / max_passes;
|
||||
const int final_percent = enc->percent_ + task_percent;
|
||||
int pass;
|
||||
int nb_mbs;
|
||||
|
||||
// Fast mode: quick analysis pass over few mbs. Better than nothing.
|
||||
nb_mbs = enc->mb_w_ * enc->mb_h_;
|
||||
if (fast_probe && nb_mbs > 100) nb_mbs = 100;
|
||||
|
||||
// No target size: just do several pass without changing 'q'
|
||||
if (!do_search) {
|
||||
for (pass = 0; pass < max_passes; ++pass) {
|
||||
const int rd_opt = (enc->method_ > 2);
|
||||
if (!OneStatPass(enc, q, rd_opt, nb_mbs, NULL, percent_per_pass)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// binary search for a size close to target
|
||||
for (pass = 0; pass < max_passes && (dqs[pass] > 0); ++pass) {
|
||||
const int rd_opt = 1;
|
||||
float PSNR;
|
||||
int criterion;
|
||||
const int size = OneStatPass(enc, q, rd_opt, nb_mbs, &PSNR,
|
||||
percent_per_pass);
|
||||
#if DEBUG_SEARCH
|
||||
printf("#%d size=%d PSNR=%.2f q=%.2f\n", pass, size, PSNR, q);
|
||||
#endif
|
||||
if (!size) return 0;
|
||||
if (enc->config_->target_PSNR > 0) {
|
||||
criterion = (PSNR < enc->config_->target_PSNR);
|
||||
} else {
|
||||
criterion = (size < enc->config_->target_size);
|
||||
}
|
||||
// dichotomize
|
||||
if (criterion) {
|
||||
q += dqs[pass];
|
||||
} else {
|
||||
q -= dqs[pass];
|
||||
}
|
||||
}
|
||||
}
|
||||
return WebPReportProgress(enc->pic_, final_percent, &enc->percent_);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,406 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
//
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "./backward_references.h"
|
||||
#include "./histogram.h"
|
||||
#include "../dsp/lossless.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
static void HistogramClear(VP8LHistogram* const p) {
|
||||
memset(p->literal_, 0, sizeof(p->literal_));
|
||||
memset(p->red_, 0, sizeof(p->red_));
|
||||
memset(p->blue_, 0, sizeof(p->blue_));
|
||||
memset(p->alpha_, 0, sizeof(p->alpha_));
|
||||
memset(p->distance_, 0, sizeof(p->distance_));
|
||||
p->bit_cost_ = 0;
|
||||
}
|
||||
|
||||
void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
|
||||
VP8LHistogram* const histo) {
|
||||
int i;
|
||||
for (i = 0; i < refs->size; ++i) {
|
||||
VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LHistogramCreate(VP8LHistogram* const p,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int palette_code_bits) {
|
||||
if (palette_code_bits >= 0) {
|
||||
p->palette_code_bits_ = palette_code_bits;
|
||||
}
|
||||
HistogramClear(p);
|
||||
VP8LHistogramStoreRefs(refs, p);
|
||||
}
|
||||
|
||||
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
|
||||
p->palette_code_bits_ = palette_code_bits;
|
||||
HistogramClear(p);
|
||||
}
|
||||
|
||||
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
|
||||
int i;
|
||||
VP8LHistogramSet* set;
|
||||
VP8LHistogram* bulk;
|
||||
const uint64_t total_size = (uint64_t)sizeof(*set)
|
||||
+ size * sizeof(*set->histograms)
|
||||
+ size * sizeof(**set->histograms);
|
||||
uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
|
||||
if (memory == NULL) return NULL;
|
||||
|
||||
set = (VP8LHistogramSet*)memory;
|
||||
memory += sizeof(*set);
|
||||
set->histograms = (VP8LHistogram**)memory;
|
||||
memory += size * sizeof(*set->histograms);
|
||||
bulk = (VP8LHistogram*)memory;
|
||||
set->max_size = size;
|
||||
set->size = size;
|
||||
for (i = 0; i < size; ++i) {
|
||||
set->histograms[i] = bulk + i;
|
||||
VP8LHistogramInit(set->histograms[i], cache_bits);
|
||||
}
|
||||
return set;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
|
||||
const PixOrCopy* const v) {
|
||||
if (PixOrCopyIsLiteral(v)) {
|
||||
++histo->alpha_[PixOrCopyLiteral(v, 3)];
|
||||
++histo->red_[PixOrCopyLiteral(v, 2)];
|
||||
++histo->literal_[PixOrCopyLiteral(v, 1)];
|
||||
++histo->blue_[PixOrCopyLiteral(v, 0)];
|
||||
} else if (PixOrCopyIsCacheIdx(v)) {
|
||||
int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
|
||||
++histo->literal_[literal_ix];
|
||||
} else {
|
||||
int code, extra_bits_count, extra_bits_value;
|
||||
PrefixEncode(PixOrCopyLength(v),
|
||||
&code, &extra_bits_count, &extra_bits_value);
|
||||
++histo->literal_[256 + code];
|
||||
PrefixEncode(PixOrCopyDistance(v),
|
||||
&code, &extra_bits_count, &extra_bits_value);
|
||||
++histo->distance_[code];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static double BitsEntropy(const int* const array, int n) {
|
||||
double retval = 0.;
|
||||
int sum = 0;
|
||||
int nonzeros = 0;
|
||||
int max_val = 0;
|
||||
int i;
|
||||
double mix;
|
||||
for (i = 0; i < n; ++i) {
|
||||
if (array[i] != 0) {
|
||||
sum += array[i];
|
||||
++nonzeros;
|
||||
retval -= VP8LFastSLog2(array[i]);
|
||||
if (max_val < array[i]) {
|
||||
max_val = array[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
retval += VP8LFastSLog2(sum);
|
||||
|
||||
if (nonzeros < 5) {
|
||||
if (nonzeros <= 1) {
|
||||
return 0;
|
||||
}
|
||||
// Two symbols, they will be 0 and 1 in a Huffman code.
|
||||
// Let's mix in a bit of entropy to favor good clustering when
|
||||
// distributions of these are combined.
|
||||
if (nonzeros == 2) {
|
||||
return 0.99 * sum + 0.01 * retval;
|
||||
}
|
||||
// No matter what the entropy says, we cannot be better than min_limit
|
||||
// with Huffman coding. I am mixing a bit of entropy into the
|
||||
// min_limit since it produces much better (~0.5 %) compression results
|
||||
// perhaps because of better entropy clustering.
|
||||
if (nonzeros == 3) {
|
||||
mix = 0.95;
|
||||
} else {
|
||||
mix = 0.7; // nonzeros == 4.
|
||||
}
|
||||
} else {
|
||||
mix = 0.627;
|
||||
}
|
||||
|
||||
{
|
||||
double min_limit = 2 * sum - max_val;
|
||||
min_limit = mix * min_limit + (1.0 - mix) * retval;
|
||||
return (retval < min_limit) ? min_limit : retval;
|
||||
}
|
||||
}
|
||||
|
||||
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
|
||||
double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p))
|
||||
+ BitsEntropy(&p->red_[0], 256)
|
||||
+ BitsEntropy(&p->blue_[0], 256)
|
||||
+ BitsEntropy(&p->alpha_[0], 256)
|
||||
+ BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES);
|
||||
// Compute the extra bits cost.
|
||||
int i;
|
||||
for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) {
|
||||
retval +=
|
||||
(i >> 1) * p->literal_[256 + i + 2];
|
||||
}
|
||||
for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) {
|
||||
retval += (i >> 1) * p->distance_[i + 2];
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
// Returns the cost encode the rle-encoded entropy code.
|
||||
// The constants in this function are experimental.
|
||||
static double HuffmanCost(const int* const population, int length) {
|
||||
// Small bias because Huffman code length is typically not stored in
|
||||
// full length.
|
||||
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
|
||||
static const double kSmallBias = 9.1;
|
||||
double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
|
||||
int streak = 0;
|
||||
int i = 0;
|
||||
for (; i < length - 1; ++i) {
|
||||
++streak;
|
||||
if (population[i] == population[i + 1]) {
|
||||
continue;
|
||||
}
|
||||
last_streak_hack:
|
||||
// population[i] points now to the symbol in the streak of same values.
|
||||
if (streak > 3) {
|
||||
if (population[i] == 0) {
|
||||
retval += 1.5625 + 0.234375 * streak;
|
||||
} else {
|
||||
retval += 2.578125 + 0.703125 * streak;
|
||||
}
|
||||
} else {
|
||||
if (population[i] == 0) {
|
||||
retval += 1.796875 * streak;
|
||||
} else {
|
||||
retval += 3.28125 * streak;
|
||||
}
|
||||
}
|
||||
streak = 0;
|
||||
}
|
||||
if (i == length - 1) {
|
||||
++streak;
|
||||
goto last_streak_hack;
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Estimates the Huffman dictionary + other block overhead size.
|
||||
static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) {
|
||||
return HuffmanCost(&p->alpha_[0], 256) +
|
||||
HuffmanCost(&p->red_[0], 256) +
|
||||
HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
|
||||
HuffmanCost(&p->blue_[0], 256) +
|
||||
HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES);
|
||||
}
|
||||
|
||||
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
|
||||
return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
|
||||
}
|
||||
|
||||
static void HistogramBuildImage(int xsize, int histo_bits,
|
||||
const VP8LBackwardRefs* const backward_refs,
|
||||
VP8LHistogramSet* const image) {
|
||||
int i;
|
||||
int x = 0, y = 0;
|
||||
const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
|
||||
VP8LHistogram** const histograms = image->histograms;
|
||||
assert(histo_bits > 0);
|
||||
for (i = 0; i < backward_refs->size; ++i) {
|
||||
const PixOrCopy* const v = &backward_refs->refs[i];
|
||||
const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
|
||||
VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
|
||||
x += PixOrCopyLength(v);
|
||||
while (x >= xsize) {
|
||||
x -= xsize;
|
||||
++y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static uint32_t MyRand(uint32_t *seed) {
|
||||
*seed *= 16807U;
|
||||
if (*seed == 0) {
|
||||
*seed = 1;
|
||||
}
|
||||
return *seed;
|
||||
}
|
||||
|
||||
static int HistogramCombine(const VP8LHistogramSet* const in,
|
||||
VP8LHistogramSet* const out, int num_pairs) {
|
||||
int ok = 0;
|
||||
int i, iter;
|
||||
uint32_t seed = 0;
|
||||
int tries_with_no_success = 0;
|
||||
const int min_cluster_size = 2;
|
||||
int out_size = in->size;
|
||||
const int outer_iters = in->size * 3;
|
||||
VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
|
||||
VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
|
||||
VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
|
||||
if (histos == NULL) goto End;
|
||||
|
||||
// Copy histograms from in[] to out[].
|
||||
assert(in->size <= out->size);
|
||||
for (i = 0; i < in->size; ++i) {
|
||||
in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
|
||||
*out->histograms[i] = *in->histograms[i];
|
||||
}
|
||||
|
||||
// Collapse similar histograms in 'out'.
|
||||
for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
|
||||
// We pick the best pair to be combined out of 'inner_iters' pairs.
|
||||
double best_cost_diff = 0.;
|
||||
int best_idx1 = 0, best_idx2 = 1;
|
||||
int j;
|
||||
seed += iter;
|
||||
for (j = 0; j < num_pairs; ++j) {
|
||||
double curr_cost_diff;
|
||||
// Choose two histograms at random and try to combine them.
|
||||
const uint32_t idx1 = MyRand(&seed) % out_size;
|
||||
const uint32_t tmp = ((j & 7) + 1) % (out_size - 1);
|
||||
const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
|
||||
const uint32_t idx2 = (idx1 + diff + 1) % out_size;
|
||||
if (idx1 == idx2) {
|
||||
continue;
|
||||
}
|
||||
*cur_combo = *out->histograms[idx1];
|
||||
VP8LHistogramAdd(cur_combo, out->histograms[idx2]);
|
||||
cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
|
||||
// Calculate cost reduction on combining.
|
||||
curr_cost_diff = cur_combo->bit_cost_
|
||||
- out->histograms[idx1]->bit_cost_
|
||||
- out->histograms[idx2]->bit_cost_;
|
||||
if (best_cost_diff > curr_cost_diff) { // found a better pair?
|
||||
{ // swap cur/best combo histograms
|
||||
VP8LHistogram* const tmp_histo = cur_combo;
|
||||
cur_combo = best_combo;
|
||||
best_combo = tmp_histo;
|
||||
}
|
||||
best_cost_diff = curr_cost_diff;
|
||||
best_idx1 = idx1;
|
||||
best_idx2 = idx2;
|
||||
}
|
||||
}
|
||||
|
||||
if (best_cost_diff < 0.0) {
|
||||
*out->histograms[best_idx1] = *best_combo;
|
||||
// swap best_idx2 slot with last one (which is now unused)
|
||||
--out_size;
|
||||
if (best_idx2 != out_size) {
|
||||
out->histograms[best_idx2] = out->histograms[out_size];
|
||||
out->histograms[out_size] = NULL; // just for sanity check.
|
||||
}
|
||||
tries_with_no_success = 0;
|
||||
}
|
||||
if (++tries_with_no_success >= 50) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
out->size = out_size;
|
||||
ok = 1;
|
||||
|
||||
End:
|
||||
free(histos);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Histogram refinement
|
||||
|
||||
// What is the bit cost of moving square_histogram from
|
||||
// cur_symbol to candidate_symbol.
|
||||
// TODO(skal): we don't really need to copy the histogram and Add(). Instead
|
||||
// we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
|
||||
static double HistogramDistance(const VP8LHistogram* const square_histogram,
|
||||
const VP8LHistogram* const candidate) {
|
||||
const double previous_bit_cost = candidate->bit_cost_;
|
||||
double new_bit_cost;
|
||||
VP8LHistogram modified_histo;
|
||||
modified_histo = *candidate;
|
||||
VP8LHistogramAdd(&modified_histo, square_histogram);
|
||||
new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);
|
||||
|
||||
return new_bit_cost - previous_bit_cost;
|
||||
}
|
||||
|
||||
// Find the best 'out' histogram for each of the 'in' histograms.
|
||||
// Note: we assume that out[]->bit_cost_ is already up-to-date.
|
||||
static void HistogramRemap(const VP8LHistogramSet* const in,
|
||||
const VP8LHistogramSet* const out,
|
||||
uint16_t* const symbols) {
|
||||
int i;
|
||||
for (i = 0; i < in->size; ++i) {
|
||||
int best_out = 0;
|
||||
double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]);
|
||||
int k;
|
||||
for (k = 1; k < out->size; ++k) {
|
||||
const double cur_bits =
|
||||
HistogramDistance(in->histograms[i], out->histograms[k]);
|
||||
if (cur_bits < best_bits) {
|
||||
best_bits = cur_bits;
|
||||
best_out = k;
|
||||
}
|
||||
}
|
||||
symbols[i] = best_out;
|
||||
}
|
||||
|
||||
// Recompute each out based on raw and symbols.
|
||||
for (i = 0; i < out->size; ++i) {
|
||||
HistogramClear(out->histograms[i]);
|
||||
}
|
||||
for (i = 0; i < in->size; ++i) {
|
||||
VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int quality, int histo_bits, int cache_bits,
|
||||
VP8LHistogramSet* const image_in,
|
||||
uint16_t* const histogram_symbols) {
|
||||
int ok = 0;
|
||||
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
|
||||
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
|
||||
const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine().
|
||||
const int histo_image_raw_size = histo_xsize * histo_ysize;
|
||||
VP8LHistogramSet* const image_out =
|
||||
VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
|
||||
if (image_out == NULL) return 0;
|
||||
|
||||
// Build histogram image.
|
||||
HistogramBuildImage(xsize, histo_bits, refs, image_out);
|
||||
// Collapse similar histograms.
|
||||
if (!HistogramCombine(image_out, image_in, num_histo_pairs)) {
|
||||
goto Error;
|
||||
}
|
||||
// Find the optimal map from original histograms to the final ones.
|
||||
HistogramRemap(image_out, image_in, histogram_symbols);
|
||||
ok = 1;
|
||||
|
||||
Error:
|
||||
free(image_out);
|
||||
return ok;
|
||||
}
|
|
@ -1,115 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
//
|
||||
// Models the histograms of literal and distance codes.
|
||||
|
||||
#ifndef WEBP_ENC_HISTOGRAM_H_
|
||||
#define WEBP_ENC_HISTOGRAM_H_
|
||||
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "./backward_references.h"
|
||||
#include "../format_constants.h"
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// A simple container for histograms of data.
|
||||
typedef struct {
|
||||
// literal_ contains green literal, palette-code and
|
||||
// copy-length-prefix histogram
|
||||
int literal_[PIX_OR_COPY_CODES_MAX];
|
||||
int red_[256];
|
||||
int blue_[256];
|
||||
int alpha_[256];
|
||||
// Backward reference prefix-code histogram.
|
||||
int distance_[NUM_DISTANCE_CODES];
|
||||
int palette_code_bits_;
|
||||
double bit_cost_; // cached value of VP8LHistogramEstimateBits(this)
|
||||
} VP8LHistogram;
|
||||
|
||||
// Collection of histograms with fixed capacity, allocated as one
|
||||
// big memory chunk. Can be destroyed by simply calling 'free()'.
|
||||
typedef struct {
|
||||
int size; // number of slots currently in use
|
||||
int max_size; // maximum capacity
|
||||
VP8LHistogram** histograms;
|
||||
} VP8LHistogramSet;
|
||||
|
||||
// Create the histogram.
|
||||
//
|
||||
// The input data is the PixOrCopy data, which models the literals, stop
|
||||
// codes and backward references (both distances and lengths). Also: if
|
||||
// palette_code_bits is >= 0, initialize the histogram with this value.
|
||||
void VP8LHistogramCreate(VP8LHistogram* const p,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int palette_code_bits);
|
||||
|
||||
// Set the palette_code_bits and reset the stats.
|
||||
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits);
|
||||
|
||||
// Collect all the references into a histogram (without reset)
|
||||
void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
|
||||
VP8LHistogram* const histo);
|
||||
|
||||
// Allocate an array of pointer to histograms, allocated and initialized
|
||||
// using 'cache_bits'. Return NULL in case of memory error.
|
||||
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits);
|
||||
|
||||
// Accumulate a token 'v' into a histogram.
|
||||
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
|
||||
const PixOrCopy* const v);
|
||||
|
||||
// Estimate how many bits the combined entropy of literals and distance
|
||||
// approximately maps to.
|
||||
double VP8LHistogramEstimateBits(const VP8LHistogram* const p);
|
||||
|
||||
// This function estimates the cost in bits excluding the bits needed to
|
||||
// represent the entropy code itself.
|
||||
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p);
|
||||
|
||||
static WEBP_INLINE void VP8LHistogramAdd(VP8LHistogram* const p,
|
||||
const VP8LHistogram* const a) {
|
||||
int i;
|
||||
for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
|
||||
p->literal_[i] += a->literal_[i];
|
||||
}
|
||||
for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
|
||||
p->distance_[i] += a->distance_[i];
|
||||
}
|
||||
for (i = 0; i < 256; ++i) {
|
||||
p->red_[i] += a->red_[i];
|
||||
p->blue_[i] += a->blue_[i];
|
||||
p->alpha_[i] += a->alpha_[i];
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8LHistogramNumCodes(const VP8LHistogram* const p) {
|
||||
return 256 + NUM_LENGTH_CODES +
|
||||
((p->palette_code_bits_ > 0) ? (1 << p->palette_code_bits_) : 0);
|
||||
}
|
||||
|
||||
// Builds the histogram image.
|
||||
int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
const VP8LBackwardRefs* const refs,
|
||||
int quality, int histogram_bits, int cache_bits,
|
||||
VP8LHistogramSet* const image_in,
|
||||
uint16_t* const histogram_symbols);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // WEBP_ENC_HISTOGRAM_H_
|
|
@ -1,422 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// VP8Iterator: block iterator
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8Iterator
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static void InitLeft(VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
enc->y_left_[-1] = enc->u_left_[-1] = enc->v_left_[-1] =
|
||||
(it->y_ > 0) ? 129 : 127;
|
||||
memset(enc->y_left_, 129, 16);
|
||||
memset(enc->u_left_, 129, 8);
|
||||
memset(enc->v_left_, 129, 8);
|
||||
it->left_nz_[8] = 0;
|
||||
}
|
||||
|
||||
static void InitTop(VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const size_t top_size = enc->mb_w_ * 16;
|
||||
memset(enc->y_top_, 127, 2 * top_size);
|
||||
memset(enc->nz_, 0, enc->mb_w_ * sizeof(*enc->nz_));
|
||||
}
|
||||
|
||||
void VP8IteratorReset(VP8EncIterator* const it) {
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
it->x_ = 0;
|
||||
it->y_ = 0;
|
||||
it->y_offset_ = 0;
|
||||
it->uv_offset_ = 0;
|
||||
it->mb_ = enc->mb_info_;
|
||||
it->preds_ = enc->preds_;
|
||||
it->nz_ = enc->nz_;
|
||||
it->bw_ = &enc->parts_[0];
|
||||
it->done_ = enc->mb_w_* enc->mb_h_;
|
||||
InitTop(it);
|
||||
InitLeft(it);
|
||||
memset(it->bit_count_, 0, sizeof(it->bit_count_));
|
||||
it->do_trellis_ = 0;
|
||||
}
|
||||
|
||||
void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it) {
|
||||
it->enc_ = enc;
|
||||
it->y_stride_ = enc->pic_->y_stride;
|
||||
it->uv_stride_ = enc->pic_->uv_stride;
|
||||
// TODO(later): for multithreading, these should be owned by 'it'.
|
||||
it->yuv_in_ = enc->yuv_in_;
|
||||
it->yuv_out_ = enc->yuv_out_;
|
||||
it->yuv_out2_ = enc->yuv_out2_;
|
||||
it->yuv_p_ = enc->yuv_p_;
|
||||
it->lf_stats_ = enc->lf_stats_;
|
||||
it->percent0_ = enc->percent_;
|
||||
VP8IteratorReset(it);
|
||||
}
|
||||
|
||||
int VP8IteratorProgress(const VP8EncIterator* const it, int delta) {
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
if (delta && enc->pic_->progress_hook) {
|
||||
const int percent = (enc->mb_h_ <= 1)
|
||||
? it->percent0_
|
||||
: it->percent0_ + delta * it->y_ / (enc->mb_h_ - 1);
|
||||
return WebPReportProgress(enc->pic_, percent, &enc->percent_);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Import the source samples into the cache. Takes care of replicating
|
||||
// boundary pixels if necessary.
|
||||
|
||||
static void ImportBlock(const uint8_t* src, int src_stride,
|
||||
uint8_t* dst, int w, int h, int size) {
|
||||
int i;
|
||||
for (i = 0; i < h; ++i) {
|
||||
memcpy(dst, src, w);
|
||||
if (w < size) {
|
||||
memset(dst + w, dst[w - 1], size - w);
|
||||
}
|
||||
dst += BPS;
|
||||
src += src_stride;
|
||||
}
|
||||
for (i = h; i < size; ++i) {
|
||||
memcpy(dst, dst - BPS, size);
|
||||
dst += BPS;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8IteratorImport(const VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const int x = it->x_, y = it->y_;
|
||||
const WebPPicture* const pic = enc->pic_;
|
||||
const uint8_t* const ysrc = pic->y + (y * pic->y_stride + x) * 16;
|
||||
const uint8_t* const usrc = pic->u + (y * pic->uv_stride + x) * 8;
|
||||
const uint8_t* const vsrc = pic->v + (y * pic->uv_stride + x) * 8;
|
||||
uint8_t* const ydst = it->yuv_in_ + Y_OFF;
|
||||
uint8_t* const udst = it->yuv_in_ + U_OFF;
|
||||
uint8_t* const vdst = it->yuv_in_ + V_OFF;
|
||||
int w = (pic->width - x * 16);
|
||||
int h = (pic->height - y * 16);
|
||||
|
||||
if (w > 16) w = 16;
|
||||
if (h > 16) h = 16;
|
||||
|
||||
// Luma plane
|
||||
ImportBlock(ysrc, pic->y_stride, ydst, w, h, 16);
|
||||
|
||||
{ // U/V planes
|
||||
const int uv_w = (w + 1) >> 1;
|
||||
const int uv_h = (h + 1) >> 1;
|
||||
ImportBlock(usrc, pic->uv_stride, udst, uv_w, uv_h, 8);
|
||||
ImportBlock(vsrc, pic->uv_stride, vdst, uv_w, uv_h, 8);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Copy back the compressed samples into user space if requested.
|
||||
|
||||
static void ExportBlock(const uint8_t* src, uint8_t* dst, int dst_stride,
|
||||
int w, int h) {
|
||||
while (h-- > 0) {
|
||||
memcpy(dst, src, w);
|
||||
dst += dst_stride;
|
||||
src += BPS;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8IteratorExport(const VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
if (enc->config_->show_compressed) {
|
||||
const int x = it->x_, y = it->y_;
|
||||
const uint8_t* const ysrc = it->yuv_out_ + Y_OFF;
|
||||
const uint8_t* const usrc = it->yuv_out_ + U_OFF;
|
||||
const uint8_t* const vsrc = it->yuv_out_ + V_OFF;
|
||||
const WebPPicture* const pic = enc->pic_;
|
||||
uint8_t* const ydst = pic->y + (y * pic->y_stride + x) * 16;
|
||||
uint8_t* const udst = pic->u + (y * pic->uv_stride + x) * 8;
|
||||
uint8_t* const vdst = pic->v + (y * pic->uv_stride + x) * 8;
|
||||
int w = (pic->width - x * 16);
|
||||
int h = (pic->height - y * 16);
|
||||
|
||||
if (w > 16) w = 16;
|
||||
if (h > 16) h = 16;
|
||||
|
||||
// Luma plane
|
||||
ExportBlock(ysrc, ydst, pic->y_stride, w, h);
|
||||
|
||||
{ // U/V planes
|
||||
const int uv_w = (w + 1) >> 1;
|
||||
const int uv_h = (h + 1) >> 1;
|
||||
ExportBlock(usrc, udst, pic->uv_stride, uv_w, uv_h);
|
||||
ExportBlock(vsrc, vdst, pic->uv_stride, uv_w, uv_h);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Non-zero contexts setup/teardown
|
||||
|
||||
// Nz bits:
|
||||
// 0 1 2 3 Y
|
||||
// 4 5 6 7
|
||||
// 8 9 10 11
|
||||
// 12 13 14 15
|
||||
// 16 17 U
|
||||
// 18 19
|
||||
// 20 21 V
|
||||
// 22 23
|
||||
// 24 DC-intra16
|
||||
|
||||
// Convert packed context to byte array
|
||||
#define BIT(nz, n) (!!((nz) & (1 << (n))))
|
||||
|
||||
void VP8IteratorNzToBytes(VP8EncIterator* const it) {
|
||||
const int tnz = it->nz_[0], lnz = it->nz_[-1];
|
||||
int* const top_nz = it->top_nz_;
|
||||
int* const left_nz = it->left_nz_;
|
||||
|
||||
// Top-Y
|
||||
top_nz[0] = BIT(tnz, 12);
|
||||
top_nz[1] = BIT(tnz, 13);
|
||||
top_nz[2] = BIT(tnz, 14);
|
||||
top_nz[3] = BIT(tnz, 15);
|
||||
// Top-U
|
||||
top_nz[4] = BIT(tnz, 18);
|
||||
top_nz[5] = BIT(tnz, 19);
|
||||
// Top-V
|
||||
top_nz[6] = BIT(tnz, 22);
|
||||
top_nz[7] = BIT(tnz, 23);
|
||||
// DC
|
||||
top_nz[8] = BIT(tnz, 24);
|
||||
|
||||
// left-Y
|
||||
left_nz[0] = BIT(lnz, 3);
|
||||
left_nz[1] = BIT(lnz, 7);
|
||||
left_nz[2] = BIT(lnz, 11);
|
||||
left_nz[3] = BIT(lnz, 15);
|
||||
// left-U
|
||||
left_nz[4] = BIT(lnz, 17);
|
||||
left_nz[5] = BIT(lnz, 19);
|
||||
// left-V
|
||||
left_nz[6] = BIT(lnz, 21);
|
||||
left_nz[7] = BIT(lnz, 23);
|
||||
// left-DC is special, iterated separately
|
||||
}
|
||||
|
||||
void VP8IteratorBytesToNz(VP8EncIterator* const it) {
|
||||
uint32_t nz = 0;
|
||||
const int* const top_nz = it->top_nz_;
|
||||
const int* const left_nz = it->left_nz_;
|
||||
// top
|
||||
nz |= (top_nz[0] << 12) | (top_nz[1] << 13);
|
||||
nz |= (top_nz[2] << 14) | (top_nz[3] << 15);
|
||||
nz |= (top_nz[4] << 18) | (top_nz[5] << 19);
|
||||
nz |= (top_nz[6] << 22) | (top_nz[7] << 23);
|
||||
nz |= (top_nz[8] << 24); // we propagate the _top_ bit, esp. for intra4
|
||||
// left
|
||||
nz |= (left_nz[0] << 3) | (left_nz[1] << 7);
|
||||
nz |= (left_nz[2] << 11);
|
||||
nz |= (left_nz[4] << 17) | (left_nz[6] << 21);
|
||||
|
||||
*it->nz_ = nz;
|
||||
}
|
||||
|
||||
#undef BIT
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Advance to the next position, doing the bookeeping.
|
||||
|
||||
int VP8IteratorNext(VP8EncIterator* const it,
|
||||
const uint8_t* const block_to_save) {
|
||||
VP8Encoder* const enc = it->enc_;
|
||||
if (block_to_save) {
|
||||
const int x = it->x_, y = it->y_;
|
||||
const uint8_t* const ysrc = block_to_save + Y_OFF;
|
||||
const uint8_t* const usrc = block_to_save + U_OFF;
|
||||
if (x < enc->mb_w_ - 1) { // left
|
||||
int i;
|
||||
for (i = 0; i < 16; ++i) {
|
||||
enc->y_left_[i] = ysrc[15 + i * BPS];
|
||||
}
|
||||
for (i = 0; i < 8; ++i) {
|
||||
enc->u_left_[i] = usrc[7 + i * BPS];
|
||||
enc->v_left_[i] = usrc[15 + i * BPS];
|
||||
}
|
||||
// top-left (before 'top'!)
|
||||
enc->y_left_[-1] = enc->y_top_[x * 16 + 15];
|
||||
enc->u_left_[-1] = enc->uv_top_[x * 16 + 0 + 7];
|
||||
enc->v_left_[-1] = enc->uv_top_[x * 16 + 8 + 7];
|
||||
}
|
||||
if (y < enc->mb_h_ - 1) { // top
|
||||
memcpy(enc->y_top_ + x * 16, ysrc + 15 * BPS, 16);
|
||||
memcpy(enc->uv_top_ + x * 16, usrc + 7 * BPS, 8 + 8);
|
||||
}
|
||||
}
|
||||
|
||||
it->mb_++;
|
||||
it->preds_ += 4;
|
||||
it->nz_++;
|
||||
it->x_++;
|
||||
if (it->x_ == enc->mb_w_) {
|
||||
it->x_ = 0;
|
||||
it->y_++;
|
||||
it->bw_ = &enc->parts_[it->y_ & (enc->num_parts_ - 1)];
|
||||
it->preds_ = enc->preds_ + it->y_ * 4 * enc->preds_w_;
|
||||
it->nz_ = enc->nz_;
|
||||
InitLeft(it);
|
||||
}
|
||||
return (0 < --it->done_);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper function to set mode properties
|
||||
|
||||
void VP8SetIntra16Mode(const VP8EncIterator* const it, int mode) {
|
||||
uint8_t* preds = it->preds_;
|
||||
int y;
|
||||
for (y = 0; y < 4; ++y) {
|
||||
memset(preds, mode, 4);
|
||||
preds += it->enc_->preds_w_;
|
||||
}
|
||||
it->mb_->type_ = 1;
|
||||
}
|
||||
|
||||
void VP8SetIntra4Mode(const VP8EncIterator* const it, const uint8_t* modes) {
|
||||
uint8_t* preds = it->preds_;
|
||||
int y;
|
||||
for (y = 4; y > 0; --y) {
|
||||
memcpy(preds, modes, 4 * sizeof(*modes));
|
||||
preds += it->enc_->preds_w_;
|
||||
modes += 4;
|
||||
}
|
||||
it->mb_->type_ = 0;
|
||||
}
|
||||
|
||||
void VP8SetIntraUVMode(const VP8EncIterator* const it, int mode) {
|
||||
it->mb_->uv_mode_ = mode;
|
||||
}
|
||||
|
||||
void VP8SetSkip(const VP8EncIterator* const it, int skip) {
|
||||
it->mb_->skip_ = skip;
|
||||
}
|
||||
|
||||
void VP8SetSegment(const VP8EncIterator* const it, int segment) {
|
||||
it->mb_->segment_ = segment;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Intra4x4 sub-blocks iteration
|
||||
//
|
||||
// We store and update the boundary samples into an array of 37 pixels. They
|
||||
// are updated as we iterate and reconstructs each intra4x4 blocks in turn.
|
||||
// The position of the samples has the following snake pattern:
|
||||
//
|
||||
// 16|17 18 19 20|21 22 23 24|25 26 27 28|29 30 31 32|33 34 35 36 <- Top-right
|
||||
// --+-----------+-----------+-----------+-----------+
|
||||
// 15| 19| 23| 27| 31|
|
||||
// 14| 18| 22| 26| 30|
|
||||
// 13| 17| 21| 25| 29|
|
||||
// 12|13 14 15 16|17 18 19 20|21 22 23 24|25 26 27 28|
|
||||
// --+-----------+-----------+-----------+-----------+
|
||||
// 11| 15| 19| 23| 27|
|
||||
// 10| 14| 18| 22| 26|
|
||||
// 9| 13| 17| 21| 25|
|
||||
// 8| 9 10 11 12|13 14 15 16|17 18 19 20|21 22 23 24|
|
||||
// --+-----------+-----------+-----------+-----------+
|
||||
// 7| 11| 15| 19| 23|
|
||||
// 6| 10| 14| 18| 22|
|
||||
// 5| 9| 13| 17| 21|
|
||||
// 4| 5 6 7 8| 9 10 11 12|13 14 15 16|17 18 19 20|
|
||||
// --+-----------+-----------+-----------+-----------+
|
||||
// 3| 7| 11| 15| 19|
|
||||
// 2| 6| 10| 14| 18|
|
||||
// 1| 5| 9| 13| 17|
|
||||
// 0| 1 2 3 4| 5 6 7 8| 9 10 11 12|13 14 15 16|
|
||||
// --+-----------+-----------+-----------+-----------+
|
||||
|
||||
// Array to record the position of the top sample to pass to the prediction
|
||||
// functions in dsp.c.
|
||||
static const uint8_t VP8TopLeftI4[16] = {
|
||||
17, 21, 25, 29,
|
||||
13, 17, 21, 25,
|
||||
9, 13, 17, 21,
|
||||
5, 9, 13, 17
|
||||
};
|
||||
|
||||
void VP8IteratorStartI4(VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
int i;
|
||||
|
||||
it->i4_ = 0; // first 4x4 sub-block
|
||||
it->i4_top_ = it->i4_boundary_ + VP8TopLeftI4[0];
|
||||
|
||||
// Import the boundary samples
|
||||
for (i = 0; i < 17; ++i) { // left
|
||||
it->i4_boundary_[i] = enc->y_left_[15 - i];
|
||||
}
|
||||
for (i = 0; i < 16; ++i) { // top
|
||||
it->i4_boundary_[17 + i] = enc->y_top_[it->x_ * 16 + i];
|
||||
}
|
||||
// top-right samples have a special case on the far right of the picture
|
||||
if (it->x_ < enc->mb_w_ - 1) {
|
||||
for (i = 16; i < 16 + 4; ++i) {
|
||||
it->i4_boundary_[17 + i] = enc->y_top_[it->x_ * 16 + i];
|
||||
}
|
||||
} else { // else, replicate the last valid pixel four times
|
||||
for (i = 16; i < 16 + 4; ++i) {
|
||||
it->i4_boundary_[17 + i] = it->i4_boundary_[17 + 15];
|
||||
}
|
||||
}
|
||||
VP8IteratorNzToBytes(it); // import the non-zero context
|
||||
}
|
||||
|
||||
int VP8IteratorRotateI4(VP8EncIterator* const it,
|
||||
const uint8_t* const yuv_out) {
|
||||
const uint8_t* const blk = yuv_out + VP8Scan[it->i4_];
|
||||
uint8_t* const top = it->i4_top_;
|
||||
int i;
|
||||
|
||||
// Update the cache with 7 fresh samples
|
||||
for (i = 0; i <= 3; ++i) {
|
||||
top[-4 + i] = blk[i + 3 * BPS]; // store future top samples
|
||||
}
|
||||
if ((it->i4_ & 3) != 3) { // if not on the right sub-blocks #3, #7, #11, #15
|
||||
for (i = 0; i <= 2; ++i) { // store future left samples
|
||||
top[i] = blk[3 + (2 - i) * BPS];
|
||||
}
|
||||
} else { // else replicate top-right samples, as says the specs.
|
||||
for (i = 0; i <= 3; ++i) {
|
||||
top[i] = top[i + 4];
|
||||
}
|
||||
}
|
||||
// move pointers to next sub-block
|
||||
++it->i4_;
|
||||
if (it->i4_ == 16) { // we're done
|
||||
return 0;
|
||||
}
|
||||
|
||||
it->i4_top_ = it->i4_boundary_ + VP8TopLeftI4[it->i4_];
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,49 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Enhancement layer (for YUV444/422)
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
void VP8EncInitLayer(VP8Encoder* const enc) {
|
||||
enc->use_layer_ = (enc->pic_->u0 != NULL);
|
||||
enc->layer_data_size_ = 0;
|
||||
enc->layer_data_ = NULL;
|
||||
if (enc->use_layer_) {
|
||||
VP8BitWriterInit(&enc->layer_bw_, enc->mb_w_ * enc->mb_h_ * 3);
|
||||
}
|
||||
}
|
||||
|
||||
void VP8EncCodeLayerBlock(VP8EncIterator* it) {
|
||||
(void)it; // remove a warning
|
||||
}
|
||||
|
||||
int VP8EncFinishLayer(VP8Encoder* const enc) {
|
||||
if (enc->use_layer_) {
|
||||
enc->layer_data_ = VP8BitWriterFinish(&enc->layer_bw_);
|
||||
enc->layer_data_size_ = VP8BitWriterSize(&enc->layer_bw_);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void VP8EncDeleteLayer(VP8Encoder* enc) {
|
||||
free(enc->layer_data_);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -1,930 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Quantization
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
#include "./cost.h"
|
||||
|
||||
#define DO_TRELLIS_I4 1
|
||||
#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate.
|
||||
#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth.
|
||||
#define USE_TDISTO 1
|
||||
|
||||
#define MID_ALPHA 64 // neutral value for susceptibility
|
||||
#define MIN_ALPHA 30 // lowest usable value for susceptibility
|
||||
#define MAX_ALPHA 100 // higher meaninful value for susceptibility
|
||||
|
||||
#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
|
||||
// power-law modulation. Must be strictly less than 1.
|
||||
|
||||
#define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static WEBP_INLINE int clip(int v, int m, int M) {
|
||||
return v < m ? m : v > M ? M : v;
|
||||
}
|
||||
|
||||
static const uint8_t kZigzag[16] = {
|
||||
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
|
||||
};
|
||||
|
||||
static const uint8_t kDcTable[128] = {
|
||||
4, 5, 6, 7, 8, 9, 10, 10,
|
||||
11, 12, 13, 14, 15, 16, 17, 17,
|
||||
18, 19, 20, 20, 21, 21, 22, 22,
|
||||
23, 23, 24, 25, 25, 26, 27, 28,
|
||||
29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 37, 38, 39, 40, 41, 42, 43,
|
||||
44, 45, 46, 46, 47, 48, 49, 50,
|
||||
51, 52, 53, 54, 55, 56, 57, 58,
|
||||
59, 60, 61, 62, 63, 64, 65, 66,
|
||||
67, 68, 69, 70, 71, 72, 73, 74,
|
||||
75, 76, 76, 77, 78, 79, 80, 81,
|
||||
82, 83, 84, 85, 86, 87, 88, 89,
|
||||
91, 93, 95, 96, 98, 100, 101, 102,
|
||||
104, 106, 108, 110, 112, 114, 116, 118,
|
||||
122, 124, 126, 128, 130, 132, 134, 136,
|
||||
138, 140, 143, 145, 148, 151, 154, 157
|
||||
};
|
||||
|
||||
static const uint16_t kAcTable[128] = {
|
||||
4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17, 18, 19,
|
||||
20, 21, 22, 23, 24, 25, 26, 27,
|
||||
28, 29, 30, 31, 32, 33, 34, 35,
|
||||
36, 37, 38, 39, 40, 41, 42, 43,
|
||||
44, 45, 46, 47, 48, 49, 50, 51,
|
||||
52, 53, 54, 55, 56, 57, 58, 60,
|
||||
62, 64, 66, 68, 70, 72, 74, 76,
|
||||
78, 80, 82, 84, 86, 88, 90, 92,
|
||||
94, 96, 98, 100, 102, 104, 106, 108,
|
||||
110, 112, 114, 116, 119, 122, 125, 128,
|
||||
131, 134, 137, 140, 143, 146, 149, 152,
|
||||
155, 158, 161, 164, 167, 170, 173, 177,
|
||||
181, 185, 189, 193, 197, 201, 205, 209,
|
||||
213, 217, 221, 225, 229, 234, 239, 245,
|
||||
249, 254, 259, 264, 269, 274, 279, 284
|
||||
};
|
||||
|
||||
static const uint16_t kAcTable2[128] = {
|
||||
8, 8, 9, 10, 12, 13, 15, 17,
|
||||
18, 20, 21, 23, 24, 26, 27, 29,
|
||||
31, 32, 34, 35, 37, 38, 40, 41,
|
||||
43, 44, 46, 48, 49, 51, 52, 54,
|
||||
55, 57, 58, 60, 62, 63, 65, 66,
|
||||
68, 69, 71, 72, 74, 75, 77, 79,
|
||||
80, 82, 83, 85, 86, 88, 89, 93,
|
||||
96, 99, 102, 105, 108, 111, 114, 117,
|
||||
120, 124, 127, 130, 133, 136, 139, 142,
|
||||
145, 148, 151, 155, 158, 161, 164, 167,
|
||||
170, 173, 176, 179, 184, 189, 193, 198,
|
||||
203, 207, 212, 217, 221, 226, 230, 235,
|
||||
240, 244, 249, 254, 258, 263, 268, 274,
|
||||
280, 286, 292, 299, 305, 311, 317, 323,
|
||||
330, 336, 342, 348, 354, 362, 370, 379,
|
||||
385, 393, 401, 409, 416, 424, 432, 440
|
||||
};
|
||||
|
||||
static const uint16_t kCoeffThresh[16] = {
|
||||
0, 10, 20, 30,
|
||||
10, 20, 30, 30,
|
||||
20, 30, 30, 30,
|
||||
30, 30, 30, 30
|
||||
};
|
||||
|
||||
// TODO(skal): tune more. Coeff thresholding?
|
||||
static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma]
|
||||
{ 96, 96, 96, 96,
|
||||
96, 96, 96, 96,
|
||||
96, 96, 96, 96,
|
||||
96, 96, 96, 96 },
|
||||
{ 96, 96, 96, 96,
|
||||
96, 96, 96, 96,
|
||||
96, 96, 96, 96,
|
||||
96, 96, 96, 96 },
|
||||
{ 96, 96, 96, 96,
|
||||
96, 96, 96, 96,
|
||||
96, 96, 96, 96,
|
||||
96, 96, 96, 96 }
|
||||
};
|
||||
|
||||
// Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis).
|
||||
// Hack-ish but helpful for mid-bitrate range. Use with care.
|
||||
static const uint8_t kFreqSharpening[16] = {
|
||||
0, 30, 60, 90,
|
||||
30, 60, 90, 90,
|
||||
60, 90, 90, 90,
|
||||
90, 90, 90, 90
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Initialize quantization parameters in VP8Matrix
|
||||
|
||||
// Returns the average quantizer
|
||||
static int ExpandMatrix(VP8Matrix* const m, int type) {
|
||||
int i;
|
||||
int sum = 0;
|
||||
for (i = 2; i < 16; ++i) {
|
||||
m->q_[i] = m->q_[1];
|
||||
}
|
||||
for (i = 0; i < 16; ++i) {
|
||||
const int j = kZigzag[i];
|
||||
const int bias = kBiasMatrices[type][j];
|
||||
m->iq_[j] = (1 << QFIX) / m->q_[j];
|
||||
m->bias_[j] = BIAS(bias);
|
||||
// TODO(skal): tune kCoeffThresh[]
|
||||
m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8;
|
||||
m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11;
|
||||
sum += m->q_[j];
|
||||
}
|
||||
return (sum + 8) >> 4;
|
||||
}
|
||||
|
||||
static void SetupMatrices(VP8Encoder* enc) {
|
||||
int i;
|
||||
const int tlambda_scale =
|
||||
(enc->method_ >= 4) ? enc->config_->sns_strength
|
||||
: 0;
|
||||
const int num_segments = enc->segment_hdr_.num_segments_;
|
||||
for (i = 0; i < num_segments; ++i) {
|
||||
VP8SegmentInfo* const m = &enc->dqm_[i];
|
||||
const int q = m->quant_;
|
||||
int q4, q16, quv;
|
||||
m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
|
||||
m->y1_.q_[1] = kAcTable[clip(q, 0, 127)];
|
||||
|
||||
m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
|
||||
m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
|
||||
|
||||
m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
|
||||
m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
|
||||
|
||||
q4 = ExpandMatrix(&m->y1_, 0);
|
||||
q16 = ExpandMatrix(&m->y2_, 1);
|
||||
quv = ExpandMatrix(&m->uv_, 2);
|
||||
|
||||
// TODO: Switch to kLambda*[] tables?
|
||||
{
|
||||
m->lambda_i4_ = (3 * q4 * q4) >> 7;
|
||||
m->lambda_i16_ = (3 * q16 * q16);
|
||||
m->lambda_uv_ = (3 * quv * quv) >> 6;
|
||||
m->lambda_mode_ = (1 * q4 * q4) >> 7;
|
||||
m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3;
|
||||
m->lambda_trellis_i16_ = (q16 * q16) >> 2;
|
||||
m->lambda_trellis_uv_ = (quv *quv) << 1;
|
||||
m->tlambda_ = (tlambda_scale * q4) >> 5;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Initialize filtering parameters
|
||||
|
||||
// Very small filter-strength values have close to no visual effect. So we can
|
||||
// save a little decoding-CPU by turning filtering off for these.
|
||||
#define FSTRENGTH_CUTOFF 3
|
||||
|
||||
static void SetupFilterStrength(VP8Encoder* const enc) {
|
||||
int i;
|
||||
const int level0 = enc->config_->filter_strength;
|
||||
for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
|
||||
// Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS)
|
||||
const int level = level0 * 256 * enc->dqm_[i].quant_ / 128;
|
||||
const int f = level / (256 + enc->dqm_[i].beta_);
|
||||
enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
|
||||
}
|
||||
// We record the initial strength (mainly for the case of 1-segment only).
|
||||
enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
|
||||
enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
|
||||
enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
// Note: if you change the values below, remember that the max range
|
||||
// allowed by the syntax for DQ_UV is [-16,16].
|
||||
#define MAX_DQ_UV (6)
|
||||
#define MIN_DQ_UV (-4)
|
||||
|
||||
// We want to emulate jpeg-like behaviour where the expected "good" quality
|
||||
// is around q=75. Internally, our "good" middle is around c=50. So we
|
||||
// map accordingly using linear piece-wise function
|
||||
static double QualityToCompression(double q) {
|
||||
const double c = q / 100.;
|
||||
return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
|
||||
}
|
||||
|
||||
void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
|
||||
int i;
|
||||
int dq_uv_ac, dq_uv_dc;
|
||||
const int num_segments = enc->config_->segments;
|
||||
const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
|
||||
const double c_base = QualityToCompression(quality);
|
||||
for (i = 0; i < num_segments; ++i) {
|
||||
// The file size roughly scales as pow(quantizer, 3.). Actually, the
|
||||
// exponent is somewhere between 2.8 and 3.2, but we're mostly interested
|
||||
// in the mid-quant range. So we scale the compressibility inversely to
|
||||
// this power-law: quant ~= compression ^ 1/3. This law holds well for
|
||||
// low quant. Finer modelling for high-quant would make use of kAcTable[]
|
||||
// more explicitely.
|
||||
// Additionally, we modulate the base exponent 1/3 to accommodate for the
|
||||
// quantization susceptibility and allow denser segments to be quantized
|
||||
// more.
|
||||
const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.;
|
||||
const double c = pow(c_base, expn);
|
||||
const int q = (int)(127. * (1. - c));
|
||||
assert(expn > 0.);
|
||||
enc->dqm_[i].quant_ = clip(q, 0, 127);
|
||||
}
|
||||
|
||||
// purely indicative in the bitstream (except for the 1-segment case)
|
||||
enc->base_quant_ = enc->dqm_[0].quant_;
|
||||
|
||||
// fill-in values for the unused segments (required by the syntax)
|
||||
for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
|
||||
enc->dqm_[i].quant_ = enc->base_quant_;
|
||||
}
|
||||
|
||||
// uv_alpha_ is normally spread around ~60. The useful range is
|
||||
// typically ~30 (quite bad) to ~100 (ok to decimate UV more).
|
||||
// We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
|
||||
dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
|
||||
/ (MAX_ALPHA - MIN_ALPHA);
|
||||
// we rescale by the user-defined strength of adaptation
|
||||
dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
|
||||
// and make it safe.
|
||||
dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
|
||||
// We also boost the dc-uv-quant a little, based on sns-strength, since
|
||||
// U/V channels are quite more reactive to high quants (flat DC-blocks
|
||||
// tend to appear, and are displeasant).
|
||||
dq_uv_dc = -4 * enc->config_->sns_strength / 100;
|
||||
dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed
|
||||
|
||||
enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum
|
||||
enc->dq_y2_dc_ = 0;
|
||||
enc->dq_y2_ac_ = 0;
|
||||
enc->dq_uv_dc_ = dq_uv_dc;
|
||||
enc->dq_uv_ac_ = dq_uv_ac;
|
||||
|
||||
SetupMatrices(enc);
|
||||
|
||||
SetupFilterStrength(enc); // initialize segments' filtering, eventually
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Form the predictions in cache
|
||||
|
||||
// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
|
||||
const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
|
||||
const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
|
||||
|
||||
// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
|
||||
const int VP8I4ModeOffsets[NUM_BMODES] = {
|
||||
I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
|
||||
};
|
||||
|
||||
void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const uint8_t* const left = it->x_ ? enc->y_left_ : NULL;
|
||||
const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL;
|
||||
VP8EncPredLuma16(it->yuv_p_, left, top);
|
||||
}
|
||||
|
||||
void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const uint8_t* const left = it->x_ ? enc->u_left_ : NULL;
|
||||
const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL;
|
||||
VP8EncPredChroma8(it->yuv_p_, left, top);
|
||||
}
|
||||
|
||||
void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
|
||||
VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Quantize
|
||||
|
||||
// Layout:
|
||||
// +----+
|
||||
// |YYYY| 0
|
||||
// |YYYY| 4
|
||||
// |YYYY| 8
|
||||
// |YYYY| 12
|
||||
// +----+
|
||||
// |UUVV| 16
|
||||
// |UUVV| 20
|
||||
// +----+
|
||||
|
||||
const int VP8Scan[16 + 4 + 4] = {
|
||||
// Luma
|
||||
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
|
||||
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
|
||||
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
|
||||
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
|
||||
|
||||
0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
|
||||
8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Distortion measurement
|
||||
|
||||
static const uint16_t kWeightY[16] = {
|
||||
38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
|
||||
};
|
||||
|
||||
static const uint16_t kWeightTrellis[16] = {
|
||||
#if USE_TDISTO == 0
|
||||
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
|
||||
#else
|
||||
30, 27, 19, 11,
|
||||
27, 24, 17, 10,
|
||||
19, 17, 12, 8,
|
||||
11, 10, 8, 6
|
||||
#endif
|
||||
};
|
||||
|
||||
// Init/Copy the common fields in score.
|
||||
static void InitScore(VP8ModeScore* const rd) {
|
||||
rd->D = 0;
|
||||
rd->SD = 0;
|
||||
rd->R = 0;
|
||||
rd->nz = 0;
|
||||
rd->score = MAX_COST;
|
||||
}
|
||||
|
||||
static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
|
||||
dst->D = src->D;
|
||||
dst->SD = src->SD;
|
||||
dst->R = src->R;
|
||||
dst->nz = src->nz; // note that nz is not accumulated, but just copied.
|
||||
dst->score = src->score;
|
||||
}
|
||||
|
||||
static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
|
||||
dst->D += src->D;
|
||||
dst->SD += src->SD;
|
||||
dst->R += src->R;
|
||||
dst->nz |= src->nz; // here, new nz bits are accumulated.
|
||||
dst->score += src->score;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Performs trellis-optimized quantization.
|
||||
|
||||
// Trellis
|
||||
|
||||
typedef struct {
|
||||
int prev; // best previous
|
||||
int level; // level
|
||||
int sign; // sign of coeff_i
|
||||
score_t cost; // bit cost
|
||||
score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2
|
||||
int ctx; // context (only depends on 'level'. Could be spared.)
|
||||
} Node;
|
||||
|
||||
// If a coefficient was quantized to a value Q (using a neutral bias),
|
||||
// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
|
||||
// We don't test negative values though.
|
||||
#define MIN_DELTA 0 // how much lower level to try
|
||||
#define MAX_DELTA 1 // how much higher
|
||||
#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
|
||||
#define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])
|
||||
|
||||
static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
|
||||
// TODO: incorporate the "* 256" in the tables?
|
||||
rd->score = rd->R * lambda + 256 * (rd->D + rd->SD);
|
||||
}
|
||||
|
||||
static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
|
||||
score_t distortion) {
|
||||
return rate * lambda + 256 * distortion;
|
||||
}
|
||||
|
||||
static int TrellisQuantizeBlock(const VP8EncIterator* const it,
|
||||
int16_t in[16], int16_t out[16],
|
||||
int ctx0, int coeff_type,
|
||||
const VP8Matrix* const mtx,
|
||||
int lambda) {
|
||||
ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
|
||||
CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
|
||||
const int first = (coeff_type == 0) ? 1 : 0;
|
||||
Node nodes[17][NUM_NODES];
|
||||
int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous
|
||||
score_t best_score;
|
||||
int best_node;
|
||||
int last = first - 1;
|
||||
int n, m, p, nz;
|
||||
|
||||
{
|
||||
score_t cost;
|
||||
score_t max_error;
|
||||
const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
|
||||
const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];
|
||||
|
||||
// compute maximal distortion.
|
||||
max_error = 0;
|
||||
for (n = first; n < 16; ++n) {
|
||||
const int j = kZigzag[n];
|
||||
const int err = in[j] * in[j];
|
||||
max_error += kWeightTrellis[j] * err;
|
||||
if (err > thresh) last = n;
|
||||
}
|
||||
// we don't need to go inspect up to n = 16 coeffs. We can just go up
|
||||
// to last + 1 (inclusive) without losing much.
|
||||
if (last < 15) ++last;
|
||||
|
||||
// compute 'skip' score. This is the max score one can do.
|
||||
cost = VP8BitCost(0, last_proba);
|
||||
best_score = RDScoreTrellis(lambda, cost, max_error);
|
||||
|
||||
// initialize source node.
|
||||
n = first - 1;
|
||||
for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
|
||||
NODE(n, m).cost = 0;
|
||||
NODE(n, m).error = max_error;
|
||||
NODE(n, m).ctx = ctx0;
|
||||
}
|
||||
}
|
||||
|
||||
// traverse trellis.
|
||||
for (n = first; n <= last; ++n) {
|
||||
const int j = kZigzag[n];
|
||||
const int Q = mtx->q_[j];
|
||||
const int iQ = mtx->iq_[j];
|
||||
const int B = BIAS(0x00); // neutral bias
|
||||
// note: it's important to take sign of the _original_ coeff,
|
||||
// so we don't have to consider level < 0 afterward.
|
||||
const int sign = (in[j] < 0);
|
||||
int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
|
||||
int level0;
|
||||
if (coeff0 > 2047) coeff0 = 2047;
|
||||
|
||||
level0 = QUANTDIV(coeff0, iQ, B);
|
||||
// test all alternate level values around level0.
|
||||
for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
|
||||
Node* const cur = &NODE(n, m);
|
||||
int delta_error, new_error;
|
||||
score_t cur_score = MAX_COST;
|
||||
int level = level0 + m;
|
||||
int last_proba;
|
||||
|
||||
cur->sign = sign;
|
||||
cur->level = level;
|
||||
cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
|
||||
if (level >= 2048 || level < 0) { // node is dead?
|
||||
cur->cost = MAX_COST;
|
||||
continue;
|
||||
}
|
||||
last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];
|
||||
|
||||
// Compute delta_error = how much coding this level will
|
||||
// subtract as distortion to max_error
|
||||
new_error = coeff0 - level * Q;
|
||||
delta_error =
|
||||
kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);
|
||||
|
||||
// Inspect all possible non-dead predecessors. Retain only the best one.
|
||||
for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
|
||||
const Node* const prev = &NODE(n - 1, p);
|
||||
const int prev_ctx = prev->ctx;
|
||||
const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
|
||||
const score_t total_error = prev->error - delta_error;
|
||||
score_t cost, base_cost, score;
|
||||
|
||||
if (prev->cost >= MAX_COST) { // dead node?
|
||||
continue;
|
||||
}
|
||||
|
||||
// Base cost of both terminal/non-terminal
|
||||
base_cost = prev->cost + VP8LevelCost(tcost, level);
|
||||
|
||||
// Examine node assuming it's a non-terminal one.
|
||||
cost = base_cost;
|
||||
if (level && n < 15) {
|
||||
cost += VP8BitCost(1, last_proba);
|
||||
}
|
||||
score = RDScoreTrellis(lambda, cost, total_error);
|
||||
if (score < cur_score) {
|
||||
cur_score = score;
|
||||
cur->cost = cost;
|
||||
cur->error = total_error;
|
||||
cur->prev = p;
|
||||
}
|
||||
|
||||
// Now, record best terminal node (and thus best entry in the graph).
|
||||
if (level) {
|
||||
cost = base_cost;
|
||||
if (n < 15) cost += VP8BitCost(0, last_proba);
|
||||
score = RDScoreTrellis(lambda, cost, total_error);
|
||||
if (score < best_score) {
|
||||
best_score = score;
|
||||
best_path[0] = n; // best eob position
|
||||
best_path[1] = m; // best level
|
||||
best_path[2] = p; // best predecessor
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fresh start
|
||||
memset(in + first, 0, (16 - first) * sizeof(*in));
|
||||
memset(out + first, 0, (16 - first) * sizeof(*out));
|
||||
if (best_path[0] == -1) {
|
||||
return 0; // skip!
|
||||
}
|
||||
|
||||
// Unwind the best path.
|
||||
// Note: best-prev on terminal node is not necessarily equal to the
|
||||
// best_prev for non-terminal. So we patch best_path[2] in.
|
||||
n = best_path[0];
|
||||
best_node = best_path[1];
|
||||
NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal
|
||||
nz = 0;
|
||||
|
||||
for (; n >= first; --n) {
|
||||
const Node* const node = &NODE(n, best_node);
|
||||
const int j = kZigzag[n];
|
||||
out[n] = node->sign ? -node->level : node->level;
|
||||
nz |= (node->level != 0);
|
||||
in[j] = out[n] * mtx->q_[j];
|
||||
best_node = node->prev;
|
||||
}
|
||||
return nz;
|
||||
}
|
||||
|
||||
#undef NODE
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Performs: difference, transform, quantize, back-transform, add
|
||||
// all at once. Output is the reconstructed block in *yuv_out, and the
|
||||
// quantized levels in *levels.
|
||||
|
||||
static int ReconstructIntra16(VP8EncIterator* const it,
|
||||
VP8ModeScore* const rd,
|
||||
uint8_t* const yuv_out,
|
||||
int mode) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
|
||||
const uint8_t* const src = it->yuv_in_ + Y_OFF;
|
||||
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
||||
int nz = 0;
|
||||
int n;
|
||||
int16_t tmp[16][16], dc_tmp[16];
|
||||
|
||||
for (n = 0; n < 16; ++n) {
|
||||
VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
|
||||
}
|
||||
VP8FTransformWHT(tmp[0], dc_tmp);
|
||||
nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24;
|
||||
|
||||
if (DO_TRELLIS_I16 && it->do_trellis_) {
|
||||
int x, y;
|
||||
VP8IteratorNzToBytes(it);
|
||||
for (y = 0, n = 0; y < 4; ++y) {
|
||||
for (x = 0; x < 4; ++x, ++n) {
|
||||
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
const int non_zero =
|
||||
TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
|
||||
&dqm->y1_, dqm->lambda_trellis_i16_);
|
||||
it->top_nz_[x] = it->left_nz_[y] = non_zero;
|
||||
nz |= non_zero << n;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (n = 0; n < 16; ++n) {
|
||||
nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
|
||||
}
|
||||
}
|
||||
|
||||
// Transform back
|
||||
VP8ITransformWHT(dc_tmp, tmp[0]);
|
||||
for (n = 0; n < 16; n += 2) {
|
||||
VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
|
||||
}
|
||||
|
||||
return nz;
|
||||
}
|
||||
|
||||
static int ReconstructIntra4(VP8EncIterator* const it,
|
||||
int16_t levels[16],
|
||||
const uint8_t* const src,
|
||||
uint8_t* const yuv_out,
|
||||
int mode) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
|
||||
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
||||
int nz = 0;
|
||||
int16_t tmp[16];
|
||||
|
||||
VP8FTransform(src, ref, tmp);
|
||||
if (DO_TRELLIS_I4 && it->do_trellis_) {
|
||||
const int x = it->i4_ & 3, y = it->i4_ >> 2;
|
||||
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
||||
nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
|
||||
dqm->lambda_trellis_i4_);
|
||||
} else {
|
||||
nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
|
||||
}
|
||||
VP8ITransform(ref, tmp, yuv_out, 0);
|
||||
return nz;
|
||||
}
|
||||
|
||||
static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
|
||||
uint8_t* const yuv_out, int mode) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
|
||||
const uint8_t* const src = it->yuv_in_ + U_OFF;
|
||||
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
||||
int nz = 0;
|
||||
int n;
|
||||
int16_t tmp[8][16];
|
||||
|
||||
for (n = 0; n < 8; ++n) {
|
||||
VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
|
||||
}
|
||||
if (DO_TRELLIS_UV && it->do_trellis_) {
|
||||
int ch, x, y;
|
||||
for (ch = 0, n = 0; ch <= 2; ch += 2) {
|
||||
for (y = 0; y < 2; ++y) {
|
||||
for (x = 0; x < 2; ++x, ++n) {
|
||||
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
||||
const int non_zero =
|
||||
TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2,
|
||||
&dqm->uv_, dqm->lambda_trellis_uv_);
|
||||
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
|
||||
nz |= non_zero << n;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (n = 0; n < 8; ++n) {
|
||||
nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
|
||||
}
|
||||
}
|
||||
|
||||
for (n = 0; n < 8; n += 2) {
|
||||
VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1);
|
||||
}
|
||||
return (nz << 16);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
|
||||
// Pick the mode is lower RD-cost = Rate + lamba * Distortion.
|
||||
|
||||
static void SwapPtr(uint8_t** a, uint8_t** b) {
|
||||
uint8_t* const tmp = *a;
|
||||
*a = *b;
|
||||
*b = tmp;
|
||||
}
|
||||
|
||||
static void SwapOut(VP8EncIterator* const it) {
|
||||
SwapPtr(&it->yuv_out_, &it->yuv_out2_);
|
||||
}
|
||||
|
||||
static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
||||
const int lambda = dqm->lambda_i16_;
|
||||
const int tlambda = dqm->tlambda_;
|
||||
const uint8_t* const src = it->yuv_in_ + Y_OFF;
|
||||
VP8ModeScore rd16;
|
||||
int mode;
|
||||
|
||||
rd->mode_i16 = -1;
|
||||
for (mode = 0; mode < 4; ++mode) {
|
||||
uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer
|
||||
int nz;
|
||||
|
||||
// Reconstruct
|
||||
nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
|
||||
|
||||
// Measure RD-score
|
||||
rd16.D = VP8SSE16x16(src, tmp_dst);
|
||||
rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
|
||||
: 0;
|
||||
rd16.R = VP8GetCostLuma16(it, &rd16);
|
||||
rd16.R += VP8FixedCostsI16[mode];
|
||||
|
||||
// Since we always examine Intra16 first, we can overwrite *rd directly.
|
||||
SetRDScore(lambda, &rd16);
|
||||
if (mode == 0 || rd16.score < rd->score) {
|
||||
CopyScore(rd, &rd16);
|
||||
rd->mode_i16 = mode;
|
||||
rd->nz = nz;
|
||||
memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
|
||||
memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
|
||||
SwapOut(it);
|
||||
}
|
||||
}
|
||||
SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision.
|
||||
VP8SetIntra16Mode(it, rd->mode_i16);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
// return the cost array corresponding to the surrounding prediction modes.
|
||||
static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
|
||||
const uint8_t modes[16]) {
|
||||
const int preds_w = it->enc_->preds_w_;
|
||||
const int x = (it->i4_ & 3), y = it->i4_ >> 2;
|
||||
const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
|
||||
const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
|
||||
return VP8FixedCostsI4[top][left];
|
||||
}
|
||||
|
||||
static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
||||
const int lambda = dqm->lambda_i4_;
|
||||
const int tlambda = dqm->tlambda_;
|
||||
const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
|
||||
uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
|
||||
int total_header_bits = 0;
|
||||
VP8ModeScore rd_best;
|
||||
|
||||
if (enc->max_i4_header_bits_ == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
InitScore(&rd_best);
|
||||
rd_best.score = 211; // '211' is the value of VP8BitCost(0, 145)
|
||||
VP8IteratorStartI4(it);
|
||||
do {
|
||||
VP8ModeScore rd_i4;
|
||||
int mode;
|
||||
int best_mode = -1;
|
||||
const uint8_t* const src = src0 + VP8Scan[it->i4_];
|
||||
const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
|
||||
uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
|
||||
uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer.
|
||||
|
||||
InitScore(&rd_i4);
|
||||
VP8MakeIntra4Preds(it);
|
||||
for (mode = 0; mode < NUM_BMODES; ++mode) {
|
||||
VP8ModeScore rd_tmp;
|
||||
int16_t tmp_levels[16];
|
||||
|
||||
// Reconstruct
|
||||
rd_tmp.nz =
|
||||
ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
|
||||
|
||||
// Compute RD-score
|
||||
rd_tmp.D = VP8SSE4x4(src, tmp_dst);
|
||||
rd_tmp.SD =
|
||||
tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
|
||||
: 0;
|
||||
rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
|
||||
rd_tmp.R += mode_costs[mode];
|
||||
|
||||
SetRDScore(lambda, &rd_tmp);
|
||||
if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
|
||||
CopyScore(&rd_i4, &rd_tmp);
|
||||
best_mode = mode;
|
||||
SwapPtr(&tmp_dst, &best_block);
|
||||
memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
|
||||
}
|
||||
}
|
||||
SetRDScore(dqm->lambda_mode_, &rd_i4);
|
||||
AddScore(&rd_best, &rd_i4);
|
||||
total_header_bits += mode_costs[best_mode];
|
||||
if (rd_best.score >= rd->score ||
|
||||
total_header_bits > enc->max_i4_header_bits_) {
|
||||
return 0;
|
||||
}
|
||||
// Copy selected samples if not in the right place already.
|
||||
if (best_block != best_blocks + VP8Scan[it->i4_])
|
||||
VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
|
||||
rd->modes_i4[it->i4_] = best_mode;
|
||||
it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
|
||||
} while (VP8IteratorRotateI4(it, best_blocks));
|
||||
|
||||
// finalize state
|
||||
CopyScore(rd, &rd_best);
|
||||
VP8SetIntra4Mode(it, rd->modes_i4);
|
||||
SwapOut(it);
|
||||
memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
|
||||
return 1; // select intra4x4 over intra16x16
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
||||
const int lambda = dqm->lambda_uv_;
|
||||
const uint8_t* const src = it->yuv_in_ + U_OFF;
|
||||
uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer
|
||||
uint8_t* const dst0 = it->yuv_out_ + U_OFF;
|
||||
VP8ModeScore rd_best;
|
||||
int mode;
|
||||
|
||||
rd->mode_uv = -1;
|
||||
InitScore(&rd_best);
|
||||
for (mode = 0; mode < 4; ++mode) {
|
||||
VP8ModeScore rd_uv;
|
||||
|
||||
// Reconstruct
|
||||
rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
|
||||
|
||||
// Compute RD-score
|
||||
rd_uv.D = VP8SSE16x8(src, tmp_dst);
|
||||
rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas.
|
||||
rd_uv.R = VP8GetCostUV(it, &rd_uv);
|
||||
rd_uv.R += VP8FixedCostsUV[mode];
|
||||
|
||||
SetRDScore(lambda, &rd_uv);
|
||||
if (mode == 0 || rd_uv.score < rd_best.score) {
|
||||
CopyScore(&rd_best, &rd_uv);
|
||||
rd->mode_uv = mode;
|
||||
memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
|
||||
memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ?
|
||||
}
|
||||
}
|
||||
VP8SetIntraUVMode(it, rd->mode_uv);
|
||||
AddScore(rd, &rd_best);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Final reconstruction and quantization.
|
||||
|
||||
static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
||||
const VP8Encoder* const enc = it->enc_;
|
||||
const int i16 = (it->mb_->type_ == 1);
|
||||
int nz = 0;
|
||||
|
||||
if (i16) {
|
||||
nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
|
||||
} else {
|
||||
VP8IteratorStartI4(it);
|
||||
do {
|
||||
const int mode =
|
||||
it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
|
||||
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
||||
uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
|
||||
VP8MakeIntra4Preds(it);
|
||||
nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
|
||||
src, dst, mode) << it->i4_;
|
||||
} while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
|
||||
}
|
||||
|
||||
nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
|
||||
rd->nz = nz;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Entry point
|
||||
|
||||
int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) {
|
||||
int is_skipped;
|
||||
|
||||
InitScore(rd);
|
||||
|
||||
// We can perform predictions for Luma16x16 and Chroma8x8 already.
|
||||
// Luma4x4 predictions needs to be done as-we-go.
|
||||
VP8MakeLuma16Preds(it);
|
||||
VP8MakeChroma8Preds(it);
|
||||
|
||||
// for rd_opt = 2, we perform trellis-quant on the final decision only.
|
||||
// for rd_opt > 2, we use it for every scoring (=much slower).
|
||||
if (rd_opt > 0) {
|
||||
it->do_trellis_ = (rd_opt > 2);
|
||||
PickBestIntra16(it, rd);
|
||||
if (it->enc_->method_ >= 2) {
|
||||
PickBestIntra4(it, rd);
|
||||
}
|
||||
PickBestUV(it, rd);
|
||||
if (rd_opt == 2) {
|
||||
it->do_trellis_ = 1;
|
||||
SimpleQuantize(it, rd);
|
||||
}
|
||||
} else {
|
||||
// TODO: for method_ == 2, pick the best intra4/intra16 based on SSE
|
||||
it->do_trellis_ = (it->enc_->method_ == 2);
|
||||
SimpleQuantize(it, rd);
|
||||
}
|
||||
is_skipped = (rd->nz == 0);
|
||||
VP8SetSkip(it, is_skipped);
|
||||
return is_skipped;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,437 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Header syntax writing
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "../format_constants.h"
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper functions
|
||||
|
||||
// TODO(later): Move to webp/format_constants.h?
|
||||
static void PutLE24(uint8_t* const data, uint32_t val) {
|
||||
data[0] = (val >> 0) & 0xff;
|
||||
data[1] = (val >> 8) & 0xff;
|
||||
data[2] = (val >> 16) & 0xff;
|
||||
}
|
||||
|
||||
static void PutLE32(uint8_t* const data, uint32_t val) {
|
||||
PutLE24(data, val);
|
||||
data[3] = (val >> 24) & 0xff;
|
||||
}
|
||||
|
||||
static int IsVP8XNeeded(const VP8Encoder* const enc) {
|
||||
return !!enc->has_alpha_; // Currently the only case when VP8X is needed.
|
||||
// This could change in the future.
|
||||
}
|
||||
|
||||
static int PutPaddingByte(const WebPPicture* const pic) {
|
||||
|
||||
const uint8_t pad_byte[1] = { 0 };
|
||||
return !!pic->writer(pad_byte, 1, pic);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Writers for header's various pieces (in order of appearance)
|
||||
|
||||
static WebPEncodingError PutRIFFHeader(const VP8Encoder* const enc,
|
||||
size_t riff_size) {
|
||||
const WebPPicture* const pic = enc->pic_;
|
||||
uint8_t riff[RIFF_HEADER_SIZE] = {
|
||||
'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P'
|
||||
};
|
||||
assert(riff_size == (uint32_t)riff_size);
|
||||
PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
|
||||
if (!pic->writer(riff, sizeof(riff), pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
return VP8_ENC_OK;
|
||||
}
|
||||
|
||||
static WebPEncodingError PutVP8XHeader(const VP8Encoder* const enc) {
|
||||
const WebPPicture* const pic = enc->pic_;
|
||||
uint8_t vp8x[CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE] = {
|
||||
'V', 'P', '8', 'X'
|
||||
};
|
||||
uint32_t flags = 0;
|
||||
|
||||
assert(IsVP8XNeeded(enc));
|
||||
assert(pic->width >= 1 && pic->height >= 1);
|
||||
assert(pic->width <= MAX_CANVAS_SIZE && pic->height <= MAX_CANVAS_SIZE);
|
||||
|
||||
if (enc->has_alpha_) {
|
||||
flags |= ALPHA_FLAG_BIT;
|
||||
}
|
||||
|
||||
PutLE32(vp8x + TAG_SIZE, VP8X_CHUNK_SIZE);
|
||||
PutLE32(vp8x + CHUNK_HEADER_SIZE, flags);
|
||||
PutLE24(vp8x + CHUNK_HEADER_SIZE + 4, pic->width - 1);
|
||||
PutLE24(vp8x + CHUNK_HEADER_SIZE + 7, pic->height - 1);
|
||||
if(!pic->writer(vp8x, sizeof(vp8x), pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
return VP8_ENC_OK;
|
||||
}
|
||||
|
||||
static WebPEncodingError PutAlphaChunk(const VP8Encoder* const enc) {
|
||||
const WebPPicture* const pic = enc->pic_;
|
||||
uint8_t alpha_chunk_hdr[CHUNK_HEADER_SIZE] = {
|
||||
'A', 'L', 'P', 'H'
|
||||
};
|
||||
|
||||
assert(enc->has_alpha_);
|
||||
|
||||
// Alpha chunk header.
|
||||
PutLE32(alpha_chunk_hdr + TAG_SIZE, enc->alpha_data_size_);
|
||||
if (!pic->writer(alpha_chunk_hdr, sizeof(alpha_chunk_hdr), pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
|
||||
// Alpha chunk data.
|
||||
if (!pic->writer(enc->alpha_data_, enc->alpha_data_size_, pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
|
||||
// Padding.
|
||||
if ((enc->alpha_data_size_ & 1) && !PutPaddingByte(pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
return VP8_ENC_OK;
|
||||
}
|
||||
|
||||
static WebPEncodingError PutVP8Header(const WebPPicture* const pic,
|
||||
size_t vp8_size) {
|
||||
uint8_t vp8_chunk_hdr[CHUNK_HEADER_SIZE] = {
|
||||
'V', 'P', '8', ' '
|
||||
};
|
||||
assert(vp8_size == (uint32_t)vp8_size);
|
||||
PutLE32(vp8_chunk_hdr + TAG_SIZE, (uint32_t)vp8_size);
|
||||
if (!pic->writer(vp8_chunk_hdr, sizeof(vp8_chunk_hdr), pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
return VP8_ENC_OK;
|
||||
}
|
||||
|
||||
static WebPEncodingError PutVP8FrameHeader(const WebPPicture* const pic,
|
||||
int profile, size_t size0) {
|
||||
uint8_t vp8_frm_hdr[VP8_FRAME_HEADER_SIZE];
|
||||
uint32_t bits;
|
||||
|
||||
if (size0 >= VP8_MAX_PARTITION0_SIZE) { // partition #0 is too big to fit
|
||||
return VP8_ENC_ERROR_PARTITION0_OVERFLOW;
|
||||
}
|
||||
|
||||
// Paragraph 9.1.
|
||||
bits = 0 // keyframe (1b)
|
||||
| (profile << 1) // profile (3b)
|
||||
| (1 << 4) // visible (1b)
|
||||
| ((uint32_t)size0 << 5); // partition length (19b)
|
||||
vp8_frm_hdr[0] = (bits >> 0) & 0xff;
|
||||
vp8_frm_hdr[1] = (bits >> 8) & 0xff;
|
||||
vp8_frm_hdr[2] = (bits >> 16) & 0xff;
|
||||
// signature
|
||||
vp8_frm_hdr[3] = (VP8_SIGNATURE >> 16) & 0xff;
|
||||
vp8_frm_hdr[4] = (VP8_SIGNATURE >> 8) & 0xff;
|
||||
vp8_frm_hdr[5] = (VP8_SIGNATURE >> 0) & 0xff;
|
||||
// dimensions
|
||||
vp8_frm_hdr[6] = pic->width & 0xff;
|
||||
vp8_frm_hdr[7] = pic->width >> 8;
|
||||
vp8_frm_hdr[8] = pic->height & 0xff;
|
||||
vp8_frm_hdr[9] = pic->height >> 8;
|
||||
|
||||
if (!pic->writer(vp8_frm_hdr, sizeof(vp8_frm_hdr), pic)) {
|
||||
return VP8_ENC_ERROR_BAD_WRITE;
|
||||
}
|
||||
return VP8_ENC_OK;
|
||||
}
|
||||
|
||||
// WebP Headers.
|
||||
static int PutWebPHeaders(const VP8Encoder* const enc, size_t size0,
|
||||
size_t vp8_size, size_t riff_size) {
|
||||
WebPPicture* const pic = enc->pic_;
|
||||
WebPEncodingError err = VP8_ENC_OK;
|
||||
|
||||
// RIFF header.
|
||||
err = PutRIFFHeader(enc, riff_size);
|
||||
if (err != VP8_ENC_OK) goto Error;
|
||||
|
||||
// VP8X.
|
||||
if (IsVP8XNeeded(enc)) {
|
||||
err = PutVP8XHeader(enc);
|
||||
if (err != VP8_ENC_OK) goto Error;
|
||||
}
|
||||
|
||||
// Alpha.
|
||||
if (enc->has_alpha_) {
|
||||
err = PutAlphaChunk(enc);
|
||||
if (err != VP8_ENC_OK) goto Error;
|
||||
}
|
||||
|
||||
// VP8 header.
|
||||
err = PutVP8Header(pic, vp8_size);
|
||||
if (err != VP8_ENC_OK) goto Error;
|
||||
|
||||
// VP8 frame header.
|
||||
err = PutVP8FrameHeader(pic, enc->profile_, size0);
|
||||
if (err != VP8_ENC_OK) goto Error;
|
||||
|
||||
// All OK.
|
||||
return 1;
|
||||
|
||||
// Error.
|
||||
Error:
|
||||
return WebPEncodingSetError(pic, err);
|
||||
}
|
||||
|
||||
// Segmentation header
|
||||
static void PutSegmentHeader(VP8BitWriter* const bw,
|
||||
const VP8Encoder* const enc) {
|
||||
const VP8SegmentHeader* const hdr = &enc->segment_hdr_;
|
||||
const VP8Proba* const proba = &enc->proba_;
|
||||
if (VP8PutBitUniform(bw, (hdr->num_segments_ > 1))) {
|
||||
// We always 'update' the quant and filter strength values
|
||||
const int update_data = 1;
|
||||
int s;
|
||||
VP8PutBitUniform(bw, hdr->update_map_);
|
||||
if (VP8PutBitUniform(bw, update_data)) {
|
||||
// we always use absolute values, not relative ones
|
||||
VP8PutBitUniform(bw, 1); // (segment_feature_mode = 1. Paragraph 9.3.)
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
||||
VP8PutSignedValue(bw, enc->dqm_[s].quant_, 7);
|
||||
}
|
||||
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
||||
VP8PutSignedValue(bw, enc->dqm_[s].fstrength_, 6);
|
||||
}
|
||||
}
|
||||
if (hdr->update_map_) {
|
||||
for (s = 0; s < 3; ++s) {
|
||||
if (VP8PutBitUniform(bw, (proba->segments_[s] != 255u))) {
|
||||
VP8PutValue(bw, proba->segments_[s], 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Filtering parameters header
|
||||
static void PutFilterHeader(VP8BitWriter* const bw,
|
||||
const VP8FilterHeader* const hdr) {
|
||||
const int use_lf_delta = (hdr->i4x4_lf_delta_ != 0);
|
||||
VP8PutBitUniform(bw, hdr->simple_);
|
||||
VP8PutValue(bw, hdr->level_, 6);
|
||||
VP8PutValue(bw, hdr->sharpness_, 3);
|
||||
if (VP8PutBitUniform(bw, use_lf_delta)) {
|
||||
// '0' is the default value for i4x4_lf_delta_ at frame #0.
|
||||
const int need_update = (hdr->i4x4_lf_delta_ != 0);
|
||||
if (VP8PutBitUniform(bw, need_update)) {
|
||||
// we don't use ref_lf_delta => emit four 0 bits
|
||||
VP8PutValue(bw, 0, 4);
|
||||
// we use mode_lf_delta for i4x4
|
||||
VP8PutSignedValue(bw, hdr->i4x4_lf_delta_, 6);
|
||||
VP8PutValue(bw, 0, 3); // all others unused
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Nominal quantization parameters
|
||||
static void PutQuant(VP8BitWriter* const bw,
|
||||
const VP8Encoder* const enc) {
|
||||
VP8PutValue(bw, enc->base_quant_, 7);
|
||||
VP8PutSignedValue(bw, enc->dq_y1_dc_, 4);
|
||||
VP8PutSignedValue(bw, enc->dq_y2_dc_, 4);
|
||||
VP8PutSignedValue(bw, enc->dq_y2_ac_, 4);
|
||||
VP8PutSignedValue(bw, enc->dq_uv_dc_, 4);
|
||||
VP8PutSignedValue(bw, enc->dq_uv_ac_, 4);
|
||||
}
|
||||
|
||||
// Partition sizes
|
||||
static int EmitPartitionsSize(const VP8Encoder* const enc,
|
||||
WebPPicture* const pic) {
|
||||
uint8_t buf[3 * (MAX_NUM_PARTITIONS - 1)];
|
||||
int p;
|
||||
for (p = 0; p < enc->num_parts_ - 1; ++p) {
|
||||
const size_t part_size = VP8BitWriterSize(enc->parts_ + p);
|
||||
if (part_size >= VP8_MAX_PARTITION_SIZE) {
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_PARTITION_OVERFLOW);
|
||||
}
|
||||
buf[3 * p + 0] = (part_size >> 0) & 0xff;
|
||||
buf[3 * p + 1] = (part_size >> 8) & 0xff;
|
||||
buf[3 * p + 2] = (part_size >> 16) & 0xff;
|
||||
}
|
||||
return p ? pic->writer(buf, 3 * p, pic) : 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
|
||||
#define KTRAILER_SIZE 8
|
||||
|
||||
static int WriteExtensions(VP8Encoder* const enc) {
|
||||
uint8_t buffer[KTRAILER_SIZE];
|
||||
VP8BitWriter* const bw = &enc->bw_;
|
||||
WebPPicture* const pic = enc->pic_;
|
||||
|
||||
// Layer (bytes 0..3)
|
||||
PutLE24(buffer + 0, enc->layer_data_size_);
|
||||
buffer[3] = enc->pic_->colorspace & WEBP_CSP_UV_MASK;
|
||||
if (enc->layer_data_size_ > 0) {
|
||||
assert(enc->use_layer_);
|
||||
// append layer data to last partition
|
||||
if (!VP8BitWriterAppend(&enc->parts_[enc->num_parts_ - 1],
|
||||
enc->layer_data_, enc->layer_data_size_)) {
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY);
|
||||
}
|
||||
}
|
||||
|
||||
buffer[KTRAILER_SIZE - 1] = 0x01; // marker
|
||||
if (!VP8BitWriterAppend(bw, buffer, KTRAILER_SIZE)) {
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif /* WEBP_EXPERIMENTAL_FEATURES */
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static size_t GeneratePartition0(VP8Encoder* const enc) {
|
||||
VP8BitWriter* const bw = &enc->bw_;
|
||||
const int mb_size = enc->mb_w_ * enc->mb_h_;
|
||||
uint64_t pos1, pos2, pos3;
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
const int need_extensions = enc->use_layer_;
|
||||
#endif
|
||||
|
||||
pos1 = VP8BitWriterPos(bw);
|
||||
VP8BitWriterInit(bw, mb_size * 7 / 8); // ~7 bits per macroblock
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
VP8PutBitUniform(bw, need_extensions); // extensions
|
||||
#else
|
||||
VP8PutBitUniform(bw, 0); // colorspace
|
||||
#endif
|
||||
VP8PutBitUniform(bw, 0); // clamp type
|
||||
|
||||
PutSegmentHeader(bw, enc);
|
||||
PutFilterHeader(bw, &enc->filter_hdr_);
|
||||
VP8PutValue(bw, enc->config_->partitions, 2);
|
||||
PutQuant(bw, enc);
|
||||
VP8PutBitUniform(bw, 0); // no proba update
|
||||
VP8WriteProbas(bw, &enc->proba_);
|
||||
pos2 = VP8BitWriterPos(bw);
|
||||
VP8CodeIntraModes(enc);
|
||||
VP8BitWriterFinish(bw);
|
||||
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
if (need_extensions && !WriteExtensions(enc)) {
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
pos3 = VP8BitWriterPos(bw);
|
||||
|
||||
if (enc->pic_->stats) {
|
||||
enc->pic_->stats->header_bytes[0] = (int)((pos2 - pos1 + 7) >> 3);
|
||||
enc->pic_->stats->header_bytes[1] = (int)((pos3 - pos2 + 7) >> 3);
|
||||
enc->pic_->stats->alpha_data_size = (int)enc->alpha_data_size_;
|
||||
enc->pic_->stats->layer_data_size = (int)enc->layer_data_size_;
|
||||
}
|
||||
return !bw->error_;
|
||||
}
|
||||
|
||||
void VP8EncFreeBitWriters(VP8Encoder* const enc) {
|
||||
int p;
|
||||
VP8BitWriterWipeOut(&enc->bw_);
|
||||
for (p = 0; p < enc->num_parts_; ++p) {
|
||||
VP8BitWriterWipeOut(enc->parts_ + p);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8EncWrite(VP8Encoder* const enc) {
|
||||
WebPPicture* const pic = enc->pic_;
|
||||
VP8BitWriter* const bw = &enc->bw_;
|
||||
const int task_percent = 19;
|
||||
const int percent_per_part = task_percent / enc->num_parts_;
|
||||
const int final_percent = enc->percent_ + task_percent;
|
||||
int ok = 0;
|
||||
size_t vp8_size, pad, riff_size;
|
||||
int p;
|
||||
|
||||
// Partition #0 with header and partition sizes
|
||||
ok = !!GeneratePartition0(enc);
|
||||
|
||||
// Compute VP8 size
|
||||
vp8_size = VP8_FRAME_HEADER_SIZE +
|
||||
VP8BitWriterSize(bw) +
|
||||
3 * (enc->num_parts_ - 1);
|
||||
for (p = 0; p < enc->num_parts_; ++p) {
|
||||
vp8_size += VP8BitWriterSize(enc->parts_ + p);
|
||||
}
|
||||
pad = vp8_size & 1;
|
||||
vp8_size += pad;
|
||||
|
||||
// Compute RIFF size
|
||||
// At the minimum it is: "WEBPVP8 nnnn" + VP8 data size.
|
||||
riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8_size;
|
||||
if (IsVP8XNeeded(enc)) { // Add size for: VP8X header + data.
|
||||
riff_size += CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE;
|
||||
}
|
||||
if (enc->has_alpha_) { // Add size for: ALPH header + data.
|
||||
const uint32_t padded_alpha_size = enc->alpha_data_size_ +
|
||||
(enc->alpha_data_size_ & 1);
|
||||
riff_size += CHUNK_HEADER_SIZE + padded_alpha_size;
|
||||
}
|
||||
// Sanity check.
|
||||
if (riff_size > 0xfffffffeU) {
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_FILE_TOO_BIG);
|
||||
}
|
||||
|
||||
// Emit headers and partition #0
|
||||
{
|
||||
const uint8_t* const part0 = VP8BitWriterBuf(bw);
|
||||
const size_t size0 = VP8BitWriterSize(bw);
|
||||
ok = ok && PutWebPHeaders(enc, size0, vp8_size, riff_size)
|
||||
&& pic->writer(part0, size0, pic)
|
||||
&& EmitPartitionsSize(enc, pic);
|
||||
VP8BitWriterWipeOut(bw); // will free the internal buffer.
|
||||
}
|
||||
|
||||
// Token partitions
|
||||
for (p = 0; p < enc->num_parts_; ++p) {
|
||||
const uint8_t* const buf = VP8BitWriterBuf(enc->parts_ + p);
|
||||
const size_t size = VP8BitWriterSize(enc->parts_ + p);
|
||||
if (size)
|
||||
ok = ok && pic->writer(buf, size, pic);
|
||||
VP8BitWriterWipeOut(enc->parts_ + p); // will free the internal buffer.
|
||||
ok = ok && WebPReportProgress(pic, enc->percent_ + percent_per_part,
|
||||
&enc->percent_);
|
||||
}
|
||||
|
||||
// Padding byte
|
||||
if (ok && pad) {
|
||||
ok = PutPaddingByte(pic);
|
||||
}
|
||||
|
||||
enc->coded_size_ = (int)(CHUNK_HEADER_SIZE + riff_size);
|
||||
ok = ok && WebPReportProgress(pic, final_percent, &enc->percent_);
|
||||
return ok;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,510 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Token probabilities
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Default probabilities
|
||||
|
||||
// Paragraph 13.5
|
||||
const uint8_t
|
||||
VP8CoeffsProba0[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS] = {
|
||||
// genereated using vp8_default_coef_probs() in entropy.c:129
|
||||
{ { { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128 },
|
||||
{ 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128 },
|
||||
{ 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128 },
|
||||
{ 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128 },
|
||||
{ 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128 },
|
||||
},
|
||||
{ { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128 },
|
||||
{ 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128 },
|
||||
{ 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128 },
|
||||
},
|
||||
{ { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128 },
|
||||
{ 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128 },
|
||||
{ 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128 },
|
||||
{ 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128 },
|
||||
{ 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128 },
|
||||
{ 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128 },
|
||||
{ 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
},
|
||||
{ { { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62 },
|
||||
{ 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1 },
|
||||
{ 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128 }
|
||||
},
|
||||
{ { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128 },
|
||||
{ 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128 },
|
||||
{ 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128 },
|
||||
{ 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128 },
|
||||
{ 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128 },
|
||||
{ 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128 },
|
||||
{ 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128 },
|
||||
{ 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128 },
|
||||
{ 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128 },
|
||||
{ 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128 },
|
||||
{ 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128 },
|
||||
{ 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128 },
|
||||
{ 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128 },
|
||||
{ 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
},
|
||||
{ { { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128 },
|
||||
{ 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128 },
|
||||
{ 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128 }
|
||||
},
|
||||
{ { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128 },
|
||||
{ 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128 },
|
||||
{ 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128 },
|
||||
{ 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128 },
|
||||
{ 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128 },
|
||||
{ 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128 },
|
||||
{ 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128 },
|
||||
{ 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
},
|
||||
{ { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
},
|
||||
{ { { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255 },
|
||||
{ 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128 },
|
||||
{ 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128 }
|
||||
},
|
||||
{ { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128 },
|
||||
{ 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128 },
|
||||
{ 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128 },
|
||||
{ 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128 },
|
||||
{ 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128 },
|
||||
{ 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128 },
|
||||
{ 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128 }
|
||||
},
|
||||
{ { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128 },
|
||||
{ 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128 },
|
||||
{ 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128 },
|
||||
{ 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128 },
|
||||
{ 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128 },
|
||||
{ 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128 },
|
||||
{ 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128 }
|
||||
},
|
||||
{ { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },
|
||||
{ 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void VP8DefaultProbas(VP8Encoder* const enc) {
|
||||
VP8Proba* const probas = &enc->proba_;
|
||||
probas->use_skip_proba_ = 0;
|
||||
memset(probas->segments_, 255u, sizeof(probas->segments_));
|
||||
memcpy(probas->coeffs_, VP8CoeffsProba0, sizeof(VP8CoeffsProba0));
|
||||
// Note: we could hard-code the level_costs_ corresponding to VP8CoeffsProba0,
|
||||
// but that's ~11k of static data. Better call VP8CalculateLevelCosts() later.
|
||||
probas->dirty_ = 1;
|
||||
}
|
||||
|
||||
// Paragraph 11.5. 900bytes.
|
||||
static const uint8_t kBModesProba[NUM_BMODES][NUM_BMODES][NUM_BMODES - 1] = {
|
||||
{ { 231, 120, 48, 89, 115, 113, 120, 152, 112 },
|
||||
{ 152, 179, 64, 126, 170, 118, 46, 70, 95 },
|
||||
{ 175, 69, 143, 80, 85, 82, 72, 155, 103 },
|
||||
{ 56, 58, 10, 171, 218, 189, 17, 13, 152 },
|
||||
{ 114, 26, 17, 163, 44, 195, 21, 10, 173 },
|
||||
{ 121, 24, 80, 195, 26, 62, 44, 64, 85 },
|
||||
{ 144, 71, 10, 38, 171, 213, 144, 34, 26 },
|
||||
{ 170, 46, 55, 19, 136, 160, 33, 206, 71 },
|
||||
{ 63, 20, 8, 114, 114, 208, 12, 9, 226 },
|
||||
{ 81, 40, 11, 96, 182, 84, 29, 16, 36 } },
|
||||
{ { 134, 183, 89, 137, 98, 101, 106, 165, 148 },
|
||||
{ 72, 187, 100, 130, 157, 111, 32, 75, 80 },
|
||||
{ 66, 102, 167, 99, 74, 62, 40, 234, 128 },
|
||||
{ 41, 53, 9, 178, 241, 141, 26, 8, 107 },
|
||||
{ 74, 43, 26, 146, 73, 166, 49, 23, 157 },
|
||||
{ 65, 38, 105, 160, 51, 52, 31, 115, 128 },
|
||||
{ 104, 79, 12, 27, 217, 255, 87, 17, 7 },
|
||||
{ 87, 68, 71, 44, 114, 51, 15, 186, 23 },
|
||||
{ 47, 41, 14, 110, 182, 183, 21, 17, 194 },
|
||||
{ 66, 45, 25, 102, 197, 189, 23, 18, 22 } },
|
||||
{ { 88, 88, 147, 150, 42, 46, 45, 196, 205 },
|
||||
{ 43, 97, 183, 117, 85, 38, 35, 179, 61 },
|
||||
{ 39, 53, 200, 87, 26, 21, 43, 232, 171 },
|
||||
{ 56, 34, 51, 104, 114, 102, 29, 93, 77 },
|
||||
{ 39, 28, 85, 171, 58, 165, 90, 98, 64 },
|
||||
{ 34, 22, 116, 206, 23, 34, 43, 166, 73 },
|
||||
{ 107, 54, 32, 26, 51, 1, 81, 43, 31 },
|
||||
{ 68, 25, 106, 22, 64, 171, 36, 225, 114 },
|
||||
{ 34, 19, 21, 102, 132, 188, 16, 76, 124 },
|
||||
{ 62, 18, 78, 95, 85, 57, 50, 48, 51 } },
|
||||
{ { 193, 101, 35, 159, 215, 111, 89, 46, 111 },
|
||||
{ 60, 148, 31, 172, 219, 228, 21, 18, 111 },
|
||||
{ 112, 113, 77, 85, 179, 255, 38, 120, 114 },
|
||||
{ 40, 42, 1, 196, 245, 209, 10, 25, 109 },
|
||||
{ 88, 43, 29, 140, 166, 213, 37, 43, 154 },
|
||||
{ 61, 63, 30, 155, 67, 45, 68, 1, 209 },
|
||||
{ 100, 80, 8, 43, 154, 1, 51, 26, 71 },
|
||||
{ 142, 78, 78, 16, 255, 128, 34, 197, 171 },
|
||||
{ 41, 40, 5, 102, 211, 183, 4, 1, 221 },
|
||||
{ 51, 50, 17, 168, 209, 192, 23, 25, 82 } },
|
||||
{ { 138, 31, 36, 171, 27, 166, 38, 44, 229 },
|
||||
{ 67, 87, 58, 169, 82, 115, 26, 59, 179 },
|
||||
{ 63, 59, 90, 180, 59, 166, 93, 73, 154 },
|
||||
{ 40, 40, 21, 116, 143, 209, 34, 39, 175 },
|
||||
{ 47, 15, 16, 183, 34, 223, 49, 45, 183 },
|
||||
{ 46, 17, 33, 183, 6, 98, 15, 32, 183 },
|
||||
{ 57, 46, 22, 24, 128, 1, 54, 17, 37 },
|
||||
{ 65, 32, 73, 115, 28, 128, 23, 128, 205 },
|
||||
{ 40, 3, 9, 115, 51, 192, 18, 6, 223 },
|
||||
{ 87, 37, 9, 115, 59, 77, 64, 21, 47 } },
|
||||
{ { 104, 55, 44, 218, 9, 54, 53, 130, 226 },
|
||||
{ 64, 90, 70, 205, 40, 41, 23, 26, 57 },
|
||||
{ 54, 57, 112, 184, 5, 41, 38, 166, 213 },
|
||||
{ 30, 34, 26, 133, 152, 116, 10, 32, 134 },
|
||||
{ 39, 19, 53, 221, 26, 114, 32, 73, 255 },
|
||||
{ 31, 9, 65, 234, 2, 15, 1, 118, 73 },
|
||||
{ 75, 32, 12, 51, 192, 255, 160, 43, 51 },
|
||||
{ 88, 31, 35, 67, 102, 85, 55, 186, 85 },
|
||||
{ 56, 21, 23, 111, 59, 205, 45, 37, 192 },
|
||||
{ 55, 38, 70, 124, 73, 102, 1, 34, 98 } },
|
||||
{ { 125, 98, 42, 88, 104, 85, 117, 175, 82 },
|
||||
{ 95, 84, 53, 89, 128, 100, 113, 101, 45 },
|
||||
{ 75, 79, 123, 47, 51, 128, 81, 171, 1 },
|
||||
{ 57, 17, 5, 71, 102, 57, 53, 41, 49 },
|
||||
{ 38, 33, 13, 121, 57, 73, 26, 1, 85 },
|
||||
{ 41, 10, 67, 138, 77, 110, 90, 47, 114 },
|
||||
{ 115, 21, 2, 10, 102, 255, 166, 23, 6 },
|
||||
{ 101, 29, 16, 10, 85, 128, 101, 196, 26 },
|
||||
{ 57, 18, 10, 102, 102, 213, 34, 20, 43 },
|
||||
{ 117, 20, 15, 36, 163, 128, 68, 1, 26 } },
|
||||
{ { 102, 61, 71, 37, 34, 53, 31, 243, 192 },
|
||||
{ 69, 60, 71, 38, 73, 119, 28, 222, 37 },
|
||||
{ 68, 45, 128, 34, 1, 47, 11, 245, 171 },
|
||||
{ 62, 17, 19, 70, 146, 85, 55, 62, 70 },
|
||||
{ 37, 43, 37, 154, 100, 163, 85, 160, 1 },
|
||||
{ 63, 9, 92, 136, 28, 64, 32, 201, 85 },
|
||||
{ 75, 15, 9, 9, 64, 255, 184, 119, 16 },
|
||||
{ 86, 6, 28, 5, 64, 255, 25, 248, 1 },
|
||||
{ 56, 8, 17, 132, 137, 255, 55, 116, 128 },
|
||||
{ 58, 15, 20, 82, 135, 57, 26, 121, 40 } },
|
||||
{ { 164, 50, 31, 137, 154, 133, 25, 35, 218 },
|
||||
{ 51, 103, 44, 131, 131, 123, 31, 6, 158 },
|
||||
{ 86, 40, 64, 135, 148, 224, 45, 183, 128 },
|
||||
{ 22, 26, 17, 131, 240, 154, 14, 1, 209 },
|
||||
{ 45, 16, 21, 91, 64, 222, 7, 1, 197 },
|
||||
{ 56, 21, 39, 155, 60, 138, 23, 102, 213 },
|
||||
{ 83, 12, 13, 54, 192, 255, 68, 47, 28 },
|
||||
{ 85, 26, 85, 85, 128, 128, 32, 146, 171 },
|
||||
{ 18, 11, 7, 63, 144, 171, 4, 4, 246 },
|
||||
{ 35, 27, 10, 146, 174, 171, 12, 26, 128 } },
|
||||
{ { 190, 80, 35, 99, 180, 80, 126, 54, 45 },
|
||||
{ 85, 126, 47, 87, 176, 51, 41, 20, 32 },
|
||||
{ 101, 75, 128, 139, 118, 146, 116, 128, 85 },
|
||||
{ 56, 41, 15, 176, 236, 85, 37, 9, 62 },
|
||||
{ 71, 30, 17, 119, 118, 255, 17, 18, 138 },
|
||||
{ 101, 38, 60, 138, 55, 70, 43, 26, 142 },
|
||||
{ 146, 36, 19, 30, 171, 255, 97, 27, 20 },
|
||||
{ 138, 45, 61, 62, 219, 1, 81, 188, 64 },
|
||||
{ 32, 41, 20, 117, 151, 142, 20, 21, 163 },
|
||||
{ 112, 19, 12, 61, 195, 128, 48, 4, 24 } }
|
||||
};
|
||||
|
||||
static int PutI4Mode(VP8BitWriter* const bw, int mode,
|
||||
const uint8_t* const prob) {
|
||||
if (VP8PutBit(bw, mode != B_DC_PRED, prob[0])) {
|
||||
if (VP8PutBit(bw, mode != B_TM_PRED, prob[1])) {
|
||||
if (VP8PutBit(bw, mode != B_VE_PRED, prob[2])) {
|
||||
if (!VP8PutBit(bw, mode >= B_LD_PRED, prob[3])) {
|
||||
if (VP8PutBit(bw, mode != B_HE_PRED, prob[4])) {
|
||||
VP8PutBit(bw, mode != B_RD_PRED, prob[5]);
|
||||
}
|
||||
} else {
|
||||
if (VP8PutBit(bw, mode != B_LD_PRED, prob[6])) {
|
||||
if (VP8PutBit(bw, mode != B_VL_PRED, prob[7])) {
|
||||
VP8PutBit(bw, mode != B_HD_PRED, prob[8]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return mode;
|
||||
}
|
||||
|
||||
static void PutI16Mode(VP8BitWriter* const bw, int mode) {
|
||||
if (VP8PutBit(bw, (mode == TM_PRED || mode == H_PRED), 156)) {
|
||||
VP8PutBit(bw, mode == TM_PRED, 128); // TM or HE
|
||||
} else {
|
||||
VP8PutBit(bw, mode == V_PRED, 163); // VE or DC
|
||||
}
|
||||
}
|
||||
|
||||
static void PutUVMode(VP8BitWriter* const bw, int uv_mode) {
|
||||
if (VP8PutBit(bw, uv_mode != DC_PRED, 142)) {
|
||||
if (VP8PutBit(bw, uv_mode != V_PRED, 114)) {
|
||||
VP8PutBit(bw, uv_mode != H_PRED, 183); // else: TM_PRED
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void PutSegment(VP8BitWriter* const bw, int s, const uint8_t* p) {
|
||||
if (VP8PutBit(bw, s >= 2, p[0])) p += 1;
|
||||
VP8PutBit(bw, s & 1, p[1]);
|
||||
}
|
||||
|
||||
void VP8CodeIntraModes(VP8Encoder* const enc) {
|
||||
VP8BitWriter* const bw = &enc->bw_;
|
||||
VP8EncIterator it;
|
||||
VP8IteratorInit(enc, &it);
|
||||
do {
|
||||
const VP8MBInfo* mb = it.mb_;
|
||||
const uint8_t* preds = it.preds_;
|
||||
if (enc->segment_hdr_.update_map_) {
|
||||
PutSegment(bw, mb->segment_, enc->proba_.segments_);
|
||||
}
|
||||
if (enc->proba_.use_skip_proba_) {
|
||||
VP8PutBit(bw, mb->skip_, enc->proba_.skip_proba_);
|
||||
}
|
||||
if (VP8PutBit(bw, (mb->type_ != 0), 145)) { // i16x16
|
||||
PutI16Mode(bw, preds[0]);
|
||||
} else {
|
||||
const int preds_w = enc->preds_w_;
|
||||
const uint8_t* top_pred = preds - preds_w;
|
||||
int x, y;
|
||||
for (y = 0; y < 4; ++y) {
|
||||
int left = preds[-1];
|
||||
for (x = 0; x < 4; ++x) {
|
||||
const uint8_t* const probas = kBModesProba[top_pred[x]][left];
|
||||
left = PutI4Mode(bw, preds[x], probas);
|
||||
}
|
||||
top_pred = preds;
|
||||
preds += preds_w;
|
||||
}
|
||||
}
|
||||
PutUVMode(bw, mb->uv_mode_);
|
||||
} while (VP8IteratorNext(&it, 0));
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Paragraph 13
|
||||
|
||||
const uint8_t
|
||||
VP8CoeffsUpdateProba[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS] = {
|
||||
{ { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
},
|
||||
{ { { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255 },
|
||||
{ 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
},
|
||||
{ { { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
},
|
||||
{ { { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
},
|
||||
{ { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },
|
||||
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void VP8WriteProbas(VP8BitWriter* const bw, const VP8Proba* const probas) {
|
||||
int t, b, c, p;
|
||||
for (t = 0; t < NUM_TYPES; ++t) {
|
||||
for (b = 0; b < NUM_BANDS; ++b) {
|
||||
for (c = 0; c < NUM_CTX; ++c) {
|
||||
for (p = 0; p < NUM_PROBAS; ++p) {
|
||||
const uint8_t p0 = probas->coeffs_[t][b][c][p];
|
||||
const int update = (p0 != VP8CoeffsProba0[t][b][c][p]);
|
||||
if (VP8PutBit(bw, update, VP8CoeffsUpdateProba[t][b][c][p])) {
|
||||
VP8PutValue(bw, p0, 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (VP8PutBitUniform(bw, probas->use_skip_proba_)) {
|
||||
VP8PutValue(bw, probas->skip_proba_, 8);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,525 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// WebP encoder: internal header.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_ENC_VP8ENCI_H_
|
||||
#define WEBP_ENC_VP8ENCI_H_
|
||||
|
||||
#include <string.h> // for memcpy()
|
||||
#include "../encode.h"
|
||||
#include "../dsp/dsp.h"
|
||||
#include "../utils/bit_writer.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Various defines and enums
|
||||
|
||||
// version numbers
|
||||
#define ENC_MAJ_VERSION 0
|
||||
#define ENC_MIN_VERSION 2
|
||||
#define ENC_REV_VERSION 0
|
||||
|
||||
// size of histogram used by CollectHistogram.
|
||||
#define MAX_COEFF_THRESH 64
|
||||
|
||||
// intra prediction modes
|
||||
enum { B_DC_PRED = 0, // 4x4 modes
|
||||
B_TM_PRED = 1,
|
||||
B_VE_PRED = 2,
|
||||
B_HE_PRED = 3,
|
||||
B_RD_PRED = 4,
|
||||
B_VR_PRED = 5,
|
||||
B_LD_PRED = 6,
|
||||
B_VL_PRED = 7,
|
||||
B_HD_PRED = 8,
|
||||
B_HU_PRED = 9,
|
||||
NUM_BMODES = B_HU_PRED + 1 - B_DC_PRED, // = 10
|
||||
|
||||
// Luma16 or UV modes
|
||||
DC_PRED = B_DC_PRED, V_PRED = B_VE_PRED,
|
||||
H_PRED = B_HE_PRED, TM_PRED = B_TM_PRED
|
||||
};
|
||||
|
||||
enum { NUM_MB_SEGMENTS = 4,
|
||||
MAX_NUM_PARTITIONS = 8,
|
||||
NUM_TYPES = 4, // 0: i16-AC, 1: i16-DC, 2:chroma-AC, 3:i4-AC
|
||||
NUM_BANDS = 8,
|
||||
NUM_CTX = 3,
|
||||
NUM_PROBAS = 11,
|
||||
MAX_LF_LEVELS = 64, // Maximum loop filter level
|
||||
MAX_VARIABLE_LEVEL = 67 // last (inclusive) level with variable cost
|
||||
};
|
||||
|
||||
// YUV-cache parameters. Cache is 16-pixels wide.
|
||||
// The original or reconstructed samples can be accessed using VP8Scan[]
|
||||
// The predicted blocks can be accessed using offsets to yuv_p_ and
|
||||
// the arrays VP8*ModeOffsets[];
|
||||
// +----+ YUV Samples area. See VP8Scan[] for accessing the blocks.
|
||||
// Y_OFF |YYYY| <- original samples (enc->yuv_in_)
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// U_OFF |UUVV| V_OFF (=U_OFF + 8)
|
||||
// |UUVV|
|
||||
// +----+
|
||||
// Y_OFF |YYYY| <- compressed/decoded samples ('yuv_out_')
|
||||
// |YYYY| There are two buffers like this ('yuv_out_'/'yuv_out2_')
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// U_OFF |UUVV| V_OFF
|
||||
// |UUVV|
|
||||
// x2 (for yuv_out2_)
|
||||
// +----+ Prediction area ('yuv_p_', size = PRED_SIZE)
|
||||
// I16DC16 |YYYY| Intra16 predictions (16x16 block each)
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// I16TM16 |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// I16VE16 |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// I16HE16 |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// |YYYY|
|
||||
// +----+ Chroma U/V predictions (16x8 block each)
|
||||
// C8DC8 |UUVV|
|
||||
// |UUVV|
|
||||
// C8TM8 |UUVV|
|
||||
// |UUVV|
|
||||
// C8VE8 |UUVV|
|
||||
// |UUVV|
|
||||
// C8HE8 |UUVV|
|
||||
// |UUVV|
|
||||
// +----+ Intra 4x4 predictions (4x4 block each)
|
||||
// |YYYY| I4DC4 I4TM4 I4VE4 I4HE4
|
||||
// |YYYY| I4RD4 I4VR4 I4LD4 I4VL4
|
||||
// |YY..| I4HD4 I4HU4 I4TMP
|
||||
// +----+
|
||||
#define BPS 16 // this is the common stride
|
||||
#define Y_SIZE (BPS * 16)
|
||||
#define UV_SIZE (BPS * 8)
|
||||
#define YUV_SIZE (Y_SIZE + UV_SIZE)
|
||||
#define PRED_SIZE (6 * 16 * BPS + 12 * BPS)
|
||||
#define Y_OFF (0)
|
||||
#define U_OFF (Y_SIZE)
|
||||
#define V_OFF (U_OFF + 8)
|
||||
#define ALIGN_CST 15
|
||||
#define DO_ALIGN(PTR) ((uintptr_t)((PTR) + ALIGN_CST) & ~ALIGN_CST)
|
||||
|
||||
extern const int VP8Scan[16 + 4 + 4]; // in quant.c
|
||||
extern const int VP8UVModeOffsets[4]; // in analyze.c
|
||||
extern const int VP8I16ModeOffsets[4];
|
||||
extern const int VP8I4ModeOffsets[NUM_BMODES];
|
||||
|
||||
// Layout of prediction blocks
|
||||
// intra 16x16
|
||||
#define I16DC16 (0 * 16 * BPS)
|
||||
#define I16TM16 (1 * 16 * BPS)
|
||||
#define I16VE16 (2 * 16 * BPS)
|
||||
#define I16HE16 (3 * 16 * BPS)
|
||||
// chroma 8x8, two U/V blocks side by side (hence: 16x8 each)
|
||||
#define C8DC8 (4 * 16 * BPS)
|
||||
#define C8TM8 (4 * 16 * BPS + 8 * BPS)
|
||||
#define C8VE8 (5 * 16 * BPS)
|
||||
#define C8HE8 (5 * 16 * BPS + 8 * BPS)
|
||||
// intra 4x4
|
||||
#define I4DC4 (6 * 16 * BPS + 0)
|
||||
#define I4TM4 (6 * 16 * BPS + 4)
|
||||
#define I4VE4 (6 * 16 * BPS + 8)
|
||||
#define I4HE4 (6 * 16 * BPS + 12)
|
||||
#define I4RD4 (6 * 16 * BPS + 4 * BPS + 0)
|
||||
#define I4VR4 (6 * 16 * BPS + 4 * BPS + 4)
|
||||
#define I4LD4 (6 * 16 * BPS + 4 * BPS + 8)
|
||||
#define I4VL4 (6 * 16 * BPS + 4 * BPS + 12)
|
||||
#define I4HD4 (6 * 16 * BPS + 8 * BPS + 0)
|
||||
#define I4HU4 (6 * 16 * BPS + 8 * BPS + 4)
|
||||
#define I4TMP (6 * 16 * BPS + 8 * BPS + 8)
|
||||
|
||||
typedef int64_t score_t; // type used for scores, rate, distortion
|
||||
#define MAX_COST ((score_t)0x7fffffffffffffLL)
|
||||
|
||||
#define QFIX 17
|
||||
#define BIAS(b) ((b) << (QFIX - 8))
|
||||
// Fun fact: this is the _only_ line where we're actually being lossy and
|
||||
// discarding bits.
|
||||
static WEBP_INLINE int QUANTDIV(int n, int iQ, int B) {
|
||||
return (n * iQ + B) >> QFIX;
|
||||
}
|
||||
extern const uint8_t VP8Zigzag[16];
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Headers
|
||||
|
||||
typedef uint32_t proba_t; // 16b + 16b
|
||||
typedef uint8_t ProbaArray[NUM_CTX][NUM_PROBAS];
|
||||
typedef proba_t StatsArray[NUM_CTX][NUM_PROBAS];
|
||||
typedef uint16_t CostArray[NUM_CTX][MAX_VARIABLE_LEVEL + 1];
|
||||
typedef double LFStats[NUM_MB_SEGMENTS][MAX_LF_LEVELS]; // filter stats
|
||||
|
||||
typedef struct VP8Encoder VP8Encoder;
|
||||
|
||||
// segment features
|
||||
typedef struct {
|
||||
int num_segments_; // Actual number of segments. 1 segment only = unused.
|
||||
int update_map_; // whether to update the segment map or not.
|
||||
// must be 0 if there's only 1 segment.
|
||||
int size_; // bit-cost for transmitting the segment map
|
||||
} VP8SegmentHeader;
|
||||
|
||||
// Struct collecting all frame-persistent probabilities.
|
||||
typedef struct {
|
||||
uint8_t segments_[3]; // probabilities for segment tree
|
||||
uint8_t skip_proba_; // final probability of being skipped.
|
||||
ProbaArray coeffs_[NUM_TYPES][NUM_BANDS]; // 924 bytes
|
||||
StatsArray stats_[NUM_TYPES][NUM_BANDS]; // 4224 bytes
|
||||
CostArray level_cost_[NUM_TYPES][NUM_BANDS]; // 11.4k
|
||||
int dirty_; // if true, need to call VP8CalculateLevelCosts()
|
||||
int use_skip_proba_; // Note: we always use skip_proba for now.
|
||||
int nb_skip_; // number of skipped blocks
|
||||
} VP8Proba;
|
||||
|
||||
// Filter parameters. Not actually used in the code (we don't perform
|
||||
// the in-loop filtering), but filled from user's config
|
||||
typedef struct {
|
||||
int simple_; // filtering type: 0=complex, 1=simple
|
||||
int level_; // base filter level [0..63]
|
||||
int sharpness_; // [0..7]
|
||||
int i4x4_lf_delta_; // delta filter level for i4x4 relative to i16x16
|
||||
} VP8FilterHeader;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Informations about the macroblocks.
|
||||
|
||||
typedef struct {
|
||||
// block type
|
||||
unsigned int type_:2; // 0=i4x4, 1=i16x16
|
||||
unsigned int uv_mode_:2;
|
||||
unsigned int skip_:1;
|
||||
unsigned int segment_:2;
|
||||
uint8_t alpha_; // quantization-susceptibility
|
||||
} VP8MBInfo;
|
||||
|
||||
typedef struct VP8Matrix {
|
||||
uint16_t q_[16]; // quantizer steps
|
||||
uint16_t iq_[16]; // reciprocals, fixed point.
|
||||
uint16_t bias_[16]; // rounding bias
|
||||
uint16_t zthresh_[16]; // value under which a coefficient is zeroed
|
||||
uint16_t sharpen_[16]; // frequency boosters for slight sharpening
|
||||
} VP8Matrix;
|
||||
|
||||
typedef struct {
|
||||
VP8Matrix y1_, y2_, uv_; // quantization matrices
|
||||
int alpha_; // quant-susceptibility, range [-127,127]. Zero is neutral.
|
||||
// Lower values indicate a lower risk of blurriness.
|
||||
int beta_; // filter-susceptibility, range [0,255].
|
||||
int quant_; // final segment quantizer.
|
||||
int fstrength_; // final in-loop filtering strength
|
||||
// reactivities
|
||||
int lambda_i16_, lambda_i4_, lambda_uv_;
|
||||
int lambda_mode_, lambda_trellis_, tlambda_;
|
||||
int lambda_trellis_i16_, lambda_trellis_i4_, lambda_trellis_uv_;
|
||||
} VP8SegmentInfo;
|
||||
|
||||
// Handy transcient struct to accumulate score and info during RD-optimization
|
||||
// and mode evaluation.
|
||||
typedef struct {
|
||||
score_t D, SD, R, score; // Distortion, spectral distortion, rate, score.
|
||||
int16_t y_dc_levels[16]; // Quantized levels for luma-DC, luma-AC, chroma.
|
||||
int16_t y_ac_levels[16][16];
|
||||
int16_t uv_levels[4 + 4][16];
|
||||
int mode_i16; // mode number for intra16 prediction
|
||||
uint8_t modes_i4[16]; // mode numbers for intra4 predictions
|
||||
int mode_uv; // mode number of chroma prediction
|
||||
uint32_t nz; // non-zero blocks
|
||||
} VP8ModeScore;
|
||||
|
||||
// Iterator structure to iterate through macroblocks, pointing to the
|
||||
// right neighbouring data (samples, predictions, contexts, ...)
|
||||
typedef struct {
|
||||
int x_, y_; // current macroblock
|
||||
int y_offset_, uv_offset_; // offset to the luma / chroma planes
|
||||
int y_stride_, uv_stride_; // respective strides
|
||||
uint8_t* yuv_in_; // borrowed from enc_ (for now)
|
||||
uint8_t* yuv_out_; // ''
|
||||
uint8_t* yuv_out2_; // ''
|
||||
uint8_t* yuv_p_; // ''
|
||||
VP8Encoder* enc_; // back-pointer
|
||||
VP8MBInfo* mb_; // current macroblock
|
||||
VP8BitWriter* bw_; // current bit-writer
|
||||
uint8_t* preds_; // intra mode predictors (4x4 blocks)
|
||||
uint32_t* nz_; // non-zero pattern
|
||||
uint8_t i4_boundary_[37]; // 32+5 boundary samples needed by intra4x4
|
||||
uint8_t* i4_top_; // pointer to the current top boundary sample
|
||||
int i4_; // current intra4x4 mode being tested
|
||||
int top_nz_[9]; // top-non-zero context.
|
||||
int left_nz_[9]; // left-non-zero. left_nz[8] is independent.
|
||||
uint64_t bit_count_[4][3]; // bit counters for coded levels.
|
||||
uint64_t luma_bits_; // macroblock bit-cost for luma
|
||||
uint64_t uv_bits_; // macroblock bit-cost for chroma
|
||||
LFStats* lf_stats_; // filter stats (borrowed from enc_)
|
||||
int do_trellis_; // if true, perform extra level optimisation
|
||||
int done_; // true when scan is finished
|
||||
int percent0_; // saved initial progress percent
|
||||
} VP8EncIterator;
|
||||
|
||||
// in iterator.c
|
||||
// must be called first.
|
||||
void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it);
|
||||
// restart a scan.
|
||||
void VP8IteratorReset(VP8EncIterator* const it);
|
||||
// import samples from source
|
||||
void VP8IteratorImport(const VP8EncIterator* const it);
|
||||
// export decimated samples
|
||||
void VP8IteratorExport(const VP8EncIterator* const it);
|
||||
// go to next macroblock. Returns !done_. If *block_to_save is non-null, will
|
||||
// save the boundary values to top_/left_ arrays. block_to_save can be
|
||||
// it->yuv_out_ or it->yuv_in_.
|
||||
int VP8IteratorNext(VP8EncIterator* const it,
|
||||
const uint8_t* const block_to_save);
|
||||
// Report progression based on macroblock rows. Return 0 for user-abort request.
|
||||
int VP8IteratorProgress(const VP8EncIterator* const it,
|
||||
int final_delta_percent);
|
||||
// Intra4x4 iterations
|
||||
void VP8IteratorStartI4(VP8EncIterator* const it);
|
||||
// returns true if not done.
|
||||
int VP8IteratorRotateI4(VP8EncIterator* const it,
|
||||
const uint8_t* const yuv_out);
|
||||
|
||||
// Non-zero context setup/teardown
|
||||
void VP8IteratorNzToBytes(VP8EncIterator* const it);
|
||||
void VP8IteratorBytesToNz(VP8EncIterator* const it);
|
||||
|
||||
// Helper functions to set mode properties
|
||||
void VP8SetIntra16Mode(const VP8EncIterator* const it, int mode);
|
||||
void VP8SetIntra4Mode(const VP8EncIterator* const it, const uint8_t* modes);
|
||||
void VP8SetIntraUVMode(const VP8EncIterator* const it, int mode);
|
||||
void VP8SetSkip(const VP8EncIterator* const it, int skip);
|
||||
void VP8SetSegment(const VP8EncIterator* const it, int segment);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Paginated token buffer
|
||||
|
||||
// WIP: #define USE_TOKEN_BUFFER
|
||||
|
||||
#ifdef USE_TOKEN_BUFFER
|
||||
|
||||
#define MAX_NUM_TOKEN 2048
|
||||
|
||||
typedef struct VP8Tokens VP8Tokens;
|
||||
struct VP8Tokens {
|
||||
uint16_t tokens_[MAX_NUM_TOKEN]; // bit#15: bit, bits 0..14: slot
|
||||
int left_;
|
||||
VP8Tokens* next_;
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
VP8Tokens* rows_;
|
||||
uint16_t* tokens_; // set to (*last_)->tokens_
|
||||
VP8Tokens** last_;
|
||||
int left_;
|
||||
int error_; // true in case of malloc error
|
||||
} VP8TBuffer;
|
||||
|
||||
void VP8TBufferInit(VP8TBuffer* const b); // initialize an empty buffer
|
||||
int VP8TBufferNewPage(VP8TBuffer* const b); // allocate a new page
|
||||
void VP8TBufferClear(VP8TBuffer* const b); // de-allocate memory
|
||||
|
||||
int VP8EmitTokens(const VP8TBuffer* const b, VP8BitWriter* const bw,
|
||||
const uint8_t* const probas);
|
||||
|
||||
static WEBP_INLINE int VP8AddToken(VP8TBuffer* const b,
|
||||
int bit, int proba_idx) {
|
||||
if (b->left_ > 0 || VP8TBufferNewPage(b)) {
|
||||
const int slot = --b->left_;
|
||||
b->tokens_[slot] = (bit << 15) | proba_idx;
|
||||
}
|
||||
return bit;
|
||||
}
|
||||
|
||||
#endif // USE_TOKEN_BUFFER
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8Encoder
|
||||
|
||||
struct VP8Encoder {
|
||||
const WebPConfig* config_; // user configuration and parameters
|
||||
WebPPicture* pic_; // input / output picture
|
||||
|
||||
// headers
|
||||
VP8FilterHeader filter_hdr_; // filtering information
|
||||
VP8SegmentHeader segment_hdr_; // segment information
|
||||
|
||||
int profile_; // VP8's profile, deduced from Config.
|
||||
|
||||
// dimension, in macroblock units.
|
||||
int mb_w_, mb_h_;
|
||||
int preds_w_; // stride of the *preds_ prediction plane (=4*mb_w + 1)
|
||||
|
||||
// number of partitions (1, 2, 4 or 8 = MAX_NUM_PARTITIONS)
|
||||
int num_parts_;
|
||||
|
||||
// per-partition boolean decoders.
|
||||
VP8BitWriter bw_; // part0
|
||||
VP8BitWriter parts_[MAX_NUM_PARTITIONS]; // token partitions
|
||||
|
||||
int percent_; // for progress
|
||||
|
||||
// transparency blob
|
||||
int has_alpha_;
|
||||
uint8_t* alpha_data_; // non-NULL if transparency is present
|
||||
uint32_t alpha_data_size_;
|
||||
|
||||
// enhancement layer
|
||||
int use_layer_;
|
||||
VP8BitWriter layer_bw_;
|
||||
uint8_t* layer_data_;
|
||||
size_t layer_data_size_;
|
||||
|
||||
// quantization info (one set of DC/AC dequant factor per segment)
|
||||
VP8SegmentInfo dqm_[NUM_MB_SEGMENTS];
|
||||
int base_quant_; // nominal quantizer value. Only used
|
||||
// for relative coding of segments' quant.
|
||||
int uv_alpha_; // U/V quantization susceptibility
|
||||
// global offset of quantizers, shared by all segments
|
||||
int dq_y1_dc_;
|
||||
int dq_y2_dc_, dq_y2_ac_;
|
||||
int dq_uv_dc_, dq_uv_ac_;
|
||||
|
||||
// probabilities and statistics
|
||||
VP8Proba proba_;
|
||||
uint64_t sse_[4]; // sum of Y/U/V/A squared errors for all macroblocks
|
||||
uint64_t sse_count_; // pixel count for the sse_[] stats
|
||||
int coded_size_;
|
||||
int residual_bytes_[3][4];
|
||||
int block_count_[3];
|
||||
|
||||
// quality/speed settings
|
||||
int method_; // 0=fastest, 6=best/slowest.
|
||||
int rd_opt_level_; // Deduced from method_.
|
||||
int max_i4_header_bits_; // partition #0 safeness factor
|
||||
|
||||
// Memory
|
||||
VP8MBInfo* mb_info_; // contextual macroblock infos (mb_w_ + 1)
|
||||
uint8_t* preds_; // predictions modes: (4*mb_w+1) * (4*mb_h+1)
|
||||
uint32_t* nz_; // non-zero bit context: mb_w+1
|
||||
uint8_t* yuv_in_; // input samples
|
||||
uint8_t* yuv_out_; // output samples
|
||||
uint8_t* yuv_out2_; // secondary scratch out-buffer. swapped with yuv_out_.
|
||||
uint8_t* yuv_p_; // scratch buffer for prediction
|
||||
uint8_t *y_top_; // top luma samples.
|
||||
uint8_t *uv_top_; // top u/v samples.
|
||||
// U and V are packed into 16 pixels (8 U + 8 V)
|
||||
uint8_t *y_left_; // left luma samples (adressable from index -1 to 15).
|
||||
uint8_t *u_left_; // left u samples (adressable from index -1 to 7)
|
||||
uint8_t *v_left_; // left v samples (adressable from index -1 to 7)
|
||||
|
||||
LFStats *lf_stats_; // autofilter stats (if NULL, autofilter is off)
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// internal functions. Not public.
|
||||
|
||||
// in tree.c
|
||||
extern const uint8_t VP8CoeffsProba0[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
|
||||
extern const uint8_t
|
||||
VP8CoeffsUpdateProba[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
|
||||
// Reset the token probabilities to their initial (default) values
|
||||
void VP8DefaultProbas(VP8Encoder* const enc);
|
||||
// Write the token probabilities
|
||||
void VP8WriteProbas(VP8BitWriter* const bw, const VP8Proba* const probas);
|
||||
// Writes the partition #0 modes (that is: all intra modes)
|
||||
void VP8CodeIntraModes(VP8Encoder* const enc);
|
||||
|
||||
// in syntax.c
|
||||
// Generates the final bitstream by coding the partition0 and headers,
|
||||
// and appending an assembly of all the pre-coded token partitions.
|
||||
// Return true if everything is ok.
|
||||
int VP8EncWrite(VP8Encoder* const enc);
|
||||
// Release memory allocated for bit-writing in VP8EncLoop & seq.
|
||||
void VP8EncFreeBitWriters(VP8Encoder* const enc);
|
||||
|
||||
// in frame.c
|
||||
extern const uint8_t VP8EncBands[16 + 1];
|
||||
// Form all the four Intra16x16 predictions in the yuv_p_ cache
|
||||
void VP8MakeLuma16Preds(const VP8EncIterator* const it);
|
||||
// Form all the four Chroma8x8 predictions in the yuv_p_ cache
|
||||
void VP8MakeChroma8Preds(const VP8EncIterator* const it);
|
||||
// Form all the ten Intra4x4 predictions in the yuv_p_ cache
|
||||
// for the 4x4 block it->i4_
|
||||
void VP8MakeIntra4Preds(const VP8EncIterator* const it);
|
||||
// Rate calculation
|
||||
int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd);
|
||||
int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]);
|
||||
int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd);
|
||||
// Main stat / coding passes
|
||||
int VP8EncLoop(VP8Encoder* const enc);
|
||||
int VP8StatLoop(VP8Encoder* const enc);
|
||||
|
||||
// in webpenc.c
|
||||
// Assign an error code to a picture. Return false for convenience.
|
||||
int WebPEncodingSetError(const WebPPicture* const pic, WebPEncodingError error);
|
||||
int WebPReportProgress(const WebPPicture* const pic,
|
||||
int percent, int* const percent_store);
|
||||
|
||||
// in analysis.c
|
||||
// Main analysis loop. Decides the segmentations and complexity.
|
||||
// Assigns a first guess for Intra16 and uvmode_ prediction modes.
|
||||
int VP8EncAnalyze(VP8Encoder* const enc);
|
||||
|
||||
// in quant.c
|
||||
// Sets up segment's quantization values, base_quant_ and filter strengths.
|
||||
void VP8SetSegmentParams(VP8Encoder* const enc, float quality);
|
||||
// Pick best modes and fills the levels. Returns true if skipped.
|
||||
int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt);
|
||||
|
||||
// in alpha.c
|
||||
void VP8EncInitAlpha(VP8Encoder* const enc); // initialize alpha compression
|
||||
int VP8EncFinishAlpha(VP8Encoder* const enc); // finalize compressed data
|
||||
void VP8EncDeleteAlpha(VP8Encoder* const enc); // delete compressed data
|
||||
|
||||
// in layer.c
|
||||
void VP8EncInitLayer(VP8Encoder* const enc); // init everything
|
||||
void VP8EncCodeLayerBlock(VP8EncIterator* it); // code one more macroblock
|
||||
int VP8EncFinishLayer(VP8Encoder* const enc); // finalize coding
|
||||
void VP8EncDeleteLayer(VP8Encoder* enc); // reclaim memory
|
||||
|
||||
// in filter.c
|
||||
|
||||
// SSIM utils
|
||||
typedef struct {
|
||||
double w, xm, ym, xxm, xym, yym;
|
||||
} DistoStats;
|
||||
void VP8SSIMAddStats(const DistoStats* const src, DistoStats* const dst);
|
||||
void VP8SSIMAccumulatePlane(const uint8_t* src1, int stride1,
|
||||
const uint8_t* src2, int stride2,
|
||||
int W, int H, DistoStats* const stats);
|
||||
double VP8SSIMGet(const DistoStats* const stats);
|
||||
double VP8SSIMGetSquaredError(const DistoStats* const stats);
|
||||
|
||||
// autofilter
|
||||
void VP8InitFilter(VP8EncIterator* const it);
|
||||
void VP8StoreFilterStats(VP8EncIterator* const it);
|
||||
void VP8AdjustFilterStrength(VP8EncIterator* const it);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_ENC_VP8ENCI_H_ */
|
File diff suppressed because it is too large
Load Diff
|
@ -1,68 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Lossless encoder: internal header.
|
||||
//
|
||||
// Author: Vikas Arora (vikaas.arora@gmail.com)
|
||||
|
||||
#ifndef WEBP_ENC_VP8LI_H_
|
||||
#define WEBP_ENC_VP8LI_H_
|
||||
|
||||
#include "./histogram.h"
|
||||
#include "../utils/bit_writer.h"
|
||||
#include "../encode.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
const WebPConfig* config_; // user configuration and parameters
|
||||
const WebPPicture* pic_; // input picture.
|
||||
|
||||
uint32_t* argb_; // Transformed argb image data.
|
||||
uint32_t* argb_scratch_; // Scratch memory for argb rows
|
||||
// (used for prediction).
|
||||
uint32_t* transform_data_; // Scratch memory for transform data.
|
||||
int current_width_; // Corresponds to packed image width.
|
||||
|
||||
// Encoding parameters derived from quality parameter.
|
||||
int histo_bits_;
|
||||
int transform_bits_;
|
||||
int cache_bits_; // If equal to 0, don't use color cache.
|
||||
|
||||
// Encoding parameters derived from image characteristics.
|
||||
int use_cross_color_;
|
||||
int use_subtract_green_;
|
||||
int use_predict_;
|
||||
int use_palette_;
|
||||
int palette_size_;
|
||||
uint32_t palette_[MAX_PALETTE_SIZE];
|
||||
} VP8LEncoder;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// internal functions. Not public.
|
||||
|
||||
// Encodes the picture.
|
||||
// Returns 0 if config or picture is NULL or picture doesn't have valid argb
|
||||
// input.
|
||||
int VP8LEncodeImage(const WebPConfig* const config,
|
||||
const WebPPicture* const picture);
|
||||
|
||||
// Encodes the main image stream using the supplied bit writer.
|
||||
WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
|
||||
const WebPPicture* const picture,
|
||||
VP8LBitWriter* const bw);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_ENC_VP8LI_H_ */
|
|
@ -1,389 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// WebP encoder: main entry point
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "./vp8enci.h"
|
||||
#include "./vp8li.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
// #define PRINT_MEMORY_INFO
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef PRINT_MEMORY_INFO
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int WebPGetEncoderVersion(void) {
|
||||
return (ENC_MAJ_VERSION << 16) | (ENC_MIN_VERSION << 8) | ENC_REV_VERSION;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPPicture
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static int DummyWriter(const uint8_t* data, size_t data_size,
|
||||
const WebPPicture* const picture) {
|
||||
// The following are to prevent 'unused variable' error message.
|
||||
(void)data;
|
||||
(void)data_size;
|
||||
(void)picture;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int WebPPictureInitInternal(WebPPicture* picture, int version) {
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_ENCODER_ABI_VERSION)) {
|
||||
return 0; // caller/system version mismatch!
|
||||
}
|
||||
if (picture != NULL) {
|
||||
memset(picture, 0, sizeof(*picture));
|
||||
picture->writer = DummyWriter;
|
||||
WebPEncodingSetError(picture, VP8_ENC_OK);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8Encoder
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static void ResetSegmentHeader(VP8Encoder* const enc) {
|
||||
VP8SegmentHeader* const hdr = &enc->segment_hdr_;
|
||||
hdr->num_segments_ = enc->config_->segments;
|
||||
hdr->update_map_ = (hdr->num_segments_ > 1);
|
||||
hdr->size_ = 0;
|
||||
}
|
||||
|
||||
static void ResetFilterHeader(VP8Encoder* const enc) {
|
||||
VP8FilterHeader* const hdr = &enc->filter_hdr_;
|
||||
hdr->simple_ = 1;
|
||||
hdr->level_ = 0;
|
||||
hdr->sharpness_ = 0;
|
||||
hdr->i4x4_lf_delta_ = 0;
|
||||
}
|
||||
|
||||
static void ResetBoundaryPredictions(VP8Encoder* const enc) {
|
||||
// init boundary values once for all
|
||||
// Note: actually, initializing the preds_[] is only needed for intra4.
|
||||
int i;
|
||||
uint8_t* const top = enc->preds_ - enc->preds_w_;
|
||||
uint8_t* const left = enc->preds_ - 1;
|
||||
for (i = -1; i < 4 * enc->mb_w_; ++i) {
|
||||
top[i] = B_DC_PRED;
|
||||
}
|
||||
for (i = 0; i < 4 * enc->mb_h_; ++i) {
|
||||
left[i * enc->preds_w_] = B_DC_PRED;
|
||||
}
|
||||
enc->nz_[-1] = 0; // constant
|
||||
}
|
||||
|
||||
// Map configured quality level to coding tools used.
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// Quality | 0 | 1 | 2 | 3 | 4 | 5 +
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// dynamic prob| ~ | x | x | x | x | x |
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// rd-opt modes| | | x | x | x | x |
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// fast i4/i16 | x | x | | | | |
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// rd-opt i4/16| | | x | x | x | x |
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// Trellis | | x | | | x | x |
|
||||
//-------------+---+---+---+---+---+---+
|
||||
// full-SNS | | | | | | x |
|
||||
//-------------+---+---+---+---+---+---+
|
||||
|
||||
static void MapConfigToTools(VP8Encoder* const enc) {
|
||||
const int method = enc->config_->method;
|
||||
const int limit = 100 - enc->config_->partition_limit;
|
||||
enc->method_ = method;
|
||||
enc->rd_opt_level_ = (method >= 6) ? 3
|
||||
: (method >= 5) ? 2
|
||||
: (method >= 3) ? 1
|
||||
: 0;
|
||||
enc->max_i4_header_bits_ =
|
||||
256 * 16 * 16 * // upper bound: up to 16bit per 4x4 block
|
||||
(limit * limit) / (100 * 100); // ... modulated with a quadratic curve.
|
||||
}
|
||||
|
||||
// Memory scaling with dimensions:
|
||||
// memory (bytes) ~= 2.25 * w + 0.0625 * w * h
|
||||
//
|
||||
// Typical memory footprint (768x510 picture)
|
||||
// Memory used:
|
||||
// encoder: 33919
|
||||
// block cache: 2880
|
||||
// info: 3072
|
||||
// preds: 24897
|
||||
// top samples: 1623
|
||||
// non-zero: 196
|
||||
// lf-stats: 2048
|
||||
// total: 68635
|
||||
// Transcient object sizes:
|
||||
// VP8EncIterator: 352
|
||||
// VP8ModeScore: 912
|
||||
// VP8SegmentInfo: 532
|
||||
// VP8Proba: 31032
|
||||
// LFStats: 2048
|
||||
// Picture size (yuv): 589824
|
||||
|
||||
static VP8Encoder* InitVP8Encoder(const WebPConfig* const config,
|
||||
WebPPicture* const picture) {
|
||||
const int use_filter =
|
||||
(config->filter_strength > 0) || (config->autofilter > 0);
|
||||
const int mb_w = (picture->width + 15) >> 4;
|
||||
const int mb_h = (picture->height + 15) >> 4;
|
||||
const int preds_w = 4 * mb_w + 1;
|
||||
const int preds_h = 4 * mb_h + 1;
|
||||
const size_t preds_size = preds_w * preds_h * sizeof(uint8_t);
|
||||
const int top_stride = mb_w * 16;
|
||||
const size_t nz_size = (mb_w + 1) * sizeof(uint32_t);
|
||||
const size_t cache_size = (3 * YUV_SIZE + PRED_SIZE) * sizeof(uint8_t);
|
||||
const size_t info_size = mb_w * mb_h * sizeof(VP8MBInfo);
|
||||
const size_t samples_size = (2 * top_stride + // top-luma/u/v
|
||||
16 + 16 + 16 + 8 + 1 + // left y/u/v
|
||||
2 * ALIGN_CST) // align all
|
||||
* sizeof(uint8_t);
|
||||
const size_t lf_stats_size =
|
||||
config->autofilter ? sizeof(LFStats) + ALIGN_CST : 0;
|
||||
VP8Encoder* enc;
|
||||
uint8_t* mem;
|
||||
const uint64_t size = (uint64_t)sizeof(VP8Encoder) // main struct
|
||||
+ ALIGN_CST // cache alignment
|
||||
+ cache_size // working caches
|
||||
+ info_size // modes info
|
||||
+ preds_size // prediction modes
|
||||
+ samples_size // top/left samples
|
||||
+ nz_size // coeff context bits
|
||||
+ lf_stats_size; // autofilter stats
|
||||
|
||||
#ifdef PRINT_MEMORY_INFO
|
||||
printf("===================================\n");
|
||||
printf("Memory used:\n"
|
||||
" encoder: %ld\n"
|
||||
" block cache: %ld\n"
|
||||
" info: %ld\n"
|
||||
" preds: %ld\n"
|
||||
" top samples: %ld\n"
|
||||
" non-zero: %ld\n"
|
||||
" lf-stats: %ld\n"
|
||||
" total: %ld\n",
|
||||
sizeof(VP8Encoder) + ALIGN_CST, cache_size, info_size,
|
||||
preds_size, samples_size, nz_size, lf_stats_size, size);
|
||||
printf("Transcient object sizes:\n"
|
||||
" VP8EncIterator: %ld\n"
|
||||
" VP8ModeScore: %ld\n"
|
||||
" VP8SegmentInfo: %ld\n"
|
||||
" VP8Proba: %ld\n"
|
||||
" LFStats: %ld\n",
|
||||
sizeof(VP8EncIterator), sizeof(VP8ModeScore),
|
||||
sizeof(VP8SegmentInfo), sizeof(VP8Proba),
|
||||
sizeof(LFStats));
|
||||
printf("Picture size (yuv): %ld\n",
|
||||
mb_w * mb_h * 384 * sizeof(uint8_t));
|
||||
printf("===================================\n");
|
||||
#endif
|
||||
mem = (uint8_t*)WebPSafeMalloc(size, sizeof(*mem));
|
||||
if (mem == NULL) {
|
||||
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
|
||||
return NULL;
|
||||
}
|
||||
enc = (VP8Encoder*)mem;
|
||||
mem = (uint8_t*)DO_ALIGN(mem + sizeof(*enc));
|
||||
memset(enc, 0, sizeof(*enc));
|
||||
enc->num_parts_ = 1 << config->partitions;
|
||||
enc->mb_w_ = mb_w;
|
||||
enc->mb_h_ = mb_h;
|
||||
enc->preds_w_ = preds_w;
|
||||
enc->yuv_in_ = (uint8_t*)mem;
|
||||
mem += YUV_SIZE;
|
||||
enc->yuv_out_ = (uint8_t*)mem;
|
||||
mem += YUV_SIZE;
|
||||
enc->yuv_out2_ = (uint8_t*)mem;
|
||||
mem += YUV_SIZE;
|
||||
enc->yuv_p_ = (uint8_t*)mem;
|
||||
mem += PRED_SIZE;
|
||||
enc->mb_info_ = (VP8MBInfo*)mem;
|
||||
mem += info_size;
|
||||
enc->preds_ = ((uint8_t*)mem) + 1 + enc->preds_w_;
|
||||
mem += preds_w * preds_h * sizeof(uint8_t);
|
||||
enc->nz_ = 1 + (uint32_t*)mem;
|
||||
mem += nz_size;
|
||||
enc->lf_stats_ = lf_stats_size ? (LFStats*)DO_ALIGN(mem) : NULL;
|
||||
mem += lf_stats_size;
|
||||
|
||||
// top samples (all 16-aligned)
|
||||
mem = (uint8_t*)DO_ALIGN(mem);
|
||||
enc->y_top_ = (uint8_t*)mem;
|
||||
enc->uv_top_ = enc->y_top_ + top_stride;
|
||||
mem += 2 * top_stride;
|
||||
mem = (uint8_t*)DO_ALIGN(mem + 1);
|
||||
enc->y_left_ = (uint8_t*)mem;
|
||||
mem += 16 + 16;
|
||||
enc->u_left_ = (uint8_t*)mem;
|
||||
mem += 16;
|
||||
enc->v_left_ = (uint8_t*)mem;
|
||||
mem += 8;
|
||||
|
||||
enc->config_ = config;
|
||||
enc->profile_ = use_filter ? ((config->filter_type == 1) ? 0 : 1) : 2;
|
||||
enc->pic_ = picture;
|
||||
enc->percent_ = 0;
|
||||
|
||||
MapConfigToTools(enc);
|
||||
VP8EncDspInit();
|
||||
VP8DefaultProbas(enc);
|
||||
ResetSegmentHeader(enc);
|
||||
ResetFilterHeader(enc);
|
||||
ResetBoundaryPredictions(enc);
|
||||
|
||||
VP8EncInitAlpha(enc);
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
VP8EncInitLayer(enc);
|
||||
#endif
|
||||
|
||||
return enc;
|
||||
}
|
||||
|
||||
static void DeleteVP8Encoder(VP8Encoder* enc) {
|
||||
if (enc != NULL) {
|
||||
VP8EncDeleteAlpha(enc);
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
VP8EncDeleteLayer(enc);
|
||||
#endif
|
||||
free(enc);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static double GetPSNR(uint64_t err, uint64_t size) {
|
||||
return err ? 10. * log10(255. * 255. * size / err) : 99.;
|
||||
}
|
||||
|
||||
static void FinalizePSNR(const VP8Encoder* const enc) {
|
||||
WebPAuxStats* stats = enc->pic_->stats;
|
||||
const uint64_t size = enc->sse_count_;
|
||||
const uint64_t* const sse = enc->sse_;
|
||||
stats->PSNR[0] = (float)GetPSNR(sse[0], size);
|
||||
stats->PSNR[1] = (float)GetPSNR(sse[1], size / 4);
|
||||
stats->PSNR[2] = (float)GetPSNR(sse[2], size / 4);
|
||||
stats->PSNR[3] = (float)GetPSNR(sse[0] + sse[1] + sse[2], size * 3 / 2);
|
||||
stats->PSNR[4] = (float)GetPSNR(sse[3], size);
|
||||
}
|
||||
|
||||
static void StoreStats(VP8Encoder* const enc) {
|
||||
WebPAuxStats* const stats = enc->pic_->stats;
|
||||
if (stats != NULL) {
|
||||
int i, s;
|
||||
for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
|
||||
stats->segment_level[i] = enc->dqm_[i].fstrength_;
|
||||
stats->segment_quant[i] = enc->dqm_[i].quant_;
|
||||
for (s = 0; s <= 2; ++s) {
|
||||
stats->residual_bytes[s][i] = enc->residual_bytes_[s][i];
|
||||
}
|
||||
}
|
||||
FinalizePSNR(enc);
|
||||
stats->coded_size = enc->coded_size_;
|
||||
for (i = 0; i < 3; ++i) {
|
||||
stats->block_count[i] = enc->block_count_[i];
|
||||
}
|
||||
}
|
||||
WebPReportProgress(enc->pic_, 100, &enc->percent_); // done!
|
||||
}
|
||||
|
||||
int WebPEncodingSetError(const WebPPicture* const pic,
|
||||
WebPEncodingError error) {
|
||||
assert((int)error < VP8_ENC_ERROR_LAST);
|
||||
assert((int)error >= VP8_ENC_OK);
|
||||
((WebPPicture*)pic)->error_code = error;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int WebPReportProgress(const WebPPicture* const pic,
|
||||
int percent, int* const percent_store) {
|
||||
if (percent_store != NULL && percent != *percent_store) {
|
||||
*percent_store = percent;
|
||||
if (pic->progress_hook && !pic->progress_hook(percent, pic)) {
|
||||
// user abort requested
|
||||
WebPEncodingSetError(pic, VP8_ENC_ERROR_USER_ABORT);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1; // ok
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int WebPEncode(const WebPConfig* config, WebPPicture* pic) {
|
||||
int ok;
|
||||
|
||||
if (pic == NULL)
|
||||
return 0;
|
||||
WebPEncodingSetError(pic, VP8_ENC_OK); // all ok so far
|
||||
if (config == NULL) // bad params
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_NULL_PARAMETER);
|
||||
if (!WebPValidateConfig(config))
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_INVALID_CONFIGURATION);
|
||||
if (pic->width <= 0 || pic->height <= 0)
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_DIMENSION);
|
||||
if (pic->width > WEBP_MAX_DIMENSION || pic->height > WEBP_MAX_DIMENSION)
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_DIMENSION);
|
||||
|
||||
if (pic->stats != NULL) memset(pic->stats, 0, sizeof(*pic->stats));
|
||||
|
||||
if (!config->lossless) {
|
||||
VP8Encoder* enc = NULL;
|
||||
if (pic->y == NULL || pic->u == NULL || pic->v == NULL) {
|
||||
if (pic->argb != NULL) {
|
||||
if (!WebPPictureARGBToYUVA(pic, WEBP_YUV420)) return 0;
|
||||
} else {
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_NULL_PARAMETER);
|
||||
}
|
||||
}
|
||||
|
||||
enc = InitVP8Encoder(config, pic);
|
||||
if (enc == NULL) return 0; // pic->error is already set.
|
||||
// Note: each of the tasks below account for 20% in the progress report.
|
||||
ok = VP8EncAnalyze(enc)
|
||||
&& VP8StatLoop(enc)
|
||||
&& VP8EncLoop(enc)
|
||||
&& VP8EncFinishAlpha(enc)
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
&& VP8EncFinishLayer(enc)
|
||||
#endif
|
||||
&& VP8EncWrite(enc);
|
||||
StoreStats(enc);
|
||||
if (!ok) {
|
||||
VP8EncFreeBitWriters(enc);
|
||||
}
|
||||
DeleteVP8Encoder(enc);
|
||||
} else {
|
||||
if (pic->argb == NULL)
|
||||
return WebPEncodingSetError(pic, VP8_ENC_ERROR_NULL_PARAMETER);
|
||||
|
||||
ok = VP8LEncodeImage(config, pic); // Sets pic->error in case of problem.
|
||||
}
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,463 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// WebP encoder: main interface
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_WEBP_ENCODE_H_
|
||||
#define WEBP_WEBP_ENCODE_H_
|
||||
|
||||
#include "./types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define WEBP_ENCODER_ABI_VERSION 0x0200 // MAJOR(8b) + MINOR(8b)
|
||||
|
||||
// Return the encoder's version number, packed in hexadecimal using 8bits for
|
||||
// each of major/minor/revision. E.g: v2.5.7 is 0x020507.
|
||||
WEBP_EXTERN(int) WebPGetEncoderVersion(void);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// One-stop-shop call! No questions asked:
|
||||
|
||||
// Returns the size of the compressed data (pointed to by *output), or 0 if
|
||||
// an error occurred. The compressed data must be released by the caller
|
||||
// using the call 'free(*output)'.
|
||||
// These functions compress using the lossy format, and the quality_factor
|
||||
// can go from 0 (smaller output, lower quality) to 100 (best quality,
|
||||
// larger output).
|
||||
WEBP_EXTERN(size_t) WebPEncodeRGB(const uint8_t* rgb,
|
||||
int width, int height, int stride,
|
||||
float quality_factor, uint8_t** output);
|
||||
WEBP_EXTERN(size_t) WebPEncodeBGR(const uint8_t* bgr,
|
||||
int width, int height, int stride,
|
||||
float quality_factor, uint8_t** output);
|
||||
WEBP_EXTERN(size_t) WebPEncodeRGBA(const uint8_t* rgba,
|
||||
int width, int height, int stride,
|
||||
float quality_factor, uint8_t** output);
|
||||
WEBP_EXTERN(size_t) WebPEncodeBGRA(const uint8_t* bgra,
|
||||
int width, int height, int stride,
|
||||
float quality_factor, uint8_t** output);
|
||||
|
||||
// These functions are the equivalent of the above, but compressing in a
|
||||
// lossless manner. Files are usually larger than lossy format, but will
|
||||
// not suffer any compression loss.
|
||||
WEBP_EXTERN(size_t) WebPEncodeLosslessRGB(const uint8_t* rgb,
|
||||
int width, int height, int stride,
|
||||
uint8_t** output);
|
||||
WEBP_EXTERN(size_t) WebPEncodeLosslessBGR(const uint8_t* bgr,
|
||||
int width, int height, int stride,
|
||||
uint8_t** output);
|
||||
WEBP_EXTERN(size_t) WebPEncodeLosslessRGBA(const uint8_t* rgba,
|
||||
int width, int height, int stride,
|
||||
uint8_t** output);
|
||||
WEBP_EXTERN(size_t) WebPEncodeLosslessBGRA(const uint8_t* bgra,
|
||||
int width, int height, int stride,
|
||||
uint8_t** output);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Coding parameters
|
||||
|
||||
// Image characteristics hint for the underlying encoder.
|
||||
typedef enum {
|
||||
WEBP_HINT_DEFAULT = 0, // default preset.
|
||||
WEBP_HINT_PICTURE, // digital picture, like portrait, inner shot
|
||||
WEBP_HINT_PHOTO, // outdoor photograph, with natural lighting
|
||||
WEBP_HINT_GRAPH, // Discrete tone image (graph, map-tile etc).
|
||||
WEBP_HINT_LAST
|
||||
} WebPImageHint;
|
||||
|
||||
typedef struct {
|
||||
int lossless; // Lossless encoding (0=lossy(default), 1=lossless).
|
||||
float quality; // between 0 (smallest file) and 100 (biggest)
|
||||
int method; // quality/speed trade-off (0=fast, 6=slower-better)
|
||||
|
||||
WebPImageHint image_hint; // Hint for image type (lossless only for now).
|
||||
|
||||
// Parameters related to lossy compression only:
|
||||
int target_size; // if non-zero, set the desired target size in bytes.
|
||||
// Takes precedence over the 'compression' parameter.
|
||||
float target_PSNR; // if non-zero, specifies the minimal distortion to
|
||||
// try to achieve. Takes precedence over target_size.
|
||||
int segments; // maximum number of segments to use, in [1..4]
|
||||
int sns_strength; // Spatial Noise Shaping. 0=off, 100=maximum.
|
||||
int filter_strength; // range: [0 = off .. 100 = strongest]
|
||||
int filter_sharpness; // range: [0 = off .. 7 = least sharp]
|
||||
int filter_type; // filtering type: 0 = simple, 1 = strong (only used
|
||||
// if filter_strength > 0 or autofilter > 0)
|
||||
int autofilter; // Auto adjust filter's strength [0 = off, 1 = on]
|
||||
int alpha_compression; // Algorithm for encoding the alpha plane (0 = none,
|
||||
// 1 = compressed with WebP lossless). Default is 1.
|
||||
int alpha_filtering; // Predictive filtering method for alpha plane.
|
||||
// 0: none, 1: fast, 2: best. Default if 1.
|
||||
int alpha_quality; // Between 0 (smallest size) and 100 (lossless).
|
||||
// Default is 100.
|
||||
int pass; // number of entropy-analysis passes (in [1..10]).
|
||||
|
||||
int show_compressed; // if true, export the compressed picture back.
|
||||
// In-loop filtering is not applied.
|
||||
int preprocessing; // preprocessing filter (0=none, 1=segment-smooth)
|
||||
int partitions; // log2(number of token partitions) in [0..3]. Default
|
||||
// is set to 0 for easier progressive decoding.
|
||||
int partition_limit; // quality degradation allowed to fit the 512k limit
|
||||
// on prediction modes coding (0: no degradation,
|
||||
// 100: maximum possible degradation).
|
||||
|
||||
uint32_t pad[8]; // padding for later use
|
||||
} WebPConfig;
|
||||
|
||||
// Enumerate some predefined settings for WebPConfig, depending on the type
|
||||
// of source picture. These presets are used when calling WebPConfigPreset().
|
||||
typedef enum {
|
||||
WEBP_PRESET_DEFAULT = 0, // default preset.
|
||||
WEBP_PRESET_PICTURE, // digital picture, like portrait, inner shot
|
||||
WEBP_PRESET_PHOTO, // outdoor photograph, with natural lighting
|
||||
WEBP_PRESET_DRAWING, // hand or line drawing, with high-contrast details
|
||||
WEBP_PRESET_ICON, // small-sized colorful images
|
||||
WEBP_PRESET_TEXT // text-like
|
||||
} WebPPreset;
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(int) WebPConfigInitInternal(WebPConfig*, WebPPreset, float, int);
|
||||
|
||||
// Should always be called, to initialize a fresh WebPConfig structure before
|
||||
// modification. Returns false in case of version mismatch. WebPConfigInit()
|
||||
// must have succeeded before using the 'config' object.
|
||||
// Note that the default values are lossless=0 and quality=75.
|
||||
static WEBP_INLINE int WebPConfigInit(WebPConfig* config) {
|
||||
return WebPConfigInitInternal(config, WEBP_PRESET_DEFAULT, 75.f,
|
||||
WEBP_ENCODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
// This function will initialize the configuration according to a predefined
|
||||
// set of parameters (referred to by 'preset') and a given quality factor.
|
||||
// This function can be called as a replacement to WebPConfigInit(). Will
|
||||
// return false in case of error.
|
||||
static WEBP_INLINE int WebPConfigPreset(WebPConfig* config,
|
||||
WebPPreset preset, float quality) {
|
||||
return WebPConfigInitInternal(config, preset, quality,
|
||||
WEBP_ENCODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Returns true if 'config' is non-NULL and all configuration parameters are
|
||||
// within their valid ranges.
|
||||
WEBP_EXTERN(int) WebPValidateConfig(const WebPConfig* config);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Input / Output
|
||||
|
||||
typedef struct WebPPicture WebPPicture; // main structure for I/O
|
||||
|
||||
// Structure for storing auxiliary statistics (mostly for lossy encoding).
|
||||
typedef struct {
|
||||
int coded_size; // final size
|
||||
|
||||
float PSNR[5]; // peak-signal-to-noise ratio for Y/U/V/All/Alpha
|
||||
int block_count[3]; // number of intra4/intra16/skipped macroblocks
|
||||
int header_bytes[2]; // approximate number of bytes spent for header
|
||||
// and mode-partition #0
|
||||
int residual_bytes[3][4]; // approximate number of bytes spent for
|
||||
// DC/AC/uv coefficients for each (0..3) segments.
|
||||
int segment_size[4]; // number of macroblocks in each segments
|
||||
int segment_quant[4]; // quantizer values for each segments
|
||||
int segment_level[4]; // filtering strength for each segments [0..63]
|
||||
|
||||
int alpha_data_size; // size of the transparency data
|
||||
int layer_data_size; // size of the enhancement layer data
|
||||
|
||||
// lossless encoder statistics
|
||||
uint32_t lossless_features; // bit0:predictor bit1:cross-color transform
|
||||
// bit2:subtract-green bit3:color indexing
|
||||
int histogram_bits; // number of precision bits of histogram
|
||||
int transform_bits; // precision bits for transform
|
||||
int cache_bits; // number of bits for color cache lookup
|
||||
int palette_size; // number of color in palette, if used
|
||||
int lossless_size; // final lossless size
|
||||
|
||||
uint32_t pad[4]; // padding for later use
|
||||
} WebPAuxStats;
|
||||
|
||||
// Signature for output function. Should return true if writing was successful.
|
||||
// data/data_size is the segment of data to write, and 'picture' is for
|
||||
// reference (and so one can make use of picture->custom_ptr).
|
||||
typedef int (*WebPWriterFunction)(const uint8_t* data, size_t data_size,
|
||||
const WebPPicture* picture);
|
||||
|
||||
// WebPMemoryWrite: a special WebPWriterFunction that writes to memory using
|
||||
// the following WebPMemoryWriter object (to be set as a custom_ptr).
|
||||
typedef struct {
|
||||
uint8_t* mem; // final buffer (of size 'max_size', larger than 'size').
|
||||
size_t size; // final size
|
||||
size_t max_size; // total capacity
|
||||
uint32_t pad[1]; // padding for later use
|
||||
} WebPMemoryWriter;
|
||||
|
||||
// The following must be called first before any use.
|
||||
WEBP_EXTERN(void) WebPMemoryWriterInit(WebPMemoryWriter* writer);
|
||||
|
||||
// The custom writer to be used with WebPMemoryWriter as custom_ptr. Upon
|
||||
// completion, writer.mem and writer.size will hold the coded data.
|
||||
WEBP_EXTERN(int) WebPMemoryWrite(const uint8_t* data, size_t data_size,
|
||||
const WebPPicture* picture);
|
||||
|
||||
// Progress hook, called from time to time to report progress. It can return
|
||||
// false to request an abort of the encoding process, or true otherwise if
|
||||
// everything is OK.
|
||||
typedef int (*WebPProgressHook)(int percent, const WebPPicture* picture);
|
||||
|
||||
typedef enum {
|
||||
// chroma sampling
|
||||
WEBP_YUV420 = 0, // 4:2:0
|
||||
WEBP_YUV422 = 1, // 4:2:2
|
||||
WEBP_YUV444 = 2, // 4:4:4
|
||||
WEBP_YUV400 = 3, // grayscale
|
||||
WEBP_CSP_UV_MASK = 3, // bit-mask to get the UV sampling factors
|
||||
// alpha channel variants
|
||||
WEBP_YUV420A = 4,
|
||||
WEBP_YUV422A = 5,
|
||||
WEBP_YUV444A = 6,
|
||||
WEBP_YUV400A = 7, // grayscale + alpha
|
||||
WEBP_CSP_ALPHA_BIT = 4 // bit that is set if alpha is present
|
||||
} WebPEncCSP;
|
||||
|
||||
// Encoding error conditions.
|
||||
typedef enum {
|
||||
VP8_ENC_OK = 0,
|
||||
VP8_ENC_ERROR_OUT_OF_MEMORY, // memory error allocating objects
|
||||
VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY, // memory error while flushing bits
|
||||
VP8_ENC_ERROR_NULL_PARAMETER, // a pointer parameter is NULL
|
||||
VP8_ENC_ERROR_INVALID_CONFIGURATION, // configuration is invalid
|
||||
VP8_ENC_ERROR_BAD_DIMENSION, // picture has invalid width/height
|
||||
VP8_ENC_ERROR_PARTITION0_OVERFLOW, // partition is bigger than 512k
|
||||
VP8_ENC_ERROR_PARTITION_OVERFLOW, // partition is bigger than 16M
|
||||
VP8_ENC_ERROR_BAD_WRITE, // error while flushing bytes
|
||||
VP8_ENC_ERROR_FILE_TOO_BIG, // file is bigger than 4G
|
||||
VP8_ENC_ERROR_USER_ABORT, // abort request by user
|
||||
VP8_ENC_ERROR_LAST // list terminator. always last.
|
||||
} WebPEncodingError;
|
||||
|
||||
// maximum width/height allowed (inclusive), in pixels
|
||||
#define WEBP_MAX_DIMENSION 16383
|
||||
|
||||
// Main exchange structure (input samples, output bytes, statistics)
|
||||
struct WebPPicture {
|
||||
|
||||
// INPUT
|
||||
//////////////
|
||||
// Main flag for encoder selecting between ARGB or YUV input.
|
||||
// It is recommended to use ARGB input (*argb, argb_stride) for lossless
|
||||
// compression, and YUV input (*y, *u, *v, etc.) for lossy compression
|
||||
// since these are the respective native colorspace for these formats.
|
||||
int use_argb;
|
||||
|
||||
// YUV input (mostly used for input to lossy compression)
|
||||
WebPEncCSP colorspace; // colorspace: should be YUV420 for now (=Y'CbCr).
|
||||
int width, height; // dimensions (less or equal to WEBP_MAX_DIMENSION)
|
||||
uint8_t *y, *u, *v; // pointers to luma/chroma planes.
|
||||
int y_stride, uv_stride; // luma/chroma strides.
|
||||
uint8_t* a; // pointer to the alpha plane
|
||||
int a_stride; // stride of the alpha plane
|
||||
uint32_t pad1[2]; // padding for later use
|
||||
|
||||
// ARGB input (mostly used for input to lossless compression)
|
||||
uint32_t* argb; // Pointer to argb (32 bit) plane.
|
||||
int argb_stride; // This is stride in pixels units, not bytes.
|
||||
uint32_t pad2[3]; // padding for later use
|
||||
|
||||
// OUTPUT
|
||||
///////////////
|
||||
// Byte-emission hook, to store compressed bytes as they are ready.
|
||||
WebPWriterFunction writer; // can be NULL
|
||||
void* custom_ptr; // can be used by the writer.
|
||||
|
||||
// map for extra information (only for lossy compression mode)
|
||||
int extra_info_type; // 1: intra type, 2: segment, 3: quant
|
||||
// 4: intra-16 prediction mode,
|
||||
// 5: chroma prediction mode,
|
||||
// 6: bit cost, 7: distortion
|
||||
uint8_t* extra_info; // if not NULL, points to an array of size
|
||||
// ((width + 15) / 16) * ((height + 15) / 16) that
|
||||
// will be filled with a macroblock map, depending
|
||||
// on extra_info_type.
|
||||
|
||||
// STATS AND REPORTS
|
||||
///////////////////////////
|
||||
// Pointer to side statistics (updated only if not NULL)
|
||||
WebPAuxStats* stats;
|
||||
|
||||
// Error code for the latest error encountered during encoding
|
||||
WebPEncodingError error_code;
|
||||
|
||||
// If not NULL, report progress during encoding.
|
||||
WebPProgressHook progress_hook;
|
||||
|
||||
void* user_data; // this field is free to be set to any value and
|
||||
// used during callbacks (like progress-report e.g.).
|
||||
|
||||
uint32_t pad3[3]; // padding for later use
|
||||
|
||||
// Unused for now: original samples (for non-YUV420 modes)
|
||||
uint8_t *u0, *v0;
|
||||
int uv0_stride;
|
||||
|
||||
uint32_t pad4[7]; // padding for later use
|
||||
|
||||
// PRIVATE FIELDS
|
||||
////////////////////
|
||||
void* memory_; // row chunk of memory for yuva planes
|
||||
void* memory_argb_; // and for argb too.
|
||||
void* pad5[2]; // padding for later use
|
||||
};
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(int) WebPPictureInitInternal(WebPPicture*, int);
|
||||
|
||||
// Should always be called, to initialize the structure. Returns false in case
|
||||
// of version mismatch. WebPPictureInit() must have succeeded before using the
|
||||
// 'picture' object.
|
||||
// Note that, by default, use_argb is false and colorspace is WEBP_YUV420.
|
||||
static WEBP_INLINE int WebPPictureInit(WebPPicture* picture) {
|
||||
return WebPPictureInitInternal(picture, WEBP_ENCODER_ABI_VERSION);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// WebPPicture utils
|
||||
|
||||
// Convenience allocation / deallocation based on picture->width/height:
|
||||
// Allocate y/u/v buffers as per colorspace/width/height specification.
|
||||
// Note! This function will free the previous buffer if needed.
|
||||
// Returns false in case of memory error.
|
||||
WEBP_EXTERN(int) WebPPictureAlloc(WebPPicture* picture);
|
||||
|
||||
// Release the memory allocated by WebPPictureAlloc() or WebPPictureImport*().
|
||||
// Note that this function does _not_ free the memory used by the 'picture'
|
||||
// object itself.
|
||||
// Besides memory (which is reclaimed) all other fields of 'picture' are
|
||||
// preserved.
|
||||
WEBP_EXTERN(void) WebPPictureFree(WebPPicture* picture);
|
||||
|
||||
// Copy the pixels of *src into *dst, using WebPPictureAlloc. Upon return,
|
||||
// *dst will fully own the copied pixels (this is not a view).
|
||||
// Returns false in case of memory allocation error.
|
||||
WEBP_EXTERN(int) WebPPictureCopy(const WebPPicture* src, WebPPicture* dst);
|
||||
|
||||
// Compute PSNR or SSIM distortion between two pictures.
|
||||
// Result is in dB, stores in result[] in the Y/U/V/Alpha/All order.
|
||||
// Returns false in case of error (pic1 and pic2 don't have same dimension, ...)
|
||||
// Warning: this function is rather CPU-intensive.
|
||||
WEBP_EXTERN(int) WebPPictureDistortion(
|
||||
const WebPPicture* pic1, const WebPPicture* pic2,
|
||||
int metric_type, // 0 = PSNR, 1 = SSIM
|
||||
float result[5]);
|
||||
|
||||
// self-crops a picture to the rectangle defined by top/left/width/height.
|
||||
// Returns false in case of memory allocation error, or if the rectangle is
|
||||
// outside of the source picture.
|
||||
// The rectangle for the view is defined by the top-left corner pixel
|
||||
// coordinates (left, top) as well as its width and height. This rectangle
|
||||
// must be fully be comprised inside the 'src' source picture. If the source
|
||||
// picture uses the YUV420 colorspace, the top and left coordinates will be
|
||||
// snapped to even values.
|
||||
WEBP_EXTERN(int) WebPPictureCrop(WebPPicture* picture,
|
||||
int left, int top, int width, int height);
|
||||
|
||||
// Extracts a view from 'src' picture into 'dst'. The rectangle for the view
|
||||
// is defined by the top-left corner pixel coordinates (left, top) as well
|
||||
// as its width and height. This rectangle must be fully be comprised inside
|
||||
// the 'src' source picture. If the source picture uses the YUV420 colorspace,
|
||||
// the top and left coordinates will be snapped to even values.
|
||||
// Picture 'src' must out-live 'dst' picture. Self-extraction of view is allowed
|
||||
// ('src' equal to 'dst') as a mean of fast-cropping (but note that doing so,
|
||||
// the original dimension will be lost).
|
||||
// Returns false in case of memory allocation error or invalid parameters.
|
||||
WEBP_EXTERN(int) WebPPictureView(const WebPPicture* src,
|
||||
int left, int top, int width, int height,
|
||||
WebPPicture* dst);
|
||||
|
||||
// Returns true if the 'picture' is actually a view and therefore does
|
||||
// not own the memory for pixels.
|
||||
WEBP_EXTERN(int) WebPPictureIsView(const WebPPicture* picture);
|
||||
|
||||
// Rescale a picture to new dimension width x height.
|
||||
// Now gamma correction is applied.
|
||||
// Returns false in case of error (invalid parameter or insufficient memory).
|
||||
WEBP_EXTERN(int) WebPPictureRescale(WebPPicture* pic, int width, int height);
|
||||
|
||||
// Colorspace conversion function to import RGB samples.
|
||||
// Previous buffer will be free'd, if any.
|
||||
// *rgb buffer should have a size of at least height * rgb_stride.
|
||||
// Returns false in case of memory error.
|
||||
WEBP_EXTERN(int) WebPPictureImportRGB(
|
||||
WebPPicture* picture, const uint8_t* rgb, int rgb_stride);
|
||||
// Same, but for RGBA buffer.
|
||||
WEBP_EXTERN(int) WebPPictureImportRGBA(
|
||||
WebPPicture* picture, const uint8_t* rgba, int rgba_stride);
|
||||
// Same, but for RGBA buffer. Imports the RGB direct from the 32-bit format
|
||||
// input buffer ignoring the alpha channel. Avoids needing to copy the data
|
||||
// to a temporary 24-bit RGB buffer to import the RGB only.
|
||||
WEBP_EXTERN(int) WebPPictureImportRGBX(
|
||||
WebPPicture* picture, const uint8_t* rgbx, int rgbx_stride);
|
||||
|
||||
// Variants of the above, but taking BGR(A|X) input.
|
||||
WEBP_EXTERN(int) WebPPictureImportBGR(
|
||||
WebPPicture* picture, const uint8_t* bgr, int bgr_stride);
|
||||
WEBP_EXTERN(int) WebPPictureImportBGRA(
|
||||
WebPPicture* picture, const uint8_t* bgra, int bgra_stride);
|
||||
WEBP_EXTERN(int) WebPPictureImportBGRX(
|
||||
WebPPicture* picture, const uint8_t* bgrx, int bgrx_stride);
|
||||
|
||||
// Converts picture->argb data to the YUVA format specified by 'colorspace'.
|
||||
// Upon return, picture->use_argb is set to false. The presence of real
|
||||
// non-opaque transparent values is detected, and 'colorspace' will be
|
||||
// adjusted accordingly. Note that this method is lossy.
|
||||
// Returns false in case of error.
|
||||
WEBP_EXTERN(int) WebPPictureARGBToYUVA(WebPPicture* picture,
|
||||
WebPEncCSP colorspace);
|
||||
|
||||
// Converts picture->yuv to picture->argb and sets picture->use_argb to true.
|
||||
// The input format must be YUV_420 or YUV_420A.
|
||||
// Note that the use of this method is discouraged if one has access to the
|
||||
// raw ARGB samples, since using YUV420 is comparatively lossy. Also, the
|
||||
// conversion from YUV420 to ARGB incurs a small loss too.
|
||||
// Returns false in case of error.
|
||||
WEBP_EXTERN(int) WebPPictureYUVAToARGB(WebPPicture* picture);
|
||||
|
||||
// Helper function: given a width x height plane of YUV(A) samples
|
||||
// (with stride 'stride'), clean-up the YUV samples under fully transparent
|
||||
// area, to help compressibility (no guarantee, though).
|
||||
WEBP_EXTERN(void) WebPCleanupTransparentArea(WebPPicture* picture);
|
||||
|
||||
// Scan the picture 'picture' for the presence of non fully opaque alpha values.
|
||||
// Returns true in such case. Otherwise returns false (indicating that the
|
||||
// alpha plane can be ignored altogether e.g.).
|
||||
WEBP_EXTERN(int) WebPPictureHasTransparency(const WebPPicture* picture);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Main call
|
||||
|
||||
// Main encoding call, after config and picture have been initialized.
|
||||
// 'picture' must be less than 16384x16384 in dimension (cf WEBP_MAX_DIMENSION),
|
||||
// and the 'config' object must be a valid one.
|
||||
// Returns false in case of error, true otherwise.
|
||||
// In case of error, picture->error_code is updated accordingly.
|
||||
// 'picture' can hold the source samples in both YUV(A) or ARGB input, depending
|
||||
// on the value of 'picture->use_argb'. It is highly recommended to use
|
||||
// the former for lossy encoding, and the latter for lossless encoding
|
||||
// (when config.lossless is true). Automatic conversion from one format to
|
||||
// another is provided but they both incur some loss.
|
||||
WEBP_EXTERN(int) WebPEncode(const WebPConfig* config, WebPPicture* picture);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_WEBP_ENCODE_H_ */
|
|
@ -1,90 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Internal header for constants related to WebP file format.
|
||||
//
|
||||
// Author: Urvang (urvang@google.com)
|
||||
|
||||
#ifndef WEBP_WEBP_FORMAT_CONSTANTS_H_
|
||||
#define WEBP_WEBP_FORMAT_CONSTANTS_H_
|
||||
|
||||
// VP8 related constants.
|
||||
#define VP8_SIGNATURE 0x9d012a // Signature in VP8 data.
|
||||
#define VP8_MAX_PARTITION0_SIZE (1 << 19) // max size of mode partition
|
||||
#define VP8_MAX_PARTITION_SIZE (1 << 24) // max size for token partition
|
||||
#define VP8_FRAME_HEADER_SIZE 10 // Size of the frame header within VP8 data.
|
||||
|
||||
// VP8L related constants.
|
||||
#define VP8L_SIGNATURE_SIZE 1 // VP8L signature size.
|
||||
#define VP8L_MAGIC_BYTE 0x2f // VP8L signature byte.
|
||||
#define VP8L_IMAGE_SIZE_BITS 14 // Number of bits used to store
|
||||
// width and height.
|
||||
#define VP8L_VERSION_BITS 3 // 3 bits reserved for version.
|
||||
#define VP8L_VERSION 0 // version 0
|
||||
#define VP8L_FRAME_HEADER_SIZE 5 // Size of the VP8L frame header.
|
||||
|
||||
#define MAX_PALETTE_SIZE 256
|
||||
#define MAX_CACHE_BITS 11
|
||||
#define HUFFMAN_CODES_PER_META_CODE 5
|
||||
#define ARGB_BLACK 0xff000000
|
||||
|
||||
#define DEFAULT_CODE_LENGTH 8
|
||||
#define MAX_ALLOWED_CODE_LENGTH 15
|
||||
|
||||
#define NUM_LITERAL_CODES 256
|
||||
#define NUM_LENGTH_CODES 24
|
||||
#define NUM_DISTANCE_CODES 40
|
||||
#define CODE_LENGTH_CODES 19
|
||||
|
||||
#define MIN_HUFFMAN_BITS 2 // min number of Huffman bits
|
||||
#define MAX_HUFFMAN_BITS 9 // max number of Huffman bits
|
||||
|
||||
#define TRANSFORM_PRESENT 1 // The bit to be written when next data
|
||||
// to be read is a transform.
|
||||
#define NUM_TRANSFORMS 4 // Maximum number of allowed transform
|
||||
// in a bitstream.
|
||||
typedef enum {
|
||||
PREDICTOR_TRANSFORM = 0,
|
||||
CROSS_COLOR_TRANSFORM = 1,
|
||||
SUBTRACT_GREEN = 2,
|
||||
COLOR_INDEXING_TRANSFORM = 3
|
||||
} VP8LImageTransformType;
|
||||
|
||||
// Alpha related constants.
|
||||
#define ALPHA_HEADER_LEN 1
|
||||
#define ALPHA_NO_COMPRESSION 0
|
||||
#define ALPHA_LOSSLESS_COMPRESSION 1
|
||||
#define ALPHA_PREPROCESSED_LEVELS 1
|
||||
|
||||
// Mux related constants.
|
||||
#define TAG_SIZE 4 // Size of a chunk tag (e.g. "VP8L").
|
||||
#define CHUNK_SIZE_BYTES 4 // Size needed to store chunk's size.
|
||||
#define CHUNK_HEADER_SIZE 8 // Size of a chunk header.
|
||||
#define RIFF_HEADER_SIZE 12 // Size of the RIFF header ("RIFFnnnnWEBP").
|
||||
#define FRAME_CHUNK_SIZE 15 // Size of a FRM chunk.
|
||||
#define LOOP_CHUNK_SIZE 2 // Size of a LOOP chunk.
|
||||
#define TILE_CHUNK_SIZE 6 // Size of a TILE chunk.
|
||||
#define VP8X_CHUNK_SIZE 10 // Size of a VP8X chunk.
|
||||
|
||||
#define TILING_FLAG_BIT 0x01 // Set if tiles are possibly used.
|
||||
#define ANIMATION_FLAG_BIT 0x02 // Set if some animation is expected
|
||||
#define ICC_FLAG_BIT 0x04 // Whether ICC is present or not.
|
||||
#define METADATA_FLAG_BIT 0x08 // Set if some META chunk is possibly present.
|
||||
#define ALPHA_FLAG_BIT 0x10 // Should be same as the ALPHA_FLAG in mux.h
|
||||
#define ROTATION_FLAG_BITS 0xe0 // all 3 bits for rotation + symmetry
|
||||
|
||||
#define MAX_CANVAS_SIZE (1 << 24) // 24-bit max for VP8X width/height.
|
||||
#define MAX_IMAGE_AREA (1ULL << 32) // 32-bit max for width x height.
|
||||
#define MAX_LOOP_COUNT (1 << 16) // maximum value for loop-count
|
||||
#define MAX_DURATION (1 << 24) // maximum duration
|
||||
#define MAX_POSITION_OFFSET (1 << 24) // maximum frame/tile x/y offset
|
||||
|
||||
// Maximum chunk payload is such that adding the header and padding won't
|
||||
// overflow a uint32_t.
|
||||
#define MAX_CHUNK_PAYLOAD (~0U - CHUNK_HEADER_SIZE - 1)
|
||||
|
||||
#endif /* WEBP_WEBP_FORMAT_CONSTANTS_H_ */
|
|
@ -1,182 +0,0 @@
|
|||
/*************************************************************************/
|
||||
/* image_loader_webp.cpp */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* http://www.godotengine.org */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
#include "image_loader_webp.h"
|
||||
|
||||
#include "print_string.h"
|
||||
#include "os/os.h"
|
||||
#include "drivers/webp/decode.h"
|
||||
#include "drivers/webp/encode.h"
|
||||
#include "io/marshalls.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
static DVector<uint8_t> _webp_lossy_pack(const Image& p_image,float p_quality) {
|
||||
|
||||
ERR_FAIL_COND_V(p_image.empty(),DVector<uint8_t>());
|
||||
|
||||
Image img=p_image;
|
||||
if (img.detect_alpha())
|
||||
img.convert(Image::FORMAT_RGBA);
|
||||
else
|
||||
img.convert(Image::FORMAT_RGB);
|
||||
|
||||
Size2 s(img.get_width(),img.get_height());
|
||||
DVector<uint8_t> data = img.get_data();
|
||||
DVector<uint8_t>::Read r = data.read();
|
||||
|
||||
uint8_t *dst_buff=NULL;
|
||||
size_t dst_size=0;
|
||||
if (img.get_format()==Image::FORMAT_RGB) {
|
||||
|
||||
dst_size = WebPEncodeRGB(r.ptr(),s.width,s.height,3*s.width,CLAMP(p_quality*100.0,0,100.0),&dst_buff);
|
||||
} else {
|
||||
dst_size = WebPEncodeRGBA(r.ptr(),s.width,s.height,4*s.width,CLAMP(p_quality*100.0,0,100.0),&dst_buff);
|
||||
}
|
||||
|
||||
ERR_FAIL_COND_V(dst_size==0,DVector<uint8_t>());
|
||||
DVector<uint8_t> dst;
|
||||
dst.resize(4+dst_size);
|
||||
DVector<uint8_t>::Write w = dst.write();
|
||||
w[0]='W';
|
||||
w[1]='E';
|
||||
w[2]='B';
|
||||
w[3]='P';
|
||||
copymem(&w[4],dst_buff,dst_size);
|
||||
free(dst_buff);
|
||||
w=DVector<uint8_t>::Write();
|
||||
return dst;
|
||||
}
|
||||
|
||||
static Image _webp_lossy_unpack(const DVector<uint8_t>& p_buffer) {
|
||||
|
||||
int size = p_buffer.size()-4;
|
||||
ERR_FAIL_COND_V(size<=0,Image());
|
||||
DVector<uint8_t>::Read r = p_buffer.read();
|
||||
|
||||
ERR_FAIL_COND_V(r[0]!='W' || r[1]!='E' || r[2]!='B' || r[3]!='P',Image());
|
||||
WebPBitstreamFeatures features;
|
||||
if (WebPGetFeatures(&r[4],size,&features)!=VP8_STATUS_OK) {
|
||||
ERR_EXPLAIN("Error unpacking WEBP image:");
|
||||
ERR_FAIL_V(Image());
|
||||
}
|
||||
|
||||
//print_line("width: "+itos(features.width));
|
||||
//print_line("height: "+itos(features.height));
|
||||
//print_line("alpha: "+itos(features.has_alpha));
|
||||
|
||||
DVector<uint8_t> dst_image;
|
||||
int datasize = features.width*features.height*(features.has_alpha?4:3);
|
||||
dst_image.resize(datasize);
|
||||
|
||||
DVector<uint8_t>::Write dst_w = dst_image.write();
|
||||
|
||||
bool errdec=false;
|
||||
if (features.has_alpha) {
|
||||
errdec = WebPDecodeRGBAInto(&r[4],size,dst_w.ptr(),datasize,4*features.width)==NULL;
|
||||
} else {
|
||||
errdec = WebPDecodeRGBInto(&r[4],size,dst_w.ptr(),datasize,3*features.width)==NULL;
|
||||
|
||||
}
|
||||
|
||||
//ERR_EXPLAIN("Error decoding webp! - "+p_file);
|
||||
ERR_FAIL_COND_V(errdec,Image());
|
||||
|
||||
dst_w = DVector<uint8_t>::Write();
|
||||
|
||||
return Image(features.width,features.height,0,features.has_alpha?Image::FORMAT_RGBA:Image::FORMAT_RGB,dst_image);
|
||||
|
||||
}
|
||||
|
||||
|
||||
Error ImageLoaderWEBP::load_image(Image *p_image,FileAccess *f) {
|
||||
|
||||
|
||||
uint32_t size = f->get_len();
|
||||
DVector<uint8_t> src_image;
|
||||
src_image.resize(size);
|
||||
|
||||
WebPBitstreamFeatures features;
|
||||
|
||||
DVector<uint8_t>::Write src_w = src_image.write();
|
||||
f->get_buffer(src_w.ptr(),size);
|
||||
ERR_FAIL_COND_V(f->eof_reached(), ERR_FILE_EOF);
|
||||
|
||||
if (WebPGetFeatures(src_w.ptr(),size,&features)!=VP8_STATUS_OK) {
|
||||
f->close();
|
||||
//ERR_EXPLAIN("Error decoding WEBP image: "+p_file);
|
||||
ERR_FAIL_V(ERR_FILE_CORRUPT);
|
||||
}
|
||||
|
||||
print_line("width: "+itos(features.width));
|
||||
print_line("height: "+itos(features.height));
|
||||
print_line("alpha: "+itos(features.has_alpha));
|
||||
|
||||
src_w = DVector<uint8_t>::Write();
|
||||
|
||||
DVector<uint8_t> dst_image;
|
||||
int datasize = features.width*features.height*(features.has_alpha?4:3);
|
||||
dst_image.resize(datasize);
|
||||
|
||||
DVector<uint8_t>::Read src_r = src_image.read();
|
||||
DVector<uint8_t>::Write dst_w = dst_image.write();
|
||||
|
||||
|
||||
bool errdec=false;
|
||||
if (features.has_alpha) {
|
||||
errdec = WebPDecodeRGBAInto(src_r.ptr(),size,dst_w.ptr(),datasize,4*features.width)==NULL;
|
||||
} else {
|
||||
errdec = WebPDecodeRGBInto(src_r.ptr(),size,dst_w.ptr(),datasize,3*features.width)==NULL;
|
||||
|
||||
}
|
||||
|
||||
//ERR_EXPLAIN("Error decoding webp! - "+p_file);
|
||||
ERR_FAIL_COND_V(errdec,ERR_FILE_CORRUPT);
|
||||
|
||||
src_r = DVector<uint8_t>::Read();
|
||||
dst_w = DVector<uint8_t>::Write();
|
||||
|
||||
*p_image = Image(features.width,features.height,0,features.has_alpha?Image::FORMAT_RGBA:Image::FORMAT_RGB,dst_image);
|
||||
|
||||
|
||||
return OK;
|
||||
|
||||
}
|
||||
|
||||
void ImageLoaderWEBP::get_recognized_extensions(List<String> *p_extensions) const {
|
||||
|
||||
p_extensions->push_back("webp");
|
||||
}
|
||||
|
||||
|
||||
ImageLoaderWEBP::ImageLoaderWEBP() {
|
||||
|
||||
Image::lossy_packer=_webp_lossy_pack;
|
||||
Image::lossy_unpacker=_webp_lossy_unpack;
|
||||
}
|
||||
|
||||
|
|
@ -1,49 +0,0 @@
|
|||
/*************************************************************************/
|
||||
/* image_loader_webp.h */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* http://www.godotengine.org */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
#ifndef IMAGE_LOADER_WEBP_H
|
||||
#define IMAGE_LOADER_WEBP_H
|
||||
|
||||
#include "io/image_loader.h"
|
||||
|
||||
/**
|
||||
@author Juan Linietsky <reduzio@gmail.com>
|
||||
*/
|
||||
class ImageLoaderWEBP : public ImageFormatLoader {
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual Error load_image(Image *p_image,FileAccess *f);
|
||||
virtual void get_recognized_extensions(List<String> *p_extensions) const;
|
||||
ImageLoaderWEBP();
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif
|
|
@ -1,604 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// RIFF container manipulation for WEBP images.
|
||||
//
|
||||
// Authors: Urvang (urvang@google.com)
|
||||
// Vikas (vikasa@google.com)
|
||||
|
||||
// This API allows manipulation of WebP container images containing features
|
||||
// like Color profile, XMP metadata, Animation and Tiling.
|
||||
//
|
||||
// Code Example#1: Creating a MUX with image data, color profile and XMP
|
||||
// metadata.
|
||||
//
|
||||
// int copy_data = 0;
|
||||
// WebPMux* mux = WebPMuxNew();
|
||||
// // ... (Prepare image data).
|
||||
// WebPMuxSetImage(mux, &image, copy_data);
|
||||
// // ... (Prepare ICCP color profile data).
|
||||
// WebPMuxSetColorProfile(mux, &icc_profile, copy_data);
|
||||
// // ... (Prepare XMP metadata).
|
||||
// WebPMuxSetMetadata(mux, &xmp, copy_data);
|
||||
// // Get data from mux in WebP RIFF format.
|
||||
// WebPMuxAssemble(mux, &output_data);
|
||||
// WebPMuxDelete(mux);
|
||||
// // ... (Consume output_data; e.g. write output_data.bytes_ to file).
|
||||
// WebPDataClear(&output_data);
|
||||
//
|
||||
// Code Example#2: Get image and color profile data from a WebP file.
|
||||
//
|
||||
// int copy_data = 0;
|
||||
// // ... (Read data from file).
|
||||
// WebPMux* mux = WebPMuxCreate(&data, copy_data);
|
||||
// WebPMuxGetImage(mux, &image);
|
||||
// // ... (Consume image; e.g. call WebPDecode() to decode the data).
|
||||
// WebPMuxGetColorProfile(mux, &icc_profile);
|
||||
// // ... (Consume icc_data).
|
||||
// WebPMuxDelete(mux);
|
||||
// free(data);
|
||||
|
||||
#ifndef WEBP_WEBP_MUX_H_
|
||||
#define WEBP_WEBP_MUX_H_
|
||||
|
||||
#include "./types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define WEBP_MUX_ABI_VERSION 0x0100 // MAJOR(8b) + MINOR(8b)
|
||||
|
||||
// Error codes
|
||||
typedef enum {
|
||||
WEBP_MUX_OK = 1,
|
||||
WEBP_MUX_NOT_FOUND = 0,
|
||||
WEBP_MUX_INVALID_ARGUMENT = -1,
|
||||
WEBP_MUX_BAD_DATA = -2,
|
||||
WEBP_MUX_MEMORY_ERROR = -3,
|
||||
WEBP_MUX_NOT_ENOUGH_DATA = -4
|
||||
} WebPMuxError;
|
||||
|
||||
// Flag values for different features used in VP8X chunk.
|
||||
typedef enum {
|
||||
TILE_FLAG = 0x00000001,
|
||||
ANIMATION_FLAG = 0x00000002,
|
||||
ICCP_FLAG = 0x00000004,
|
||||
META_FLAG = 0x00000008,
|
||||
ALPHA_FLAG = 0x00000010
|
||||
} WebPFeatureFlags;
|
||||
|
||||
// IDs for different types of chunks.
|
||||
typedef enum {
|
||||
WEBP_CHUNK_VP8X, // VP8X
|
||||
WEBP_CHUNK_ICCP, // ICCP
|
||||
WEBP_CHUNK_LOOP, // LOOP
|
||||
WEBP_CHUNK_FRAME, // FRM
|
||||
WEBP_CHUNK_TILE, // TILE
|
||||
WEBP_CHUNK_ALPHA, // ALPH
|
||||
WEBP_CHUNK_IMAGE, // VP8/VP8L
|
||||
WEBP_CHUNK_META, // META
|
||||
WEBP_CHUNK_UNKNOWN, // Other chunks.
|
||||
WEBP_CHUNK_NIL
|
||||
} WebPChunkId;
|
||||
|
||||
typedef struct WebPMux WebPMux; // main opaque object.
|
||||
|
||||
// Data type used to describe 'raw' data, e.g., chunk data
|
||||
// (ICC profile, metadata) and WebP compressed image data.
|
||||
typedef struct {
|
||||
const uint8_t* bytes_;
|
||||
size_t size_;
|
||||
} WebPData;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Manipulation of a WebPData object.
|
||||
|
||||
// Initializes the contents of the 'webp_data' object with default values.
|
||||
WEBP_EXTERN(void) WebPDataInit(WebPData* webp_data);
|
||||
|
||||
// Clears the contents of the 'webp_data' object by calling free(). Does not
|
||||
// deallocate the object itself.
|
||||
WEBP_EXTERN(void) WebPDataClear(WebPData* webp_data);
|
||||
|
||||
// Allocates necessary storage for 'dst' and copies the contents of 'src'.
|
||||
// Returns true on success.
|
||||
WEBP_EXTERN(int) WebPDataCopy(const WebPData* src, WebPData* dst);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Life of a Mux object
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(WebPMux*) WebPNewInternal(int);
|
||||
|
||||
// Creates an empty mux object.
|
||||
// Returns:
|
||||
// A pointer to the newly created empty mux object.
|
||||
static WEBP_INLINE WebPMux* WebPMuxNew(void) {
|
||||
return WebPNewInternal(WEBP_MUX_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Deletes the mux object.
|
||||
// Parameters:
|
||||
// mux - (in/out) object to be deleted
|
||||
WEBP_EXTERN(void) WebPMuxDelete(WebPMux* mux);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Mux creation.
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(WebPMux*) WebPMuxCreateInternal(const WebPData*, int, int);
|
||||
|
||||
// Creates a mux object from raw data given in WebP RIFF format.
|
||||
// Parameters:
|
||||
// bitstream - (in) the bitstream data in WebP RIFF format
|
||||
// copy_data - (in) value 1 indicates given data WILL copied to the mux, and
|
||||
// value 0 indicates data will NOT be copied.
|
||||
// Returns:
|
||||
// A pointer to the mux object created from given data - on success.
|
||||
// NULL - In case of invalid data or memory error.
|
||||
static WEBP_INLINE WebPMux* WebPMuxCreate(const WebPData* bitstream,
|
||||
int copy_data) {
|
||||
return WebPMuxCreateInternal(bitstream, copy_data, WEBP_MUX_ABI_VERSION);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Single Image.
|
||||
|
||||
// Sets the image in the mux object. Any existing images (including frame/tile)
|
||||
// will be removed.
|
||||
// Parameters:
|
||||
// mux - (in/out) object in which the image is to be set
|
||||
// bitstream - (in) can either be a raw VP8/VP8L bitstream or a single-image
|
||||
// WebP file (non-animated and non-tiled)
|
||||
// copy_data - (in) value 1 indicates given data WILL copied to the mux, and
|
||||
// value 0 indicates data will NOT be copied.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL or bitstream is NULL.
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxSetImage(WebPMux* mux,
|
||||
const WebPData* bitstream,
|
||||
int copy_data);
|
||||
|
||||
// Gets image data from the mux object.
|
||||
// The content of 'bitstream' is allocated using malloc(), and NOT
|
||||
// owned by the 'mux' object. It MUST be deallocated by the caller by calling
|
||||
// WebPDataClear().
|
||||
// Parameters:
|
||||
// mux - (in) object from which the image is to be fetched
|
||||
// bitstream - (out) the image data
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux or bitstream is NULL
|
||||
// OR mux contains animation/tiling.
|
||||
// WEBP_MUX_NOT_FOUND - if image is not present in mux object.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetImage(const WebPMux* mux,
|
||||
WebPData* bitstream);
|
||||
|
||||
// Deletes the image in the mux object.
|
||||
// Parameters:
|
||||
// mux - (in/out) object from which the image is to be deleted
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL
|
||||
// OR if mux contains animation/tiling.
|
||||
// WEBP_MUX_NOT_FOUND - if image is not present in mux object.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxDeleteImage(WebPMux* mux);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// XMP Metadata.
|
||||
|
||||
// Sets the XMP metadata in the mux object. Any existing metadata chunk(s) will
|
||||
// be removed.
|
||||
// Parameters:
|
||||
// mux - (in/out) object to which the XMP metadata is to be added
|
||||
// metadata - (in) the XMP metadata data to be added
|
||||
// copy_data - (in) value 1 indicates given data WILL copied to the mux, and
|
||||
// value 0 indicates data will NOT be copied.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux or metadata is NULL.
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxSetMetadata(WebPMux* mux,
|
||||
const WebPData* metadata,
|
||||
int copy_data);
|
||||
|
||||
// Gets a reference to the XMP metadata in the mux object.
|
||||
// The caller should NOT free the returned data.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the XMP metadata is to be fetched
|
||||
// metadata - (out) XMP metadata
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux or metadata is NULL.
|
||||
// WEBP_MUX_NOT_FOUND - if metadata is not present in mux object.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetMetadata(const WebPMux* mux,
|
||||
WebPData* metadata);
|
||||
|
||||
// Deletes the XMP metadata in the mux object.
|
||||
// Parameters:
|
||||
// mux - (in/out) object from which XMP metadata is to be deleted
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL
|
||||
// WEBP_MUX_NOT_FOUND - If mux does not contain metadata.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxDeleteMetadata(WebPMux* mux);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// ICC Color Profile.
|
||||
|
||||
// Sets the color profile in the mux object. Any existing color profile chunk(s)
|
||||
// will be removed.
|
||||
// Parameters:
|
||||
// mux - (in/out) object to which the color profile is to be added
|
||||
// color_profile - (in) the color profile data to be added
|
||||
// copy_data - (in) value 1 indicates given data WILL copied to the mux, and
|
||||
// value 0 indicates data will NOT be copied.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux or color_profile is NULL
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error
|
||||
// WEBP_MUX_OK - on success
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxSetColorProfile(WebPMux* mux,
|
||||
const WebPData* color_profile,
|
||||
int copy_data);
|
||||
|
||||
// Gets a reference to the color profile in the mux object.
|
||||
// The caller should NOT free the returned data.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the color profile data is to be fetched
|
||||
// color_profile - (out) color profile data
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux or color_profile is NULL.
|
||||
// WEBP_MUX_NOT_FOUND - if color profile is not present in mux object.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetColorProfile(const WebPMux* mux,
|
||||
WebPData* color_profile);
|
||||
|
||||
// Deletes the color profile in the mux object.
|
||||
// Parameters:
|
||||
// mux - (in/out) object from which color profile is to be deleted
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL
|
||||
// WEBP_MUX_NOT_FOUND - If mux does not contain color profile.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxDeleteColorProfile(WebPMux* mux);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Animation.
|
||||
|
||||
// Adds an animation frame at the end of the mux object.
|
||||
// Note: as WebP only supports even offsets, any odd offset will be snapped to
|
||||
// an even location using: offset &= ~1
|
||||
// Parameters:
|
||||
// mux - (in/out) object to which an animation frame is to be added
|
||||
// bitstream - (in) the image data corresponding to the frame. It can either
|
||||
// be a raw VP8/VP8L bitstream or a single-image WebP file
|
||||
// (non-animated and non-tiled)
|
||||
// x_offset - (in) x-offset of the frame to be added
|
||||
// y_offset - (in) y-offset of the frame to be added
|
||||
// duration - (in) duration of the frame to be added (in milliseconds)
|
||||
// copy_data - (in) value 1 indicates given data WILL copied to the mux, and
|
||||
// value 0 indicates data will NOT be copied.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL or bitstream is NULL
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxPushFrame(
|
||||
WebPMux* mux, const WebPData* bitstream,
|
||||
int x_offset, int y_offset, int duration, int copy_data);
|
||||
|
||||
// TODO(urvang): Create a struct as follows to reduce argument list size:
|
||||
// typedef struct {
|
||||
// WebPData bitstream;
|
||||
// int x_offset, y_offset;
|
||||
// int duration;
|
||||
// } FrameInfo;
|
||||
|
||||
// Gets the nth animation frame from the mux object.
|
||||
// The content of 'bitstream' is allocated using malloc(), and NOT
|
||||
// owned by the 'mux' object. It MUST be deallocated by the caller by calling
|
||||
// WebPDataClear().
|
||||
// nth=0 has a special meaning - last position.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the info is to be fetched
|
||||
// nth - (in) index of the frame in the mux object
|
||||
// bitstream - (out) the image data
|
||||
// x_offset - (out) x-offset of the returned frame
|
||||
// y_offset - (out) y-offset of the returned frame
|
||||
// duration - (out) duration of the returned frame (in milliseconds)
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux, bitstream, x_offset,
|
||||
// y_offset, or duration is NULL
|
||||
// WEBP_MUX_NOT_FOUND - if there are less than nth frames in the mux object.
|
||||
// WEBP_MUX_BAD_DATA - if nth frame chunk in mux is invalid.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetFrame(
|
||||
const WebPMux* mux, uint32_t nth, WebPData* bitstream,
|
||||
int* x_offset, int* y_offset, int* duration);
|
||||
|
||||
// Deletes an animation frame from the mux object.
|
||||
// nth=0 has a special meaning - last position.
|
||||
// Parameters:
|
||||
// mux - (in/out) object from which a frame is to be deleted
|
||||
// nth - (in) The position from which the frame is to be deleted
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL
|
||||
// WEBP_MUX_NOT_FOUND - If there are less than nth frames in the mux object
|
||||
// before deletion.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxDeleteFrame(WebPMux* mux, uint32_t nth);
|
||||
|
||||
// Sets the animation loop count in the mux object. Any existing loop count
|
||||
// value(s) will be removed.
|
||||
// Parameters:
|
||||
// mux - (in/out) object in which loop chunk is to be set/added
|
||||
// loop_count - (in) animation loop count value.
|
||||
// Note that loop_count of zero denotes infinite loop.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxSetLoopCount(WebPMux* mux, int loop_count);
|
||||
|
||||
// Gets the animation loop count from the mux object.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the loop count is to be fetched
|
||||
// loop_count - (out) the loop_count value present in the LOOP chunk
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either of mux or loop_count is NULL
|
||||
// WEBP_MUX_NOT_FOUND - if loop chunk is not present in mux object.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetLoopCount(const WebPMux* mux,
|
||||
int* loop_count);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Tiling.
|
||||
|
||||
// Adds a tile at the end of the mux object.
|
||||
// Note: as WebP only supports even offsets, any odd offset will be snapped to
|
||||
// an even location using: offset &= ~1
|
||||
// Parameters:
|
||||
// mux - (in/out) object to which a tile is to be added.
|
||||
// bitstream - (in) the image data corresponding to the frame. It can either
|
||||
// be a raw VP8/VP8L bitstream or a single-image WebP file
|
||||
// (non-animated and non-tiled)
|
||||
// x_offset - (in) x-offset of the tile to be added
|
||||
// y_offset - (in) y-offset of the tile to be added
|
||||
// copy_data - (in) value 1 indicates given data WILL copied to the mux, and
|
||||
// value 0 indicates data will NOT be copied.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL or bitstream is NULL
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxPushTile(
|
||||
WebPMux* mux, const WebPData* bitstream,
|
||||
int x_offset, int y_offset, int copy_data);
|
||||
|
||||
// Gets the nth tile from the mux object.
|
||||
// The content of 'bitstream' is allocated using malloc(), and NOT
|
||||
// owned by the 'mux' object. It MUST be deallocated by the caller by calling
|
||||
// WebPDataClear().
|
||||
// nth=0 has a special meaning - last position.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the info is to be fetched
|
||||
// nth - (in) index of the tile in the mux object
|
||||
// bitstream - (out) the image data
|
||||
// x_offset - (out) x-offset of the returned tile
|
||||
// y_offset - (out) y-offset of the returned tile
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux, bitstream, x_offset or
|
||||
// y_offset is NULL
|
||||
// WEBP_MUX_NOT_FOUND - if there are less than nth tiles in the mux object.
|
||||
// WEBP_MUX_BAD_DATA - if nth tile chunk in mux is invalid.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetTile(
|
||||
const WebPMux* mux, uint32_t nth, WebPData* bitstream,
|
||||
int* x_offset, int* y_offset);
|
||||
|
||||
// Deletes a tile from the mux object.
|
||||
// nth=0 has a special meaning - last position
|
||||
// Parameters:
|
||||
// mux - (in/out) object from which a tile is to be deleted
|
||||
// nth - (in) The position from which the tile is to be deleted
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux is NULL
|
||||
// WEBP_MUX_NOT_FOUND - If there are less than nth tiles in the mux object
|
||||
// before deletion.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxDeleteTile(WebPMux* mux, uint32_t nth);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Misc Utilities.
|
||||
|
||||
// Gets the feature flags from the mux object.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the features are to be fetched
|
||||
// flags - (out) the flags specifying which features are present in the
|
||||
// mux object. This will be an OR of various flag values.
|
||||
// Enum 'WebPFeatureFlags' can be used to test individual flag values.
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if mux or flags is NULL
|
||||
// WEBP_MUX_NOT_FOUND - if VP8X chunk is not present in mux object.
|
||||
// WEBP_MUX_BAD_DATA - if VP8X chunk in mux is invalid.
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxGetFeatures(const WebPMux* mux,
|
||||
uint32_t* flags);
|
||||
|
||||
// Gets number of chunks having tag value tag in the mux object.
|
||||
// Parameters:
|
||||
// mux - (in) object from which the info is to be fetched
|
||||
// id - (in) chunk id specifying the type of chunk
|
||||
// num_elements - (out) number of chunks with the given chunk id
|
||||
// Returns:
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux, or num_elements is NULL
|
||||
// WEBP_MUX_OK - on success.
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxNumChunks(const WebPMux* mux,
|
||||
WebPChunkId id, int* num_elements);
|
||||
|
||||
// Assembles all chunks in WebP RIFF format and returns in 'assembled_data'.
|
||||
// This function also validates the mux object.
|
||||
// Note: The content of 'assembled_data' will be ignored and overwritten.
|
||||
// Also, the content of 'assembled_data' is allocated using malloc(), and NOT
|
||||
// owned by the 'mux' object. It MUST be deallocated by the caller by calling
|
||||
// WebPDataClear().
|
||||
// Parameters:
|
||||
// mux - (in/out) object whose chunks are to be assembled
|
||||
// assembled_data - (out) assembled WebP data
|
||||
// Returns:
|
||||
// WEBP_MUX_BAD_DATA - if mux object is invalid.
|
||||
// WEBP_MUX_INVALID_ARGUMENT - if either mux, output_data or output_size is
|
||||
// NULL.
|
||||
// WEBP_MUX_MEMORY_ERROR - on memory allocation error.
|
||||
// WEBP_MUX_OK - on success
|
||||
WEBP_EXTERN(WebPMuxError) WebPMuxAssemble(WebPMux* mux,
|
||||
WebPData* assembled_data);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Demux API.
|
||||
// Enables extraction of image and extended format data from WebP files.
|
||||
|
||||
#define WEBP_DEMUX_ABI_VERSION 0x0100 // MAJOR(8b) + MINOR(8b)
|
||||
|
||||
typedef struct WebPDemuxer WebPDemuxer;
|
||||
|
||||
typedef enum {
|
||||
WEBP_DEMUX_PARSING_HEADER, // Not enough data to parse full header.
|
||||
WEBP_DEMUX_PARSED_HEADER, // Header parsing complete, data may be available.
|
||||
WEBP_DEMUX_DONE // Entire file has been parsed.
|
||||
} WebPDemuxState;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Life of a Demux object
|
||||
|
||||
// Internal, version-checked, entry point
|
||||
WEBP_EXTERN(WebPDemuxer*) WebPDemuxInternal(
|
||||
const WebPData*, int, WebPDemuxState*, int);
|
||||
|
||||
// Parses the WebP file given by 'data'.
|
||||
// A complete WebP file must be present in 'data' for the function to succeed.
|
||||
// Returns a WebPDemuxer object on successful parse, NULL otherwise.
|
||||
static WEBP_INLINE WebPDemuxer* WebPDemux(const WebPData* data) {
|
||||
return WebPDemuxInternal(data, 0, NULL, WEBP_DEMUX_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Parses the WebP file given by 'data'.
|
||||
// If 'state' is non-NULL it will be set to indicate the status of the demuxer.
|
||||
// Returns a WebPDemuxer object on successful parse, NULL otherwise.
|
||||
static WEBP_INLINE WebPDemuxer* WebPDemuxPartial(
|
||||
const WebPData* data, WebPDemuxState* state) {
|
||||
return WebPDemuxInternal(data, 1, state, WEBP_DEMUX_ABI_VERSION);
|
||||
}
|
||||
|
||||
// Frees memory associated with 'dmux'.
|
||||
WEBP_EXTERN(void) WebPDemuxDelete(WebPDemuxer* dmux);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Data/information extraction.
|
||||
|
||||
typedef enum {
|
||||
WEBP_FF_FORMAT_FLAGS, // Extended format flags present in the 'VP8X' chunk.
|
||||
WEBP_FF_CANVAS_WIDTH,
|
||||
WEBP_FF_CANVAS_HEIGHT,
|
||||
WEBP_FF_LOOP_COUNT
|
||||
} WebPFormatFeature;
|
||||
|
||||
// Get the 'feature' value from the 'dmux'.
|
||||
// NOTE: values are only valid if WebPDemux() was used or WebPDemuxPartial()
|
||||
// returned a state > WEBP_DEMUX_PARSING_HEADER.
|
||||
WEBP_EXTERN(uint32_t) WebPDemuxGetI(
|
||||
const WebPDemuxer* dmux, WebPFormatFeature feature);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Frame iteration.
|
||||
|
||||
typedef struct {
|
||||
int frame_num_;
|
||||
int num_frames_;
|
||||
int tile_num_;
|
||||
int num_tiles_;
|
||||
int x_offset_, y_offset_; // offset relative to the canvas.
|
||||
int width_, height_; // dimensions of this frame or tile.
|
||||
int duration_; // display duration in milliseconds.
|
||||
int complete_; // true if 'tile_' contains a full frame. partial images may
|
||||
// still be decoded with the WebP incremental decoder.
|
||||
WebPData tile_; // The frame or tile given by 'frame_num_' and 'tile_num_'.
|
||||
|
||||
uint32_t pad[4]; // padding for later use
|
||||
void* private_;
|
||||
} WebPIterator;
|
||||
|
||||
// Retrieves frame 'frame_number' from 'dmux'.
|
||||
// 'iter->tile_' points to the first tile on return from this function.
|
||||
// Individual tiles may be extracted using WebPDemuxSetTile().
|
||||
// Setting 'frame_number' equal to 0 will return the last frame of the image.
|
||||
// Returns false if 'dmux' is NULL or frame 'frame_number' is not present.
|
||||
// Call WebPDemuxReleaseIterator() when use of the iterator is complete.
|
||||
// NOTE: 'dmux' must persist for the lifetime of 'iter'.
|
||||
WEBP_EXTERN(int) WebPDemuxGetFrame(
|
||||
const WebPDemuxer* dmux, int frame_number, WebPIterator* iter);
|
||||
|
||||
// Sets 'iter->tile_' to point to the next ('iter->frame_num_' + 1) or previous
|
||||
// ('iter->frame_num_' - 1) frame. These functions do not loop.
|
||||
// Returns true on success, false otherwise.
|
||||
WEBP_EXTERN(int) WebPDemuxNextFrame(WebPIterator* iter);
|
||||
WEBP_EXTERN(int) WebPDemuxPrevFrame(WebPIterator* iter);
|
||||
|
||||
// Sets 'iter->tile_' to reflect tile number 'tile_number'.
|
||||
// Returns true if tile 'tile_number' is present, false otherwise.
|
||||
WEBP_EXTERN(int) WebPDemuxSelectTile(WebPIterator* iter, int tile_number);
|
||||
|
||||
// Releases any memory associated with 'iter'.
|
||||
// Must be called before destroying the associated WebPDemuxer with
|
||||
// WebPDemuxDelete().
|
||||
WEBP_EXTERN(void) WebPDemuxReleaseIterator(WebPIterator* iter);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk iteration.
|
||||
|
||||
typedef struct {
|
||||
// The current and total number of chunks with the fourcc given to
|
||||
// WebPDemuxGetChunk().
|
||||
int chunk_num_;
|
||||
int num_chunks_;
|
||||
WebPData chunk_; // The payload of the chunk.
|
||||
|
||||
uint32_t pad[6]; // padding for later use
|
||||
void* private_;
|
||||
} WebPChunkIterator;
|
||||
|
||||
// Retrieves the 'chunk_number' instance of the chunk with id 'fourcc' from
|
||||
// 'dmux'.
|
||||
// 'fourcc' is a character array containing the fourcc of the chunk to return,
|
||||
// e.g., "ICCP", "META", "EXIF", etc.
|
||||
// Setting 'chunk_number' equal to 0 will return the last chunk in a set.
|
||||
// Returns true if the chunk is found, false otherwise. Image related chunk
|
||||
// payloads are accessed through WebPDemuxGetFrame() and related functions.
|
||||
// Call WebPDemuxReleaseChunkIterator() when use of the iterator is complete.
|
||||
// NOTE: 'dmux' must persist for the lifetime of the iterator.
|
||||
WEBP_EXTERN(int) WebPDemuxGetChunk(const WebPDemuxer* dmux,
|
||||
const char fourcc[4], int chunk_number,
|
||||
WebPChunkIterator* iter);
|
||||
|
||||
// Sets 'iter->chunk_' to point to the next ('iter->chunk_num_' + 1) or previous
|
||||
// ('iter->chunk_num_' - 1) chunk. These functions do not loop.
|
||||
// Returns true on success, false otherwise.
|
||||
WEBP_EXTERN(int) WebPDemuxNextChunk(WebPChunkIterator* iter);
|
||||
WEBP_EXTERN(int) WebPDemuxPrevChunk(WebPChunkIterator* iter);
|
||||
|
||||
// Releases any memory associated with 'iter'.
|
||||
// Must be called before destroying the associated WebPDemuxer with
|
||||
// WebPDemuxDelete().
|
||||
WEBP_EXTERN(void) WebPDemuxReleaseChunkIterator(WebPChunkIterator* iter);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_WEBP_MUX_H_ */
|
|
@ -1,902 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// WebP container demux.
|
||||
//
|
||||
|
||||
#include "../mux.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "../decode.h" // WebPGetInfo
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define MKFOURCC(a, b, c, d) ((uint32_t)(a) | (b) << 8 | (c) << 16 | (d) << 24)
|
||||
|
||||
typedef struct {
|
||||
size_t start_; // start location of the data
|
||||
size_t end_; // end location
|
||||
size_t riff_end_; // riff chunk end location, can be > end_.
|
||||
size_t buf_size_; // size of the buffer
|
||||
const uint8_t* buf_;
|
||||
} MemBuffer;
|
||||
|
||||
typedef struct {
|
||||
size_t offset_;
|
||||
size_t size_;
|
||||
} ChunkData;
|
||||
|
||||
typedef struct Frame {
|
||||
int x_offset_, y_offset_;
|
||||
int width_, height_;
|
||||
int duration_;
|
||||
int is_tile_; // this is an image fragment from a 'TILE'.
|
||||
int frame_num_; // the referent frame number for use in assembling tiles.
|
||||
int complete_; // img_components_ contains a full image.
|
||||
ChunkData img_components_[2]; // 0=VP8{,L} 1=ALPH
|
||||
struct Frame* next_;
|
||||
} Frame;
|
||||
|
||||
typedef struct Chunk {
|
||||
ChunkData data_;
|
||||
struct Chunk* next_;
|
||||
} Chunk;
|
||||
|
||||
struct WebPDemuxer {
|
||||
MemBuffer mem_;
|
||||
WebPDemuxState state_;
|
||||
int is_ext_format_;
|
||||
uint32_t feature_flags_;
|
||||
int canvas_width_, canvas_height_;
|
||||
int loop_count_;
|
||||
int num_frames_;
|
||||
Frame* frames_;
|
||||
Chunk* chunks_; // non-image chunks
|
||||
};
|
||||
|
||||
typedef enum {
|
||||
PARSE_OK,
|
||||
PARSE_NEED_MORE_DATA,
|
||||
PARSE_ERROR
|
||||
} ParseStatus;
|
||||
|
||||
typedef struct ChunkParser {
|
||||
uint8_t id[4];
|
||||
ParseStatus (*parse)(WebPDemuxer* const dmux);
|
||||
int (*valid)(const WebPDemuxer* const dmux);
|
||||
} ChunkParser;
|
||||
|
||||
static ParseStatus ParseSingleImage(WebPDemuxer* const dmux);
|
||||
static ParseStatus ParseVP8X(WebPDemuxer* const dmux);
|
||||
static int IsValidSimpleFormat(const WebPDemuxer* const dmux);
|
||||
static int IsValidExtendedFormat(const WebPDemuxer* const dmux);
|
||||
|
||||
static const ChunkParser kMasterChunks[] = {
|
||||
{ { 'V', 'P', '8', ' ' }, ParseSingleImage, IsValidSimpleFormat },
|
||||
{ { 'V', 'P', '8', 'L' }, ParseSingleImage, IsValidSimpleFormat },
|
||||
{ { 'V', 'P', '8', 'X' }, ParseVP8X, IsValidExtendedFormat },
|
||||
{ { '0', '0', '0', '0' }, NULL, NULL },
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// MemBuffer
|
||||
|
||||
static int RemapMemBuffer(MemBuffer* const mem,
|
||||
const uint8_t* data, size_t size) {
|
||||
if (size < mem->buf_size_) return 0; // can't remap to a shorter buffer!
|
||||
|
||||
mem->buf_ = data;
|
||||
mem->end_ = mem->buf_size_ = size;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int InitMemBuffer(MemBuffer* const mem,
|
||||
const uint8_t* data, size_t size) {
|
||||
memset(mem, 0, sizeof(*mem));
|
||||
return RemapMemBuffer(mem, data, size);
|
||||
}
|
||||
|
||||
// Return the remaining data size available in 'mem'.
|
||||
static WEBP_INLINE size_t MemDataSize(const MemBuffer* const mem) {
|
||||
return (mem->end_ - mem->start_);
|
||||
}
|
||||
|
||||
// Return true if 'size' exceeds the end of the RIFF chunk.
|
||||
static WEBP_INLINE int SizeIsInvalid(const MemBuffer* const mem, size_t size) {
|
||||
return (size > mem->riff_end_ - mem->start_);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void Skip(MemBuffer* const mem, size_t size) {
|
||||
mem->start_ += size;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void Rewind(MemBuffer* const mem, size_t size) {
|
||||
mem->start_ -= size;
|
||||
}
|
||||
|
||||
static WEBP_INLINE const uint8_t* GetBuffer(MemBuffer* const mem) {
|
||||
return mem->buf_ + mem->start_;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t GetByte(MemBuffer* const mem) {
|
||||
const uint8_t byte = mem->buf_[mem->start_];
|
||||
Skip(mem, 1);
|
||||
return byte;
|
||||
}
|
||||
|
||||
// Read 16, 24 or 32 bits stored in little-endian order.
|
||||
static WEBP_INLINE int ReadLE16s(const uint8_t* const data) {
|
||||
return (int)(data[0] << 0) | (data[1] << 8);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int ReadLE24s(const uint8_t* const data) {
|
||||
return ReadLE16s(data) | (data[2] << 16);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t ReadLE32(const uint8_t* const data) {
|
||||
return (uint32_t)ReadLE24s(data) | (data[3] << 24);
|
||||
}
|
||||
|
||||
// In addition to reading, skip the read bytes.
|
||||
static WEBP_INLINE int GetLE16s(MemBuffer* const mem) {
|
||||
const uint8_t* const data = mem->buf_ + mem->start_;
|
||||
const int val = ReadLE16s(data);
|
||||
Skip(mem, 2);
|
||||
return val;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int GetLE24s(MemBuffer* const mem) {
|
||||
const uint8_t* const data = mem->buf_ + mem->start_;
|
||||
const int val = ReadLE24s(data);
|
||||
Skip(mem, 3);
|
||||
return val;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t GetLE32(MemBuffer* const mem) {
|
||||
const uint8_t* const data = mem->buf_ + mem->start_;
|
||||
const uint32_t val = ReadLE32(data);
|
||||
Skip(mem, 4);
|
||||
return val;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Secondary chunk parsing
|
||||
|
||||
static void AddChunk(WebPDemuxer* const dmux, Chunk* const chunk) {
|
||||
Chunk** c = &dmux->chunks_;
|
||||
while (*c != NULL) c = &(*c)->next_;
|
||||
*c = chunk;
|
||||
chunk->next_ = NULL;
|
||||
}
|
||||
|
||||
// Add a frame to the end of the list, ensuring the last frame is complete.
|
||||
// Returns true on success, false otherwise.
|
||||
static int AddFrame(WebPDemuxer* const dmux, Frame* const frame) {
|
||||
const Frame* last_frame = NULL;
|
||||
Frame** f = &dmux->frames_;
|
||||
while (*f != NULL) {
|
||||
last_frame = *f;
|
||||
f = &(*f)->next_;
|
||||
}
|
||||
if (last_frame != NULL && !last_frame->complete_) return 0;
|
||||
*f = frame;
|
||||
frame->next_ = NULL;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Store image bearing chunks to 'frame'.
|
||||
static ParseStatus StoreFrame(int frame_num, MemBuffer* const mem,
|
||||
Frame* const frame) {
|
||||
int alpha_chunks = 0;
|
||||
int image_chunks = 0;
|
||||
int done = (MemDataSize(mem) < CHUNK_HEADER_SIZE);
|
||||
ParseStatus status = PARSE_OK;
|
||||
|
||||
if (done) return PARSE_NEED_MORE_DATA;
|
||||
|
||||
do {
|
||||
const size_t chunk_start_offset = mem->start_;
|
||||
const uint32_t fourcc = GetLE32(mem);
|
||||
const uint32_t payload_size = GetLE32(mem);
|
||||
const uint32_t payload_size_padded = payload_size + (payload_size & 1);
|
||||
const size_t payload_available = (payload_size_padded > MemDataSize(mem))
|
||||
? MemDataSize(mem) : payload_size_padded;
|
||||
const size_t chunk_size = CHUNK_HEADER_SIZE + payload_available;
|
||||
|
||||
if (payload_size > MAX_CHUNK_PAYLOAD) return PARSE_ERROR;
|
||||
if (SizeIsInvalid(mem, payload_size_padded)) return PARSE_ERROR;
|
||||
if (payload_size_padded > MemDataSize(mem)) status = PARSE_NEED_MORE_DATA;
|
||||
|
||||
switch (fourcc) {
|
||||
case MKFOURCC('A', 'L', 'P', 'H'):
|
||||
if (alpha_chunks == 0) {
|
||||
++alpha_chunks;
|
||||
frame->img_components_[1].offset_ = chunk_start_offset;
|
||||
frame->img_components_[1].size_ = chunk_size;
|
||||
frame->frame_num_ = frame_num;
|
||||
Skip(mem, payload_available);
|
||||
} else {
|
||||
goto Done;
|
||||
}
|
||||
break;
|
||||
case MKFOURCC('V', 'P', '8', ' '):
|
||||
case MKFOURCC('V', 'P', '8', 'L'):
|
||||
if (image_chunks == 0) {
|
||||
int width = 0, height = 0;
|
||||
++image_chunks;
|
||||
frame->img_components_[0].offset_ = chunk_start_offset;
|
||||
frame->img_components_[0].size_ = chunk_size;
|
||||
// Extract the width and height from the bitstream, tolerating
|
||||
// failures when the data is incomplete.
|
||||
if (!WebPGetInfo(mem->buf_ + frame->img_components_[0].offset_,
|
||||
frame->img_components_[0].size_, &width, &height) &&
|
||||
status != PARSE_NEED_MORE_DATA) {
|
||||
return PARSE_ERROR;
|
||||
}
|
||||
|
||||
frame->width_ = width;
|
||||
frame->height_ = height;
|
||||
frame->frame_num_ = frame_num;
|
||||
frame->complete_ = (status == PARSE_OK);
|
||||
Skip(mem, payload_available);
|
||||
} else {
|
||||
goto Done;
|
||||
}
|
||||
break;
|
||||
Done:
|
||||
default:
|
||||
// Restore fourcc/size when moving up one level in parsing.
|
||||
Rewind(mem, CHUNK_HEADER_SIZE);
|
||||
done = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
if (mem->start_ == mem->riff_end_) {
|
||||
done = 1;
|
||||
} else if (MemDataSize(mem) < CHUNK_HEADER_SIZE) {
|
||||
status = PARSE_NEED_MORE_DATA;
|
||||
}
|
||||
} while (!done && status == PARSE_OK);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
// Creates a new Frame if 'actual_size' is within bounds and 'mem' contains
|
||||
// enough data ('min_size') to parse the payload.
|
||||
// Returns PARSE_OK on success with *frame pointing to the new Frame.
|
||||
// Returns PARSE_NEED_MORE_DATA with insufficient data, PARSE_ERROR otherwise.
|
||||
static ParseStatus NewFrame(const MemBuffer* const mem,
|
||||
uint32_t min_size, uint32_t expected_size,
|
||||
uint32_t actual_size, Frame** frame) {
|
||||
if (SizeIsInvalid(mem, min_size)) return PARSE_ERROR;
|
||||
if (actual_size < expected_size) return PARSE_ERROR;
|
||||
if (MemDataSize(mem) < min_size) return PARSE_NEED_MORE_DATA;
|
||||
|
||||
*frame = (Frame*)calloc(1, sizeof(**frame));
|
||||
return (*frame == NULL) ? PARSE_ERROR : PARSE_OK;
|
||||
}
|
||||
|
||||
// Parse a 'FRM ' chunk and any image bearing chunks that immediately follow.
|
||||
// 'frame_chunk_size' is the previously validated, padded chunk size.
|
||||
static ParseStatus ParseFrame(
|
||||
WebPDemuxer* const dmux, uint32_t frame_chunk_size) {
|
||||
const int has_frames = !!(dmux->feature_flags_ & ANIMATION_FLAG);
|
||||
const uint32_t min_size = frame_chunk_size + CHUNK_HEADER_SIZE;
|
||||
int added_frame = 0;
|
||||
MemBuffer* const mem = &dmux->mem_;
|
||||
Frame* frame;
|
||||
ParseStatus status =
|
||||
NewFrame(mem, min_size, FRAME_CHUNK_SIZE, frame_chunk_size, &frame);
|
||||
if (status != PARSE_OK) return status;
|
||||
|
||||
frame->x_offset_ = 2 * GetLE24s(mem);
|
||||
frame->y_offset_ = 2 * GetLE24s(mem);
|
||||
frame->width_ = 1 + GetLE24s(mem);
|
||||
frame->height_ = 1 + GetLE24s(mem);
|
||||
frame->duration_ = 1 + GetLE24s(mem);
|
||||
Skip(mem, frame_chunk_size - FRAME_CHUNK_SIZE); // skip any trailing data.
|
||||
if (frame->width_ * (uint64_t)frame->height_ >= MAX_IMAGE_AREA) {
|
||||
return PARSE_ERROR;
|
||||
}
|
||||
|
||||
// Store a (potentially partial) frame only if the animation flag is set
|
||||
// and there is some data in 'frame'.
|
||||
status = StoreFrame(dmux->num_frames_ + 1, mem, frame);
|
||||
if (status != PARSE_ERROR && has_frames && frame->frame_num_ > 0) {
|
||||
added_frame = AddFrame(dmux, frame);
|
||||
if (added_frame) {
|
||||
++dmux->num_frames_;
|
||||
} else {
|
||||
status = PARSE_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
if (!added_frame) free(frame);
|
||||
return status;
|
||||
}
|
||||
|
||||
// Parse a 'TILE' chunk and any image bearing chunks that immediately follow.
|
||||
// 'tile_chunk_size' is the previously validated, padded chunk size.
|
||||
static ParseStatus ParseTile(WebPDemuxer* const dmux,
|
||||
uint32_t tile_chunk_size) {
|
||||
const int has_tiles = !!(dmux->feature_flags_ & TILE_FLAG);
|
||||
const uint32_t min_size = tile_chunk_size + CHUNK_HEADER_SIZE;
|
||||
int added_tile = 0;
|
||||
MemBuffer* const mem = &dmux->mem_;
|
||||
Frame* frame;
|
||||
ParseStatus status =
|
||||
NewFrame(mem, min_size, TILE_CHUNK_SIZE, tile_chunk_size, &frame);
|
||||
if (status != PARSE_OK) return status;
|
||||
|
||||
frame->is_tile_ = 1;
|
||||
frame->x_offset_ = 2 * GetLE24s(mem);
|
||||
frame->y_offset_ = 2 * GetLE24s(mem);
|
||||
Skip(mem, tile_chunk_size - TILE_CHUNK_SIZE); // skip any trailing data.
|
||||
|
||||
// Store a (potentially partial) tile only if the tile flag is set
|
||||
// and the tile contains some data.
|
||||
status = StoreFrame(dmux->num_frames_, mem, frame);
|
||||
if (status != PARSE_ERROR && has_tiles && frame->frame_num_ > 0) {
|
||||
// Note num_frames_ is incremented only when all tiles have been consumed.
|
||||
added_tile = AddFrame(dmux, frame);
|
||||
if (!added_tile) status = PARSE_ERROR;
|
||||
}
|
||||
|
||||
if (!added_tile) free(frame);
|
||||
return status;
|
||||
}
|
||||
|
||||
// General chunk storage starting with the header at 'start_offset' allowing
|
||||
// the user to request the payload via a fourcc string. 'size' includes the
|
||||
// header and the unpadded payload size.
|
||||
// Returns true on success, false otherwise.
|
||||
static int StoreChunk(WebPDemuxer* const dmux,
|
||||
size_t start_offset, uint32_t size) {
|
||||
Chunk* const chunk = (Chunk*)calloc(1, sizeof(*chunk));
|
||||
if (chunk == NULL) return 0;
|
||||
|
||||
chunk->data_.offset_ = start_offset;
|
||||
chunk->data_.size_ = size;
|
||||
AddChunk(dmux, chunk);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Primary chunk parsing
|
||||
|
||||
static int ReadHeader(MemBuffer* const mem) {
|
||||
const size_t min_size = RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE;
|
||||
uint32_t riff_size;
|
||||
|
||||
// Basic file level validation.
|
||||
if (MemDataSize(mem) < min_size) return 0;
|
||||
if (memcmp(GetBuffer(mem), "RIFF", CHUNK_SIZE_BYTES) ||
|
||||
memcmp(GetBuffer(mem) + CHUNK_HEADER_SIZE, "WEBP", CHUNK_SIZE_BYTES)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
riff_size = ReadLE32(GetBuffer(mem) + TAG_SIZE);
|
||||
if (riff_size < CHUNK_HEADER_SIZE) return 0;
|
||||
if (riff_size > MAX_CHUNK_PAYLOAD) return 0;
|
||||
|
||||
// There's no point in reading past the end of the RIFF chunk
|
||||
mem->riff_end_ = riff_size + CHUNK_HEADER_SIZE;
|
||||
if (mem->buf_size_ > mem->riff_end_) {
|
||||
mem->buf_size_ = mem->end_ = mem->riff_end_;
|
||||
}
|
||||
|
||||
Skip(mem, RIFF_HEADER_SIZE);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static ParseStatus ParseSingleImage(WebPDemuxer* const dmux) {
|
||||
const size_t min_size = CHUNK_HEADER_SIZE;
|
||||
MemBuffer* const mem = &dmux->mem_;
|
||||
Frame* frame;
|
||||
ParseStatus status;
|
||||
|
||||
if (dmux->frames_ != NULL) return PARSE_ERROR;
|
||||
if (SizeIsInvalid(mem, min_size)) return PARSE_ERROR;
|
||||
if (MemDataSize(mem) < min_size) return PARSE_NEED_MORE_DATA;
|
||||
|
||||
frame = (Frame*)calloc(1, sizeof(*frame));
|
||||
if (frame == NULL) return PARSE_ERROR;
|
||||
|
||||
status = StoreFrame(1, &dmux->mem_, frame);
|
||||
if (status != PARSE_ERROR) {
|
||||
const int has_alpha = !!(dmux->feature_flags_ & ALPHA_FLAG);
|
||||
// Clear any alpha when the alpha flag is missing.
|
||||
if (!has_alpha && frame->img_components_[1].size_ > 0) {
|
||||
frame->img_components_[1].offset_ = 0;
|
||||
frame->img_components_[1].size_ = 0;
|
||||
}
|
||||
|
||||
// Use the frame width/height as the canvas values for non-vp8x files.
|
||||
if (!dmux->is_ext_format_ && frame->width_ > 0 && frame->height_ > 0) {
|
||||
dmux->state_ = WEBP_DEMUX_PARSED_HEADER;
|
||||
dmux->canvas_width_ = frame->width_;
|
||||
dmux->canvas_height_ = frame->height_;
|
||||
}
|
||||
AddFrame(dmux, frame);
|
||||
dmux->num_frames_ = 1;
|
||||
} else {
|
||||
free(frame);
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
static ParseStatus ParseVP8X(WebPDemuxer* const dmux) {
|
||||
MemBuffer* const mem = &dmux->mem_;
|
||||
int loop_chunks = 0;
|
||||
uint32_t vp8x_size;
|
||||
ParseStatus status = PARSE_OK;
|
||||
|
||||
if (MemDataSize(mem) < CHUNK_HEADER_SIZE) return PARSE_NEED_MORE_DATA;
|
||||
|
||||
dmux->is_ext_format_ = 1;
|
||||
Skip(mem, TAG_SIZE); // VP8X
|
||||
vp8x_size = GetLE32(mem);
|
||||
if (vp8x_size > MAX_CHUNK_PAYLOAD) return PARSE_ERROR;
|
||||
if (vp8x_size < VP8X_CHUNK_SIZE) return PARSE_ERROR;
|
||||
vp8x_size += vp8x_size & 1;
|
||||
if (SizeIsInvalid(mem, vp8x_size)) return PARSE_ERROR;
|
||||
if (MemDataSize(mem) < vp8x_size) return PARSE_NEED_MORE_DATA;
|
||||
|
||||
dmux->feature_flags_ = GetByte(mem);
|
||||
Skip(mem, 3); // Reserved.
|
||||
dmux->canvas_width_ = 1 + GetLE24s(mem);
|
||||
dmux->canvas_height_ = 1 + GetLE24s(mem);
|
||||
if (dmux->canvas_width_ * (uint64_t)dmux->canvas_height_ >= MAX_IMAGE_AREA) {
|
||||
return PARSE_ERROR; // image final dimension is too large
|
||||
}
|
||||
Skip(mem, vp8x_size - VP8X_CHUNK_SIZE); // skip any trailing data.
|
||||
dmux->state_ = WEBP_DEMUX_PARSED_HEADER;
|
||||
|
||||
if (SizeIsInvalid(mem, CHUNK_HEADER_SIZE)) return PARSE_ERROR;
|
||||
if (MemDataSize(mem) < CHUNK_HEADER_SIZE) return PARSE_NEED_MORE_DATA;
|
||||
|
||||
do {
|
||||
int store_chunk = 1;
|
||||
const size_t chunk_start_offset = mem->start_;
|
||||
const uint32_t fourcc = GetLE32(mem);
|
||||
const uint32_t chunk_size = GetLE32(mem);
|
||||
const uint32_t chunk_size_padded = chunk_size + (chunk_size & 1);
|
||||
|
||||
if (chunk_size > MAX_CHUNK_PAYLOAD) return PARSE_ERROR;
|
||||
if (SizeIsInvalid(mem, chunk_size_padded)) return PARSE_ERROR;
|
||||
|
||||
switch (fourcc) {
|
||||
case MKFOURCC('V', 'P', '8', 'X'): {
|
||||
return PARSE_ERROR;
|
||||
}
|
||||
case MKFOURCC('A', 'L', 'P', 'H'):
|
||||
case MKFOURCC('V', 'P', '8', ' '):
|
||||
case MKFOURCC('V', 'P', '8', 'L'): {
|
||||
Rewind(mem, CHUNK_HEADER_SIZE);
|
||||
status = ParseSingleImage(dmux);
|
||||
break;
|
||||
}
|
||||
case MKFOURCC('L', 'O', 'O', 'P'): {
|
||||
if (chunk_size_padded < LOOP_CHUNK_SIZE) return PARSE_ERROR;
|
||||
|
||||
if (MemDataSize(mem) < chunk_size_padded) {
|
||||
status = PARSE_NEED_MORE_DATA;
|
||||
} else if (loop_chunks == 0) {
|
||||
++loop_chunks;
|
||||
dmux->loop_count_ = GetLE16s(mem);
|
||||
Skip(mem, chunk_size_padded - LOOP_CHUNK_SIZE);
|
||||
} else {
|
||||
store_chunk = 0;
|
||||
goto Skip;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case MKFOURCC('F', 'R', 'M', ' '): {
|
||||
status = ParseFrame(dmux, chunk_size_padded);
|
||||
break;
|
||||
}
|
||||
case MKFOURCC('T', 'I', 'L', 'E'): {
|
||||
if (dmux->num_frames_ == 0) dmux->num_frames_ = 1;
|
||||
status = ParseTile(dmux, chunk_size_padded);
|
||||
break;
|
||||
}
|
||||
case MKFOURCC('I', 'C', 'C', 'P'): {
|
||||
store_chunk = !!(dmux->feature_flags_ & ICCP_FLAG);
|
||||
goto Skip;
|
||||
}
|
||||
case MKFOURCC('M', 'E', 'T', 'A'): {
|
||||
store_chunk = !!(dmux->feature_flags_ & META_FLAG);
|
||||
goto Skip;
|
||||
}
|
||||
Skip:
|
||||
default: {
|
||||
if (chunk_size_padded <= MemDataSize(mem)) {
|
||||
if (store_chunk) {
|
||||
// Store only the chunk header and unpadded size as only the payload
|
||||
// will be returned to the user.
|
||||
if (!StoreChunk(dmux, chunk_start_offset,
|
||||
CHUNK_HEADER_SIZE + chunk_size)) {
|
||||
return PARSE_ERROR;
|
||||
}
|
||||
}
|
||||
Skip(mem, chunk_size_padded);
|
||||
} else {
|
||||
status = PARSE_NEED_MORE_DATA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (mem->start_ == mem->riff_end_) {
|
||||
break;
|
||||
} else if (MemDataSize(mem) < CHUNK_HEADER_SIZE) {
|
||||
status = PARSE_NEED_MORE_DATA;
|
||||
}
|
||||
} while (status == PARSE_OK);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Format validation
|
||||
|
||||
static int IsValidSimpleFormat(const WebPDemuxer* const dmux) {
|
||||
const Frame* const frame = dmux->frames_;
|
||||
if (dmux->state_ == WEBP_DEMUX_PARSING_HEADER) return 1;
|
||||
|
||||
if (dmux->canvas_width_ <= 0 || dmux->canvas_height_ <= 0) return 0;
|
||||
if (dmux->state_ == WEBP_DEMUX_DONE && frame == NULL) return 0;
|
||||
|
||||
if (frame->width_ <= 0 || frame->height_ <= 0) return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int IsValidExtendedFormat(const WebPDemuxer* const dmux) {
|
||||
const int has_tiles = !!(dmux->feature_flags_ & TILE_FLAG);
|
||||
const int has_frames = !!(dmux->feature_flags_ & ANIMATION_FLAG);
|
||||
const Frame* f;
|
||||
|
||||
if (dmux->state_ == WEBP_DEMUX_PARSING_HEADER) return 1;
|
||||
|
||||
if (dmux->canvas_width_ <= 0 || dmux->canvas_height_ <= 0) return 0;
|
||||
if (dmux->loop_count_ < 0) return 0;
|
||||
if (dmux->state_ == WEBP_DEMUX_DONE && dmux->frames_ == NULL) return 0;
|
||||
|
||||
for (f = dmux->frames_; f != NULL; f = f->next_) {
|
||||
const int cur_frame_set = f->frame_num_;
|
||||
int frame_count = 0, tile_count = 0;
|
||||
|
||||
// Check frame properties and if the image is composed of tiles that each
|
||||
// fragment came from a 'TILE'.
|
||||
for (; f != NULL && f->frame_num_ == cur_frame_set; f = f->next_) {
|
||||
const ChunkData* const image = f->img_components_;
|
||||
const ChunkData* const alpha = f->img_components_ + 1;
|
||||
|
||||
if (!has_tiles && f->is_tile_) return 0;
|
||||
if (!has_frames && f->frame_num_ > 1) return 0;
|
||||
if (f->x_offset_ < 0 || f->y_offset_ < 0) return 0;
|
||||
if (f->complete_) {
|
||||
if (alpha->size_ == 0 && image->size_ == 0) return 0;
|
||||
// Ensure alpha precedes image bitstream.
|
||||
if (alpha->size_ > 0 && alpha->offset_ > image->offset_) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (f->width_ <= 0 || f->height_ <= 0) return 0;
|
||||
} else {
|
||||
// Ensure alpha precedes image bitstream.
|
||||
if (alpha->size_ > 0 && image->size_ > 0 &&
|
||||
alpha->offset_ > image->offset_) {
|
||||
return 0;
|
||||
}
|
||||
// There shouldn't be any frames after an incomplete one.
|
||||
if (f->next_ != NULL) return 0;
|
||||
}
|
||||
|
||||
tile_count += f->is_tile_;
|
||||
++frame_count;
|
||||
}
|
||||
if (!has_tiles && frame_count > 1) return 0;
|
||||
if (tile_count > 0 && frame_count != tile_count) return 0;
|
||||
if (f == NULL) break;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// WebPDemuxer object
|
||||
|
||||
static void InitDemux(WebPDemuxer* const dmux, const MemBuffer* const mem) {
|
||||
dmux->state_ = WEBP_DEMUX_PARSING_HEADER;
|
||||
dmux->loop_count_ = 1;
|
||||
dmux->canvas_width_ = -1;
|
||||
dmux->canvas_height_ = -1;
|
||||
dmux->mem_ = *mem;
|
||||
}
|
||||
|
||||
WebPDemuxer* WebPDemuxInternal(const WebPData* data, int allow_partial,
|
||||
WebPDemuxState* state, int version) {
|
||||
const ChunkParser* parser;
|
||||
int partial;
|
||||
ParseStatus status = PARSE_ERROR;
|
||||
MemBuffer mem;
|
||||
WebPDemuxer* dmux;
|
||||
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DEMUX_ABI_VERSION)) return NULL;
|
||||
if (data == NULL || data->bytes_ == NULL || data->size_ == 0) return NULL;
|
||||
|
||||
if (!InitMemBuffer(&mem, data->bytes_, data->size_)) return NULL;
|
||||
if (!ReadHeader(&mem)) return NULL;
|
||||
|
||||
partial = (mem.buf_size_ < mem.riff_end_);
|
||||
if (!allow_partial && partial) return NULL;
|
||||
|
||||
dmux = (WebPDemuxer*)calloc(1, sizeof(*dmux));
|
||||
if (dmux == NULL) return NULL;
|
||||
InitDemux(dmux, &mem);
|
||||
|
||||
for (parser = kMasterChunks; parser->parse != NULL; ++parser) {
|
||||
if (!memcmp(parser->id, GetBuffer(&dmux->mem_), TAG_SIZE)) {
|
||||
status = parser->parse(dmux);
|
||||
if (status == PARSE_OK) dmux->state_ = WEBP_DEMUX_DONE;
|
||||
if (status != PARSE_ERROR && !parser->valid(dmux)) status = PARSE_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (state) *state = dmux->state_;
|
||||
|
||||
if (status == PARSE_ERROR) {
|
||||
WebPDemuxDelete(dmux);
|
||||
return NULL;
|
||||
}
|
||||
return dmux;
|
||||
}
|
||||
|
||||
void WebPDemuxDelete(WebPDemuxer* dmux) {
|
||||
Chunk* c;
|
||||
Frame* f;
|
||||
if (dmux == NULL) return;
|
||||
|
||||
for (f = dmux->frames_; f != NULL;) {
|
||||
Frame* const cur_frame = f;
|
||||
f = f->next_;
|
||||
free(cur_frame);
|
||||
}
|
||||
for (c = dmux->chunks_; c != NULL;) {
|
||||
Chunk* const cur_chunk = c;
|
||||
c = c->next_;
|
||||
free(cur_chunk);
|
||||
}
|
||||
free(dmux);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
uint32_t WebPDemuxGetI(const WebPDemuxer* dmux, WebPFormatFeature feature) {
|
||||
if (dmux == NULL) return 0;
|
||||
|
||||
switch (feature) {
|
||||
case WEBP_FF_FORMAT_FLAGS: return dmux->feature_flags_;
|
||||
case WEBP_FF_CANVAS_WIDTH: return (uint32_t)dmux->canvas_width_;
|
||||
case WEBP_FF_CANVAS_HEIGHT: return (uint32_t)dmux->canvas_height_;
|
||||
case WEBP_FF_LOOP_COUNT: return (uint32_t)dmux->loop_count_;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Frame iteration
|
||||
|
||||
// Find the first 'frame_num' frame. There may be multiple in a tiled frame.
|
||||
static const Frame* GetFrame(const WebPDemuxer* const dmux, int frame_num) {
|
||||
const Frame* f;
|
||||
for (f = dmux->frames_; f != NULL; f = f->next_) {
|
||||
if (frame_num == f->frame_num_) break;
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
// Returns tile 'tile_num' and the total count.
|
||||
static const Frame* GetTile(
|
||||
const Frame* const frame_set, int tile_num, int* const count) {
|
||||
const int this_frame = frame_set->frame_num_;
|
||||
const Frame* f = frame_set;
|
||||
const Frame* tile = NULL;
|
||||
int total;
|
||||
|
||||
for (total = 0; f != NULL && f->frame_num_ == this_frame; f = f->next_) {
|
||||
if (++total == tile_num) tile = f;
|
||||
}
|
||||
*count = total;
|
||||
return tile;
|
||||
}
|
||||
|
||||
static const uint8_t* GetFramePayload(const uint8_t* const mem_buf,
|
||||
const Frame* const frame,
|
||||
size_t* const data_size) {
|
||||
*data_size = 0;
|
||||
if (frame != NULL) {
|
||||
const ChunkData* const image = frame->img_components_;
|
||||
const ChunkData* const alpha = frame->img_components_ + 1;
|
||||
size_t start_offset = image->offset_;
|
||||
*data_size = image->size_;
|
||||
|
||||
// if alpha exists it precedes image, update the size allowing for
|
||||
// intervening chunks.
|
||||
if (alpha->size_ > 0) {
|
||||
const size_t inter_size = (image->offset_ > 0)
|
||||
? image->offset_ - (alpha->offset_ + alpha->size_)
|
||||
: 0;
|
||||
start_offset = alpha->offset_;
|
||||
*data_size += alpha->size_ + inter_size;
|
||||
}
|
||||
return mem_buf + start_offset;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Create a whole 'frame' from VP8 (+ alpha) or lossless.
|
||||
static int SynthesizeFrame(const WebPDemuxer* const dmux,
|
||||
const Frame* const first_frame,
|
||||
int tile_num, WebPIterator* const iter) {
|
||||
const uint8_t* const mem_buf = dmux->mem_.buf_;
|
||||
int num_tiles;
|
||||
size_t payload_size = 0;
|
||||
const Frame* const tile = GetTile(first_frame, tile_num, &num_tiles);
|
||||
const uint8_t* const payload = GetFramePayload(mem_buf, tile, &payload_size);
|
||||
if (payload == NULL) return 0;
|
||||
|
||||
iter->frame_num_ = first_frame->frame_num_;
|
||||
iter->num_frames_ = dmux->num_frames_;
|
||||
iter->tile_num_ = tile_num;
|
||||
iter->num_tiles_ = num_tiles;
|
||||
iter->x_offset_ = tile->x_offset_;
|
||||
iter->y_offset_ = tile->y_offset_;
|
||||
iter->width_ = tile->width_;
|
||||
iter->height_ = tile->height_;
|
||||
iter->duration_ = tile->duration_;
|
||||
iter->complete_ = tile->complete_;
|
||||
iter->tile_.bytes_ = payload;
|
||||
iter->tile_.size_ = payload_size;
|
||||
// TODO(jzern): adjust offsets for 'TILE's embedded in 'FRM 's
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int SetFrame(int frame_num, WebPIterator* const iter) {
|
||||
const Frame* frame;
|
||||
const WebPDemuxer* const dmux = (WebPDemuxer*)iter->private_;
|
||||
if (dmux == NULL || frame_num < 0) return 0;
|
||||
if (frame_num > dmux->num_frames_) return 0;
|
||||
if (frame_num == 0) frame_num = dmux->num_frames_;
|
||||
|
||||
frame = GetFrame(dmux, frame_num);
|
||||
return SynthesizeFrame(dmux, frame, 1, iter);
|
||||
}
|
||||
|
||||
int WebPDemuxGetFrame(const WebPDemuxer* dmux, int frame, WebPIterator* iter) {
|
||||
if (iter == NULL) return 0;
|
||||
|
||||
memset(iter, 0, sizeof(*iter));
|
||||
iter->private_ = (void*)dmux;
|
||||
return SetFrame(frame, iter);
|
||||
}
|
||||
|
||||
int WebPDemuxNextFrame(WebPIterator* iter) {
|
||||
if (iter == NULL) return 0;
|
||||
return SetFrame(iter->frame_num_ + 1, iter);
|
||||
}
|
||||
|
||||
int WebPDemuxPrevFrame(WebPIterator* iter) {
|
||||
if (iter == NULL) return 0;
|
||||
if (iter->frame_num_ <= 1) return 0;
|
||||
return SetFrame(iter->frame_num_ - 1, iter);
|
||||
}
|
||||
|
||||
int WebPDemuxSelectTile(WebPIterator* iter, int tile) {
|
||||
if (iter != NULL && iter->private_ != NULL && tile > 0) {
|
||||
const WebPDemuxer* const dmux = (WebPDemuxer*)iter->private_;
|
||||
const Frame* const frame = GetFrame(dmux, iter->frame_num_);
|
||||
if (frame == NULL) return 0;
|
||||
|
||||
return SynthesizeFrame(dmux, frame, tile, iter);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void WebPDemuxReleaseIterator(WebPIterator* iter) {
|
||||
(void)iter;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Chunk iteration
|
||||
|
||||
static int ChunkCount(const WebPDemuxer* const dmux, const char fourcc[4]) {
|
||||
const uint8_t* const mem_buf = dmux->mem_.buf_;
|
||||
const Chunk* c;
|
||||
int count = 0;
|
||||
for (c = dmux->chunks_; c != NULL; c = c->next_) {
|
||||
const uint8_t* const header = mem_buf + c->data_.offset_;
|
||||
if (!memcmp(header, fourcc, TAG_SIZE)) ++count;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
static const Chunk* GetChunk(const WebPDemuxer* const dmux,
|
||||
const char fourcc[4], int chunk_num) {
|
||||
const uint8_t* const mem_buf = dmux->mem_.buf_;
|
||||
const Chunk* c;
|
||||
int count = 0;
|
||||
for (c = dmux->chunks_; c != NULL; c = c->next_) {
|
||||
const uint8_t* const header = mem_buf + c->data_.offset_;
|
||||
if (!memcmp(header, fourcc, TAG_SIZE)) ++count;
|
||||
if (count == chunk_num) break;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
static int SetChunk(const char fourcc[4], int chunk_num,
|
||||
WebPChunkIterator* const iter) {
|
||||
const WebPDemuxer* const dmux = (WebPDemuxer*)iter->private_;
|
||||
int count;
|
||||
|
||||
if (dmux == NULL || fourcc == NULL || chunk_num < 0) return 0;
|
||||
count = ChunkCount(dmux, fourcc);
|
||||
if (count == 0) return 0;
|
||||
if (chunk_num == 0) chunk_num = count;
|
||||
|
||||
if (chunk_num <= count) {
|
||||
const uint8_t* const mem_buf = dmux->mem_.buf_;
|
||||
const Chunk* const chunk = GetChunk(dmux, fourcc, chunk_num);
|
||||
iter->chunk_.bytes_ = mem_buf + chunk->data_.offset_ + CHUNK_HEADER_SIZE;
|
||||
iter->chunk_.size_ = chunk->data_.size_ - CHUNK_HEADER_SIZE;
|
||||
iter->num_chunks_ = count;
|
||||
iter->chunk_num_ = chunk_num;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int WebPDemuxGetChunk(const WebPDemuxer* dmux,
|
||||
const char fourcc[4], int chunk_num,
|
||||
WebPChunkIterator* iter) {
|
||||
if (iter == NULL) return 0;
|
||||
|
||||
memset(iter, 0, sizeof(*iter));
|
||||
iter->private_ = (void*)dmux;
|
||||
return SetChunk(fourcc, chunk_num, iter);
|
||||
}
|
||||
|
||||
int WebPDemuxNextChunk(WebPChunkIterator* iter) {
|
||||
if (iter != NULL) {
|
||||
const char* const fourcc =
|
||||
(const char*)iter->chunk_.bytes_ - CHUNK_HEADER_SIZE;
|
||||
return SetChunk(fourcc, iter->chunk_num_ + 1, iter);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int WebPDemuxPrevChunk(WebPChunkIterator* iter) {
|
||||
if (iter != NULL && iter->chunk_num_ > 1) {
|
||||
const char* const fourcc =
|
||||
(const char*)iter->chunk_.bytes_ - CHUNK_HEADER_SIZE;
|
||||
return SetChunk(fourcc, iter->chunk_num_ - 1, iter);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void WebPDemuxReleaseChunkIterator(WebPChunkIterator* iter) {
|
||||
(void)iter;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,712 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Set and delete APIs for mux.
|
||||
//
|
||||
// Authors: Urvang (urvang@google.com)
|
||||
// Vikas (vikasa@google.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include "./muxi.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Life of a mux object.
|
||||
|
||||
static void MuxInit(WebPMux* const mux) {
|
||||
if (mux == NULL) return;
|
||||
memset(mux, 0, sizeof(*mux));
|
||||
}
|
||||
|
||||
WebPMux* WebPNewInternal(int version) {
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_MUX_ABI_VERSION)) {
|
||||
return NULL;
|
||||
} else {
|
||||
WebPMux* const mux = (WebPMux*)malloc(sizeof(WebPMux));
|
||||
// If mux is NULL MuxInit is a noop.
|
||||
MuxInit(mux);
|
||||
return mux;
|
||||
}
|
||||
}
|
||||
|
||||
static void DeleteAllChunks(WebPChunk** const chunk_list) {
|
||||
while (*chunk_list) {
|
||||
*chunk_list = ChunkDelete(*chunk_list);
|
||||
}
|
||||
}
|
||||
|
||||
static void MuxRelease(WebPMux* const mux) {
|
||||
if (mux == NULL) return;
|
||||
MuxImageDeleteAll(&mux->images_);
|
||||
DeleteAllChunks(&mux->vp8x_);
|
||||
DeleteAllChunks(&mux->iccp_);
|
||||
DeleteAllChunks(&mux->loop_);
|
||||
DeleteAllChunks(&mux->meta_);
|
||||
DeleteAllChunks(&mux->unknown_);
|
||||
}
|
||||
|
||||
void WebPMuxDelete(WebPMux* mux) {
|
||||
// If mux is NULL MuxRelease is a noop.
|
||||
MuxRelease(mux);
|
||||
free(mux);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper method(s).
|
||||
|
||||
// Handy MACRO, makes MuxSet() very symmetric to MuxGet().
|
||||
#define SWITCH_ID_LIST(INDEX, LIST) \
|
||||
if (idx == (INDEX)) { \
|
||||
err = ChunkAssignData(&chunk, data, copy_data, kChunks[(INDEX)].tag); \
|
||||
if (err == WEBP_MUX_OK) { \
|
||||
err = ChunkSetNth(&chunk, (LIST), nth); \
|
||||
} \
|
||||
return err; \
|
||||
}
|
||||
|
||||
static WebPMuxError MuxSet(WebPMux* const mux, CHUNK_INDEX idx, uint32_t nth,
|
||||
const WebPData* const data, int copy_data) {
|
||||
WebPChunk chunk;
|
||||
WebPMuxError err = WEBP_MUX_NOT_FOUND;
|
||||
assert(mux != NULL);
|
||||
assert(!IsWPI(kChunks[idx].id));
|
||||
|
||||
ChunkInit(&chunk);
|
||||
SWITCH_ID_LIST(IDX_VP8X, &mux->vp8x_);
|
||||
SWITCH_ID_LIST(IDX_ICCP, &mux->iccp_);
|
||||
SWITCH_ID_LIST(IDX_LOOP, &mux->loop_);
|
||||
SWITCH_ID_LIST(IDX_META, &mux->meta_);
|
||||
if (idx == IDX_UNKNOWN && data->size_ > TAG_SIZE) {
|
||||
// For raw-data unknown chunk, the first four bytes should be the tag to be
|
||||
// used for the chunk.
|
||||
const WebPData tmp = { data->bytes_ + TAG_SIZE, data->size_ - TAG_SIZE };
|
||||
err = ChunkAssignData(&chunk, &tmp, copy_data, GetLE32(data->bytes_ + 0));
|
||||
if (err == WEBP_MUX_OK)
|
||||
err = ChunkSetNth(&chunk, &mux->unknown_, nth);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
#undef SWITCH_ID_LIST
|
||||
|
||||
static WebPMuxError MuxAddChunk(WebPMux* const mux, uint32_t nth, uint32_t tag,
|
||||
const uint8_t* data, size_t size,
|
||||
int copy_data) {
|
||||
const CHUNK_INDEX idx = ChunkGetIndexFromTag(tag);
|
||||
const WebPData chunk_data = { data, size };
|
||||
assert(mux != NULL);
|
||||
assert(size <= MAX_CHUNK_PAYLOAD);
|
||||
assert(idx != IDX_NIL);
|
||||
return MuxSet(mux, idx, nth, &chunk_data, copy_data);
|
||||
}
|
||||
|
||||
// Create data for frame/tile given image data, offsets and duration.
|
||||
static WebPMuxError CreateFrameTileData(const WebPData* const image,
|
||||
int x_offset, int y_offset,
|
||||
int duration, int is_lossless,
|
||||
int is_frame,
|
||||
WebPData* const frame_tile) {
|
||||
int width;
|
||||
int height;
|
||||
uint8_t* frame_tile_bytes;
|
||||
const size_t frame_tile_size = kChunks[is_frame ? IDX_FRAME : IDX_TILE].size;
|
||||
|
||||
const int ok = is_lossless ?
|
||||
VP8LGetInfo(image->bytes_, image->size_, &width, &height, NULL) :
|
||||
VP8GetInfo(image->bytes_, image->size_, image->size_, &width, &height);
|
||||
if (!ok) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
assert(width > 0 && height > 0 && duration > 0);
|
||||
// Note: assertion on upper bounds is done in PutLE24().
|
||||
|
||||
frame_tile_bytes = (uint8_t*)malloc(frame_tile_size);
|
||||
if (frame_tile_bytes == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
|
||||
PutLE24(frame_tile_bytes + 0, x_offset / 2);
|
||||
PutLE24(frame_tile_bytes + 3, y_offset / 2);
|
||||
|
||||
if (is_frame) {
|
||||
PutLE24(frame_tile_bytes + 6, width - 1);
|
||||
PutLE24(frame_tile_bytes + 9, height - 1);
|
||||
PutLE24(frame_tile_bytes + 12, duration - 1);
|
||||
}
|
||||
|
||||
frame_tile->bytes_ = frame_tile_bytes;
|
||||
frame_tile->size_ = frame_tile_size;
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
// Outputs image data given a bitstream. The bitstream can either be a
|
||||
// single-image WebP file or raw VP8/VP8L data.
|
||||
// Also outputs 'is_lossless' to be true if the given bitstream is lossless.
|
||||
static WebPMuxError GetImageData(const WebPData* const bitstream,
|
||||
WebPData* const image, WebPData* const alpha,
|
||||
int* const is_lossless) {
|
||||
WebPDataInit(alpha); // Default: no alpha.
|
||||
if (bitstream->size_ < TAG_SIZE ||
|
||||
memcmp(bitstream->bytes_, "RIFF", TAG_SIZE)) {
|
||||
// It is NOT webp file data. Return input data as is.
|
||||
*image = *bitstream;
|
||||
} else {
|
||||
// It is webp file data. Extract image data from it.
|
||||
const WebPMuxImage* wpi;
|
||||
WebPMux* const mux = WebPMuxCreate(bitstream, 0);
|
||||
if (mux == NULL) return WEBP_MUX_BAD_DATA;
|
||||
wpi = mux->images_;
|
||||
assert(wpi != NULL && wpi->img_ != NULL);
|
||||
*image = wpi->img_->data_;
|
||||
if (wpi->alpha_ != NULL) {
|
||||
*alpha = wpi->alpha_->data_;
|
||||
}
|
||||
WebPMuxDelete(mux);
|
||||
}
|
||||
*is_lossless = VP8LCheckSignature(image->bytes_, image->size_);
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
static WebPMuxError DeleteChunks(WebPChunk** chunk_list, uint32_t tag) {
|
||||
WebPMuxError err = WEBP_MUX_NOT_FOUND;
|
||||
assert(chunk_list);
|
||||
while (*chunk_list) {
|
||||
WebPChunk* const chunk = *chunk_list;
|
||||
if (chunk->tag_ == tag) {
|
||||
*chunk_list = ChunkDelete(chunk);
|
||||
err = WEBP_MUX_OK;
|
||||
} else {
|
||||
chunk_list = &chunk->next_;
|
||||
}
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
static WebPMuxError MuxDeleteAllNamedData(WebPMux* const mux, CHUNK_INDEX idx) {
|
||||
const WebPChunkId id = kChunks[idx].id;
|
||||
WebPChunk** chunk_list;
|
||||
|
||||
if (mux == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
if (IsWPI(id)) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
chunk_list = MuxGetChunkListFromId(mux, id);
|
||||
if (chunk_list == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
return DeleteChunks(chunk_list, kChunks[idx].tag);
|
||||
}
|
||||
|
||||
static WebPMuxError DeleteLoopCount(WebPMux* const mux) {
|
||||
return MuxDeleteAllNamedData(mux, IDX_LOOP);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Set API(s).
|
||||
|
||||
WebPMuxError WebPMuxSetImage(WebPMux* mux,
|
||||
const WebPData* bitstream, int copy_data) {
|
||||
WebPMuxError err;
|
||||
WebPChunk chunk;
|
||||
WebPMuxImage wpi;
|
||||
WebPData image;
|
||||
WebPData alpha;
|
||||
int is_lossless;
|
||||
int image_tag;
|
||||
|
||||
if (mux == NULL || bitstream == NULL || bitstream->bytes_ == NULL ||
|
||||
bitstream->size_ > MAX_CHUNK_PAYLOAD) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// If given data is for a whole webp file,
|
||||
// extract only the VP8/VP8L data from it.
|
||||
err = GetImageData(bitstream, &image, &alpha, &is_lossless);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
image_tag = is_lossless ? kChunks[IDX_VP8L].tag : kChunks[IDX_VP8].tag;
|
||||
|
||||
// Delete the existing images.
|
||||
MuxImageDeleteAll(&mux->images_);
|
||||
|
||||
MuxImageInit(&wpi);
|
||||
|
||||
if (alpha.bytes_ != NULL) { // Add alpha chunk.
|
||||
ChunkInit(&chunk);
|
||||
err = ChunkAssignData(&chunk, &alpha, copy_data, kChunks[IDX_ALPHA].tag);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
err = ChunkSetNth(&chunk, &wpi.alpha_, 1);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
}
|
||||
|
||||
// Add image chunk.
|
||||
ChunkInit(&chunk);
|
||||
err = ChunkAssignData(&chunk, &image, copy_data, image_tag);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
err = ChunkSetNth(&chunk, &wpi.img_, 1);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
|
||||
// Add this image to mux.
|
||||
err = MuxImagePush(&wpi, &mux->images_);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
|
||||
// All OK.
|
||||
return WEBP_MUX_OK;
|
||||
|
||||
Err:
|
||||
// Something bad happened.
|
||||
ChunkRelease(&chunk);
|
||||
MuxImageRelease(&wpi);
|
||||
return err;
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxSetMetadata(WebPMux* mux, const WebPData* metadata,
|
||||
int copy_data) {
|
||||
WebPMuxError err;
|
||||
|
||||
if (mux == NULL || metadata == NULL || metadata->bytes_ == NULL ||
|
||||
metadata->size_ > MAX_CHUNK_PAYLOAD) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// Delete the existing metadata chunk(s).
|
||||
err = WebPMuxDeleteMetadata(mux);
|
||||
if (err != WEBP_MUX_OK && err != WEBP_MUX_NOT_FOUND) return err;
|
||||
|
||||
// Add the given metadata chunk.
|
||||
return MuxSet(mux, IDX_META, 1, metadata, copy_data);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxSetColorProfile(WebPMux* mux, const WebPData* color_profile,
|
||||
int copy_data) {
|
||||
WebPMuxError err;
|
||||
|
||||
if (mux == NULL || color_profile == NULL || color_profile->bytes_ == NULL ||
|
||||
color_profile->size_ > MAX_CHUNK_PAYLOAD) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// Delete the existing ICCP chunk(s).
|
||||
err = WebPMuxDeleteColorProfile(mux);
|
||||
if (err != WEBP_MUX_OK && err != WEBP_MUX_NOT_FOUND) return err;
|
||||
|
||||
// Add the given ICCP chunk.
|
||||
return MuxSet(mux, IDX_ICCP, 1, color_profile, copy_data);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxSetLoopCount(WebPMux* mux, int loop_count) {
|
||||
WebPMuxError err;
|
||||
uint8_t* data = NULL;
|
||||
|
||||
if (mux == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
if (loop_count >= MAX_LOOP_COUNT) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
// Delete the existing LOOP chunk(s).
|
||||
err = DeleteLoopCount(mux);
|
||||
if (err != WEBP_MUX_OK && err != WEBP_MUX_NOT_FOUND) return err;
|
||||
|
||||
// Add the given loop count.
|
||||
data = (uint8_t*)malloc(kChunks[IDX_LOOP].size);
|
||||
if (data == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
|
||||
PutLE16(data, loop_count);
|
||||
err = MuxAddChunk(mux, 1, kChunks[IDX_LOOP].tag, data,
|
||||
kChunks[IDX_LOOP].size, 1);
|
||||
free(data);
|
||||
return err;
|
||||
}
|
||||
|
||||
static WebPMuxError MuxPushFrameTileInternal(
|
||||
WebPMux* const mux, const WebPData* const bitstream, int x_offset,
|
||||
int y_offset, int duration, int copy_data, uint32_t tag) {
|
||||
WebPChunk chunk;
|
||||
WebPData image;
|
||||
WebPData alpha;
|
||||
WebPMuxImage wpi;
|
||||
WebPMuxError err;
|
||||
WebPData frame_tile;
|
||||
const int is_frame = (tag == kChunks[IDX_FRAME].tag) ? 1 : 0;
|
||||
int is_lossless;
|
||||
int image_tag;
|
||||
|
||||
// Sanity checks.
|
||||
if (mux == NULL || bitstream == NULL || bitstream->bytes_ == NULL ||
|
||||
bitstream->size_ > MAX_CHUNK_PAYLOAD) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
if (x_offset < 0 || x_offset >= MAX_POSITION_OFFSET ||
|
||||
y_offset < 0 || y_offset >= MAX_POSITION_OFFSET ||
|
||||
duration <= 0 || duration > MAX_DURATION) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// Snap offsets to even positions.
|
||||
x_offset &= ~1;
|
||||
y_offset &= ~1;
|
||||
|
||||
// If given data is for a whole webp file,
|
||||
// extract only the VP8/VP8L data from it.
|
||||
err = GetImageData(bitstream, &image, &alpha, &is_lossless);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
image_tag = is_lossless ? kChunks[IDX_VP8L].tag : kChunks[IDX_VP8].tag;
|
||||
|
||||
WebPDataInit(&frame_tile);
|
||||
ChunkInit(&chunk);
|
||||
MuxImageInit(&wpi);
|
||||
|
||||
if (alpha.bytes_ != NULL) {
|
||||
// Add alpha chunk.
|
||||
err = ChunkAssignData(&chunk, &alpha, copy_data, kChunks[IDX_ALPHA].tag);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
err = ChunkSetNth(&chunk, &wpi.alpha_, 1);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
ChunkInit(&chunk); // chunk owned by wpi.alpha_ now.
|
||||
}
|
||||
|
||||
// Add image chunk.
|
||||
err = ChunkAssignData(&chunk, &image, copy_data, image_tag);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
err = ChunkSetNth(&chunk, &wpi.img_, 1);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
ChunkInit(&chunk); // chunk owned by wpi.img_ now.
|
||||
|
||||
// Create frame/tile data.
|
||||
err = CreateFrameTileData(&image, x_offset, y_offset, duration, is_lossless,
|
||||
is_frame, &frame_tile);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
|
||||
// Add frame/tile chunk (with copy_data = 1).
|
||||
err = ChunkAssignData(&chunk, &frame_tile, 1, tag);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
WebPDataClear(&frame_tile);
|
||||
err = ChunkSetNth(&chunk, &wpi.header_, 1);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
ChunkInit(&chunk); // chunk owned by wpi.header_ now.
|
||||
|
||||
// Add this WebPMuxImage to mux.
|
||||
err = MuxImagePush(&wpi, &mux->images_);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
|
||||
// All is well.
|
||||
return WEBP_MUX_OK;
|
||||
|
||||
Err: // Something bad happened.
|
||||
WebPDataClear(&frame_tile);
|
||||
ChunkRelease(&chunk);
|
||||
MuxImageRelease(&wpi);
|
||||
return err;
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxPushFrame(WebPMux* mux, const WebPData* bitstream,
|
||||
int x_offset, int y_offset,
|
||||
int duration, int copy_data) {
|
||||
return MuxPushFrameTileInternal(mux, bitstream, x_offset, y_offset,
|
||||
duration, copy_data, kChunks[IDX_FRAME].tag);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxPushTile(WebPMux* mux, const WebPData* bitstream,
|
||||
int x_offset, int y_offset,
|
||||
int copy_data) {
|
||||
return MuxPushFrameTileInternal(mux, bitstream, x_offset, y_offset,
|
||||
1 /* unused duration */, copy_data,
|
||||
kChunks[IDX_TILE].tag);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Delete API(s).
|
||||
|
||||
WebPMuxError WebPMuxDeleteImage(WebPMux* mux) {
|
||||
WebPMuxError err;
|
||||
|
||||
if (mux == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
err = MuxValidateForImage(mux);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// All well, delete image.
|
||||
MuxImageDeleteAll(&mux->images_);
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxDeleteMetadata(WebPMux* mux) {
|
||||
return MuxDeleteAllNamedData(mux, IDX_META);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxDeleteColorProfile(WebPMux* mux) {
|
||||
return MuxDeleteAllNamedData(mux, IDX_ICCP);
|
||||
}
|
||||
|
||||
static WebPMuxError DeleteFrameTileInternal(WebPMux* const mux, uint32_t nth,
|
||||
CHUNK_INDEX idx) {
|
||||
const WebPChunkId id = kChunks[idx].id;
|
||||
if (mux == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
assert(idx == IDX_FRAME || idx == IDX_TILE);
|
||||
return MuxImageDeleteNth(&mux->images_, nth, id);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxDeleteFrame(WebPMux* mux, uint32_t nth) {
|
||||
return DeleteFrameTileInternal(mux, nth, IDX_FRAME);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxDeleteTile(WebPMux* mux, uint32_t nth) {
|
||||
return DeleteFrameTileInternal(mux, nth, IDX_TILE);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Assembly of the WebP RIFF file.
|
||||
|
||||
static WebPMuxError GetFrameTileInfo(const WebPChunk* const frame_tile_chunk,
|
||||
int* const x_offset, int* const y_offset,
|
||||
int* const duration) {
|
||||
const uint32_t tag = frame_tile_chunk->tag_;
|
||||
const int is_frame = (tag == kChunks[IDX_FRAME].tag);
|
||||
const WebPData* const data = &frame_tile_chunk->data_;
|
||||
const size_t expected_data_size =
|
||||
is_frame ? FRAME_CHUNK_SIZE : TILE_CHUNK_SIZE;
|
||||
assert(frame_tile_chunk != NULL);
|
||||
assert(tag == kChunks[IDX_FRAME].tag || tag == kChunks[IDX_TILE].tag);
|
||||
if (data->size_ != expected_data_size) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
*x_offset = 2 * GetLE24(data->bytes_ + 0);
|
||||
*y_offset = 2 * GetLE24(data->bytes_ + 3);
|
||||
if (is_frame) *duration = 1 + GetLE24(data->bytes_ + 12);
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
WebPMuxError MuxGetImageWidthHeight(const WebPChunk* const image_chunk,
|
||||
int* const width, int* const height) {
|
||||
const uint32_t tag = image_chunk->tag_;
|
||||
const WebPData* const data = &image_chunk->data_;
|
||||
int w, h;
|
||||
int ok;
|
||||
assert(image_chunk != NULL);
|
||||
assert(tag == kChunks[IDX_VP8].tag || tag == kChunks[IDX_VP8L].tag);
|
||||
ok = (tag == kChunks[IDX_VP8].tag) ?
|
||||
VP8GetInfo(data->bytes_, data->size_, data->size_, &w, &h) :
|
||||
VP8LGetInfo(data->bytes_, data->size_, &w, &h, NULL);
|
||||
if (ok) {
|
||||
*width = w;
|
||||
*height = h;
|
||||
return WEBP_MUX_OK;
|
||||
} else {
|
||||
return WEBP_MUX_BAD_DATA;
|
||||
}
|
||||
}
|
||||
|
||||
static WebPMuxError GetImageInfo(const WebPMuxImage* const wpi,
|
||||
int* const x_offset, int* const y_offset,
|
||||
int* const duration,
|
||||
int* const width, int* const height) {
|
||||
const WebPChunk* const image_chunk = wpi->img_;
|
||||
const WebPChunk* const frame_tile_chunk = wpi->header_;
|
||||
|
||||
// Get offsets and duration from FRM/TILE chunk.
|
||||
const WebPMuxError err =
|
||||
GetFrameTileInfo(frame_tile_chunk, x_offset, y_offset, duration);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// Get width and height from VP8/VP8L chunk.
|
||||
return MuxGetImageWidthHeight(image_chunk, width, height);
|
||||
}
|
||||
|
||||
static WebPMuxError GetImageCanvasWidthHeight(
|
||||
const WebPMux* const mux, uint32_t flags,
|
||||
int* const width, int* const height) {
|
||||
WebPMuxImage* wpi = NULL;
|
||||
assert(mux != NULL);
|
||||
assert(width != NULL && height != NULL);
|
||||
|
||||
wpi = mux->images_;
|
||||
assert(wpi != NULL);
|
||||
assert(wpi->img_ != NULL);
|
||||
|
||||
if (wpi->next_) {
|
||||
int max_x = 0;
|
||||
int max_y = 0;
|
||||
int64_t image_area = 0;
|
||||
// Aggregate the bounding box for animation frames & tiled images.
|
||||
for (; wpi != NULL; wpi = wpi->next_) {
|
||||
int x_offset, y_offset, duration, w, h;
|
||||
const WebPMuxError err = GetImageInfo(wpi, &x_offset, &y_offset,
|
||||
&duration, &w, &h);
|
||||
const int max_x_pos = x_offset + w;
|
||||
const int max_y_pos = y_offset + h;
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
assert(x_offset < MAX_POSITION_OFFSET);
|
||||
assert(y_offset < MAX_POSITION_OFFSET);
|
||||
|
||||
if (max_x_pos > max_x) max_x = max_x_pos;
|
||||
if (max_y_pos > max_y) max_y = max_y_pos;
|
||||
image_area += w * h;
|
||||
}
|
||||
*width = max_x;
|
||||
*height = max_y;
|
||||
// Crude check to validate that there are no image overlaps/holes for tile
|
||||
// images. Check that the aggregated image area for individual tiles exactly
|
||||
// matches the image area of the constructed canvas. However, the area-match
|
||||
// is necessary but not sufficient condition.
|
||||
if ((flags & TILE_FLAG) && (image_area != (max_x * max_y))) {
|
||||
*width = 0;
|
||||
*height = 0;
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
} else {
|
||||
// For a single image, extract the width & height from VP8/VP8L image-data.
|
||||
int w, h;
|
||||
const WebPChunk* const image_chunk = wpi->img_;
|
||||
const WebPMuxError err = MuxGetImageWidthHeight(image_chunk, &w, &h);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
*width = w;
|
||||
*height = h;
|
||||
}
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
// VP8X format:
|
||||
// Total Size : 10,
|
||||
// Flags : 4 bytes,
|
||||
// Width : 3 bytes,
|
||||
// Height : 3 bytes.
|
||||
static WebPMuxError CreateVP8XChunk(WebPMux* const mux) {
|
||||
WebPMuxError err = WEBP_MUX_OK;
|
||||
uint32_t flags = 0;
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
uint8_t data[VP8X_CHUNK_SIZE];
|
||||
const size_t data_size = VP8X_CHUNK_SIZE;
|
||||
const WebPMuxImage* images = NULL;
|
||||
|
||||
assert(mux != NULL);
|
||||
images = mux->images_; // First image.
|
||||
if (images == NULL || images->img_ == NULL ||
|
||||
images->img_->data_.bytes_ == NULL) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// If VP8X chunk(s) is(are) already present, remove them (and later add new
|
||||
// VP8X chunk with updated flags).
|
||||
err = MuxDeleteAllNamedData(mux, IDX_VP8X);
|
||||
if (err != WEBP_MUX_OK && err != WEBP_MUX_NOT_FOUND) return err;
|
||||
|
||||
// Set flags.
|
||||
if (mux->iccp_ != NULL && mux->iccp_->data_.bytes_ != NULL) {
|
||||
flags |= ICCP_FLAG;
|
||||
}
|
||||
|
||||
if (mux->meta_ != NULL && mux->meta_->data_.bytes_ != NULL) {
|
||||
flags |= META_FLAG;
|
||||
}
|
||||
|
||||
if (images->header_ != NULL) {
|
||||
if (images->header_->tag_ == kChunks[IDX_TILE].tag) {
|
||||
// This is a tiled image.
|
||||
flags |= TILE_FLAG;
|
||||
} else if (images->header_->tag_ == kChunks[IDX_FRAME].tag) {
|
||||
// This is an image with animation.
|
||||
flags |= ANIMATION_FLAG;
|
||||
}
|
||||
}
|
||||
|
||||
if (MuxImageCount(images, WEBP_CHUNK_ALPHA) > 0) {
|
||||
flags |= ALPHA_FLAG; // Some images have an alpha channel.
|
||||
}
|
||||
|
||||
if (flags == 0) {
|
||||
// For Simple Image, VP8X chunk should not be added.
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
err = GetImageCanvasWidthHeight(mux, flags, &width, &height);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
if (width <= 0 || height <= 0) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
if (width > MAX_CANVAS_SIZE || height > MAX_CANVAS_SIZE) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
if (MuxHasLosslessImages(images)) {
|
||||
// We have a file with a VP8X chunk having some lossless images.
|
||||
// As lossless images implicitly contain alpha, force ALPHA_FLAG to be true.
|
||||
// Note: This 'flags' update must NOT be done for a lossless image
|
||||
// without a VP8X chunk!
|
||||
flags |= ALPHA_FLAG;
|
||||
}
|
||||
|
||||
PutLE32(data + 0, flags); // VP8X chunk flags.
|
||||
PutLE24(data + 4, width - 1); // canvas width.
|
||||
PutLE24(data + 7, height - 1); // canvas height.
|
||||
|
||||
err = MuxAddChunk(mux, 1, kChunks[IDX_VP8X].tag, data, data_size, 1);
|
||||
return err;
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxAssemble(WebPMux* mux, WebPData* assembled_data) {
|
||||
size_t size = 0;
|
||||
uint8_t* data = NULL;
|
||||
uint8_t* dst = NULL;
|
||||
int num_frames;
|
||||
int num_loop_chunks;
|
||||
WebPMuxError err;
|
||||
|
||||
if (mux == NULL || assembled_data == NULL) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// Remove LOOP chunk if unnecessary.
|
||||
err = WebPMuxNumChunks(mux, kChunks[IDX_LOOP].id, &num_loop_chunks);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
if (num_loop_chunks >= 1) {
|
||||
err = WebPMuxNumChunks(mux, kChunks[IDX_FRAME].id, &num_frames);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
if (num_frames == 0) {
|
||||
err = DeleteLoopCount(mux);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
}
|
||||
}
|
||||
|
||||
// Create VP8X chunk.
|
||||
err = CreateVP8XChunk(mux);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// Allocate data.
|
||||
size = ChunksListDiskSize(mux->vp8x_) + ChunksListDiskSize(mux->iccp_)
|
||||
+ ChunksListDiskSize(mux->loop_) + MuxImageListDiskSize(mux->images_)
|
||||
+ ChunksListDiskSize(mux->meta_) + ChunksListDiskSize(mux->unknown_)
|
||||
+ RIFF_HEADER_SIZE;
|
||||
|
||||
data = (uint8_t*)malloc(size);
|
||||
if (data == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
|
||||
// Emit header & chunks.
|
||||
dst = MuxEmitRiffHeader(data, size);
|
||||
dst = ChunkListEmit(mux->vp8x_, dst);
|
||||
dst = ChunkListEmit(mux->iccp_, dst);
|
||||
dst = ChunkListEmit(mux->loop_, dst);
|
||||
dst = MuxImageListEmit(mux->images_, dst);
|
||||
dst = ChunkListEmit(mux->meta_, dst);
|
||||
dst = ChunkListEmit(mux->unknown_, dst);
|
||||
assert(dst == data + size);
|
||||
|
||||
// Validate mux.
|
||||
err = MuxValidate(mux);
|
||||
if (err != WEBP_MUX_OK) {
|
||||
free(data);
|
||||
data = NULL;
|
||||
size = 0;
|
||||
}
|
||||
|
||||
// Finalize.
|
||||
assembled_data->bytes_ = data;
|
||||
assembled_data->size_ = size;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,271 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Internal header for mux library.
|
||||
//
|
||||
// Author: Urvang (urvang@google.com)
|
||||
|
||||
#ifndef WEBP_MUX_MUXI_H_
|
||||
#define WEBP_MUX_MUXI_H_
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "../dec/vp8i.h"
|
||||
#include "../dec/vp8li.h"
|
||||
#include "../format_constants.h"
|
||||
#include "../mux.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Defines and constants.
|
||||
|
||||
// Chunk object.
|
||||
typedef struct WebPChunk WebPChunk;
|
||||
struct WebPChunk {
|
||||
uint32_t tag_;
|
||||
int owner_; // True if *data_ memory is owned internally.
|
||||
// VP8X, Loop, and other internally created chunks
|
||||
// like frame/tile are always owned.
|
||||
WebPData data_;
|
||||
WebPChunk* next_;
|
||||
};
|
||||
|
||||
// MuxImage object. Store a full webp image (including frame/tile chunk, alpha
|
||||
// chunk and VP8/VP8L chunk),
|
||||
typedef struct WebPMuxImage WebPMuxImage;
|
||||
struct WebPMuxImage {
|
||||
WebPChunk* header_; // Corresponds to WEBP_CHUNK_FRAME/WEBP_CHUNK_TILE.
|
||||
WebPChunk* alpha_; // Corresponds to WEBP_CHUNK_ALPHA.
|
||||
WebPChunk* img_; // Corresponds to WEBP_CHUNK_IMAGE.
|
||||
int is_partial_; // True if only some of the chunks are filled.
|
||||
WebPMuxImage* next_;
|
||||
};
|
||||
|
||||
// Main mux object. Stores data chunks.
|
||||
struct WebPMux {
|
||||
WebPMuxImage* images_;
|
||||
WebPChunk* iccp_;
|
||||
WebPChunk* meta_;
|
||||
WebPChunk* loop_;
|
||||
WebPChunk* vp8x_;
|
||||
|
||||
WebPChunk* unknown_;
|
||||
};
|
||||
|
||||
// CHUNK_INDEX enum: used for indexing within 'kChunks' (defined below) only.
|
||||
// Note: the reason for having two enums ('WebPChunkId' and 'CHUNK_INDEX') is to
|
||||
// allow two different chunks to have the same id (e.g. WebPChunkId
|
||||
// 'WEBP_CHUNK_IMAGE' can correspond to CHUNK_INDEX 'IDX_VP8' or 'IDX_VP8L').
|
||||
typedef enum {
|
||||
IDX_VP8X = 0,
|
||||
IDX_ICCP,
|
||||
IDX_LOOP,
|
||||
IDX_FRAME,
|
||||
IDX_TILE,
|
||||
IDX_ALPHA,
|
||||
IDX_VP8,
|
||||
IDX_VP8L,
|
||||
IDX_META,
|
||||
IDX_UNKNOWN,
|
||||
|
||||
IDX_NIL,
|
||||
IDX_LAST_CHUNK
|
||||
} CHUNK_INDEX;
|
||||
|
||||
#define NIL_TAG 0x00000000u // To signal void chunk.
|
||||
|
||||
#define MKFOURCC(a, b, c, d) ((uint32_t)(a) | (b) << 8 | (c) << 16 | (d) << 24)
|
||||
|
||||
typedef struct {
|
||||
uint32_t tag;
|
||||
WebPChunkId id;
|
||||
uint32_t size;
|
||||
} ChunkInfo;
|
||||
|
||||
extern const ChunkInfo kChunks[IDX_LAST_CHUNK];
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper functions.
|
||||
|
||||
// Read 16, 24 or 32 bits stored in little-endian order.
|
||||
static WEBP_INLINE int GetLE16(const uint8_t* const data) {
|
||||
return (int)(data[0] << 0) | (data[1] << 8);
|
||||
}
|
||||
|
||||
static WEBP_INLINE int GetLE24(const uint8_t* const data) {
|
||||
return GetLE16(data) | (data[2] << 16);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t GetLE32(const uint8_t* const data) {
|
||||
return (uint32_t)GetLE16(data) | (GetLE16(data + 2) << 16);
|
||||
}
|
||||
|
||||
// Store 16, 24 or 32 bits in little-endian order.
|
||||
static WEBP_INLINE void PutLE16(uint8_t* const data, int val) {
|
||||
assert(val < (1 << 16));
|
||||
data[0] = (val >> 0);
|
||||
data[1] = (val >> 8);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void PutLE24(uint8_t* const data, int val) {
|
||||
assert(val < (1 << 24));
|
||||
PutLE16(data, val & 0xffff);
|
||||
data[2] = (val >> 16);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void PutLE32(uint8_t* const data, uint32_t val) {
|
||||
PutLE16(data, (int)(val & 0xffff));
|
||||
PutLE16(data + 2, (int)(val >> 16));
|
||||
}
|
||||
|
||||
static WEBP_INLINE size_t SizeWithPadding(size_t chunk_size) {
|
||||
return CHUNK_HEADER_SIZE + ((chunk_size + 1) & ~1U);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk object management.
|
||||
|
||||
// Initialize.
|
||||
void ChunkInit(WebPChunk* const chunk);
|
||||
|
||||
// Get chunk index from chunk tag. Returns IDX_NIL if not found.
|
||||
CHUNK_INDEX ChunkGetIndexFromTag(uint32_t tag);
|
||||
|
||||
// Get chunk id from chunk tag. Returns WEBP_CHUNK_NIL if not found.
|
||||
WebPChunkId ChunkGetIdFromTag(uint32_t tag);
|
||||
|
||||
// Search for nth chunk with given 'tag' in the chunk list.
|
||||
// nth = 0 means "last of the list".
|
||||
WebPChunk* ChunkSearchList(WebPChunk* first, uint32_t nth, uint32_t tag);
|
||||
|
||||
// Fill the chunk with the given data.
|
||||
WebPMuxError ChunkAssignData(WebPChunk* chunk, const WebPData* const data,
|
||||
int copy_data, uint32_t tag);
|
||||
|
||||
// Sets 'chunk' at nth position in the 'chunk_list'.
|
||||
// nth = 0 has the special meaning "last of the list".
|
||||
WebPMuxError ChunkSetNth(const WebPChunk* chunk, WebPChunk** chunk_list,
|
||||
uint32_t nth);
|
||||
|
||||
// Releases chunk and returns chunk->next_.
|
||||
WebPChunk* ChunkRelease(WebPChunk* const chunk);
|
||||
|
||||
// Deletes given chunk & returns chunk->next_.
|
||||
WebPChunk* ChunkDelete(WebPChunk* const chunk);
|
||||
|
||||
// Size of a chunk including header and padding.
|
||||
static WEBP_INLINE size_t ChunkDiskSize(const WebPChunk* chunk) {
|
||||
const size_t data_size = chunk->data_.size_;
|
||||
assert(data_size < MAX_CHUNK_PAYLOAD);
|
||||
return SizeWithPadding(data_size);
|
||||
}
|
||||
|
||||
// Total size of a list of chunks.
|
||||
size_t ChunksListDiskSize(const WebPChunk* chunk_list);
|
||||
|
||||
// Write out the given list of chunks into 'dst'.
|
||||
uint8_t* ChunkListEmit(const WebPChunk* chunk_list, uint8_t* dst);
|
||||
|
||||
// Get the width & height of image stored in 'image_chunk'.
|
||||
WebPMuxError MuxGetImageWidthHeight(const WebPChunk* const image_chunk,
|
||||
int* const width, int* const height);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MuxImage object management.
|
||||
|
||||
// Initialize.
|
||||
void MuxImageInit(WebPMuxImage* const wpi);
|
||||
|
||||
// Releases image 'wpi' and returns wpi->next.
|
||||
WebPMuxImage* MuxImageRelease(WebPMuxImage* const wpi);
|
||||
|
||||
// Delete image 'wpi' and return the next image in the list or NULL.
|
||||
// 'wpi' can be NULL.
|
||||
WebPMuxImage* MuxImageDelete(WebPMuxImage* const wpi);
|
||||
|
||||
// Delete all images in 'wpi_list'.
|
||||
void MuxImageDeleteAll(WebPMuxImage** const wpi_list);
|
||||
|
||||
// Count number of images matching the given tag id in the 'wpi_list'.
|
||||
int MuxImageCount(const WebPMuxImage* wpi_list, WebPChunkId id);
|
||||
|
||||
// Check if given ID corresponds to an image related chunk.
|
||||
static WEBP_INLINE int IsWPI(WebPChunkId id) {
|
||||
switch (id) {
|
||||
case WEBP_CHUNK_FRAME:
|
||||
case WEBP_CHUNK_TILE:
|
||||
case WEBP_CHUNK_ALPHA:
|
||||
case WEBP_CHUNK_IMAGE: return 1;
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Get a reference to appropriate chunk list within an image given chunk tag.
|
||||
static WEBP_INLINE WebPChunk** MuxImageGetListFromId(
|
||||
const WebPMuxImage* const wpi, WebPChunkId id) {
|
||||
assert(wpi != NULL);
|
||||
switch (id) {
|
||||
case WEBP_CHUNK_FRAME:
|
||||
case WEBP_CHUNK_TILE: return (WebPChunk**)&wpi->header_;
|
||||
case WEBP_CHUNK_ALPHA: return (WebPChunk**)&wpi->alpha_;
|
||||
case WEBP_CHUNK_IMAGE: return (WebPChunk**)&wpi->img_;
|
||||
default: return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Pushes 'wpi' at the end of 'wpi_list'.
|
||||
WebPMuxError MuxImagePush(const WebPMuxImage* wpi, WebPMuxImage** wpi_list);
|
||||
|
||||
// Delete nth image in the image list with given tag id.
|
||||
WebPMuxError MuxImageDeleteNth(WebPMuxImage** wpi_list, uint32_t nth,
|
||||
WebPChunkId id);
|
||||
|
||||
// Get nth image in the image list with given tag id.
|
||||
WebPMuxError MuxImageGetNth(const WebPMuxImage** wpi_list, uint32_t nth,
|
||||
WebPChunkId id, WebPMuxImage** wpi);
|
||||
|
||||
// Total size of the given image.
|
||||
size_t MuxImageDiskSize(const WebPMuxImage* const wpi);
|
||||
|
||||
// Total size of a list of images.
|
||||
size_t MuxImageListDiskSize(const WebPMuxImage* wpi_list);
|
||||
|
||||
// Write out the given image into 'dst'.
|
||||
uint8_t* MuxImageEmit(const WebPMuxImage* const wpi, uint8_t* dst);
|
||||
|
||||
// Write out the given list of images into 'dst'.
|
||||
uint8_t* MuxImageListEmit(const WebPMuxImage* wpi_list, uint8_t* dst);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper methods for mux.
|
||||
|
||||
// Checks if the given image list contains at least one lossless image.
|
||||
int MuxHasLosslessImages(const WebPMuxImage* images);
|
||||
|
||||
// Write out RIFF header into 'data', given total data size 'size'.
|
||||
uint8_t* MuxEmitRiffHeader(uint8_t* const data, size_t size);
|
||||
|
||||
// Returns the list where chunk with given ID is to be inserted in mux.
|
||||
// Return value is NULL if this chunk should be inserted in mux->images_ list
|
||||
// or if 'id' is not known.
|
||||
WebPChunk** MuxGetChunkListFromId(const WebPMux* mux, WebPChunkId id);
|
||||
|
||||
// Validates that the given mux has a single image.
|
||||
WebPMuxError MuxValidateForImage(const WebPMux* const mux);
|
||||
|
||||
// Validates the given mux object.
|
||||
WebPMuxError MuxValidate(const WebPMux* const mux);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_MUX_MUXI_H_ */
|
|
@ -1,576 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Internal objects and utils for mux.
|
||||
//
|
||||
// Authors: Urvang (urvang@google.com)
|
||||
// Vikas (vikasa@google.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include "./muxi.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define UNDEFINED_CHUNK_SIZE (-1)
|
||||
|
||||
const ChunkInfo kChunks[] = {
|
||||
{ MKFOURCC('V', 'P', '8', 'X'), WEBP_CHUNK_VP8X, VP8X_CHUNK_SIZE },
|
||||
{ MKFOURCC('I', 'C', 'C', 'P'), WEBP_CHUNK_ICCP, UNDEFINED_CHUNK_SIZE },
|
||||
{ MKFOURCC('L', 'O', 'O', 'P'), WEBP_CHUNK_LOOP, LOOP_CHUNK_SIZE },
|
||||
{ MKFOURCC('F', 'R', 'M', ' '), WEBP_CHUNK_FRAME, FRAME_CHUNK_SIZE },
|
||||
{ MKFOURCC('T', 'I', 'L', 'E'), WEBP_CHUNK_TILE, TILE_CHUNK_SIZE },
|
||||
{ MKFOURCC('A', 'L', 'P', 'H'), WEBP_CHUNK_ALPHA, UNDEFINED_CHUNK_SIZE },
|
||||
{ MKFOURCC('V', 'P', '8', ' '), WEBP_CHUNK_IMAGE, UNDEFINED_CHUNK_SIZE },
|
||||
{ MKFOURCC('V', 'P', '8', 'L'), WEBP_CHUNK_IMAGE, UNDEFINED_CHUNK_SIZE },
|
||||
{ MKFOURCC('M', 'E', 'T', 'A'), WEBP_CHUNK_META, UNDEFINED_CHUNK_SIZE },
|
||||
{ MKFOURCC('U', 'N', 'K', 'N'), WEBP_CHUNK_UNKNOWN, UNDEFINED_CHUNK_SIZE },
|
||||
|
||||
{ NIL_TAG, WEBP_CHUNK_NIL, UNDEFINED_CHUNK_SIZE }
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Life of a chunk object.
|
||||
|
||||
void ChunkInit(WebPChunk* const chunk) {
|
||||
assert(chunk);
|
||||
memset(chunk, 0, sizeof(*chunk));
|
||||
chunk->tag_ = NIL_TAG;
|
||||
}
|
||||
|
||||
WebPChunk* ChunkRelease(WebPChunk* const chunk) {
|
||||
WebPChunk* next;
|
||||
if (chunk == NULL) return NULL;
|
||||
if (chunk->owner_) {
|
||||
WebPDataClear(&chunk->data_);
|
||||
}
|
||||
next = chunk->next_;
|
||||
ChunkInit(chunk);
|
||||
return next;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk misc methods.
|
||||
|
||||
CHUNK_INDEX ChunkGetIndexFromTag(uint32_t tag) {
|
||||
int i;
|
||||
for (i = 0; kChunks[i].tag != NIL_TAG; ++i) {
|
||||
if (tag == kChunks[i].tag) return i;
|
||||
}
|
||||
return IDX_NIL;
|
||||
}
|
||||
|
||||
WebPChunkId ChunkGetIdFromTag(uint32_t tag) {
|
||||
int i;
|
||||
for (i = 0; kChunks[i].tag != NIL_TAG; ++i) {
|
||||
if (tag == kChunks[i].tag) return kChunks[i].id;
|
||||
}
|
||||
return WEBP_CHUNK_NIL;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk search methods.
|
||||
|
||||
// Returns next chunk in the chunk list with the given tag.
|
||||
static WebPChunk* ChunkSearchNextInList(WebPChunk* chunk, uint32_t tag) {
|
||||
while (chunk && chunk->tag_ != tag) {
|
||||
chunk = chunk->next_;
|
||||
}
|
||||
return chunk;
|
||||
}
|
||||
|
||||
WebPChunk* ChunkSearchList(WebPChunk* first, uint32_t nth, uint32_t tag) {
|
||||
uint32_t iter = nth;
|
||||
first = ChunkSearchNextInList(first, tag);
|
||||
if (!first) return NULL;
|
||||
|
||||
while (--iter != 0) {
|
||||
WebPChunk* next_chunk = ChunkSearchNextInList(first->next_, tag);
|
||||
if (next_chunk == NULL) break;
|
||||
first = next_chunk;
|
||||
}
|
||||
return ((nth > 0) && (iter > 0)) ? NULL : first;
|
||||
}
|
||||
|
||||
// Outputs a pointer to 'prev_chunk->next_',
|
||||
// where 'prev_chunk' is the pointer to the chunk at position (nth - 1).
|
||||
// Returns 1 if nth chunk was found, 0 otherwise.
|
||||
static int ChunkSearchListToSet(WebPChunk** chunk_list, uint32_t nth,
|
||||
WebPChunk*** const location) {
|
||||
uint32_t count = 0;
|
||||
assert(chunk_list);
|
||||
*location = chunk_list;
|
||||
|
||||
while (*chunk_list) {
|
||||
WebPChunk* const cur_chunk = *chunk_list;
|
||||
++count;
|
||||
if (count == nth) return 1; // Found.
|
||||
chunk_list = &cur_chunk->next_;
|
||||
*location = chunk_list;
|
||||
}
|
||||
|
||||
// *chunk_list is ok to be NULL if adding at last location.
|
||||
return (nth == 0 || (count == nth - 1)) ? 1 : 0;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk writer methods.
|
||||
|
||||
WebPMuxError ChunkAssignData(WebPChunk* chunk, const WebPData* const data,
|
||||
int copy_data, uint32_t tag) {
|
||||
// For internally allocated chunks, always copy data & make it owner of data.
|
||||
if (tag == kChunks[IDX_VP8X].tag || tag == kChunks[IDX_LOOP].tag) {
|
||||
copy_data = 1;
|
||||
}
|
||||
|
||||
ChunkRelease(chunk);
|
||||
|
||||
if (data != NULL) {
|
||||
if (copy_data) {
|
||||
// Copy data.
|
||||
chunk->data_.bytes_ = (uint8_t*)malloc(data->size_);
|
||||
if (chunk->data_.bytes_ == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
memcpy((uint8_t*)chunk->data_.bytes_, data->bytes_, data->size_);
|
||||
chunk->data_.size_ = data->size_;
|
||||
|
||||
// Chunk is owner of data.
|
||||
chunk->owner_ = 1;
|
||||
} else {
|
||||
// Don't copy data.
|
||||
chunk->data_ = *data;
|
||||
}
|
||||
}
|
||||
|
||||
chunk->tag_ = tag;
|
||||
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
WebPMuxError ChunkSetNth(const WebPChunk* chunk, WebPChunk** chunk_list,
|
||||
uint32_t nth) {
|
||||
WebPChunk* new_chunk;
|
||||
|
||||
if (!ChunkSearchListToSet(chunk_list, nth, &chunk_list)) {
|
||||
return WEBP_MUX_NOT_FOUND;
|
||||
}
|
||||
|
||||
new_chunk = (WebPChunk*)malloc(sizeof(*new_chunk));
|
||||
if (new_chunk == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
*new_chunk = *chunk;
|
||||
new_chunk->next_ = *chunk_list;
|
||||
*chunk_list = new_chunk;
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk deletion method(s).
|
||||
|
||||
WebPChunk* ChunkDelete(WebPChunk* const chunk) {
|
||||
WebPChunk* const next = ChunkRelease(chunk);
|
||||
free(chunk);
|
||||
return next;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Chunk serialization methods.
|
||||
|
||||
size_t ChunksListDiskSize(const WebPChunk* chunk_list) {
|
||||
size_t size = 0;
|
||||
while (chunk_list) {
|
||||
size += ChunkDiskSize(chunk_list);
|
||||
chunk_list = chunk_list->next_;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static uint8_t* ChunkEmit(const WebPChunk* const chunk, uint8_t* dst) {
|
||||
const size_t chunk_size = chunk->data_.size_;
|
||||
assert(chunk);
|
||||
assert(chunk->tag_ != NIL_TAG);
|
||||
PutLE32(dst + 0, chunk->tag_);
|
||||
PutLE32(dst + TAG_SIZE, (uint32_t)chunk_size);
|
||||
assert(chunk_size == (uint32_t)chunk_size);
|
||||
memcpy(dst + CHUNK_HEADER_SIZE, chunk->data_.bytes_, chunk_size);
|
||||
if (chunk_size & 1)
|
||||
dst[CHUNK_HEADER_SIZE + chunk_size] = 0; // Add padding.
|
||||
return dst + ChunkDiskSize(chunk);
|
||||
}
|
||||
|
||||
uint8_t* ChunkListEmit(const WebPChunk* chunk_list, uint8_t* dst) {
|
||||
while (chunk_list) {
|
||||
dst = ChunkEmit(chunk_list, dst);
|
||||
chunk_list = chunk_list->next_;
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Manipulation of a WebPData object.
|
||||
|
||||
void WebPDataInit(WebPData* webp_data) {
|
||||
if (webp_data != NULL) {
|
||||
memset(webp_data, 0, sizeof(*webp_data));
|
||||
}
|
||||
}
|
||||
|
||||
void WebPDataClear(WebPData* webp_data) {
|
||||
if (webp_data != NULL) {
|
||||
free((void*)webp_data->bytes_);
|
||||
WebPDataInit(webp_data);
|
||||
}
|
||||
}
|
||||
|
||||
int WebPDataCopy(const WebPData* src, WebPData* dst) {
|
||||
if (src == NULL || dst == NULL) return 0;
|
||||
|
||||
WebPDataInit(dst);
|
||||
if (src->bytes_ != NULL && src->size_ != 0) {
|
||||
dst->bytes_ = (uint8_t*)malloc(src->size_);
|
||||
if (dst->bytes_ == NULL) return 0;
|
||||
memcpy((void*)dst->bytes_, src->bytes_, src->size_);
|
||||
dst->size_ = src->size_;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Life of a MuxImage object.
|
||||
|
||||
void MuxImageInit(WebPMuxImage* const wpi) {
|
||||
assert(wpi);
|
||||
memset(wpi, 0, sizeof(*wpi));
|
||||
}
|
||||
|
||||
WebPMuxImage* MuxImageRelease(WebPMuxImage* const wpi) {
|
||||
WebPMuxImage* next;
|
||||
if (wpi == NULL) return NULL;
|
||||
ChunkDelete(wpi->header_);
|
||||
ChunkDelete(wpi->alpha_);
|
||||
ChunkDelete(wpi->img_);
|
||||
|
||||
next = wpi->next_;
|
||||
MuxImageInit(wpi);
|
||||
return next;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MuxImage search methods.
|
||||
|
||||
int MuxImageCount(const WebPMuxImage* wpi_list, WebPChunkId id) {
|
||||
int count = 0;
|
||||
const WebPMuxImage* current;
|
||||
for (current = wpi_list; current != NULL; current = current->next_) {
|
||||
const WebPChunk* const wpi_chunk = *MuxImageGetListFromId(current, id);
|
||||
if (wpi_chunk != NULL) {
|
||||
const WebPChunkId wpi_chunk_id = ChunkGetIdFromTag(wpi_chunk->tag_);
|
||||
if (wpi_chunk_id == id) ++count;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Outputs a pointer to 'prev_wpi->next_',
|
||||
// where 'prev_wpi' is the pointer to the image at position (nth - 1).
|
||||
// Returns 1 if nth image with given id was found, 0 otherwise.
|
||||
static int SearchImageToGetOrDelete(WebPMuxImage** wpi_list, uint32_t nth,
|
||||
WebPChunkId id,
|
||||
WebPMuxImage*** const location) {
|
||||
uint32_t count = 0;
|
||||
assert(wpi_list);
|
||||
*location = wpi_list;
|
||||
|
||||
// Search makes sense only for the following.
|
||||
assert(id == WEBP_CHUNK_FRAME || id == WEBP_CHUNK_TILE ||
|
||||
id == WEBP_CHUNK_IMAGE);
|
||||
assert(id != WEBP_CHUNK_IMAGE || nth == 1);
|
||||
|
||||
if (nth == 0) {
|
||||
nth = MuxImageCount(*wpi_list, id);
|
||||
if (nth == 0) return 0; // Not found.
|
||||
}
|
||||
|
||||
while (*wpi_list) {
|
||||
WebPMuxImage* const cur_wpi = *wpi_list;
|
||||
const WebPChunk* const wpi_chunk = *MuxImageGetListFromId(cur_wpi, id);
|
||||
if (wpi_chunk != NULL) {
|
||||
const WebPChunkId wpi_chunk_id = ChunkGetIdFromTag(wpi_chunk->tag_);
|
||||
if (wpi_chunk_id == id) {
|
||||
++count;
|
||||
if (count == nth) return 1; // Found.
|
||||
}
|
||||
}
|
||||
wpi_list = &cur_wpi->next_;
|
||||
*location = wpi_list;
|
||||
}
|
||||
return 0; // Not found.
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MuxImage writer methods.
|
||||
|
||||
WebPMuxError MuxImagePush(const WebPMuxImage* wpi, WebPMuxImage** wpi_list) {
|
||||
WebPMuxImage* new_wpi;
|
||||
|
||||
while (*wpi_list != NULL) {
|
||||
WebPMuxImage* const cur_wpi = *wpi_list;
|
||||
if (cur_wpi->next_ == NULL) break;
|
||||
wpi_list = &cur_wpi->next_;
|
||||
}
|
||||
|
||||
new_wpi = (WebPMuxImage*)malloc(sizeof(*new_wpi));
|
||||
if (new_wpi == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
*new_wpi = *wpi;
|
||||
new_wpi->next_ = NULL;
|
||||
|
||||
if (*wpi_list != NULL) {
|
||||
(*wpi_list)->next_ = new_wpi;
|
||||
} else {
|
||||
*wpi_list = new_wpi;
|
||||
}
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MuxImage deletion methods.
|
||||
|
||||
WebPMuxImage* MuxImageDelete(WebPMuxImage* const wpi) {
|
||||
// Delete the components of wpi. If wpi is NULL this is a noop.
|
||||
WebPMuxImage* const next = MuxImageRelease(wpi);
|
||||
free(wpi);
|
||||
return next;
|
||||
}
|
||||
|
||||
void MuxImageDeleteAll(WebPMuxImage** const wpi_list) {
|
||||
while (*wpi_list) {
|
||||
*wpi_list = MuxImageDelete(*wpi_list);
|
||||
}
|
||||
}
|
||||
|
||||
WebPMuxError MuxImageDeleteNth(WebPMuxImage** wpi_list, uint32_t nth,
|
||||
WebPChunkId id) {
|
||||
assert(wpi_list);
|
||||
if (!SearchImageToGetOrDelete(wpi_list, nth, id, &wpi_list)) {
|
||||
return WEBP_MUX_NOT_FOUND;
|
||||
}
|
||||
*wpi_list = MuxImageDelete(*wpi_list);
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MuxImage reader methods.
|
||||
|
||||
WebPMuxError MuxImageGetNth(const WebPMuxImage** wpi_list, uint32_t nth,
|
||||
WebPChunkId id, WebPMuxImage** wpi) {
|
||||
assert(wpi_list);
|
||||
assert(wpi);
|
||||
if (!SearchImageToGetOrDelete((WebPMuxImage**)wpi_list, nth, id,
|
||||
(WebPMuxImage***)&wpi_list)) {
|
||||
return WEBP_MUX_NOT_FOUND;
|
||||
}
|
||||
*wpi = (WebPMuxImage*)*wpi_list;
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// MuxImage serialization methods.
|
||||
|
||||
// Size of an image.
|
||||
size_t MuxImageDiskSize(const WebPMuxImage* const wpi) {
|
||||
size_t size = 0;
|
||||
if (wpi->header_ != NULL) size += ChunkDiskSize(wpi->header_);
|
||||
if (wpi->alpha_ != NULL) size += ChunkDiskSize(wpi->alpha_);
|
||||
if (wpi->img_ != NULL) size += ChunkDiskSize(wpi->img_);
|
||||
return size;
|
||||
}
|
||||
|
||||
size_t MuxImageListDiskSize(const WebPMuxImage* wpi_list) {
|
||||
size_t size = 0;
|
||||
while (wpi_list) {
|
||||
size += MuxImageDiskSize(wpi_list);
|
||||
wpi_list = wpi_list->next_;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
uint8_t* MuxImageEmit(const WebPMuxImage* const wpi, uint8_t* dst) {
|
||||
// Ordering of chunks to be emitted is strictly as follows:
|
||||
// 1. Frame/Tile chunk (if present).
|
||||
// 2. Alpha chunk (if present).
|
||||
// 3. VP8/VP8L chunk.
|
||||
assert(wpi);
|
||||
if (wpi->header_ != NULL) dst = ChunkEmit(wpi->header_, dst);
|
||||
if (wpi->alpha_ != NULL) dst = ChunkEmit(wpi->alpha_, dst);
|
||||
if (wpi->img_ != NULL) dst = ChunkEmit(wpi->img_, dst);
|
||||
return dst;
|
||||
}
|
||||
|
||||
uint8_t* MuxImageListEmit(const WebPMuxImage* wpi_list, uint8_t* dst) {
|
||||
while (wpi_list) {
|
||||
dst = MuxImageEmit(wpi_list, dst);
|
||||
wpi_list = wpi_list->next_;
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper methods for mux.
|
||||
|
||||
int MuxHasLosslessImages(const WebPMuxImage* images) {
|
||||
while (images != NULL) {
|
||||
assert(images->img_ != NULL);
|
||||
if (images->img_->tag_ == kChunks[IDX_VP8L].tag) {
|
||||
return 1;
|
||||
}
|
||||
images = images->next_;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t* MuxEmitRiffHeader(uint8_t* const data, size_t size) {
|
||||
PutLE32(data + 0, MKFOURCC('R', 'I', 'F', 'F'));
|
||||
PutLE32(data + TAG_SIZE, (uint32_t)size - CHUNK_HEADER_SIZE);
|
||||
assert(size == (uint32_t)size);
|
||||
PutLE32(data + TAG_SIZE + CHUNK_SIZE_BYTES, MKFOURCC('W', 'E', 'B', 'P'));
|
||||
return data + RIFF_HEADER_SIZE;
|
||||
}
|
||||
|
||||
WebPChunk** MuxGetChunkListFromId(const WebPMux* mux, WebPChunkId id) {
|
||||
assert(mux != NULL);
|
||||
switch(id) {
|
||||
case WEBP_CHUNK_VP8X: return (WebPChunk**)&mux->vp8x_;
|
||||
case WEBP_CHUNK_ICCP: return (WebPChunk**)&mux->iccp_;
|
||||
case WEBP_CHUNK_LOOP: return (WebPChunk**)&mux->loop_;
|
||||
case WEBP_CHUNK_META: return (WebPChunk**)&mux->meta_;
|
||||
case WEBP_CHUNK_UNKNOWN: return (WebPChunk**)&mux->unknown_;
|
||||
default: return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
WebPMuxError MuxValidateForImage(const WebPMux* const mux) {
|
||||
const int num_images = MuxImageCount(mux->images_, WEBP_CHUNK_IMAGE);
|
||||
const int num_frames = MuxImageCount(mux->images_, WEBP_CHUNK_FRAME);
|
||||
const int num_tiles = MuxImageCount(mux->images_, WEBP_CHUNK_TILE);
|
||||
|
||||
if (num_images == 0) {
|
||||
// No images in mux.
|
||||
return WEBP_MUX_NOT_FOUND;
|
||||
} else if (num_images == 1 && num_frames == 0 && num_tiles == 0) {
|
||||
// Valid case (single image).
|
||||
return WEBP_MUX_OK;
|
||||
} else {
|
||||
// Frame/Tile case OR an invalid mux.
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
}
|
||||
|
||||
static int IsNotCompatible(int feature, int num_items) {
|
||||
return (feature != 0) != (num_items > 0);
|
||||
}
|
||||
|
||||
#define NO_FLAG 0
|
||||
|
||||
// Test basic constraints:
|
||||
// retrieval, maximum number of chunks by index (use -1 to skip)
|
||||
// and feature incompatibility (use NO_FLAG to skip).
|
||||
// On success returns WEBP_MUX_OK and stores the chunk count in *num.
|
||||
static WebPMuxError ValidateChunk(const WebPMux* const mux, CHUNK_INDEX idx,
|
||||
WebPFeatureFlags feature,
|
||||
WebPFeatureFlags vp8x_flags,
|
||||
int max, int* num) {
|
||||
const WebPMuxError err =
|
||||
WebPMuxNumChunks(mux, kChunks[idx].id, num);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
if (max > -1 && *num > max) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
if (feature != NO_FLAG && IsNotCompatible(vp8x_flags & feature, *num)) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
WebPMuxError MuxValidate(const WebPMux* const mux) {
|
||||
int num_iccp;
|
||||
int num_meta;
|
||||
int num_loop_chunks;
|
||||
int num_frames;
|
||||
int num_tiles;
|
||||
int num_vp8x;
|
||||
int num_images;
|
||||
int num_alpha;
|
||||
uint32_t flags;
|
||||
WebPMuxError err;
|
||||
|
||||
// Verify mux is not NULL.
|
||||
if (mux == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
// Verify mux has at least one image.
|
||||
if (mux->images_ == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
err = WebPMuxGetFeatures(mux, &flags);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// At most one color profile chunk.
|
||||
err = ValidateChunk(mux, IDX_ICCP, ICCP_FLAG, flags, 1, &num_iccp);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// At most one XMP metadata.
|
||||
err = ValidateChunk(mux, IDX_META, META_FLAG, flags, 1, &num_meta);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// Animation: ANIMATION_FLAG, loop chunk and frame chunk(s) are consistent.
|
||||
// At most one loop chunk.
|
||||
err = ValidateChunk(mux, IDX_LOOP, NO_FLAG, flags, 1, &num_loop_chunks);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
err = ValidateChunk(mux, IDX_FRAME, NO_FLAG, flags, -1, &num_frames);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
{
|
||||
const int has_animation = !!(flags & ANIMATION_FLAG);
|
||||
if (has_animation && (num_loop_chunks == 0 || num_frames == 0)) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
if (!has_animation && (num_loop_chunks == 1 || num_frames > 0)) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
}
|
||||
|
||||
// Tiling: TILE_FLAG and tile chunk(s) are consistent.
|
||||
err = ValidateChunk(mux, IDX_TILE, TILE_FLAG, flags, -1, &num_tiles);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// Verify either VP8X chunk is present OR there is only one elem in
|
||||
// mux->images_.
|
||||
err = ValidateChunk(mux, IDX_VP8X, NO_FLAG, flags, 1, &num_vp8x);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
err = ValidateChunk(mux, IDX_VP8, NO_FLAG, flags, -1, &num_images);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
if (num_vp8x == 0 && num_images != 1) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
// ALPHA_FLAG & alpha chunk(s) are consistent.
|
||||
if (num_vp8x > 0 && MuxHasLosslessImages(mux->images_)) {
|
||||
// Special case: we have a VP8X chunk as well as some lossless images.
|
||||
if (!(flags & ALPHA_FLAG)) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
} else {
|
||||
err = ValidateChunk(mux, IDX_ALPHA, ALPHA_FLAG, flags, -1, &num_alpha);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
}
|
||||
|
||||
// num_tiles & num_images are consistent.
|
||||
if (num_tiles > 0 && num_images != num_tiles) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
#undef NO_FLAG
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,411 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Read APIs for mux.
|
||||
//
|
||||
// Authors: Urvang (urvang@google.com)
|
||||
// Vikas (vikasa@google.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include "./muxi.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helper method(s).
|
||||
|
||||
// Handy MACRO.
|
||||
#define SWITCH_ID_LIST(INDEX, LIST) \
|
||||
if (idx == (INDEX)) { \
|
||||
const WebPChunk* const chunk = ChunkSearchList((LIST), nth, \
|
||||
kChunks[(INDEX)].tag); \
|
||||
if (chunk) { \
|
||||
*data = chunk->data_; \
|
||||
return WEBP_MUX_OK; \
|
||||
} else { \
|
||||
return WEBP_MUX_NOT_FOUND; \
|
||||
} \
|
||||
}
|
||||
|
||||
static WebPMuxError MuxGet(const WebPMux* const mux, CHUNK_INDEX idx,
|
||||
uint32_t nth, WebPData* const data) {
|
||||
assert(mux != NULL);
|
||||
assert(!IsWPI(kChunks[idx].id));
|
||||
WebPDataInit(data);
|
||||
|
||||
SWITCH_ID_LIST(IDX_VP8X, mux->vp8x_);
|
||||
SWITCH_ID_LIST(IDX_ICCP, mux->iccp_);
|
||||
SWITCH_ID_LIST(IDX_LOOP, mux->loop_);
|
||||
SWITCH_ID_LIST(IDX_META, mux->meta_);
|
||||
SWITCH_ID_LIST(IDX_UNKNOWN, mux->unknown_);
|
||||
return WEBP_MUX_NOT_FOUND;
|
||||
}
|
||||
#undef SWITCH_ID_LIST
|
||||
|
||||
// Fill the chunk with the given data (includes chunk header bytes), after some
|
||||
// verifications.
|
||||
static WebPMuxError ChunkVerifyAndAssignData(WebPChunk* chunk,
|
||||
const uint8_t* data,
|
||||
size_t data_size, size_t riff_size,
|
||||
int copy_data) {
|
||||
uint32_t chunk_size;
|
||||
WebPData chunk_data;
|
||||
|
||||
// Sanity checks.
|
||||
if (data_size < TAG_SIZE) return WEBP_MUX_NOT_ENOUGH_DATA;
|
||||
chunk_size = GetLE32(data + TAG_SIZE);
|
||||
|
||||
{
|
||||
const size_t chunk_disk_size = SizeWithPadding(chunk_size);
|
||||
if (chunk_disk_size > riff_size) return WEBP_MUX_BAD_DATA;
|
||||
if (chunk_disk_size > data_size) return WEBP_MUX_NOT_ENOUGH_DATA;
|
||||
}
|
||||
|
||||
// Data assignment.
|
||||
chunk_data.bytes_ = data + CHUNK_HEADER_SIZE;
|
||||
chunk_data.size_ = chunk_size;
|
||||
return ChunkAssignData(chunk, &chunk_data, copy_data, GetLE32(data + 0));
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Create a mux object from WebP-RIFF data.
|
||||
|
||||
WebPMux* WebPMuxCreateInternal(const WebPData* bitstream, int copy_data,
|
||||
int version) {
|
||||
size_t riff_size;
|
||||
uint32_t tag;
|
||||
const uint8_t* end;
|
||||
WebPMux* mux = NULL;
|
||||
WebPMuxImage* wpi = NULL;
|
||||
const uint8_t* data;
|
||||
size_t size;
|
||||
WebPChunk chunk;
|
||||
ChunkInit(&chunk);
|
||||
|
||||
// Sanity checks.
|
||||
if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_MUX_ABI_VERSION)) {
|
||||
return NULL; // version mismatch
|
||||
}
|
||||
if (bitstream == NULL) return NULL;
|
||||
|
||||
data = bitstream->bytes_;
|
||||
size = bitstream->size_;
|
||||
|
||||
if (data == NULL) return NULL;
|
||||
if (size < RIFF_HEADER_SIZE) return NULL;
|
||||
if (GetLE32(data + 0) != MKFOURCC('R', 'I', 'F', 'F') ||
|
||||
GetLE32(data + CHUNK_HEADER_SIZE) != MKFOURCC('W', 'E', 'B', 'P')) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
mux = WebPMuxNew();
|
||||
if (mux == NULL) return NULL;
|
||||
|
||||
if (size < RIFF_HEADER_SIZE + TAG_SIZE) goto Err;
|
||||
|
||||
tag = GetLE32(data + RIFF_HEADER_SIZE);
|
||||
if (tag != kChunks[IDX_VP8].tag &&
|
||||
tag != kChunks[IDX_VP8L].tag &&
|
||||
tag != kChunks[IDX_VP8X].tag) {
|
||||
goto Err; // First chunk should be VP8, VP8L or VP8X.
|
||||
}
|
||||
|
||||
riff_size = SizeWithPadding(GetLE32(data + TAG_SIZE));
|
||||
if (riff_size > MAX_CHUNK_PAYLOAD || riff_size > size) {
|
||||
goto Err;
|
||||
} else {
|
||||
if (riff_size < size) { // Redundant data after last chunk.
|
||||
size = riff_size; // To make sure we don't read any data beyond mux_size.
|
||||
}
|
||||
}
|
||||
|
||||
end = data + size;
|
||||
data += RIFF_HEADER_SIZE;
|
||||
size -= RIFF_HEADER_SIZE;
|
||||
|
||||
wpi = (WebPMuxImage*)malloc(sizeof(*wpi));
|
||||
if (wpi == NULL) goto Err;
|
||||
MuxImageInit(wpi);
|
||||
|
||||
// Loop over chunks.
|
||||
while (data != end) {
|
||||
WebPChunkId id;
|
||||
WebPMuxError err;
|
||||
|
||||
err = ChunkVerifyAndAssignData(&chunk, data, size, riff_size, copy_data);
|
||||
if (err != WEBP_MUX_OK) goto Err;
|
||||
|
||||
id = ChunkGetIdFromTag(chunk.tag_);
|
||||
|
||||
if (IsWPI(id)) { // An image chunk (frame/tile/alpha/vp8).
|
||||
WebPChunk** wpi_chunk_ptr =
|
||||
MuxImageGetListFromId(wpi, id); // Image chunk to set.
|
||||
assert(wpi_chunk_ptr != NULL);
|
||||
if (*wpi_chunk_ptr != NULL) goto Err; // Consecutive alpha chunks or
|
||||
// consecutive frame/tile chunks.
|
||||
if (ChunkSetNth(&chunk, wpi_chunk_ptr, 1) != WEBP_MUX_OK) goto Err;
|
||||
if (id == WEBP_CHUNK_IMAGE) {
|
||||
wpi->is_partial_ = 0; // wpi is completely filled.
|
||||
// Add this to mux->images_ list.
|
||||
if (MuxImagePush(wpi, &mux->images_) != WEBP_MUX_OK) goto Err;
|
||||
MuxImageInit(wpi); // Reset for reading next image.
|
||||
} else {
|
||||
wpi->is_partial_ = 1; // wpi is only partially filled.
|
||||
}
|
||||
} else { // A non-image chunk.
|
||||
WebPChunk** chunk_list;
|
||||
if (wpi->is_partial_) goto Err; // Encountered a non-image chunk before
|
||||
// getting all chunks of an image.
|
||||
chunk_list = MuxGetChunkListFromId(mux, id); // List to add this chunk.
|
||||
if (chunk_list == NULL) chunk_list = &mux->unknown_;
|
||||
if (ChunkSetNth(&chunk, chunk_list, 0) != WEBP_MUX_OK) goto Err;
|
||||
}
|
||||
{
|
||||
const size_t data_size = ChunkDiskSize(&chunk);
|
||||
data += data_size;
|
||||
size -= data_size;
|
||||
}
|
||||
ChunkInit(&chunk);
|
||||
}
|
||||
|
||||
// Validate mux if complete.
|
||||
if (MuxValidate(mux) != WEBP_MUX_OK) goto Err;
|
||||
|
||||
MuxImageDelete(wpi);
|
||||
return mux; // All OK;
|
||||
|
||||
Err: // Something bad happened.
|
||||
ChunkRelease(&chunk);
|
||||
MuxImageDelete(wpi);
|
||||
WebPMuxDelete(mux);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Get API(s).
|
||||
|
||||
WebPMuxError WebPMuxGetFeatures(const WebPMux* mux, uint32_t* flags) {
|
||||
WebPData data;
|
||||
WebPMuxError err;
|
||||
|
||||
if (mux == NULL || flags == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
*flags = 0;
|
||||
|
||||
// Check if VP8X chunk is present.
|
||||
err = MuxGet(mux, IDX_VP8X, 1, &data);
|
||||
if (err == WEBP_MUX_NOT_FOUND) {
|
||||
// Check if VP8/VP8L chunk is present.
|
||||
err = WebPMuxGetImage(mux, &data);
|
||||
WebPDataClear(&data);
|
||||
return err;
|
||||
} else if (err != WEBP_MUX_OK) {
|
||||
return err;
|
||||
}
|
||||
|
||||
if (data.size_ < CHUNK_SIZE_BYTES) return WEBP_MUX_BAD_DATA;
|
||||
|
||||
// All OK. Fill up flags.
|
||||
*flags = GetLE32(data.bytes_);
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
static uint8_t* EmitVP8XChunk(uint8_t* const dst, int width,
|
||||
int height, uint32_t flags) {
|
||||
const size_t vp8x_size = CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE;
|
||||
assert(width >= 1 && height >= 1);
|
||||
assert(width <= MAX_CANVAS_SIZE && height <= MAX_CANVAS_SIZE);
|
||||
assert(width * (uint64_t)height < MAX_IMAGE_AREA);
|
||||
PutLE32(dst, MKFOURCC('V', 'P', '8', 'X'));
|
||||
PutLE32(dst + TAG_SIZE, VP8X_CHUNK_SIZE);
|
||||
PutLE32(dst + CHUNK_HEADER_SIZE, flags);
|
||||
PutLE24(dst + CHUNK_HEADER_SIZE + 4, width - 1);
|
||||
PutLE24(dst + CHUNK_HEADER_SIZE + 7, height - 1);
|
||||
return dst + vp8x_size;
|
||||
}
|
||||
|
||||
// Assemble a single image WebP bitstream from 'wpi'.
|
||||
static WebPMuxError SynthesizeBitstream(WebPMuxImage* const wpi,
|
||||
WebPData* const bitstream) {
|
||||
uint8_t* dst;
|
||||
|
||||
// Allocate data.
|
||||
const int need_vp8x = (wpi->alpha_ != NULL);
|
||||
const size_t vp8x_size = need_vp8x ? CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE : 0;
|
||||
const size_t alpha_size = need_vp8x ? ChunkDiskSize(wpi->alpha_) : 0;
|
||||
// Note: No need to output FRM/TILE chunk for a single image.
|
||||
const size_t size = RIFF_HEADER_SIZE + vp8x_size + alpha_size +
|
||||
ChunkDiskSize(wpi->img_);
|
||||
uint8_t* const data = (uint8_t*)malloc(size);
|
||||
if (data == NULL) return WEBP_MUX_MEMORY_ERROR;
|
||||
|
||||
// Main RIFF header.
|
||||
dst = MuxEmitRiffHeader(data, size);
|
||||
|
||||
if (need_vp8x) {
|
||||
int w, h;
|
||||
WebPMuxError err;
|
||||
assert(wpi->img_ != NULL);
|
||||
err = MuxGetImageWidthHeight(wpi->img_, &w, &h);
|
||||
if (err != WEBP_MUX_OK) {
|
||||
free(data);
|
||||
return err;
|
||||
}
|
||||
dst = EmitVP8XChunk(dst, w, h, ALPHA_FLAG); // VP8X.
|
||||
dst = ChunkListEmit(wpi->alpha_, dst); // ALPH.
|
||||
}
|
||||
|
||||
// Bitstream.
|
||||
dst = ChunkListEmit(wpi->img_, dst);
|
||||
assert(dst == data + size);
|
||||
|
||||
// Output.
|
||||
bitstream->bytes_ = data;
|
||||
bitstream->size_ = size;
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxGetImage(const WebPMux* mux, WebPData* bitstream) {
|
||||
WebPMuxError err;
|
||||
WebPMuxImage* wpi = NULL;
|
||||
|
||||
if (mux == NULL || bitstream == NULL) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
err = MuxValidateForImage(mux);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// All well. Get the image.
|
||||
err = MuxImageGetNth((const WebPMuxImage**)&mux->images_, 1, WEBP_CHUNK_IMAGE,
|
||||
&wpi);
|
||||
assert(err == WEBP_MUX_OK); // Already tested above.
|
||||
|
||||
return SynthesizeBitstream(wpi, bitstream);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxGetMetadata(const WebPMux* mux, WebPData* metadata) {
|
||||
if (mux == NULL || metadata == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
return MuxGet(mux, IDX_META, 1, metadata);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxGetColorProfile(const WebPMux* mux,
|
||||
WebPData* color_profile) {
|
||||
if (mux == NULL || color_profile == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
return MuxGet(mux, IDX_ICCP, 1, color_profile);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxGetLoopCount(const WebPMux* mux, int* loop_count) {
|
||||
WebPData image;
|
||||
WebPMuxError err;
|
||||
|
||||
if (mux == NULL || loop_count == NULL) return WEBP_MUX_INVALID_ARGUMENT;
|
||||
|
||||
err = MuxGet(mux, IDX_LOOP, 1, &image);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
if (image.size_ < kChunks[WEBP_CHUNK_LOOP].size) return WEBP_MUX_BAD_DATA;
|
||||
*loop_count = GetLE16(image.bytes_);
|
||||
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
static WebPMuxError MuxGetFrameTileInternal(
|
||||
const WebPMux* const mux, uint32_t nth, WebPData* const bitstream,
|
||||
int* const x_offset, int* const y_offset, int* const duration,
|
||||
uint32_t tag) {
|
||||
const WebPData* frame_tile_data;
|
||||
WebPMuxError err;
|
||||
WebPMuxImage* wpi;
|
||||
|
||||
const int is_frame = (tag == kChunks[WEBP_CHUNK_FRAME].tag) ? 1 : 0;
|
||||
const CHUNK_INDEX idx = is_frame ? IDX_FRAME : IDX_TILE;
|
||||
const WebPChunkId id = kChunks[idx].id;
|
||||
|
||||
if (mux == NULL || bitstream == NULL ||
|
||||
x_offset == NULL || y_offset == NULL || (is_frame && duration == NULL)) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
// Get the nth WebPMuxImage.
|
||||
err = MuxImageGetNth((const WebPMuxImage**)&mux->images_, nth, id, &wpi);
|
||||
if (err != WEBP_MUX_OK) return err;
|
||||
|
||||
// Get frame chunk.
|
||||
assert(wpi->header_ != NULL); // As MuxImageGetNth() already checked header_.
|
||||
frame_tile_data = &wpi->header_->data_;
|
||||
|
||||
if (frame_tile_data->size_ < kChunks[idx].size) return WEBP_MUX_BAD_DATA;
|
||||
*x_offset = 2 * GetLE24(frame_tile_data->bytes_ + 0);
|
||||
*y_offset = 2 * GetLE24(frame_tile_data->bytes_ + 3);
|
||||
if (is_frame) *duration = 1 + GetLE24(frame_tile_data->bytes_ + 12);
|
||||
|
||||
return SynthesizeBitstream(wpi, bitstream);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxGetFrame(const WebPMux* mux, uint32_t nth,
|
||||
WebPData* bitstream,
|
||||
int* x_offset, int* y_offset, int* duration) {
|
||||
return MuxGetFrameTileInternal(mux, nth, bitstream, x_offset, y_offset,
|
||||
duration, kChunks[IDX_FRAME].tag);
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxGetTile(const WebPMux* mux, uint32_t nth,
|
||||
WebPData* bitstream,
|
||||
int* x_offset, int* y_offset) {
|
||||
return MuxGetFrameTileInternal(mux, nth, bitstream, x_offset, y_offset, NULL,
|
||||
kChunks[IDX_TILE].tag);
|
||||
}
|
||||
|
||||
// Get chunk index from chunk id. Returns IDX_NIL if not found.
|
||||
static CHUNK_INDEX ChunkGetIndexFromId(WebPChunkId id) {
|
||||
int i;
|
||||
for (i = 0; kChunks[i].id != WEBP_CHUNK_NIL; ++i) {
|
||||
if (id == kChunks[i].id) return i;
|
||||
}
|
||||
return IDX_NIL;
|
||||
}
|
||||
|
||||
// Count number of chunks matching 'tag' in the 'chunk_list'.
|
||||
// If tag == NIL_TAG, any tag will be matched.
|
||||
static int CountChunks(const WebPChunk* const chunk_list, uint32_t tag) {
|
||||
int count = 0;
|
||||
const WebPChunk* current;
|
||||
for (current = chunk_list; current != NULL; current = current->next_) {
|
||||
if (tag == NIL_TAG || current->tag_ == tag) {
|
||||
count++; // Count chunks whose tags match.
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
WebPMuxError WebPMuxNumChunks(const WebPMux* mux,
|
||||
WebPChunkId id, int* num_elements) {
|
||||
if (mux == NULL || num_elements == NULL) {
|
||||
return WEBP_MUX_INVALID_ARGUMENT;
|
||||
}
|
||||
|
||||
if (IsWPI(id)) {
|
||||
*num_elements = MuxImageCount(mux->images_, id);
|
||||
} else {
|
||||
WebPChunk* const* chunk_list = MuxGetChunkListFromId(mux, id);
|
||||
if (chunk_list == NULL) {
|
||||
*num_elements = 0;
|
||||
} else {
|
||||
const CHUNK_INDEX idx = ChunkGetIndexFromId(id);
|
||||
*num_elements = CountChunks(*chunk_list, kChunks[idx].tag);
|
||||
}
|
||||
}
|
||||
|
||||
return WEBP_MUX_OK;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,45 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Common types
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_WEBP_TYPES_H_
|
||||
#define WEBP_WEBP_TYPES_H_
|
||||
|
||||
#include <stddef.h> // for size_t
|
||||
|
||||
#ifndef _MSC_VER
|
||||
#include <inttypes.h>
|
||||
#ifdef __STRICT_ANSI__
|
||||
#define WEBP_INLINE
|
||||
#else /* __STRICT_ANSI__ */
|
||||
#define WEBP_INLINE inline
|
||||
#endif
|
||||
#else
|
||||
typedef signed char int8_t;
|
||||
typedef unsigned char uint8_t;
|
||||
typedef signed short int16_t;
|
||||
typedef unsigned short uint16_t;
|
||||
typedef signed int int32_t;
|
||||
typedef unsigned int uint32_t;
|
||||
typedef unsigned long long int uint64_t;
|
||||
typedef long long int int64_t;
|
||||
#define WEBP_INLINE __forceinline
|
||||
#endif /* _MSC_VER */
|
||||
|
||||
#ifndef WEBP_EXTERN
|
||||
// This explicitly marks library functions and allows for changing the
|
||||
// signature for e.g., Windows DLL builds.
|
||||
#define WEBP_EXTERN(type) extern type
|
||||
#endif /* WEBP_EXTERN */
|
||||
|
||||
// Macro to check ABI compatibility (same major revision number)
|
||||
#define WEBP_ABI_IS_INCOMPATIBLE(a, b) (((a) >> 8) != ((b) >> 8))
|
||||
|
||||
#endif /* WEBP_WEBP_TYPES_H_ */
|
|
@ -1,229 +0,0 @@
|
|||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Boolean decoder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include "./bit_reader.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define MK(X) (((bit_t)(X) << (BITS)) | (MASK))
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8BitReader
|
||||
|
||||
void VP8InitBitReader(VP8BitReader* const br,
|
||||
const uint8_t* const start, const uint8_t* const end) {
|
||||
assert(br != NULL);
|
||||
assert(start != NULL);
|
||||
assert(start <= end);
|
||||
br->range_ = MK(255 - 1);
|
||||
br->buf_ = start;
|
||||
br->buf_end_ = end;
|
||||
br->value_ = 0;
|
||||
br->missing_ = 8; // to load the very first 8bits
|
||||
br->eof_ = 0;
|
||||
}
|
||||
|
||||
const uint8_t kVP8Log2Range[128] = {
|
||||
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0
|
||||
};
|
||||
|
||||
// range = (range << kVP8Log2Range[range]) + trailing 1's
|
||||
const bit_t kVP8NewRange[128] = {
|
||||
MK(127), MK(127), MK(191), MK(127), MK(159), MK(191), MK(223), MK(127),
|
||||
MK(143), MK(159), MK(175), MK(191), MK(207), MK(223), MK(239), MK(127),
|
||||
MK(135), MK(143), MK(151), MK(159), MK(167), MK(175), MK(183), MK(191),
|
||||
MK(199), MK(207), MK(215), MK(223), MK(231), MK(239), MK(247), MK(127),
|
||||
MK(131), MK(135), MK(139), MK(143), MK(147), MK(151), MK(155), MK(159),
|
||||
MK(163), MK(167), MK(171), MK(175), MK(179), MK(183), MK(187), MK(191),
|
||||
MK(195), MK(199), MK(203), MK(207), MK(211), MK(215), MK(219), MK(223),
|
||||
MK(227), MK(231), MK(235), MK(239), MK(243), MK(247), MK(251), MK(127),
|
||||
MK(129), MK(131), MK(133), MK(135), MK(137), MK(139), MK(141), MK(143),
|
||||
MK(145), MK(147), MK(149), MK(151), MK(153), MK(155), MK(157), MK(159),
|
||||
MK(161), MK(163), MK(165), MK(167), MK(169), MK(171), MK(173), MK(175),
|
||||
MK(177), MK(179), MK(181), MK(183), MK(185), MK(187), MK(189), MK(191),
|
||||
MK(193), MK(195), MK(197), MK(199), MK(201), MK(203), MK(205), MK(207),
|
||||
MK(209), MK(211), MK(213), MK(215), MK(217), MK(219), MK(221), MK(223),
|
||||
MK(225), MK(227), MK(229), MK(231), MK(233), MK(235), MK(237), MK(239),
|
||||
MK(241), MK(243), MK(245), MK(247), MK(249), MK(251), MK(253), MK(127)
|
||||
};
|
||||
|
||||
#undef MK
|
||||
|
||||
void VP8LoadFinalBytes(VP8BitReader* const br) {
|
||||
assert(br != NULL && br->buf_ != NULL);
|
||||
// Only read 8bits at a time
|
||||
if (br->buf_ < br->buf_end_) {
|
||||
br->value_ |= (bit_t)(*br->buf_++) << ((BITS) - 8 + br->missing_);
|
||||
br->missing_ -= 8;
|
||||
} else {
|
||||
br->eof_ = 1;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Higher-level calls
|
||||
|
||||
uint32_t VP8GetValue(VP8BitReader* const br, int bits) {
|
||||
uint32_t v = 0;
|
||||
while (bits-- > 0) {
|
||||
v |= VP8GetBit(br, 0x80) << bits;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
int32_t VP8GetSignedValue(VP8BitReader* const br, int bits) {
|
||||
const int value = VP8GetValue(br, bits);
|
||||
return VP8Get(br) ? -value : value;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8LBitReader
|
||||
|
||||
#define MAX_NUM_BIT_READ 25
|
||||
|
||||
static const uint32_t kBitMask[MAX_NUM_BIT_READ] = {
|
||||
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767,
|
||||
65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215
|
||||
};
|
||||
|
||||
void VP8LInitBitReader(VP8LBitReader* const br,
|
||||
const uint8_t* const start,
|
||||
size_t length) {
|
||||
size_t i;
|
||||
assert(br != NULL);
|
||||
assert(start != NULL);
|
||||
assert(length < 0xfffffff8u); // can't happen with a RIFF chunk.
|
||||
|
||||
br->buf_ = start;
|
||||
br->len_ = length;
|
||||
br->val_ = 0;
|
||||
br->pos_ = 0;
|
||||
br->bit_pos_ = 0;
|
||||
br->eos_ = 0;
|
||||
br->error_ = 0;
|
||||
for (i = 0; i < sizeof(br->val_) && i < br->len_; ++i) {
|
||||
br->val_ |= ((uint64_t)br->buf_[br->pos_]) << (8 * i);
|
||||
++br->pos_;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LBitReaderSetBuffer(VP8LBitReader* const br,
|
||||
const uint8_t* const buf, size_t len) {
|
||||
assert(br != NULL);
|
||||
assert(buf != NULL);
|
||||
assert(len < 0xfffffff8u); // can't happen with a RIFF chunk.
|
||||
br->eos_ = (br->pos_ >= len);
|
||||
br->buf_ = buf;
|
||||
br->len_ = len;
|
||||
}
|
||||
|
||||
static void ShiftBytes(VP8LBitReader* const br) {
|
||||
while (br->bit_pos_ >= 8 && br->pos_ < br->len_) {
|
||||
br->val_ >>= 8;
|
||||
br->val_ |= ((uint64_t)br->buf_[br->pos_]) << 56;
|
||||
++br->pos_;
|
||||
br->bit_pos_ -= 8;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LFillBitWindow(VP8LBitReader* const br) {
|
||||
if (br->bit_pos_ >= 32) {
|
||||
#if defined(__x86_64__) || defined(_M_X64)
|
||||
if (br->pos_ + 8 < br->len_) {
|
||||
br->val_ >>= 32;
|
||||
// The expression below needs a little-endian arch to work correctly.
|
||||
// This gives a large speedup for decoding speed.
|
||||
br->val_ |= *(const uint64_t *)(br->buf_ + br->pos_) << 32;
|
||||
br->pos_ += 4;
|
||||
br->bit_pos_ -= 32;
|
||||
} else {
|
||||
// Slow path.
|
||||
ShiftBytes(br);
|
||||
}
|
||||
#else
|
||||
// Always the slow path.
|
||||
ShiftBytes(br);
|
||||
#endif
|
||||
}
|
||||
if (br->pos_ == br->len_ && br->bit_pos_ == 64) {
|
||||
br->eos_ = 1;
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t VP8LReadOneBit(VP8LBitReader* const br) {
|
||||
const uint32_t val = (br->val_ >> br->bit_pos_) & 1;
|
||||
// Flag an error at end_of_stream.
|
||||
if (!br->eos_) {
|
||||
++br->bit_pos_;
|
||||
if (br->bit_pos_ >= 32) {
|
||||
ShiftBytes(br);
|
||||
}
|
||||
// After this last bit is read, check if eos needs to be flagged.
|
||||
if (br->pos_ == br->len_ && br->bit_pos_ == 64) {
|
||||
br->eos_ = 1;
|
||||
}
|
||||
} else {
|
||||
br->error_ = 1;
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
uint32_t VP8LReadBits(VP8LBitReader* const br, int n_bits) {
|
||||
uint32_t val = 0;
|
||||
assert(n_bits >= 0);
|
||||
// Flag an error if end_of_stream or n_bits is more than allowed limit.
|
||||
if (!br->eos_ && n_bits < MAX_NUM_BIT_READ) {
|
||||
// If this read is going to cross the read buffer, set the eos flag.
|
||||
if (br->pos_ == br->len_) {
|
||||
if ((br->bit_pos_ + n_bits) >= 64) {
|
||||
br->eos_ = 1;
|
||||
if ((br->bit_pos_ + n_bits) > 64) return val;
|
||||
}
|
||||
}
|
||||
val = (br->val_ >> br->bit_pos_) & kBitMask[n_bits];
|
||||
br->bit_pos_ += n_bits;
|
||||
if (br->bit_pos_ >= 40) {
|
||||
if (br->pos_ + 5 < br->len_) {
|
||||
br->val_ >>= 40;
|
||||
br->val_ |=
|
||||
(((uint64_t)br->buf_[br->pos_ + 0]) << 24) |
|
||||
(((uint64_t)br->buf_[br->pos_ + 1]) << 32) |
|
||||
(((uint64_t)br->buf_[br->pos_ + 2]) << 40) |
|
||||
(((uint64_t)br->buf_[br->pos_ + 3]) << 48) |
|
||||
(((uint64_t)br->buf_[br->pos_ + 4]) << 56);
|
||||
br->pos_ += 5;
|
||||
br->bit_pos_ -= 40;
|
||||
}
|
||||
if (br->bit_pos_ >= 8) {
|
||||
ShiftBytes(br);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
br->error_ = 1;
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,198 +0,0 @@
|
|||
//
|
||||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Boolean decoder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
// Vikas Arora (vikaas.arora@gmail.com)
|
||||
|
||||
#ifndef WEBP_UTILS_BIT_READER_H_
|
||||
#define WEBP_UTILS_BIT_READER_H_
|
||||
|
||||
#include <assert.h>
|
||||
#ifdef _MSC_VER
|
||||
#include <stdlib.h> // _byteswap_ulong
|
||||
#endif
|
||||
#include <string.h> // For memcpy
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define BITS 32 // can be 32, 16 or 8
|
||||
#define MASK ((((bit_t)1) << (BITS)) - 1)
|
||||
#if (BITS == 32)
|
||||
typedef uint64_t bit_t; // natural register type
|
||||
typedef uint32_t lbit_t; // natural type for memory I/O
|
||||
#elif (BITS == 16)
|
||||
typedef uint32_t bit_t;
|
||||
typedef uint16_t lbit_t;
|
||||
#else
|
||||
typedef uint32_t bit_t;
|
||||
typedef uint8_t lbit_t;
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Bitreader and code-tree reader
|
||||
|
||||
typedef struct VP8BitReader VP8BitReader;
|
||||
struct VP8BitReader {
|
||||
const uint8_t* buf_; // next byte to be read
|
||||
const uint8_t* buf_end_; // end of read buffer
|
||||
int eof_; // true if input is exhausted
|
||||
|
||||
// boolean decoder
|
||||
bit_t range_; // current range minus 1. In [127, 254] interval.
|
||||
bit_t value_; // current value
|
||||
int missing_; // number of missing bits in value_ (8bit)
|
||||
};
|
||||
|
||||
// Initialize the bit reader and the boolean decoder.
|
||||
void VP8InitBitReader(VP8BitReader* const br,
|
||||
const uint8_t* const start, const uint8_t* const end);
|
||||
|
||||
// return the next value made of 'num_bits' bits
|
||||
uint32_t VP8GetValue(VP8BitReader* const br, int num_bits);
|
||||
static WEBP_INLINE uint32_t VP8Get(VP8BitReader* const br) {
|
||||
return VP8GetValue(br, 1);
|
||||
}
|
||||
|
||||
// return the next value with sign-extension.
|
||||
int32_t VP8GetSignedValue(VP8BitReader* const br, int num_bits);
|
||||
|
||||
// Read a bit with proba 'prob'. Speed-critical function!
|
||||
extern const uint8_t kVP8Log2Range[128];
|
||||
extern const bit_t kVP8NewRange[128];
|
||||
|
||||
void VP8LoadFinalBytes(VP8BitReader* const br); // special case for the tail
|
||||
|
||||
static WEBP_INLINE void VP8LoadNewBytes(VP8BitReader* const br) {
|
||||
assert(br && br->buf_);
|
||||
// Read 'BITS' bits at a time if possible.
|
||||
if (br->buf_ + sizeof(lbit_t) <= br->buf_end_) {
|
||||
// convert memory type to register type (with some zero'ing!)
|
||||
bit_t bits;
|
||||
lbit_t in_bits = *(lbit_t*)br->buf_;
|
||||
br->buf_ += (BITS) >> 3;
|
||||
#if !defined(__BIG_ENDIAN__)
|
||||
#if (BITS == 32)
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
__asm__ volatile("bswap %k0" : "=r"(in_bits) : "0"(in_bits));
|
||||
bits = (bit_t)in_bits; // 32b -> 64b zero-extension
|
||||
#elif defined(_MSC_VER)
|
||||
bits = _byteswap_ulong(in_bits);
|
||||
#else
|
||||
bits = (bit_t)(in_bits >> 24) | ((in_bits >> 8) & 0xff00)
|
||||
| ((in_bits << 8) & 0xff0000) | (in_bits << 24);
|
||||
#endif // x86
|
||||
#elif (BITS == 16)
|
||||
// gcc will recognize a 'rorw $8, ...' here:
|
||||
bits = (bit_t)(in_bits >> 8) | ((in_bits & 0xff) << 8);
|
||||
#endif
|
||||
#else // LITTLE_ENDIAN
|
||||
bits = (bit_t)in_bits;
|
||||
#endif
|
||||
br->value_ |= bits << br->missing_;
|
||||
br->missing_ -= (BITS);
|
||||
} else {
|
||||
VP8LoadFinalBytes(br); // no need to be inlined
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8BitUpdate(VP8BitReader* const br, bit_t split) {
|
||||
const bit_t value_split = split | (MASK);
|
||||
if (br->missing_ > 0) { // Make sure we have a least BITS bits in 'value_'
|
||||
VP8LoadNewBytes(br);
|
||||
}
|
||||
if (br->value_ > value_split) {
|
||||
br->range_ -= value_split + 1;
|
||||
br->value_ -= value_split + 1;
|
||||
return 1;
|
||||
} else {
|
||||
br->range_ = value_split;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8Shift(VP8BitReader* const br) {
|
||||
// range_ is in [0..127] interval here.
|
||||
const int idx = br->range_ >> (BITS);
|
||||
const int shift = kVP8Log2Range[idx];
|
||||
br->range_ = kVP8NewRange[idx];
|
||||
br->value_ <<= shift;
|
||||
br->missing_ += shift;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8GetBit(VP8BitReader* const br, int prob) {
|
||||
// It's important to avoid generating a 64bit x 64bit multiply here.
|
||||
// We just need an 8b x 8b after all.
|
||||
const bit_t split =
|
||||
(bit_t)((uint32_t)(br->range_ >> (BITS)) * prob) << ((BITS) - 8);
|
||||
const int bit = VP8BitUpdate(br, split);
|
||||
if (br->range_ <= (((bit_t)0x7e << (BITS)) | (MASK))) {
|
||||
VP8Shift(br);
|
||||
}
|
||||
return bit;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8GetSigned(VP8BitReader* const br, int v) {
|
||||
const bit_t split = (br->range_ >> 1);
|
||||
const int bit = VP8BitUpdate(br, split);
|
||||
VP8Shift(br);
|
||||
return bit ? -v : v;
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Bitreader
|
||||
|
||||
typedef struct {
|
||||
uint64_t val_;
|
||||
const uint8_t* buf_;
|
||||
size_t len_;
|
||||
size_t pos_;
|
||||
int bit_pos_;
|
||||
int eos_;
|
||||
int error_;
|
||||
} VP8LBitReader;
|
||||
|
||||
void VP8LInitBitReader(VP8LBitReader* const br,
|
||||
const uint8_t* const start,
|
||||
size_t length);
|
||||
|
||||
// Sets a new data buffer.
|
||||
void VP8LBitReaderSetBuffer(VP8LBitReader* const br,
|
||||
const uint8_t* const buffer, size_t length);
|
||||
|
||||
// Reads the specified number of bits from Read Buffer.
|
||||
// Flags an error in case end_of_stream or n_bits is more than allowed limit.
|
||||
// Flags eos if this read attempt is going to cross the read buffer.
|
||||
uint32_t VP8LReadBits(VP8LBitReader* const br, int n_bits);
|
||||
|
||||
// Reads one bit from Read Buffer. Flags an error in case end_of_stream.
|
||||
// Flags eos after reading last bit from the buffer.
|
||||
uint32_t VP8LReadOneBit(VP8LBitReader* const br);
|
||||
|
||||
// VP8LReadOneBitUnsafe is faster than VP8LReadOneBit, but it can be called only
|
||||
// 32 times after the last VP8LFillBitWindow. Any subsequent calls
|
||||
// (without VP8LFillBitWindow) will return invalid data.
|
||||
static WEBP_INLINE uint32_t VP8LReadOneBitUnsafe(VP8LBitReader* const br) {
|
||||
const uint32_t val = (br->val_ >> br->bit_pos_) & 1;
|
||||
++br->bit_pos_;
|
||||
return val;
|
||||
}
|
||||
|
||||
// Advances the Read buffer by 4 bytes to make room for reading next 32 bits.
|
||||
void VP8LFillBitWindow(VP8LBitReader* const br);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_BIT_READER_H_ */
|
|
@ -1,284 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Bit writing and boolean coder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
// Vikas Arora (vikaas.arora@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h> // for memcpy()
|
||||
#include <stdlib.h>
|
||||
#include "./bit_writer.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8BitWriter
|
||||
|
||||
static int BitWriterResize(VP8BitWriter* const bw, size_t extra_size) {
|
||||
uint8_t* new_buf;
|
||||
size_t new_size;
|
||||
const uint64_t needed_size_64b = (uint64_t)bw->pos_ + extra_size;
|
||||
const size_t needed_size = (size_t)needed_size_64b;
|
||||
if (needed_size_64b != needed_size) {
|
||||
bw->error_ = 1;
|
||||
return 0;
|
||||
}
|
||||
if (needed_size <= bw->max_pos_) return 1;
|
||||
// If the following line wraps over 32bit, the test just after will catch it.
|
||||
new_size = 2 * bw->max_pos_;
|
||||
if (new_size < needed_size) new_size = needed_size;
|
||||
if (new_size < 1024) new_size = 1024;
|
||||
new_buf = (uint8_t*)malloc(new_size);
|
||||
if (new_buf == NULL) {
|
||||
bw->error_ = 1;
|
||||
return 0;
|
||||
}
|
||||
memcpy(new_buf, bw->buf_, bw->pos_);
|
||||
free(bw->buf_);
|
||||
bw->buf_ = new_buf;
|
||||
bw->max_pos_ = new_size;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void kFlush(VP8BitWriter* const bw) {
|
||||
const int s = 8 + bw->nb_bits_;
|
||||
const int32_t bits = bw->value_ >> s;
|
||||
assert(bw->nb_bits_ >= 0);
|
||||
bw->value_ -= bits << s;
|
||||
bw->nb_bits_ -= 8;
|
||||
if ((bits & 0xff) != 0xff) {
|
||||
size_t pos = bw->pos_;
|
||||
if (!BitWriterResize(bw, bw->run_ + 1)) {
|
||||
return;
|
||||
}
|
||||
if (bits & 0x100) { // overflow -> propagate carry over pending 0xff's
|
||||
if (pos > 0) bw->buf_[pos - 1]++;
|
||||
}
|
||||
if (bw->run_ > 0) {
|
||||
const int value = (bits & 0x100) ? 0x00 : 0xff;
|
||||
for (; bw->run_ > 0; --bw->run_) bw->buf_[pos++] = value;
|
||||
}
|
||||
bw->buf_[pos++] = bits;
|
||||
bw->pos_ = pos;
|
||||
} else {
|
||||
bw->run_++; // delay writing of bytes 0xff, pending eventual carry.
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// renormalization
|
||||
|
||||
static const uint8_t kNorm[128] = { // renorm_sizes[i] = 8 - log2(i)
|
||||
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0
|
||||
};
|
||||
|
||||
// range = ((range + 1) << kVP8Log2Range[range]) - 1
|
||||
static const uint8_t kNewRange[128] = {
|
||||
127, 127, 191, 127, 159, 191, 223, 127, 143, 159, 175, 191, 207, 223, 239,
|
||||
127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239,
|
||||
247, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179,
|
||||
183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239,
|
||||
243, 247, 251, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149,
|
||||
151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179,
|
||||
181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209,
|
||||
211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239,
|
||||
241, 243, 245, 247, 249, 251, 253, 127
|
||||
};
|
||||
|
||||
int VP8PutBit(VP8BitWriter* const bw, int bit, int prob) {
|
||||
const int split = (bw->range_ * prob) >> 8;
|
||||
if (bit) {
|
||||
bw->value_ += split + 1;
|
||||
bw->range_ -= split + 1;
|
||||
} else {
|
||||
bw->range_ = split;
|
||||
}
|
||||
if (bw->range_ < 127) { // emit 'shift' bits out and renormalize
|
||||
const int shift = kNorm[bw->range_];
|
||||
bw->range_ = kNewRange[bw->range_];
|
||||
bw->value_ <<= shift;
|
||||
bw->nb_bits_ += shift;
|
||||
if (bw->nb_bits_ > 0) kFlush(bw);
|
||||
}
|
||||
return bit;
|
||||
}
|
||||
|
||||
int VP8PutBitUniform(VP8BitWriter* const bw, int bit) {
|
||||
const int split = bw->range_ >> 1;
|
||||
if (bit) {
|
||||
bw->value_ += split + 1;
|
||||
bw->range_ -= split + 1;
|
||||
} else {
|
||||
bw->range_ = split;
|
||||
}
|
||||
if (bw->range_ < 127) {
|
||||
bw->range_ = kNewRange[bw->range_];
|
||||
bw->value_ <<= 1;
|
||||
bw->nb_bits_ += 1;
|
||||
if (bw->nb_bits_ > 0) kFlush(bw);
|
||||
}
|
||||
return bit;
|
||||
}
|
||||
|
||||
void VP8PutValue(VP8BitWriter* const bw, int value, int nb_bits) {
|
||||
int mask;
|
||||
for (mask = 1 << (nb_bits - 1); mask; mask >>= 1)
|
||||
VP8PutBitUniform(bw, value & mask);
|
||||
}
|
||||
|
||||
void VP8PutSignedValue(VP8BitWriter* const bw, int value, int nb_bits) {
|
||||
if (!VP8PutBitUniform(bw, value != 0))
|
||||
return;
|
||||
if (value < 0) {
|
||||
VP8PutValue(bw, ((-value) << 1) | 1, nb_bits + 1);
|
||||
} else {
|
||||
VP8PutValue(bw, value << 1, nb_bits + 1);
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
int VP8BitWriterInit(VP8BitWriter* const bw, size_t expected_size) {
|
||||
bw->range_ = 255 - 1;
|
||||
bw->value_ = 0;
|
||||
bw->run_ = 0;
|
||||
bw->nb_bits_ = -8;
|
||||
bw->pos_ = 0;
|
||||
bw->max_pos_ = 0;
|
||||
bw->error_ = 0;
|
||||
bw->buf_ = NULL;
|
||||
return (expected_size > 0) ? BitWriterResize(bw, expected_size) : 1;
|
||||
}
|
||||
|
||||
uint8_t* VP8BitWriterFinish(VP8BitWriter* const bw) {
|
||||
VP8PutValue(bw, 0, 9 - bw->nb_bits_);
|
||||
bw->nb_bits_ = 0; // pad with zeroes
|
||||
kFlush(bw);
|
||||
return bw->buf_;
|
||||
}
|
||||
|
||||
int VP8BitWriterAppend(VP8BitWriter* const bw,
|
||||
const uint8_t* data, size_t size) {
|
||||
assert(data);
|
||||
if (bw->nb_bits_ != -8) return 0; // kFlush() must have been called
|
||||
if (!BitWriterResize(bw, size)) return 0;
|
||||
memcpy(bw->buf_ + bw->pos_, data, size);
|
||||
bw->pos_ += size;
|
||||
return 1;
|
||||
}
|
||||
|
||||
void VP8BitWriterWipeOut(VP8BitWriter* const bw) {
|
||||
if (bw) {
|
||||
free(bw->buf_);
|
||||
memset(bw, 0, sizeof(*bw));
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8LBitWriter
|
||||
|
||||
// Returns 1 on success.
|
||||
static int VP8LBitWriterResize(VP8LBitWriter* const bw, size_t extra_size) {
|
||||
uint8_t* allocated_buf;
|
||||
size_t allocated_size;
|
||||
const size_t current_size = VP8LBitWriterNumBytes(bw);
|
||||
const uint64_t size_required_64b = (uint64_t)current_size + extra_size;
|
||||
const size_t size_required = (size_t)size_required_64b;
|
||||
if (size_required != size_required_64b) {
|
||||
bw->error_ = 1;
|
||||
return 0;
|
||||
}
|
||||
if (bw->max_bytes_ > 0 && size_required <= bw->max_bytes_) return 1;
|
||||
allocated_size = (3 * bw->max_bytes_) >> 1;
|
||||
if (allocated_size < size_required) allocated_size = size_required;
|
||||
// make allocated size multiple of 1k
|
||||
allocated_size = (((allocated_size >> 10) + 1) << 10);
|
||||
allocated_buf = (uint8_t*)malloc(allocated_size);
|
||||
if (allocated_buf == NULL) {
|
||||
bw->error_ = 1;
|
||||
return 0;
|
||||
}
|
||||
memcpy(allocated_buf, bw->buf_, current_size);
|
||||
free(bw->buf_);
|
||||
bw->buf_ = allocated_buf;
|
||||
bw->max_bytes_ = allocated_size;
|
||||
memset(allocated_buf + current_size, 0, allocated_size - current_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int VP8LBitWriterInit(VP8LBitWriter* const bw, size_t expected_size) {
|
||||
memset(bw, 0, sizeof(*bw));
|
||||
return VP8LBitWriterResize(bw, expected_size);
|
||||
}
|
||||
|
||||
void VP8LBitWriterDestroy(VP8LBitWriter* const bw) {
|
||||
if (bw != NULL) {
|
||||
free(bw->buf_);
|
||||
memset(bw, 0, sizeof(*bw));
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LWriteBits(VP8LBitWriter* const bw, int n_bits, uint32_t bits) {
|
||||
if (n_bits < 1) return;
|
||||
#if !defined(__BIG_ENDIAN__)
|
||||
// Technically, this branch of the code can write up to 25 bits at a time,
|
||||
// but in prefix encoding, the maximum number of bits written is 18 at a time.
|
||||
{
|
||||
uint8_t* const p = &bw->buf_[bw->bit_pos_ >> 3];
|
||||
uint32_t v = *(const uint32_t*)p;
|
||||
v |= bits << (bw->bit_pos_ & 7);
|
||||
*(uint32_t*)p = v;
|
||||
bw->bit_pos_ += n_bits;
|
||||
}
|
||||
#else // BIG_ENDIAN
|
||||
{
|
||||
uint8_t* p = &bw->buf_[bw->bit_pos_ >> 3];
|
||||
const int bits_reserved_in_first_byte = bw->bit_pos_ & 7;
|
||||
const int bits_left_to_write = n_bits - 8 + bits_reserved_in_first_byte;
|
||||
// implicit & 0xff is assumed for uint8_t arithmetics
|
||||
*p++ |= bits << bits_reserved_in_first_byte;
|
||||
bits >>= 8 - bits_reserved_in_first_byte;
|
||||
if (bits_left_to_write >= 1) {
|
||||
*p++ = bits;
|
||||
bits >>= 8;
|
||||
if (bits_left_to_write >= 9) {
|
||||
*p++ = bits;
|
||||
bits >>= 8;
|
||||
}
|
||||
}
|
||||
assert(n_bits <= 25);
|
||||
*p = bits;
|
||||
bw->bit_pos_ += n_bits;
|
||||
}
|
||||
#endif
|
||||
if ((bw->bit_pos_ >> 3) > (bw->max_bytes_ - 8)) {
|
||||
const uint64_t extra_size = 32768ULL + bw->max_bytes_;
|
||||
if (extra_size != (size_t)extra_size ||
|
||||
!VP8LBitWriterResize(bw, (size_t)extra_size)) {
|
||||
bw->bit_pos_ = 0;
|
||||
bw->error_ = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,123 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Bit writing and boolean coder
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_UTILS_BIT_WRITER_H_
|
||||
#define WEBP_UTILS_BIT_WRITER_H_
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Bit-writing
|
||||
|
||||
typedef struct VP8BitWriter VP8BitWriter;
|
||||
struct VP8BitWriter {
|
||||
int32_t range_; // range-1
|
||||
int32_t value_;
|
||||
int run_; // number of outstanding bits
|
||||
int nb_bits_; // number of pending bits
|
||||
uint8_t* buf_; // internal buffer. Re-allocated regularly. Not owned.
|
||||
size_t pos_;
|
||||
size_t max_pos_;
|
||||
int error_; // true in case of error
|
||||
};
|
||||
|
||||
// Initialize the object. Allocates some initial memory based on expected_size.
|
||||
int VP8BitWriterInit(VP8BitWriter* const bw, size_t expected_size);
|
||||
// Finalize the bitstream coding. Returns a pointer to the internal buffer.
|
||||
uint8_t* VP8BitWriterFinish(VP8BitWriter* const bw);
|
||||
// Release any pending memory and zeroes the object. Not a mandatory call.
|
||||
// Only useful in case of error, when the internal buffer hasn't been grabbed!
|
||||
void VP8BitWriterWipeOut(VP8BitWriter* const bw);
|
||||
|
||||
int VP8PutBit(VP8BitWriter* const bw, int bit, int prob);
|
||||
int VP8PutBitUniform(VP8BitWriter* const bw, int bit);
|
||||
void VP8PutValue(VP8BitWriter* const bw, int value, int nb_bits);
|
||||
void VP8PutSignedValue(VP8BitWriter* const bw, int value, int nb_bits);
|
||||
|
||||
// Appends some bytes to the internal buffer. Data is copied.
|
||||
int VP8BitWriterAppend(VP8BitWriter* const bw,
|
||||
const uint8_t* data, size_t size);
|
||||
|
||||
// return approximate write position (in bits)
|
||||
static WEBP_INLINE uint64_t VP8BitWriterPos(const VP8BitWriter* const bw) {
|
||||
return (uint64_t)(bw->pos_ + bw->run_) * 8 + 8 + bw->nb_bits_;
|
||||
}
|
||||
|
||||
// Returns a pointer to the internal buffer.
|
||||
static WEBP_INLINE uint8_t* VP8BitWriterBuf(const VP8BitWriter* const bw) {
|
||||
return bw->buf_;
|
||||
}
|
||||
// Returns the size of the internal buffer.
|
||||
static WEBP_INLINE size_t VP8BitWriterSize(const VP8BitWriter* const bw) {
|
||||
return bw->pos_;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8LBitWriter
|
||||
// TODO(vikasa): VP8LBitWriter is copied as-is from lossless code. There's scope
|
||||
// of re-using VP8BitWriter. Will evaluate once basic lossless encoder is
|
||||
// implemented.
|
||||
|
||||
typedef struct {
|
||||
uint8_t* buf_;
|
||||
size_t bit_pos_;
|
||||
size_t max_bytes_;
|
||||
|
||||
// After all bits are written, the caller must observe the state of
|
||||
// error_. A value of 1 indicates that a memory allocation failure
|
||||
// has happened during bit writing. A value of 0 indicates successful
|
||||
// writing of bits.
|
||||
int error_;
|
||||
} VP8LBitWriter;
|
||||
|
||||
static WEBP_INLINE size_t VP8LBitWriterNumBytes(VP8LBitWriter* const bw) {
|
||||
return (bw->bit_pos_ + 7) >> 3;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t* VP8LBitWriterFinish(VP8LBitWriter* const bw) {
|
||||
return bw->buf_;
|
||||
}
|
||||
|
||||
// Returns 0 in case of memory allocation error.
|
||||
int VP8LBitWriterInit(VP8LBitWriter* const bw, size_t expected_size);
|
||||
|
||||
void VP8LBitWriterDestroy(VP8LBitWriter* const bw);
|
||||
|
||||
// This function writes bits into bytes in increasing addresses, and within
|
||||
// a byte least-significant-bit first.
|
||||
//
|
||||
// The function can write up to 16 bits in one go with WriteBits
|
||||
// Example: let's assume that 3 bits (Rs below) have been written already:
|
||||
//
|
||||
// BYTE-0 BYTE+1 BYTE+2
|
||||
//
|
||||
// 0000 0RRR 0000 0000 0000 0000
|
||||
//
|
||||
// Now, we could write 5 or less bits in MSB by just sifting by 3
|
||||
// and OR'ing to BYTE-0.
|
||||
//
|
||||
// For n bits, we take the last 5 bytes, OR that with high bits in BYTE-0,
|
||||
// and locate the rest in BYTE+1 and BYTE+2.
|
||||
//
|
||||
// VP8LBitWriter's error_ flag is set in case of memory allocation error.
|
||||
void VP8LWriteBits(VP8LBitWriter* const bw, int n_bits, uint32_t bits);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_BIT_WRITER_H_ */
|
|
@ -1,44 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Color Cache for WebP Lossless
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "./color_cache.h"
|
||||
#include "../utils/utils.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// VP8LColorCache.
|
||||
|
||||
int VP8LColorCacheInit(VP8LColorCache* const cc, int hash_bits) {
|
||||
const int hash_size = 1 << hash_bits;
|
||||
assert(cc != NULL);
|
||||
assert(hash_bits > 0);
|
||||
cc->colors_ = (uint32_t*)WebPSafeCalloc((uint64_t)hash_size,
|
||||
sizeof(*cc->colors_));
|
||||
if (cc->colors_ == NULL) return 0;
|
||||
cc->hash_shift_ = 32 - hash_bits;
|
||||
return 1;
|
||||
}
|
||||
|
||||
void VP8LColorCacheClear(VP8LColorCache* const cc) {
|
||||
if (cc != NULL) {
|
||||
free(cc->colors_);
|
||||
cc->colors_ = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
}
|
||||
#endif
|
|
@ -1,68 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Color Cache for WebP Lossless
|
||||
//
|
||||
// Authors: Jyrki Alakuijala (jyrki@google.com)
|
||||
// Urvang Joshi (urvang@google.com)
|
||||
|
||||
#ifndef WEBP_UTILS_COLOR_CACHE_H_
|
||||
#define WEBP_UTILS_COLOR_CACHE_H_
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Main color cache struct.
|
||||
typedef struct {
|
||||
uint32_t *colors_; // color entries
|
||||
int hash_shift_; // Hash shift: 32 - hash_bits.
|
||||
} VP8LColorCache;
|
||||
|
||||
static const uint32_t kHashMul = 0x1e35a7bd;
|
||||
|
||||
static WEBP_INLINE uint32_t VP8LColorCacheLookup(
|
||||
const VP8LColorCache* const cc, uint32_t key) {
|
||||
assert(key <= (~0U >> cc->hash_shift_));
|
||||
return cc->colors_[key];
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8LColorCacheInsert(const VP8LColorCache* const cc,
|
||||
uint32_t argb) {
|
||||
const uint32_t key = (kHashMul * argb) >> cc->hash_shift_;
|
||||
cc->colors_[key] = argb;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8LColorCacheGetIndex(const VP8LColorCache* const cc,
|
||||
uint32_t argb) {
|
||||
return (kHashMul * argb) >> cc->hash_shift_;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8LColorCacheContains(const VP8LColorCache* const cc,
|
||||
uint32_t argb) {
|
||||
const uint32_t key = (kHashMul * argb) >> cc->hash_shift_;
|
||||
return cc->colors_[key] == argb;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
// Initializes the color cache with 'hash_bits' bits for the keys.
|
||||
// Returns false in case of memory error.
|
||||
int VP8LColorCacheInit(VP8LColorCache* const color_cache, int hash_bits);
|
||||
|
||||
// Delete the memory associated to color cache.
|
||||
void VP8LColorCacheClear(VP8LColorCache* const color_cache);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // WEBP_UTILS_COLOR_CACHE_H_
|
|
@ -1,229 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Spatial prediction using various filters
|
||||
//
|
||||
// Author: Urvang (urvang@google.com)
|
||||
|
||||
#include "./filters.h"
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Helpful macro.
|
||||
|
||||
# define SANITY_CHECK(in, out) \
|
||||
assert(in != NULL); \
|
||||
assert(out != NULL); \
|
||||
assert(width > 0); \
|
||||
assert(height > 0); \
|
||||
assert(bpp > 0); \
|
||||
assert(stride >= width * bpp);
|
||||
|
||||
static WEBP_INLINE void PredictLine(const uint8_t* src, const uint8_t* pred,
|
||||
uint8_t* dst, int length, int inverse) {
|
||||
int i;
|
||||
if (inverse) {
|
||||
for (i = 0; i < length; ++i) dst[i] = src[i] + pred[i];
|
||||
} else {
|
||||
for (i = 0; i < length; ++i) dst[i] = src[i] - pred[i];
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Horizontal filter.
|
||||
|
||||
static WEBP_INLINE void DoHorizontalFilter(const uint8_t* in,
|
||||
int width, int height, int bpp, int stride, int inverse, uint8_t* out) {
|
||||
int h;
|
||||
const uint8_t* preds = (inverse ? out : in);
|
||||
SANITY_CHECK(in, out);
|
||||
|
||||
// Filter line-by-line.
|
||||
for (h = 0; h < height; ++h) {
|
||||
// Leftmost pixel is predicted from above (except for topmost scanline).
|
||||
if (h == 0) {
|
||||
memcpy((void*)out, (const void*)in, bpp);
|
||||
} else {
|
||||
PredictLine(in, preds - stride, out, bpp, inverse);
|
||||
}
|
||||
PredictLine(in + bpp, preds, out + bpp, bpp * (width - 1), inverse);
|
||||
preds += stride;
|
||||
in += stride;
|
||||
out += stride;
|
||||
}
|
||||
}
|
||||
|
||||
static void HorizontalFilter(const uint8_t* data, int width, int height,
|
||||
int bpp, int stride, uint8_t* filtered_data) {
|
||||
DoHorizontalFilter(data, width, height, bpp, stride, 0, filtered_data);
|
||||
}
|
||||
|
||||
static void HorizontalUnfilter(const uint8_t* data, int width, int height,
|
||||
int bpp, int stride, uint8_t* recon_data) {
|
||||
DoHorizontalFilter(data, width, height, bpp, stride, 1, recon_data);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Vertical filter.
|
||||
|
||||
static WEBP_INLINE void DoVerticalFilter(const uint8_t* in,
|
||||
int width, int height, int bpp, int stride, int inverse, uint8_t* out) {
|
||||
int h;
|
||||
const uint8_t* preds = (inverse ? out : in);
|
||||
SANITY_CHECK(in, out);
|
||||
|
||||
// Very first top-left pixel is copied.
|
||||
memcpy((void*)out, (const void*)in, bpp);
|
||||
// Rest of top scan-line is left-predicted.
|
||||
PredictLine(in + bpp, preds, out + bpp, bpp * (width - 1), inverse);
|
||||
|
||||
// Filter line-by-line.
|
||||
for (h = 1; h < height; ++h) {
|
||||
in += stride;
|
||||
out += stride;
|
||||
PredictLine(in, preds, out, bpp * width, inverse);
|
||||
preds += stride;
|
||||
}
|
||||
}
|
||||
|
||||
static void VerticalFilter(const uint8_t* data, int width, int height,
|
||||
int bpp, int stride, uint8_t* filtered_data) {
|
||||
DoVerticalFilter(data, width, height, bpp, stride, 0, filtered_data);
|
||||
}
|
||||
|
||||
static void VerticalUnfilter(const uint8_t* data, int width, int height,
|
||||
int bpp, int stride, uint8_t* recon_data) {
|
||||
DoVerticalFilter(data, width, height, bpp, stride, 1, recon_data);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Gradient filter.
|
||||
|
||||
static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
|
||||
const int g = a + b - c;
|
||||
return (g < 0) ? 0 : (g > 255) ? 255 : g;
|
||||
}
|
||||
|
||||
static WEBP_INLINE
|
||||
void DoGradientFilter(const uint8_t* in, int width, int height,
|
||||
int bpp, int stride, int inverse, uint8_t* out) {
|
||||
const uint8_t* preds = (inverse ? out : in);
|
||||
int h;
|
||||
SANITY_CHECK(in, out);
|
||||
|
||||
// left prediction for top scan-line
|
||||
memcpy((void*)out, (const void*)in, bpp);
|
||||
PredictLine(in + bpp, preds, out + bpp, bpp * (width - 1), inverse);
|
||||
|
||||
// Filter line-by-line.
|
||||
for (h = 1; h < height; ++h) {
|
||||
int w;
|
||||
preds += stride;
|
||||
in += stride;
|
||||
out += stride;
|
||||
// leftmost pixel: predict from above.
|
||||
PredictLine(in, preds - stride, out, bpp, inverse);
|
||||
for (w = bpp; w < width * bpp; ++w) {
|
||||
const int pred = GradientPredictor(preds[w - bpp],
|
||||
preds[w - stride],
|
||||
preds[w - stride - bpp]);
|
||||
out[w] = in[w] + (inverse ? pred : -pred);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void GradientFilter(const uint8_t* data, int width, int height,
|
||||
int bpp, int stride, uint8_t* filtered_data) {
|
||||
DoGradientFilter(data, width, height, bpp, stride, 0, filtered_data);
|
||||
}
|
||||
|
||||
static void GradientUnfilter(const uint8_t* data, int width, int height,
|
||||
int bpp, int stride, uint8_t* recon_data) {
|
||||
DoGradientFilter(data, width, height, bpp, stride, 1, recon_data);
|
||||
}
|
||||
|
||||
#undef SANITY_CHECK
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Quick estimate of a potentially interesting filter mode to try, in addition
|
||||
// to the default NONE.
|
||||
|
||||
#define SMAX 16
|
||||
#define SDIFF(a, b) (abs((a) - (b)) >> 4) // Scoring diff, in [0..SMAX)
|
||||
|
||||
WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data,
|
||||
int width, int height, int stride) {
|
||||
int i, j;
|
||||
int bins[WEBP_FILTER_LAST][SMAX];
|
||||
memset(bins, 0, sizeof(bins));
|
||||
// We only sample every other pixels. That's enough.
|
||||
for (j = 2; j < height - 1; j += 2) {
|
||||
const uint8_t* const p = data + j * stride;
|
||||
int mean = p[0];
|
||||
for (i = 2; i < width - 1; i += 2) {
|
||||
const int diff0 = SDIFF(p[i], mean);
|
||||
const int diff1 = SDIFF(p[i], p[i - 1]);
|
||||
const int diff2 = SDIFF(p[i], p[i - width]);
|
||||
const int grad_pred =
|
||||
GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
|
||||
const int diff3 = SDIFF(p[i], grad_pred);
|
||||
bins[WEBP_FILTER_NONE][diff0] = 1;
|
||||
bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
|
||||
bins[WEBP_FILTER_VERTICAL][diff2] = 1;
|
||||
bins[WEBP_FILTER_GRADIENT][diff3] = 1;
|
||||
mean = (3 * mean + p[i] + 2) >> 2;
|
||||
}
|
||||
}
|
||||
{
|
||||
WEBP_FILTER_TYPE filter, best_filter = WEBP_FILTER_NONE;
|
||||
int best_score = 0x7fffffff;
|
||||
for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
|
||||
int score = 0;
|
||||
for (i = 0; i < SMAX; ++i) {
|
||||
if (bins[filter][i] > 0) {
|
||||
score += i;
|
||||
}
|
||||
}
|
||||
if (score < best_score) {
|
||||
best_score = score;
|
||||
best_filter = filter;
|
||||
}
|
||||
}
|
||||
return best_filter;
|
||||
}
|
||||
}
|
||||
|
||||
#undef SMAX
|
||||
#undef SDIFF
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
const WebPFilterFunc WebPFilters[WEBP_FILTER_LAST] = {
|
||||
NULL, // WEBP_FILTER_NONE
|
||||
HorizontalFilter, // WEBP_FILTER_HORIZONTAL
|
||||
VerticalFilter, // WEBP_FILTER_VERTICAL
|
||||
GradientFilter // WEBP_FILTER_GRADIENT
|
||||
};
|
||||
|
||||
const WebPFilterFunc WebPUnfilters[WEBP_FILTER_LAST] = {
|
||||
NULL, // WEBP_FILTER_NONE
|
||||
HorizontalUnfilter, // WEBP_FILTER_HORIZONTAL
|
||||
VerticalUnfilter, // WEBP_FILTER_VERTICAL
|
||||
GradientUnfilter // WEBP_FILTER_GRADIENT
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,54 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Spatial prediction using various filters
|
||||
//
|
||||
// Author: Urvang (urvang@google.com)
|
||||
|
||||
#ifndef WEBP_UTILS_FILTERS_H_
|
||||
#define WEBP_UTILS_FILTERS_H_
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Filters.
|
||||
typedef enum {
|
||||
WEBP_FILTER_NONE = 0,
|
||||
WEBP_FILTER_HORIZONTAL,
|
||||
WEBP_FILTER_VERTICAL,
|
||||
WEBP_FILTER_GRADIENT,
|
||||
WEBP_FILTER_LAST = WEBP_FILTER_GRADIENT + 1, // end marker
|
||||
WEBP_FILTER_BEST,
|
||||
WEBP_FILTER_FAST
|
||||
} WEBP_FILTER_TYPE;
|
||||
|
||||
typedef void (*WebPFilterFunc)(const uint8_t* in, int width, int height,
|
||||
int bpp, int stride, uint8_t* out);
|
||||
|
||||
// Filter the given data using the given predictor.
|
||||
// 'in' corresponds to a 2-dimensional pixel array of size (stride * height)
|
||||
// in raster order.
|
||||
// 'bpp' is number of bytes per pixel, and
|
||||
// 'stride' is number of bytes per scan line (with possible padding).
|
||||
// 'out' should be pre-allocated.
|
||||
extern const WebPFilterFunc WebPFilters[WEBP_FILTER_LAST];
|
||||
|
||||
// Reconstruct the original data from the given filtered data.
|
||||
extern const WebPFilterFunc WebPUnfilters[WEBP_FILTER_LAST];
|
||||
|
||||
// Fast estimate of a potentially good filter.
|
||||
extern WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data,
|
||||
int width, int height, int stride);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_FILTERS_H_ */
|
|
@ -1,238 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Utilities for building and looking up Huffman trees.
|
||||
//
|
||||
// Author: Urvang Joshi (urvang@google.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "./huffman.h"
|
||||
#include "../utils/utils.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define NON_EXISTENT_SYMBOL (-1)
|
||||
|
||||
static void TreeNodeInit(HuffmanTreeNode* const node) {
|
||||
node->children_ = -1; // means: 'unassigned so far'
|
||||
}
|
||||
|
||||
static int NodeIsEmpty(const HuffmanTreeNode* const node) {
|
||||
return (node->children_ < 0);
|
||||
}
|
||||
|
||||
static int IsFull(const HuffmanTree* const tree) {
|
||||
return (tree->num_nodes_ == tree->max_nodes_);
|
||||
}
|
||||
|
||||
static void AssignChildren(HuffmanTree* const tree,
|
||||
HuffmanTreeNode* const node) {
|
||||
HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
|
||||
node->children_ = (int)(children - node);
|
||||
assert(children - node == (int)(children - node));
|
||||
tree->num_nodes_ += 2;
|
||||
TreeNodeInit(children + 0);
|
||||
TreeNodeInit(children + 1);
|
||||
}
|
||||
|
||||
static int TreeInit(HuffmanTree* const tree, int num_leaves) {
|
||||
assert(tree != NULL);
|
||||
if (num_leaves == 0) return 0;
|
||||
// We allocate maximum possible nodes in the tree at once.
|
||||
// Note that a Huffman tree is a full binary tree; and in a full binary tree
|
||||
// with L leaves, the total number of nodes N = 2 * L - 1.
|
||||
tree->max_nodes_ = 2 * num_leaves - 1;
|
||||
tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_,
|
||||
sizeof(*tree->root_));
|
||||
if (tree->root_ == NULL) return 0;
|
||||
TreeNodeInit(tree->root_); // Initialize root.
|
||||
tree->num_nodes_ = 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
void HuffmanTreeRelease(HuffmanTree* const tree) {
|
||||
if (tree != NULL) {
|
||||
free(tree->root_);
|
||||
tree->root_ = NULL;
|
||||
tree->max_nodes_ = 0;
|
||||
tree->num_nodes_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
int HuffmanCodeLengthsToCodes(const int* const code_lengths,
|
||||
int code_lengths_size, int* const huff_codes) {
|
||||
int symbol;
|
||||
int code_len;
|
||||
int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
||||
int curr_code;
|
||||
int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
||||
int max_code_length = 0;
|
||||
|
||||
assert(code_lengths != NULL);
|
||||
assert(code_lengths_size > 0);
|
||||
assert(huff_codes != NULL);
|
||||
|
||||
// Calculate max code length.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > max_code_length) {
|
||||
max_code_length = code_lengths[symbol];
|
||||
}
|
||||
}
|
||||
if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
|
||||
|
||||
// Calculate code length histogram.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
++code_length_hist[code_lengths[symbol]];
|
||||
}
|
||||
code_length_hist[0] = 0;
|
||||
|
||||
// Calculate the initial values of 'next_codes' for each code length.
|
||||
// next_codes[code_len] denotes the code to be assigned to the next symbol
|
||||
// of code length 'code_len'.
|
||||
curr_code = 0;
|
||||
next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
|
||||
for (code_len = 1; code_len <= max_code_length; ++code_len) {
|
||||
curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
|
||||
next_codes[code_len] = curr_code;
|
||||
}
|
||||
|
||||
// Get symbols.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > 0) {
|
||||
huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
|
||||
} else {
|
||||
huff_codes[symbol] = NON_EXISTENT_SYMBOL;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int TreeAddSymbol(HuffmanTree* const tree,
|
||||
int symbol, int code, int code_length) {
|
||||
HuffmanTreeNode* node = tree->root_;
|
||||
const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
|
||||
while (code_length-- > 0) {
|
||||
if (node >= max_node) {
|
||||
return 0;
|
||||
}
|
||||
if (NodeIsEmpty(node)) {
|
||||
if (IsFull(tree)) return 0; // error: too many symbols.
|
||||
AssignChildren(tree, node);
|
||||
} else if (HuffmanTreeNodeIsLeaf(node)) {
|
||||
return 0; // leaf is already occupied.
|
||||
}
|
||||
node += node->children_ + ((code >> code_length) & 1);
|
||||
}
|
||||
if (NodeIsEmpty(node)) {
|
||||
node->children_ = 0; // turn newly created node into a leaf.
|
||||
} else if (!HuffmanTreeNodeIsLeaf(node)) {
|
||||
return 0; // trying to assign a symbol to already used code.
|
||||
}
|
||||
node->symbol_ = symbol; // Add symbol in this node.
|
||||
return 1;
|
||||
}
|
||||
|
||||
int HuffmanTreeBuildImplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
int code_lengths_size) {
|
||||
int symbol;
|
||||
int num_symbols = 0;
|
||||
int root_symbol = 0;
|
||||
|
||||
assert(tree != NULL);
|
||||
assert(code_lengths != NULL);
|
||||
|
||||
// Find out number of symbols and the root symbol.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > 0) {
|
||||
// Note: code length = 0 indicates non-existent symbol.
|
||||
++num_symbols;
|
||||
root_symbol = symbol;
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize the tree. Will fail for num_symbols = 0
|
||||
if (!TreeInit(tree, num_symbols)) return 0;
|
||||
|
||||
// Build tree.
|
||||
if (num_symbols == 1) { // Trivial case.
|
||||
const int max_symbol = code_lengths_size;
|
||||
if (root_symbol < 0 || root_symbol >= max_symbol) {
|
||||
HuffmanTreeRelease(tree);
|
||||
return 0;
|
||||
}
|
||||
return TreeAddSymbol(tree, root_symbol, 0, 0);
|
||||
} else { // Normal case.
|
||||
int ok = 0;
|
||||
|
||||
// Get Huffman codes from the code lengths.
|
||||
int* const codes =
|
||||
(int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes));
|
||||
if (codes == NULL) goto End;
|
||||
|
||||
if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) {
|
||||
goto End;
|
||||
}
|
||||
|
||||
// Add symbols one-by-one.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > 0) {
|
||||
if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) {
|
||||
goto End;
|
||||
}
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
End:
|
||||
free(codes);
|
||||
ok = ok && IsFull(tree);
|
||||
if (!ok) HuffmanTreeRelease(tree);
|
||||
return ok;
|
||||
}
|
||||
}
|
||||
|
||||
int HuffmanTreeBuildExplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
const int* const codes,
|
||||
const int* const symbols, int max_symbol,
|
||||
int num_symbols) {
|
||||
int ok = 0;
|
||||
int i;
|
||||
|
||||
assert(tree != NULL);
|
||||
assert(code_lengths != NULL);
|
||||
assert(codes != NULL);
|
||||
assert(symbols != NULL);
|
||||
|
||||
// Initialize the tree. Will fail if num_symbols = 0.
|
||||
if (!TreeInit(tree, num_symbols)) return 0;
|
||||
|
||||
// Add symbols one-by-one.
|
||||
for (i = 0; i < num_symbols; ++i) {
|
||||
if (codes[i] != NON_EXISTENT_SYMBOL) {
|
||||
if (symbols[i] < 0 || symbols[i] >= max_symbol) {
|
||||
goto End;
|
||||
}
|
||||
if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
|
||||
goto End;
|
||||
}
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
End:
|
||||
ok = ok && IsFull(tree);
|
||||
if (!ok) HuffmanTreeRelease(tree);
|
||||
return ok;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,78 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Utilities for building and looking up Huffman trees.
|
||||
//
|
||||
// Author: Urvang Joshi (urvang@google.com)
|
||||
|
||||
#ifndef WEBP_UTILS_HUFFMAN_H_
|
||||
#define WEBP_UTILS_HUFFMAN_H_
|
||||
|
||||
#include <assert.h>
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// A node of a Huffman tree.
|
||||
typedef struct {
|
||||
int symbol_;
|
||||
int children_; // delta offset to both children (contiguous) or 0 if leaf.
|
||||
} HuffmanTreeNode;
|
||||
|
||||
// Huffman Tree.
|
||||
typedef struct HuffmanTree HuffmanTree;
|
||||
struct HuffmanTree {
|
||||
HuffmanTreeNode* root_; // all the nodes, starting at root.
|
||||
int max_nodes_; // max number of nodes
|
||||
int num_nodes_; // number of currently occupied nodes
|
||||
};
|
||||
|
||||
// Returns true if the given node is a leaf of the Huffman tree.
|
||||
static WEBP_INLINE int HuffmanTreeNodeIsLeaf(
|
||||
const HuffmanTreeNode* const node) {
|
||||
return (node->children_ == 0);
|
||||
}
|
||||
|
||||
// Go down one level. Most critical function. 'right_child' must be 0 or 1.
|
||||
static WEBP_INLINE const HuffmanTreeNode* HuffmanTreeNextNode(
|
||||
const HuffmanTreeNode* node, int right_child) {
|
||||
return node + node->children_ + right_child;
|
||||
}
|
||||
|
||||
// Releases the nodes of the Huffman tree.
|
||||
// Note: It does NOT free 'tree' itself.
|
||||
void HuffmanTreeRelease(HuffmanTree* const tree);
|
||||
|
||||
// Builds Huffman tree assuming code lengths are implicitly in symbol order.
|
||||
// Returns false in case of error (invalid tree or memory error).
|
||||
int HuffmanTreeBuildImplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
int code_lengths_size);
|
||||
|
||||
// Build a Huffman tree with explicitly given lists of code lengths, codes
|
||||
// and symbols. Verifies that all symbols added are smaller than max_symbol.
|
||||
// Returns false in case of an invalid symbol, invalid tree or memory error.
|
||||
int HuffmanTreeBuildExplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
const int* const codes,
|
||||
const int* const symbols, int max_symbol,
|
||||
int num_symbols);
|
||||
|
||||
// Utility: converts Huffman code lengths to corresponding Huffman codes.
|
||||
// 'huff_codes' should be pre-allocated.
|
||||
// Returns false in case of error (memory allocation, invalid codes).
|
||||
int HuffmanCodeLengthsToCodes(const int* const code_lengths,
|
||||
int code_lengths_size, int* const huff_codes);
|
||||
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_UTILS_HUFFMAN_H_
|
|
@ -1,439 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
//
|
||||
// Entropy encoding (Huffman) for webp lossless.
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "./huffman_encode.h"
|
||||
#include "../utils/utils.h"
|
||||
#include "../format_constants.h"
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Util function to optimize the symbol map for RLE coding
|
||||
|
||||
// Heuristics for selecting the stride ranges to collapse.
|
||||
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
|
||||
return abs(a - b) < 4;
|
||||
}
|
||||
|
||||
// Change the population counts in a way that the consequent
|
||||
// Hufmann tree compression, especially its RLE-part, give smaller output.
|
||||
static int OptimizeHuffmanForRle(int length, int* const counts) {
|
||||
uint8_t* good_for_rle;
|
||||
// 1) Let's make the Huffman code more compatible with rle encoding.
|
||||
int i;
|
||||
for (; length >= 0; --length) {
|
||||
if (length == 0) {
|
||||
return 1; // All zeros.
|
||||
}
|
||||
if (counts[length - 1] != 0) {
|
||||
// Now counts[0..length - 1] does not have trailing zeros.
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 2) Let's mark all population counts that already can be encoded
|
||||
// with an rle code.
|
||||
good_for_rle = (uint8_t*)calloc(length, 1);
|
||||
if (good_for_rle == NULL) {
|
||||
return 0;
|
||||
}
|
||||
{
|
||||
// Let's not spoil any of the existing good rle codes.
|
||||
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
|
||||
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
|
||||
int symbol = counts[0];
|
||||
int stride = 0;
|
||||
for (i = 0; i < length + 1; ++i) {
|
||||
if (i == length || counts[i] != symbol) {
|
||||
if ((symbol == 0 && stride >= 5) ||
|
||||
(symbol != 0 && stride >= 7)) {
|
||||
int k;
|
||||
for (k = 0; k < stride; ++k) {
|
||||
good_for_rle[i - k - 1] = 1;
|
||||
}
|
||||
}
|
||||
stride = 1;
|
||||
if (i != length) {
|
||||
symbol = counts[i];
|
||||
}
|
||||
} else {
|
||||
++stride;
|
||||
}
|
||||
}
|
||||
}
|
||||
// 3) Let's replace those population counts that lead to more rle codes.
|
||||
{
|
||||
int stride = 0;
|
||||
int limit = counts[0];
|
||||
int sum = 0;
|
||||
for (i = 0; i < length + 1; ++i) {
|
||||
if (i == length || good_for_rle[i] ||
|
||||
(i != 0 && good_for_rle[i - 1]) ||
|
||||
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
|
||||
if (stride >= 4 || (stride >= 3 && sum == 0)) {
|
||||
int k;
|
||||
// The stride must end, collapse what we have, if we have enough (4).
|
||||
int count = (sum + stride / 2) / stride;
|
||||
if (count < 1) {
|
||||
count = 1;
|
||||
}
|
||||
if (sum == 0) {
|
||||
// Don't make an all zeros stride to be upgraded to ones.
|
||||
count = 0;
|
||||
}
|
||||
for (k = 0; k < stride; ++k) {
|
||||
// We don't want to change value at counts[i],
|
||||
// that is already belonging to the next stride. Thus - 1.
|
||||
counts[i - k - 1] = count;
|
||||
}
|
||||
}
|
||||
stride = 0;
|
||||
sum = 0;
|
||||
if (i < length - 3) {
|
||||
// All interesting strides have a count of at least 4,
|
||||
// at least when non-zeros.
|
||||
limit = (counts[i] + counts[i + 1] +
|
||||
counts[i + 2] + counts[i + 3] + 2) / 4;
|
||||
} else if (i < length) {
|
||||
limit = counts[i];
|
||||
} else {
|
||||
limit = 0;
|
||||
}
|
||||
}
|
||||
++stride;
|
||||
if (i != length) {
|
||||
sum += counts[i];
|
||||
if (stride >= 4) {
|
||||
limit = (sum + stride / 2) / stride;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
free(good_for_rle);
|
||||
return 1;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
int total_count_;
|
||||
int value_;
|
||||
int pool_index_left_;
|
||||
int pool_index_right_;
|
||||
} HuffmanTree;
|
||||
|
||||
// A comparer function for two Huffman trees: sorts first by 'total count'
|
||||
// (more comes first), and then by 'value' (more comes first).
|
||||
static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
|
||||
const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
|
||||
const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
|
||||
if (t1->total_count_ > t2->total_count_) {
|
||||
return -1;
|
||||
} else if (t1->total_count_ < t2->total_count_) {
|
||||
return 1;
|
||||
} else {
|
||||
if (t1->value_ < t2->value_) {
|
||||
return -1;
|
||||
}
|
||||
if (t1->value_ > t2->value_) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void SetBitDepths(const HuffmanTree* const tree,
|
||||
const HuffmanTree* const pool,
|
||||
uint8_t* const bit_depths, int level) {
|
||||
if (tree->pool_index_left_ >= 0) {
|
||||
SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
|
||||
SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
|
||||
} else {
|
||||
bit_depths[tree->value_] = level;
|
||||
}
|
||||
}
|
||||
|
||||
// Create an optimal Huffman tree.
|
||||
//
|
||||
// (data,length): population counts.
|
||||
// tree_limit: maximum bit depth (inclusive) of the codes.
|
||||
// bit_depths[]: how many bits are used for the symbol.
|
||||
//
|
||||
// Returns 0 when an error has occurred.
|
||||
//
|
||||
// The catch here is that the tree cannot be arbitrarily deep
|
||||
//
|
||||
// count_limit is the value that is to be faked as the minimum value
|
||||
// and this minimum value is raised until the tree matches the
|
||||
// maximum length requirement.
|
||||
//
|
||||
// This algorithm is not of excellent performance for very long data blocks,
|
||||
// especially when population counts are longer than 2**tree_limit, but
|
||||
// we are not planning to use this with extremely long blocks.
|
||||
//
|
||||
// See http://en.wikipedia.org/wiki/Huffman_coding
|
||||
static int GenerateOptimalTree(const int* const histogram, int histogram_size,
|
||||
int tree_depth_limit,
|
||||
uint8_t* const bit_depths) {
|
||||
int count_min;
|
||||
HuffmanTree* tree_pool;
|
||||
HuffmanTree* tree;
|
||||
int tree_size_orig = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < histogram_size; ++i) {
|
||||
if (histogram[i] != 0) {
|
||||
++tree_size_orig;
|
||||
}
|
||||
}
|
||||
|
||||
// 3 * tree_size is enough to cover all the nodes representing a
|
||||
// population and all the inserted nodes combining two existing nodes.
|
||||
// The tree pool needs 2 * (tree_size_orig - 1) entities, and the
|
||||
// tree needs exactly tree_size_orig entities.
|
||||
tree = (HuffmanTree*)WebPSafeMalloc(3ULL * tree_size_orig, sizeof(*tree));
|
||||
if (tree == NULL) return 0;
|
||||
tree_pool = tree + tree_size_orig;
|
||||
|
||||
// For block sizes with less than 64k symbols we never need to do a
|
||||
// second iteration of this loop.
|
||||
// If we actually start running inside this loop a lot, we would perhaps
|
||||
// be better off with the Katajainen algorithm.
|
||||
assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
|
||||
for (count_min = 1; ; count_min *= 2) {
|
||||
int tree_size = tree_size_orig;
|
||||
// We need to pack the Huffman tree in tree_depth_limit bits.
|
||||
// So, we try by faking histogram entries to be at least 'count_min'.
|
||||
int idx = 0;
|
||||
int j;
|
||||
for (j = 0; j < histogram_size; ++j) {
|
||||
if (histogram[j] != 0) {
|
||||
const int count =
|
||||
(histogram[j] < count_min) ? count_min : histogram[j];
|
||||
tree[idx].total_count_ = count;
|
||||
tree[idx].value_ = j;
|
||||
tree[idx].pool_index_left_ = -1;
|
||||
tree[idx].pool_index_right_ = -1;
|
||||
++idx;
|
||||
}
|
||||
}
|
||||
|
||||
// Build the Huffman tree.
|
||||
qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
|
||||
|
||||
if (tree_size > 1) { // Normal case.
|
||||
int tree_pool_size = 0;
|
||||
while (tree_size > 1) { // Finish when we have only one root.
|
||||
int count;
|
||||
tree_pool[tree_pool_size++] = tree[tree_size - 1];
|
||||
tree_pool[tree_pool_size++] = tree[tree_size - 2];
|
||||
count = tree_pool[tree_pool_size - 1].total_count_ +
|
||||
tree_pool[tree_pool_size - 2].total_count_;
|
||||
tree_size -= 2;
|
||||
{
|
||||
// Search for the insertion point.
|
||||
int k;
|
||||
for (k = 0; k < tree_size; ++k) {
|
||||
if (tree[k].total_count_ <= count) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
|
||||
tree[k].total_count_ = count;
|
||||
tree[k].value_ = -1;
|
||||
|
||||
tree[k].pool_index_left_ = tree_pool_size - 1;
|
||||
tree[k].pool_index_right_ = tree_pool_size - 2;
|
||||
tree_size = tree_size + 1;
|
||||
}
|
||||
}
|
||||
SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
|
||||
} else if (tree_size == 1) { // Trivial case: only one element.
|
||||
bit_depths[tree[0].value_] = 1;
|
||||
}
|
||||
|
||||
{
|
||||
// Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
|
||||
int max_depth = bit_depths[0];
|
||||
for (j = 1; j < histogram_size; ++j) {
|
||||
if (max_depth < bit_depths[j]) {
|
||||
max_depth = bit_depths[j];
|
||||
}
|
||||
}
|
||||
if (max_depth <= tree_depth_limit) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
free(tree);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Coding of the Huffman tree values
|
||||
|
||||
static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
|
||||
HuffmanTreeToken* tokens,
|
||||
int value, int prev_value) {
|
||||
assert(value <= MAX_ALLOWED_CODE_LENGTH);
|
||||
if (value != prev_value) {
|
||||
tokens->code = value;
|
||||
tokens->extra_bits = 0;
|
||||
++tokens;
|
||||
--repetitions;
|
||||
}
|
||||
while (repetitions >= 1) {
|
||||
if (repetitions < 3) {
|
||||
int i;
|
||||
for (i = 0; i < repetitions; ++i) {
|
||||
tokens->code = value;
|
||||
tokens->extra_bits = 0;
|
||||
++tokens;
|
||||
}
|
||||
break;
|
||||
} else if (repetitions < 7) {
|
||||
tokens->code = 16;
|
||||
tokens->extra_bits = repetitions - 3;
|
||||
++tokens;
|
||||
break;
|
||||
} else {
|
||||
tokens->code = 16;
|
||||
tokens->extra_bits = 3;
|
||||
++tokens;
|
||||
repetitions -= 6;
|
||||
}
|
||||
}
|
||||
return tokens;
|
||||
}
|
||||
|
||||
static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
|
||||
HuffmanTreeToken* tokens) {
|
||||
while (repetitions >= 1) {
|
||||
if (repetitions < 3) {
|
||||
int i;
|
||||
for (i = 0; i < repetitions; ++i) {
|
||||
tokens->code = 0; // 0-value
|
||||
tokens->extra_bits = 0;
|
||||
++tokens;
|
||||
}
|
||||
break;
|
||||
} else if (repetitions < 11) {
|
||||
tokens->code = 17;
|
||||
tokens->extra_bits = repetitions - 3;
|
||||
++tokens;
|
||||
break;
|
||||
} else if (repetitions < 139) {
|
||||
tokens->code = 18;
|
||||
tokens->extra_bits = repetitions - 11;
|
||||
++tokens;
|
||||
break;
|
||||
} else {
|
||||
tokens->code = 18;
|
||||
tokens->extra_bits = 0x7f; // 138 repeated 0s
|
||||
++tokens;
|
||||
repetitions -= 138;
|
||||
}
|
||||
}
|
||||
return tokens;
|
||||
}
|
||||
|
||||
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
|
||||
HuffmanTreeToken* tokens, int max_tokens) {
|
||||
HuffmanTreeToken* const starting_token = tokens;
|
||||
HuffmanTreeToken* const ending_token = tokens + max_tokens;
|
||||
const int depth_size = tree->num_symbols;
|
||||
int prev_value = 8; // 8 is the initial value for rle.
|
||||
int i = 0;
|
||||
assert(tokens != NULL);
|
||||
while (i < depth_size) {
|
||||
const int value = tree->code_lengths[i];
|
||||
int k = i + 1;
|
||||
int runs;
|
||||
while (k < depth_size && tree->code_lengths[k] == value) ++k;
|
||||
runs = k - i;
|
||||
if (value == 0) {
|
||||
tokens = CodeRepeatedZeros(runs, tokens);
|
||||
} else {
|
||||
tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
|
||||
prev_value = value;
|
||||
}
|
||||
i += runs;
|
||||
assert(tokens <= ending_token);
|
||||
}
|
||||
(void)ending_token; // suppress 'unused variable' warning
|
||||
return (int)(tokens - starting_token);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// Pre-reversed 4-bit values.
|
||||
static const uint8_t kReversedBits[16] = {
|
||||
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
|
||||
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
|
||||
};
|
||||
|
||||
static uint32_t ReverseBits(int num_bits, uint32_t bits) {
|
||||
uint32_t retval = 0;
|
||||
int i = 0;
|
||||
while (i < num_bits) {
|
||||
i += 4;
|
||||
retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
|
||||
bits >>= 4;
|
||||
}
|
||||
retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Get the actual bit values for a tree of bit depths.
|
||||
static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
|
||||
// 0 bit-depth means that the symbol does not exist.
|
||||
int i;
|
||||
int len;
|
||||
uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
|
||||
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
||||
|
||||
assert(tree != NULL);
|
||||
len = tree->num_symbols;
|
||||
for (i = 0; i < len; ++i) {
|
||||
const int code_length = tree->code_lengths[i];
|
||||
assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
|
||||
++depth_count[code_length];
|
||||
}
|
||||
depth_count[0] = 0; // ignore unused symbol
|
||||
next_code[0] = 0;
|
||||
{
|
||||
uint32_t code = 0;
|
||||
for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
|
||||
code = (code + depth_count[i - 1]) << 1;
|
||||
next_code[i] = code;
|
||||
}
|
||||
}
|
||||
for (i = 0; i < len; ++i) {
|
||||
const int code_length = tree->code_lengths[i];
|
||||
tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Main entry point
|
||||
|
||||
int VP8LCreateHuffmanTree(int* const histogram, int tree_depth_limit,
|
||||
HuffmanTreeCode* const tree) {
|
||||
const int num_symbols = tree->num_symbols;
|
||||
if (!OptimizeHuffmanForRle(num_symbols, histogram)) {
|
||||
return 0;
|
||||
}
|
||||
if (!GenerateOptimalTree(histogram, num_symbols,
|
||||
tree_depth_limit, tree->code_lengths)) {
|
||||
return 0;
|
||||
}
|
||||
// Create the actual bit codes for the bit lengths.
|
||||
ConvertBitDepthsToSymbols(tree);
|
||||
return 1;
|
||||
}
|
|
@ -1,47 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Author: Jyrki Alakuijala (jyrki@google.com)
|
||||
//
|
||||
// Entropy encoding (Huffman) for webp lossless
|
||||
|
||||
#ifndef WEBP_UTILS_HUFFMAN_ENCODE_H_
|
||||
#define WEBP_UTILS_HUFFMAN_ENCODE_H_
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Struct for holding the tree header in coded form.
|
||||
typedef struct {
|
||||
uint8_t code; // value (0..15) or escape code (16,17,18)
|
||||
uint8_t extra_bits; // extra bits for escape codes
|
||||
} HuffmanTreeToken;
|
||||
|
||||
// Struct to represent the tree codes (depth and bits array).
|
||||
typedef struct {
|
||||
int num_symbols; // Number of symbols.
|
||||
uint8_t* code_lengths; // Code lengths of the symbols.
|
||||
uint16_t* codes; // Symbol Codes.
|
||||
} HuffmanTreeCode;
|
||||
|
||||
// Turn the Huffman tree into a token sequence.
|
||||
// Returns the number of tokens used.
|
||||
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
|
||||
HuffmanTreeToken* tokens, int max_tokens);
|
||||
|
||||
// Create an optimized tree, and tokenize it.
|
||||
int VP8LCreateHuffmanTree(int* const histogram, int tree_depth_limit,
|
||||
HuffmanTreeCode* const tree);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // WEBP_UTILS_HUFFMAN_ENCODE_H_
|
|
@ -1,154 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Quantize levels for specified number of quantization-levels ([2, 256]).
|
||||
// Min and max values are preserved (usual 0 and 255 for alpha plane).
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "./quant_levels.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define NUM_SYMBOLS 256
|
||||
|
||||
#define MAX_ITER 6 // Maximum number of convergence steps.
|
||||
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Quantize levels.
|
||||
|
||||
int QuantizeLevels(uint8_t* const data, int width, int height,
|
||||
int num_levels, uint64_t* const sse) {
|
||||
int freq[NUM_SYMBOLS] = { 0 };
|
||||
int q_level[NUM_SYMBOLS] = { 0 };
|
||||
double inv_q_level[NUM_SYMBOLS] = { 0 };
|
||||
int min_s = 255, max_s = 0;
|
||||
const size_t data_size = height * width;
|
||||
int i, num_levels_in, iter;
|
||||
double last_err = 1.e38, err = 0.;
|
||||
const double err_threshold = ERROR_THRESHOLD * data_size;
|
||||
|
||||
if (data == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (width <= 0 || height <= 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (num_levels < 2 || num_levels > 256) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
{
|
||||
size_t n;
|
||||
num_levels_in = 0;
|
||||
for (n = 0; n < data_size; ++n) {
|
||||
num_levels_in += (freq[data[n]] == 0);
|
||||
if (min_s > data[n]) min_s = data[n];
|
||||
if (max_s < data[n]) max_s = data[n];
|
||||
++freq[data[n]];
|
||||
}
|
||||
}
|
||||
|
||||
if (num_levels_in <= num_levels) goto End; // nothing to do!
|
||||
|
||||
// Start with uniformly spread centroids.
|
||||
for (i = 0; i < num_levels; ++i) {
|
||||
inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
|
||||
}
|
||||
|
||||
// Fixed values. Won't be changed.
|
||||
q_level[min_s] = 0;
|
||||
q_level[max_s] = num_levels - 1;
|
||||
assert(inv_q_level[0] == min_s);
|
||||
assert(inv_q_level[num_levels - 1] == max_s);
|
||||
|
||||
// k-Means iterations.
|
||||
for (iter = 0; iter < MAX_ITER; ++iter) {
|
||||
double q_sum[NUM_SYMBOLS] = { 0 };
|
||||
double q_count[NUM_SYMBOLS] = { 0 };
|
||||
int s, slot = 0;
|
||||
|
||||
// Assign classes to representatives.
|
||||
for (s = min_s; s <= max_s; ++s) {
|
||||
// Keep track of the nearest neighbour 'slot'
|
||||
while (slot < num_levels - 1 &&
|
||||
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
|
||||
++slot;
|
||||
}
|
||||
if (freq[s] > 0) {
|
||||
q_sum[slot] += s * freq[s];
|
||||
q_count[slot] += freq[s];
|
||||
}
|
||||
q_level[s] = slot;
|
||||
}
|
||||
|
||||
// Assign new representatives to classes.
|
||||
if (num_levels > 2) {
|
||||
for (slot = 1; slot < num_levels - 1; ++slot) {
|
||||
const double count = q_count[slot];
|
||||
if (count > 0.) {
|
||||
inv_q_level[slot] = q_sum[slot] / count;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute convergence error.
|
||||
err = 0.;
|
||||
for (s = min_s; s <= max_s; ++s) {
|
||||
const double error = s - inv_q_level[q_level[s]];
|
||||
err += freq[s] * error * error;
|
||||
}
|
||||
|
||||
// Check for convergence: we stop as soon as the error is no
|
||||
// longer improving.
|
||||
if (last_err - err < err_threshold) break;
|
||||
last_err = err;
|
||||
}
|
||||
|
||||
// Remap the alpha plane to quantized values.
|
||||
{
|
||||
// double->int rounding operation can be costly, so we do it
|
||||
// once for all before remapping. We also perform the data[] -> slot
|
||||
// mapping, while at it (avoid one indirection in the final loop).
|
||||
uint8_t map[NUM_SYMBOLS];
|
||||
int s;
|
||||
size_t n;
|
||||
for (s = min_s; s <= max_s; ++s) {
|
||||
const int slot = q_level[s];
|
||||
map[s] = (uint8_t)(inv_q_level[slot] + .5);
|
||||
}
|
||||
// Final pass.
|
||||
for (n = 0; n < data_size; ++n) {
|
||||
data[n] = map[data[n]];
|
||||
}
|
||||
}
|
||||
End:
|
||||
// Store sum of squared error if needed.
|
||||
if (sse != NULL) *sse = (uint64_t)err;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int DequantizeLevels(uint8_t* const data, int width, int height) {
|
||||
if (data == NULL || width <= 0 || height <= 0) return 0;
|
||||
// TODO(skal): implement gradient smoothing.
|
||||
(void)data;
|
||||
(void)width;
|
||||
(void)height;
|
||||
return 1;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,39 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Alpha plane quantization utility
|
||||
//
|
||||
// Author: Vikas Arora (vikasa@google.com)
|
||||
|
||||
#ifndef WEBP_UTILS_QUANT_LEVELS_H_
|
||||
#define WEBP_UTILS_QUANT_LEVELS_H_
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Replace the input 'data' of size 'width'x'height' with 'num-levels'
|
||||
// quantized values. If not NULL, 'sse' will contain the sum of squared error.
|
||||
// Valid range for 'num_levels' is [2, 256].
|
||||
// Returns false in case of error (data is NULL, or parameters are invalid).
|
||||
int QuantizeLevels(uint8_t* const data, int width, int height, int num_levels,
|
||||
uint64_t* const sse);
|
||||
|
||||
// Apply post-processing to input 'data' of size 'width'x'height' assuming
|
||||
// that the source was quantized to a reduced number of levels.
|
||||
// Returns false in case of error (data is NULL, invalid parameters, ...).
|
||||
int DequantizeLevels(uint8_t* const data, int width, int height);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_QUANT_LEVELS_H_ */
|
|
@ -1,152 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Rescaling functions
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "./rescaler.h"
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define RFIX 30
|
||||
#define MULT_FIX(x,y) (((int64_t)(x) * (y) + (1 << (RFIX - 1))) >> RFIX)
|
||||
|
||||
void WebPRescalerInit(WebPRescaler* const wrk, int src_width, int src_height,
|
||||
uint8_t* const dst, int dst_width, int dst_height,
|
||||
int dst_stride, int num_channels, int x_add, int x_sub,
|
||||
int y_add, int y_sub, int32_t* const work) {
|
||||
wrk->x_expand = (src_width < dst_width);
|
||||
wrk->src_width = src_width;
|
||||
wrk->src_height = src_height;
|
||||
wrk->dst_width = dst_width;
|
||||
wrk->dst_height = dst_height;
|
||||
wrk->dst = dst;
|
||||
wrk->dst_stride = dst_stride;
|
||||
wrk->num_channels = num_channels;
|
||||
// for 'x_expand', we use bilinear interpolation
|
||||
wrk->x_add = wrk->x_expand ? (x_sub - 1) : x_add - x_sub;
|
||||
wrk->x_sub = wrk->x_expand ? (x_add - 1) : x_sub;
|
||||
wrk->y_accum = y_add;
|
||||
wrk->y_add = y_add;
|
||||
wrk->y_sub = y_sub;
|
||||
wrk->fx_scale = (1 << RFIX) / x_sub;
|
||||
wrk->fy_scale = (1 << RFIX) / y_sub;
|
||||
wrk->fxy_scale = wrk->x_expand ?
|
||||
((int64_t)dst_height << RFIX) / (x_sub * src_height) :
|
||||
((int64_t)dst_height << RFIX) / (x_add * src_height);
|
||||
wrk->irow = work;
|
||||
wrk->frow = work + num_channels * dst_width;
|
||||
}
|
||||
|
||||
void WebPRescalerImportRow(WebPRescaler* const wrk,
|
||||
const uint8_t* const src, int channel) {
|
||||
const int x_stride = wrk->num_channels;
|
||||
const int x_out_max = wrk->dst_width * wrk->num_channels;
|
||||
int x_in = channel;
|
||||
int x_out;
|
||||
int accum = 0;
|
||||
if (!wrk->x_expand) {
|
||||
int sum = 0;
|
||||
for (x_out = channel; x_out < x_out_max; x_out += x_stride) {
|
||||
accum += wrk->x_add;
|
||||
for (; accum > 0; accum -= wrk->x_sub) {
|
||||
sum += src[x_in];
|
||||
x_in += x_stride;
|
||||
}
|
||||
{ // Emit next horizontal pixel.
|
||||
const int32_t base = src[x_in];
|
||||
const int32_t frac = base * (-accum);
|
||||
x_in += x_stride;
|
||||
wrk->frow[x_out] = (sum + base) * wrk->x_sub - frac;
|
||||
// fresh fractional start for next pixel
|
||||
sum = (int)MULT_FIX(frac, wrk->fx_scale);
|
||||
}
|
||||
}
|
||||
} else { // simple bilinear interpolation
|
||||
int left = src[channel], right = src[channel];
|
||||
for (x_out = channel; x_out < x_out_max; x_out += x_stride) {
|
||||
if (accum < 0) {
|
||||
left = right;
|
||||
x_in += x_stride;
|
||||
right = src[x_in];
|
||||
accum += wrk->x_add;
|
||||
}
|
||||
wrk->frow[x_out] = right * wrk->x_add + (left - right) * accum;
|
||||
accum -= wrk->x_sub;
|
||||
}
|
||||
}
|
||||
// Accumulate the new row's contribution
|
||||
for (x_out = channel; x_out < x_out_max; x_out += x_stride) {
|
||||
wrk->irow[x_out] += wrk->frow[x_out];
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t* WebPRescalerExportRow(WebPRescaler* const wrk) {
|
||||
if (wrk->y_accum <= 0) {
|
||||
int x_out;
|
||||
uint8_t* const dst = wrk->dst;
|
||||
int32_t* const irow = wrk->irow;
|
||||
const int32_t* const frow = wrk->frow;
|
||||
const int yscale = wrk->fy_scale * (-wrk->y_accum);
|
||||
const int x_out_max = wrk->dst_width * wrk->num_channels;
|
||||
|
||||
for (x_out = 0; x_out < x_out_max; ++x_out) {
|
||||
const int frac = (int)MULT_FIX(frow[x_out], yscale);
|
||||
const int v = (int)MULT_FIX(irow[x_out] - frac, wrk->fxy_scale);
|
||||
dst[x_out] = (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
|
||||
irow[x_out] = frac; // new fractional start
|
||||
}
|
||||
wrk->y_accum += wrk->y_add;
|
||||
wrk->dst += wrk->dst_stride;
|
||||
return dst;
|
||||
} else {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MULT_FIX
|
||||
#undef RFIX
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// all-in-one calls
|
||||
|
||||
int WebPRescalerImport(WebPRescaler* const wrk, int num_lines,
|
||||
const uint8_t* src, int src_stride) {
|
||||
int total_imported = 0;
|
||||
while (total_imported < num_lines && wrk->y_accum > 0) {
|
||||
int channel;
|
||||
for (channel = 0; channel < wrk->num_channels; ++channel) {
|
||||
WebPRescalerImportRow(wrk, src, channel);
|
||||
}
|
||||
src += src_stride;
|
||||
++total_imported;
|
||||
wrk->y_accum -= wrk->y_sub;
|
||||
}
|
||||
return total_imported;
|
||||
}
|
||||
|
||||
int WebPRescalerExport(WebPRescaler* const rescaler) {
|
||||
int total_exported = 0;
|
||||
while (WebPRescalerHasPendingOutput(rescaler)) {
|
||||
WebPRescalerExportRow(rescaler);
|
||||
++total_exported;
|
||||
}
|
||||
return total_exported;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,76 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Rescaling functions
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_UTILS_RESCALER_H_
|
||||
#define WEBP_UTILS_RESCALER_H_
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
// Structure used for on-the-fly rescaling
|
||||
typedef struct {
|
||||
int x_expand; // true if we're expanding in the x direction
|
||||
int num_channels; // bytes to jump between pixels
|
||||
int fy_scale, fx_scale; // fixed-point scaling factor
|
||||
int64_t fxy_scale; // ''
|
||||
// we need hpel-precise add/sub increments, for the downsampled U/V planes.
|
||||
int y_accum; // vertical accumulator
|
||||
int y_add, y_sub; // vertical increments (add ~= src, sub ~= dst)
|
||||
int x_add, x_sub; // horizontal increments (add ~= src, sub ~= dst)
|
||||
int src_width, src_height; // source dimensions
|
||||
int dst_width, dst_height; // destination dimensions
|
||||
uint8_t* dst;
|
||||
int dst_stride;
|
||||
int32_t* irow, *frow; // work buffer
|
||||
} WebPRescaler;
|
||||
|
||||
// Initialize a rescaler given scratch area 'work' and dimensions of src & dst.
|
||||
void WebPRescalerInit(WebPRescaler* const wrk, int src_width, int src_height,
|
||||
uint8_t* const dst,
|
||||
int dst_width, int dst_height, int dst_stride,
|
||||
int num_channels,
|
||||
int x_add, int x_sub,
|
||||
int y_add, int y_sub,
|
||||
int32_t* const work);
|
||||
|
||||
// Import a row of data and save its contribution in the rescaler.
|
||||
// 'channel' denotes the channel number to be imported.
|
||||
void WebPRescalerImportRow(WebPRescaler* const rescaler,
|
||||
const uint8_t* const src, int channel);
|
||||
|
||||
// Import multiple rows over all channels, until at least one row is ready to
|
||||
// be exported. Returns the actual number of lines that were imported.
|
||||
int WebPRescalerImport(WebPRescaler* const rescaler, int num_rows,
|
||||
const uint8_t* src, int src_stride);
|
||||
|
||||
// Return true if there is pending output rows ready.
|
||||
static WEBP_INLINE
|
||||
int WebPRescalerHasPendingOutput(const WebPRescaler* const rescaler) {
|
||||
return (rescaler->y_accum <= 0);
|
||||
}
|
||||
|
||||
// Export one row from rescaler. Returns the pointer where output was written,
|
||||
// or NULL if no row was pending.
|
||||
uint8_t* WebPRescalerExportRow(WebPRescaler* const wrk);
|
||||
|
||||
// Export as many rows as possible. Return the numbers of rows written.
|
||||
int WebPRescalerExport(WebPRescaler* const wrk);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_RESCALER_H_ */
|
|
@ -1,247 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Multi-threaded worker
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h> // for memset()
|
||||
#include "./thread.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef WEBP_USE_THREAD
|
||||
|
||||
#if defined(_WIN32)
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// simplistic pthread emulation layer
|
||||
|
||||
#include <process.h>
|
||||
|
||||
// _beginthreadex requires __stdcall
|
||||
#define THREADFN unsigned int __stdcall
|
||||
#define THREAD_RETURN(val) (unsigned int)((DWORD_PTR)val)
|
||||
|
||||
static int pthread_create(pthread_t* const thread, const void* attr,
|
||||
unsigned int (__stdcall *start)(void*), void* arg) {
|
||||
(void)attr;
|
||||
*thread = (pthread_t)_beginthreadex(NULL, /* void *security */
|
||||
0, /* unsigned stack_size */
|
||||
start,
|
||||
arg,
|
||||
0, /* unsigned initflag */
|
||||
NULL); /* unsigned *thrdaddr */
|
||||
if (*thread == NULL) return 1;
|
||||
SetThreadPriority(*thread, THREAD_PRIORITY_ABOVE_NORMAL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pthread_join(pthread_t thread, void** value_ptr) {
|
||||
(void)value_ptr;
|
||||
return (WaitForSingleObject(thread, INFINITE) != WAIT_OBJECT_0 ||
|
||||
CloseHandle(thread) == 0);
|
||||
}
|
||||
|
||||
// Mutex
|
||||
static int pthread_mutex_init(pthread_mutex_t* const mutex, void* mutexattr) {
|
||||
(void)mutexattr;
|
||||
InitializeCriticalSection(mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pthread_mutex_lock(pthread_mutex_t* const mutex) {
|
||||
EnterCriticalSection(mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pthread_mutex_unlock(pthread_mutex_t* const mutex) {
|
||||
LeaveCriticalSection(mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pthread_mutex_destroy(pthread_mutex_t* const mutex) {
|
||||
DeleteCriticalSection(mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Condition
|
||||
static int pthread_cond_destroy(pthread_cond_t* const condition) {
|
||||
int ok = 1;
|
||||
ok &= (CloseHandle(condition->waiting_sem_) != 0);
|
||||
ok &= (CloseHandle(condition->received_sem_) != 0);
|
||||
ok &= (CloseHandle(condition->signal_event_) != 0);
|
||||
return !ok;
|
||||
}
|
||||
|
||||
static int pthread_cond_init(pthread_cond_t* const condition, void* cond_attr) {
|
||||
(void)cond_attr;
|
||||
condition->waiting_sem_ = CreateSemaphore(NULL, 0, 1, NULL);
|
||||
condition->received_sem_ = CreateSemaphore(NULL, 0, 1, NULL);
|
||||
condition->signal_event_ = CreateEvent(NULL, FALSE, FALSE, NULL);
|
||||
if (condition->waiting_sem_ == NULL ||
|
||||
condition->received_sem_ == NULL ||
|
||||
condition->signal_event_ == NULL) {
|
||||
pthread_cond_destroy(condition);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pthread_cond_signal(pthread_cond_t* const condition) {
|
||||
int ok = 1;
|
||||
if (WaitForSingleObject(condition->waiting_sem_, 0) == WAIT_OBJECT_0) {
|
||||
// a thread is waiting in pthread_cond_wait: allow it to be notified
|
||||
ok = SetEvent(condition->signal_event_);
|
||||
// wait until the event is consumed so the signaler cannot consume
|
||||
// the event via its own pthread_cond_wait.
|
||||
ok &= (WaitForSingleObject(condition->received_sem_, INFINITE) !=
|
||||
WAIT_OBJECT_0);
|
||||
}
|
||||
return !ok;
|
||||
}
|
||||
|
||||
static int pthread_cond_wait(pthread_cond_t* const condition,
|
||||
pthread_mutex_t* const mutex) {
|
||||
int ok;
|
||||
// note that there is a consumer available so the signal isn't dropped in
|
||||
// pthread_cond_signal
|
||||
if (!ReleaseSemaphore(condition->waiting_sem_, 1, NULL))
|
||||
return 1;
|
||||
// now unlock the mutex so pthread_cond_signal may be issued
|
||||
pthread_mutex_unlock(mutex);
|
||||
ok = (WaitForSingleObject(condition->signal_event_, INFINITE) ==
|
||||
WAIT_OBJECT_0);
|
||||
ok &= ReleaseSemaphore(condition->received_sem_, 1, NULL);
|
||||
pthread_mutex_lock(mutex);
|
||||
return !ok;
|
||||
}
|
||||
|
||||
#else // _WIN32
|
||||
# define THREADFN void*
|
||||
# define THREAD_RETURN(val) val
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static THREADFN WebPWorkerThreadLoop(void *ptr) { // thread loop
|
||||
WebPWorker* const worker = (WebPWorker*)ptr;
|
||||
int done = 0;
|
||||
while (!done) {
|
||||
pthread_mutex_lock(&worker->mutex_);
|
||||
while (worker->status_ == OK) { // wait in idling mode
|
||||
pthread_cond_wait(&worker->condition_, &worker->mutex_);
|
||||
}
|
||||
if (worker->status_ == WORK) {
|
||||
if (worker->hook) {
|
||||
worker->had_error |= !worker->hook(worker->data1, worker->data2);
|
||||
}
|
||||
worker->status_ = OK;
|
||||
} else if (worker->status_ == NOT_OK) { // finish the worker
|
||||
done = 1;
|
||||
}
|
||||
// signal to the main thread that we're done (for Sync())
|
||||
pthread_cond_signal(&worker->condition_);
|
||||
pthread_mutex_unlock(&worker->mutex_);
|
||||
}
|
||||
return THREAD_RETURN(NULL); // Thread is finished
|
||||
}
|
||||
|
||||
// main thread state control
|
||||
static void WebPWorkerChangeState(WebPWorker* const worker,
|
||||
WebPWorkerStatus new_status) {
|
||||
// no-op when attempting to change state on a thread that didn't come up
|
||||
if (worker->status_ < OK) return;
|
||||
|
||||
pthread_mutex_lock(&worker->mutex_);
|
||||
// wait for the worker to finish
|
||||
while (worker->status_ != OK) {
|
||||
pthread_cond_wait(&worker->condition_, &worker->mutex_);
|
||||
}
|
||||
// assign new status and release the working thread if needed
|
||||
if (new_status != OK) {
|
||||
worker->status_ = new_status;
|
||||
pthread_cond_signal(&worker->condition_);
|
||||
}
|
||||
pthread_mutex_unlock(&worker->mutex_);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
void WebPWorkerInit(WebPWorker* const worker) {
|
||||
memset(worker, 0, sizeof(*worker));
|
||||
worker->status_ = NOT_OK;
|
||||
}
|
||||
|
||||
int WebPWorkerSync(WebPWorker* const worker) {
|
||||
#ifdef WEBP_USE_THREAD
|
||||
WebPWorkerChangeState(worker, OK);
|
||||
#endif
|
||||
assert(worker->status_ <= OK);
|
||||
return !worker->had_error;
|
||||
}
|
||||
|
||||
int WebPWorkerReset(WebPWorker* const worker) {
|
||||
int ok = 1;
|
||||
worker->had_error = 0;
|
||||
if (worker->status_ < OK) {
|
||||
#ifdef WEBP_USE_THREAD
|
||||
if (pthread_mutex_init(&worker->mutex_, NULL) ||
|
||||
pthread_cond_init(&worker->condition_, NULL)) {
|
||||
return 0;
|
||||
}
|
||||
pthread_mutex_lock(&worker->mutex_);
|
||||
ok = !pthread_create(&worker->thread_, NULL, WebPWorkerThreadLoop, worker);
|
||||
if (ok) worker->status_ = OK;
|
||||
pthread_mutex_unlock(&worker->mutex_);
|
||||
#else
|
||||
worker->status_ = OK;
|
||||
#endif
|
||||
} else if (worker->status_ > OK) {
|
||||
ok = WebPWorkerSync(worker);
|
||||
}
|
||||
assert(!ok || (worker->status_ == OK));
|
||||
return ok;
|
||||
}
|
||||
|
||||
void WebPWorkerLaunch(WebPWorker* const worker) {
|
||||
#ifdef WEBP_USE_THREAD
|
||||
WebPWorkerChangeState(worker, WORK);
|
||||
#else
|
||||
if (worker->hook)
|
||||
worker->had_error |= !worker->hook(worker->data1, worker->data2);
|
||||
#endif
|
||||
}
|
||||
|
||||
void WebPWorkerEnd(WebPWorker* const worker) {
|
||||
if (worker->status_ >= OK) {
|
||||
#ifdef WEBP_USE_THREAD
|
||||
WebPWorkerChangeState(worker, NOT_OK);
|
||||
pthread_join(worker->thread_, NULL);
|
||||
pthread_mutex_destroy(&worker->mutex_);
|
||||
pthread_cond_destroy(&worker->condition_);
|
||||
#else
|
||||
worker->status_ = NOT_OK;
|
||||
#endif
|
||||
}
|
||||
assert(worker->status_ == NOT_OK);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,86 +0,0 @@
|
|||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Multi-threaded worker
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_UTILS_THREAD_H_
|
||||
#define WEBP_UTILS_THREAD_H_
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if WEBP_USE_THREAD
|
||||
|
||||
#if defined(_WIN32)
|
||||
|
||||
#include <windows.h>
|
||||
typedef HANDLE pthread_t;
|
||||
typedef CRITICAL_SECTION pthread_mutex_t;
|
||||
typedef struct {
|
||||
HANDLE waiting_sem_;
|
||||
HANDLE received_sem_;
|
||||
HANDLE signal_event_;
|
||||
} pthread_cond_t;
|
||||
|
||||
#else
|
||||
|
||||
#include <pthread.h>
|
||||
|
||||
#endif /* _WIN32 */
|
||||
#endif /* WEBP_USE_THREAD */
|
||||
|
||||
// State of the worker thread object
|
||||
typedef enum {
|
||||
NOT_OK = 0, // object is unusable
|
||||
OK, // ready to work
|
||||
WORK // busy finishing the current task
|
||||
} WebPWorkerStatus;
|
||||
|
||||
// Function to be called by the worker thread. Takes two opaque pointers as
|
||||
// arguments (data1 and data2), and should return false in case of error.
|
||||
typedef int (*WebPWorkerHook)(void*, void*);
|
||||
|
||||
// Synchronize object used to launch job in the worker thread
|
||||
typedef struct {
|
||||
#if WEBP_USE_THREAD
|
||||
pthread_mutex_t mutex_;
|
||||
pthread_cond_t condition_;
|
||||
pthread_t thread_;
|
||||
#endif
|
||||
WebPWorkerStatus status_;
|
||||
WebPWorkerHook hook; // hook to call
|
||||
void* data1; // first argument passed to 'hook'
|
||||
void* data2; // second argument passed to 'hook'
|
||||
int had_error; // return value of the last call to 'hook'
|
||||
} WebPWorker;
|
||||
|
||||
// Must be called first, before any other method.
|
||||
void WebPWorkerInit(WebPWorker* const worker);
|
||||
// Must be called initialize the object and spawn the thread. Re-entrant.
|
||||
// Will potentially launch the thread. Returns false in case of error.
|
||||
int WebPWorkerReset(WebPWorker* const worker);
|
||||
// Make sure the previous work is finished. Returns true if worker->had_error
|
||||
// was not set and not error condition was triggered by the working thread.
|
||||
int WebPWorkerSync(WebPWorker* const worker);
|
||||
// Trigger the thread to call hook() with data1 and data2 argument. These
|
||||
// hook/data1/data2 can be changed at any time before calling this function,
|
||||
// but not be changed afterward until the next call to WebPWorkerSync().
|
||||
void WebPWorkerLaunch(WebPWorker* const worker);
|
||||
// Kill the thread and terminate the object. To use the object again, one
|
||||
// must call WebPWorkerReset() again.
|
||||
void WebPWorkerEnd(WebPWorker* const worker);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_THREAD_H_ */
|
|
@ -1,44 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Misc. common utility functions
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "./utils.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Checked memory allocation
|
||||
|
||||
static int CheckSizeArguments(uint64_t nmemb, size_t size) {
|
||||
const uint64_t total_size = nmemb * size;
|
||||
if (nmemb == 0) return 1;
|
||||
if ((uint64_t)size > WEBP_MAX_ALLOCABLE_MEMORY / nmemb) return 0;
|
||||
if (total_size != (size_t)total_size) return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
void* WebPSafeMalloc(uint64_t nmemb, size_t size) {
|
||||
if (!CheckSizeArguments(nmemb, size)) return NULL;
|
||||
return malloc((size_t)(nmemb * size));
|
||||
}
|
||||
|
||||
void* WebPSafeCalloc(uint64_t nmemb, size_t size) {
|
||||
if (!CheckSizeArguments(nmemb, size)) return NULL;
|
||||
return calloc((size_t)nmemb, size);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
|
@ -1,44 +0,0 @@
|
|||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Misc. common utility functions
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_UTILS_UTILS_H_
|
||||
#define WEBP_UTILS_UTILS_H_
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Memory allocation
|
||||
|
||||
// This is the maximum memory amount that libwebp will ever try to allocate.
|
||||
#define WEBP_MAX_ALLOCABLE_MEMORY (1ULL << 40)
|
||||
|
||||
// size-checking safe malloc/calloc: verify that the requested size is not too
|
||||
// large, or return NULL. You don't need to call these for constructs like
|
||||
// malloc(sizeof(foo)), but only if there's picture-dependent size involved
|
||||
// somewhere (like: malloc(num_pixels * sizeof(*something))). That's why this
|
||||
// safe malloc() borrows the signature from calloc(), pointing at the dangerous
|
||||
// underlying multiply involved.
|
||||
void* WebPSafeMalloc(uint64_t nmemb, size_t size);
|
||||
// Note that WebPSafeCalloc() expects the second argument type to be 'size_t'
|
||||
// in order to favor the "calloc(num_foo, sizeof(foo))" pattern.
|
||||
void* WebPSafeCalloc(uint64_t nmemb, size_t size);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* WEBP_UTILS_UTILS_H_ */
|
Loading…
Reference in New Issue