Recast: Update to upstream commit 57610fa (2019)
This commit is contained in:
parent
d29514acce
commit
6ba546f98b
4
thirdparty/README.md
vendored
4
thirdparty/README.md
vendored
@ -490,12 +490,12 @@ Files extracted from upstream source:
|
||||
## recastnavigation
|
||||
|
||||
- Upstream: https://github.com/recastnavigation/recastnavigation
|
||||
- Version: git (ef3ea40f, 2017)
|
||||
- Version: git (57610fa6ef31b39020231906f8c5d40eaa8294ae, 2019)
|
||||
- License: zlib
|
||||
|
||||
Files extracted from upstream source:
|
||||
|
||||
- `Recast/` folder
|
||||
- `Recast/` folder without `CMakeLists.txt`
|
||||
- License.txt
|
||||
|
||||
|
||||
|
@ -332,6 +332,8 @@ struct rcCompactSpan
|
||||
/// @ingroup recast
|
||||
struct rcCompactHeightfield
|
||||
{
|
||||
rcCompactHeightfield();
|
||||
~rcCompactHeightfield();
|
||||
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
|
||||
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
|
||||
int spanCount; ///< The number of spans in the heightfield.
|
||||
@ -376,6 +378,8 @@ struct rcHeightfieldLayer
|
||||
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
|
||||
struct rcHeightfieldLayerSet
|
||||
{
|
||||
rcHeightfieldLayerSet();
|
||||
~rcHeightfieldLayerSet();
|
||||
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
|
||||
int nlayers; ///< The number of layers in the set.
|
||||
};
|
||||
@ -395,6 +399,8 @@ struct rcContour
|
||||
/// @ingroup recast
|
||||
struct rcContourSet
|
||||
{
|
||||
rcContourSet();
|
||||
~rcContourSet();
|
||||
rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
|
||||
int nconts; ///< The number of contours in the set.
|
||||
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
|
||||
@ -411,6 +417,8 @@ struct rcContourSet
|
||||
/// @ingroup recast
|
||||
struct rcPolyMesh
|
||||
{
|
||||
rcPolyMesh();
|
||||
~rcPolyMesh();
|
||||
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
|
||||
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
|
||||
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
|
||||
|
@ -20,6 +20,9 @@
|
||||
#define RECASTALLOC_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <RecastAssert.h>
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
@ -58,64 +61,257 @@ void* rcAlloc(size_t size, rcAllocHint hint);
|
||||
/// @see rcAlloc
|
||||
void rcFree(void* ptr);
|
||||
|
||||
/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use).
|
||||
/// rcNewTag is a dummy type used to differentiate our operator from the STL one, in case users import both Recast
|
||||
/// and STL.
|
||||
struct rcNewTag {};
|
||||
inline void* operator new(size_t, const rcNewTag&, void* p) { return p; }
|
||||
inline void operator delete(void*, const rcNewTag&, void*) {}
|
||||
|
||||
/// A simple dynamic array of integers.
|
||||
/// Signed to avoid warnnings when comparing to int loop indexes, and common error with comparing to zero.
|
||||
/// MSVC2010 has a bug where ssize_t is unsigned (!!!).
|
||||
typedef intptr_t rcSizeType;
|
||||
#define RC_SIZE_MAX INTPTR_MAX
|
||||
|
||||
/// Macros to hint to the compiler about the likeliest branch. Please add a benchmark that demonstrates a performance
|
||||
/// improvement before introducing use cases.
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
#define rcLikely(x) __builtin_expect((x), true)
|
||||
#define rcUnlikely(x) __builtin_expect((x), false)
|
||||
#else
|
||||
#define rcLikely(x) (x)
|
||||
#define rcUnlikely(x) (x)
|
||||
#endif
|
||||
|
||||
/// Variable-sized storage type. Mimics the interface of std::vector<T> with some notable differences:
|
||||
/// * Uses rcAlloc()/rcFree() to handle storage.
|
||||
/// * No support for a custom allocator.
|
||||
/// * Uses signed size instead of size_t to avoid warnings in for loops: "for (int i = 0; i < foo.size(); i++)"
|
||||
/// * Omits methods of limited utility: insert/erase, (bad performance), at (we don't use exceptions), operator=.
|
||||
/// * assign() and the pre-sizing constructor follow C++11 semantics -- they don't construct a temporary if no value is provided.
|
||||
/// * push_back() and resize() support adding values from the current vector. Range-based constructors and assign(begin, end) do not.
|
||||
/// * No specialization for bool.
|
||||
template <typename T, rcAllocHint H>
|
||||
class rcVectorBase {
|
||||
rcSizeType m_size;
|
||||
rcSizeType m_cap;
|
||||
T* m_data;
|
||||
// Constructs a T at the give address with either the copy constructor or the default.
|
||||
static void construct(T* p, const T& v) { ::new(rcNewTag(), (void*)p) T(v); }
|
||||
static void construct(T* p) { ::new(rcNewTag(), (void*)p) T; }
|
||||
static void construct_range(T* begin, T* end);
|
||||
static void construct_range(T* begin, T* end, const T& value);
|
||||
static void copy_range(T* dst, const T* begin, const T* end);
|
||||
void destroy_range(rcSizeType begin, rcSizeType end);
|
||||
// Creates an array of the given size, copies all of this vector's data into it, and returns it.
|
||||
T* allocate_and_copy(rcSizeType size);
|
||||
void resize_impl(rcSizeType size, const T* value);
|
||||
public:
|
||||
typedef rcSizeType size_type;
|
||||
typedef T value_type;
|
||||
|
||||
rcVectorBase() : m_size(0), m_cap(0), m_data(0) {};
|
||||
rcVectorBase(const rcVectorBase<T, H>& other) : m_size(0), m_cap(0), m_data(0) { assign(other.begin(), other.end()); }
|
||||
explicit rcVectorBase(rcSizeType count) : m_size(0), m_cap(0), m_data(0) { resize(count); }
|
||||
rcVectorBase(rcSizeType count, const T& value) : m_size(0), m_cap(0), m_data(0) { resize(count, value); }
|
||||
rcVectorBase(const T* begin, const T* end) : m_size(0), m_cap(0), m_data(0) { assign(begin, end); }
|
||||
~rcVectorBase() { destroy_range(0, m_size); rcFree(m_data); }
|
||||
|
||||
// Unlike in std::vector, we return a bool to indicate whether the alloc was successful.
|
||||
bool reserve(rcSizeType size);
|
||||
|
||||
void assign(rcSizeType count, const T& value) { clear(); resize(count, value); }
|
||||
void assign(const T* begin, const T* end);
|
||||
|
||||
void resize(rcSizeType size) { resize_impl(size, NULL); }
|
||||
void resize(rcSizeType size, const T& value) { resize_impl(size, &value); }
|
||||
// Not implemented as resize(0) because resize requires T to be default-constructible.
|
||||
void clear() { destroy_range(0, m_size); m_size = 0; }
|
||||
|
||||
void push_back(const T& value);
|
||||
void pop_back() { rcAssert(m_size > 0); back().~T(); m_size--; }
|
||||
|
||||
rcSizeType size() const { return m_size; }
|
||||
rcSizeType capacity() const { return m_cap; }
|
||||
bool empty() const { return size() == 0; }
|
||||
|
||||
const T& operator[](rcSizeType i) const { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
|
||||
T& operator[](rcSizeType i) { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
|
||||
|
||||
const T& front() const { rcAssert(m_size); return m_data[0]; }
|
||||
T& front() { rcAssert(m_size); return m_data[0]; }
|
||||
const T& back() const { rcAssert(m_size); return m_data[m_size - 1]; };
|
||||
T& back() { rcAssert(m_size); return m_data[m_size - 1]; };
|
||||
const T* data() const { return m_data; }
|
||||
T* data() { return m_data; }
|
||||
|
||||
T* begin() { return m_data; }
|
||||
T* end() { return m_data + m_size; }
|
||||
const T* begin() const { return m_data; }
|
||||
const T* end() const { return m_data + m_size; }
|
||||
|
||||
void swap(rcVectorBase<T, H>& other);
|
||||
|
||||
// Explicitly deleted.
|
||||
rcVectorBase& operator=(const rcVectorBase<T, H>& other);
|
||||
};
|
||||
|
||||
template<typename T, rcAllocHint H>
|
||||
bool rcVectorBase<T, H>::reserve(rcSizeType count) {
|
||||
if (count <= m_cap) {
|
||||
return true;
|
||||
}
|
||||
T* new_data = allocate_and_copy(count);
|
||||
if (!new_data) {
|
||||
return false;
|
||||
}
|
||||
destroy_range(0, m_size);
|
||||
rcFree(m_data);
|
||||
m_data = new_data;
|
||||
m_cap = count;
|
||||
return true;
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
T* rcVectorBase<T, H>::allocate_and_copy(rcSizeType size) {
|
||||
rcAssert(RC_SIZE_MAX / static_cast<rcSizeType>(sizeof(T)) >= size);
|
||||
T* new_data = static_cast<T*>(rcAlloc(sizeof(T) * size, H));
|
||||
if (new_data) {
|
||||
copy_range(new_data, m_data, m_data + m_size);
|
||||
}
|
||||
return new_data;
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::assign(const T* begin, const T* end) {
|
||||
clear();
|
||||
reserve(end - begin);
|
||||
m_size = end - begin;
|
||||
copy_range(m_data, begin, end);
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::push_back(const T& value) {
|
||||
// rcLikely increases performance by ~50% on BM_rcVector_PushPreallocated,
|
||||
// and by ~2-5% on BM_rcVector_Push.
|
||||
if (rcLikely(m_size < m_cap)) {
|
||||
construct(m_data + m_size++, value);
|
||||
return;
|
||||
}
|
||||
|
||||
rcAssert(RC_SIZE_MAX / 2 >= m_size);
|
||||
rcSizeType new_cap = m_size ? 2*m_size : 1;
|
||||
T* data = allocate_and_copy(new_cap);
|
||||
// construct between allocate and destroy+free in case value is
|
||||
// in this vector.
|
||||
construct(data + m_size, value);
|
||||
destroy_range(0, m_size);
|
||||
m_size++;
|
||||
m_cap = new_cap;
|
||||
rcFree(m_data);
|
||||
m_data = data;
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::resize_impl(rcSizeType size, const T* value) {
|
||||
if (size < m_size) {
|
||||
destroy_range(size, m_size);
|
||||
m_size = size;
|
||||
} else if (size > m_size) {
|
||||
T* new_data = allocate_and_copy(size);
|
||||
// We defer deconstructing/freeing old data until after constructing
|
||||
// new elements in case "value" is there.
|
||||
if (value) {
|
||||
construct_range(new_data + m_size, new_data + size, *value);
|
||||
} else {
|
||||
construct_range(new_data + m_size, new_data + size);
|
||||
}
|
||||
destroy_range(0, m_size);
|
||||
rcFree(m_data);
|
||||
m_data = new_data;
|
||||
m_cap = size;
|
||||
m_size = size;
|
||||
}
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::swap(rcVectorBase<T, H>& other) {
|
||||
// TODO: Reorganize headers so we can use rcSwap here.
|
||||
rcSizeType tmp_cap = other.m_cap;
|
||||
rcSizeType tmp_size = other.m_size;
|
||||
T* tmp_data = other.m_data;
|
||||
|
||||
other.m_cap = m_cap;
|
||||
other.m_size = m_size;
|
||||
other.m_data = m_data;
|
||||
|
||||
m_cap = tmp_cap;
|
||||
m_size = tmp_size;
|
||||
m_data = tmp_data;
|
||||
}
|
||||
// static
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::construct_range(T* begin, T* end) {
|
||||
for (T* p = begin; p < end; p++) {
|
||||
construct(p);
|
||||
}
|
||||
}
|
||||
// static
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::construct_range(T* begin, T* end, const T& value) {
|
||||
for (T* p = begin; p < end; p++) {
|
||||
construct(p, value);
|
||||
}
|
||||
}
|
||||
// static
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::copy_range(T* dst, const T* begin, const T* end) {
|
||||
for (rcSizeType i = 0 ; i < end - begin; i++) {
|
||||
construct(dst + i, begin[i]);
|
||||
}
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::destroy_range(rcSizeType begin, rcSizeType end) {
|
||||
for (rcSizeType i = begin; i < end; i++) {
|
||||
m_data[i].~T();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class rcTempVector : public rcVectorBase<T, RC_ALLOC_TEMP> {
|
||||
typedef rcVectorBase<T, RC_ALLOC_TEMP> Base;
|
||||
public:
|
||||
rcTempVector() : Base() {}
|
||||
explicit rcTempVector(rcSizeType size) : Base(size) {}
|
||||
rcTempVector(rcSizeType size, const T& value) : Base(size, value) {}
|
||||
rcTempVector(const rcTempVector<T>& other) : Base(other) {}
|
||||
rcTempVector(const T* begin, const T* end) : Base(begin, end) {}
|
||||
};
|
||||
template <typename T>
|
||||
class rcPermVector : public rcVectorBase<T, RC_ALLOC_PERM> {
|
||||
typedef rcVectorBase<T, RC_ALLOC_PERM> Base;
|
||||
public:
|
||||
rcPermVector() : Base() {}
|
||||
explicit rcPermVector(rcSizeType size) : Base(size) {}
|
||||
rcPermVector(rcSizeType size, const T& value) : Base(size, value) {}
|
||||
rcPermVector(const rcPermVector<T>& other) : Base(other) {}
|
||||
rcPermVector(const T* begin, const T* end) : Base(begin, end) {}
|
||||
};
|
||||
|
||||
|
||||
/// Legacy class. Prefer rcVector<int>.
|
||||
class rcIntArray
|
||||
{
|
||||
int* m_data;
|
||||
int m_size, m_cap;
|
||||
|
||||
void doResize(int n);
|
||||
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
rcIntArray(const rcIntArray&);
|
||||
rcIntArray& operator=(const rcIntArray&);
|
||||
|
||||
rcTempVector<int> m_impl;
|
||||
public:
|
||||
/// Constructs an instance with an initial array size of zero.
|
||||
rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
|
||||
|
||||
/// Constructs an instance initialized to the specified size.
|
||||
/// @param[in] n The initial size of the integer array.
|
||||
rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
|
||||
~rcIntArray() { rcFree(m_data); }
|
||||
|
||||
/// Specifies the new size of the integer array.
|
||||
/// @param[in] n The new size of the integer array.
|
||||
void resize(int n)
|
||||
{
|
||||
if (n > m_cap)
|
||||
doResize(n);
|
||||
|
||||
m_size = n;
|
||||
}
|
||||
|
||||
/// Push the specified integer onto the end of the array and increases the size by one.
|
||||
/// @param[in] item The new value.
|
||||
void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
|
||||
|
||||
/// Returns the value at the end of the array and reduces the size by one.
|
||||
/// @return The value at the end of the array.
|
||||
rcIntArray() {}
|
||||
rcIntArray(int n) : m_impl(n, 0) {}
|
||||
void push(int item) { m_impl.push_back(item); }
|
||||
void resize(int size) { m_impl.resize(size); }
|
||||
int pop()
|
||||
{
|
||||
if (m_size > 0)
|
||||
m_size--;
|
||||
|
||||
return m_data[m_size];
|
||||
int v = m_impl.back();
|
||||
m_impl.pop_back();
|
||||
return v;
|
||||
}
|
||||
|
||||
/// The value at the specified array index.
|
||||
/// @warning Does not provide overflow protection.
|
||||
/// @param[in] i The index of the value.
|
||||
const int& operator[](int i) const { return m_data[i]; }
|
||||
|
||||
/// The value at the specified array index.
|
||||
/// @warning Does not provide overflow protection.
|
||||
/// @param[in] i The index of the value.
|
||||
int& operator[](int i) { return m_data[i]; }
|
||||
|
||||
/// The current size of the integer array.
|
||||
int size() const { return m_size; }
|
||||
int size() const { return static_cast<int>(m_impl.size()); }
|
||||
int& operator[](int index) { return m_impl[index]; }
|
||||
int operator[](int index) const { return m_impl[index]; }
|
||||
};
|
||||
|
||||
/// A simple helper class used to delete an array when it goes out of scope.
|
||||
|
169
thirdparty/recastnavigation/Recast/Source/Recast.cpp
vendored
169
thirdparty/recastnavigation/Recast/Source/Recast.cpp
vendored
@ -23,11 +23,34 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
#include <new>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
namespace
|
||||
{
|
||||
/// Allocates and constructs an object of the given type, returning a pointer.
|
||||
/// TODO: Support constructor args.
|
||||
/// @param[in] hint Hint to the allocator.
|
||||
template <typename T>
|
||||
T* rcNew(rcAllocHint hint) {
|
||||
T* ptr = (T*)rcAlloc(sizeof(T), hint);
|
||||
::new(rcNewTag(), (void*)ptr) T();
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/// Destroys and frees an object allocated with rcNew.
|
||||
/// @param[in] ptr The object pointer to delete.
|
||||
template <typename T>
|
||||
void rcDelete(T* ptr) {
|
||||
if (ptr) {
|
||||
ptr->~T();
|
||||
rcFree((void*)ptr);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
|
||||
float rcSqrt(float x)
|
||||
{
|
||||
return sqrtf(x);
|
||||
@ -73,9 +96,8 @@ void rcContext::log(const rcLogCategory category, const char* format, ...)
|
||||
|
||||
rcHeightfield* rcAllocHeightfield()
|
||||
{
|
||||
return new (rcAlloc(sizeof(rcHeightfield), RC_ALLOC_PERM)) rcHeightfield;
|
||||
return rcNew<rcHeightfield>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
rcHeightfield::rcHeightfield()
|
||||
: width()
|
||||
, height()
|
||||
@ -104,84 +126,133 @@ rcHeightfield::~rcHeightfield()
|
||||
|
||||
void rcFreeHeightField(rcHeightfield* hf)
|
||||
{
|
||||
if (!hf) return;
|
||||
hf->~rcHeightfield();
|
||||
rcFree(hf);
|
||||
rcDelete(hf);
|
||||
}
|
||||
|
||||
rcCompactHeightfield* rcAllocCompactHeightfield()
|
||||
{
|
||||
rcCompactHeightfield* chf = (rcCompactHeightfield*)rcAlloc(sizeof(rcCompactHeightfield), RC_ALLOC_PERM);
|
||||
memset(chf, 0, sizeof(rcCompactHeightfield));
|
||||
return chf;
|
||||
return rcNew<rcCompactHeightfield>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
|
||||
{
|
||||
if (!chf) return;
|
||||
rcFree(chf->cells);
|
||||
rcFree(chf->spans);
|
||||
rcFree(chf->dist);
|
||||
rcFree(chf->areas);
|
||||
rcFree(chf);
|
||||
rcDelete(chf);
|
||||
}
|
||||
|
||||
rcCompactHeightfield::rcCompactHeightfield()
|
||||
: width(),
|
||||
height(),
|
||||
spanCount(),
|
||||
walkableHeight(),
|
||||
walkableClimb(),
|
||||
borderSize(),
|
||||
maxDistance(),
|
||||
maxRegions(),
|
||||
bmin(),
|
||||
bmax(),
|
||||
cs(),
|
||||
ch(),
|
||||
cells(),
|
||||
spans(),
|
||||
dist(),
|
||||
areas()
|
||||
{
|
||||
}
|
||||
rcCompactHeightfield::~rcCompactHeightfield()
|
||||
{
|
||||
rcFree(cells);
|
||||
rcFree(spans);
|
||||
rcFree(dist);
|
||||
rcFree(areas);
|
||||
}
|
||||
|
||||
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
|
||||
{
|
||||
rcHeightfieldLayerSet* lset = (rcHeightfieldLayerSet*)rcAlloc(sizeof(rcHeightfieldLayerSet), RC_ALLOC_PERM);
|
||||
memset(lset, 0, sizeof(rcHeightfieldLayerSet));
|
||||
return lset;
|
||||
return rcNew<rcHeightfieldLayerSet>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
|
||||
{
|
||||
if (!lset) return;
|
||||
for (int i = 0; i < lset->nlayers; ++i)
|
||||
rcDelete(lset);
|
||||
}
|
||||
|
||||
rcHeightfieldLayerSet::rcHeightfieldLayerSet()
|
||||
: layers(), nlayers() {}
|
||||
rcHeightfieldLayerSet::~rcHeightfieldLayerSet()
|
||||
{
|
||||
for (int i = 0; i < nlayers; ++i)
|
||||
{
|
||||
rcFree(lset->layers[i].heights);
|
||||
rcFree(lset->layers[i].areas);
|
||||
rcFree(lset->layers[i].cons);
|
||||
rcFree(layers[i].heights);
|
||||
rcFree(layers[i].areas);
|
||||
rcFree(layers[i].cons);
|
||||
}
|
||||
rcFree(lset->layers);
|
||||
rcFree(lset);
|
||||
rcFree(layers);
|
||||
}
|
||||
|
||||
|
||||
rcContourSet* rcAllocContourSet()
|
||||
{
|
||||
rcContourSet* cset = (rcContourSet*)rcAlloc(sizeof(rcContourSet), RC_ALLOC_PERM);
|
||||
memset(cset, 0, sizeof(rcContourSet));
|
||||
return cset;
|
||||
return rcNew<rcContourSet>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreeContourSet(rcContourSet* cset)
|
||||
{
|
||||
if (!cset) return;
|
||||
for (int i = 0; i < cset->nconts; ++i)
|
||||
{
|
||||
rcFree(cset->conts[i].verts);
|
||||
rcFree(cset->conts[i].rverts);
|
||||
}
|
||||
rcFree(cset->conts);
|
||||
rcFree(cset);
|
||||
rcDelete(cset);
|
||||
}
|
||||
|
||||
rcContourSet::rcContourSet()
|
||||
: conts(),
|
||||
nconts(),
|
||||
bmin(),
|
||||
bmax(),
|
||||
cs(),
|
||||
ch(),
|
||||
width(),
|
||||
height(),
|
||||
borderSize(),
|
||||
maxError() {}
|
||||
rcContourSet::~rcContourSet()
|
||||
{
|
||||
for (int i = 0; i < nconts; ++i)
|
||||
{
|
||||
rcFree(conts[i].verts);
|
||||
rcFree(conts[i].rverts);
|
||||
}
|
||||
rcFree(conts);
|
||||
}
|
||||
|
||||
|
||||
rcPolyMesh* rcAllocPolyMesh()
|
||||
{
|
||||
rcPolyMesh* pmesh = (rcPolyMesh*)rcAlloc(sizeof(rcPolyMesh), RC_ALLOC_PERM);
|
||||
memset(pmesh, 0, sizeof(rcPolyMesh));
|
||||
return pmesh;
|
||||
return rcNew<rcPolyMesh>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreePolyMesh(rcPolyMesh* pmesh)
|
||||
{
|
||||
if (!pmesh) return;
|
||||
rcFree(pmesh->verts);
|
||||
rcFree(pmesh->polys);
|
||||
rcFree(pmesh->regs);
|
||||
rcFree(pmesh->flags);
|
||||
rcFree(pmesh->areas);
|
||||
rcFree(pmesh);
|
||||
rcDelete(pmesh);
|
||||
}
|
||||
|
||||
rcPolyMesh::rcPolyMesh()
|
||||
: verts(),
|
||||
polys(),
|
||||
regs(),
|
||||
flags(),
|
||||
areas(),
|
||||
nverts(),
|
||||
npolys(),
|
||||
maxpolys(),
|
||||
nvp(),
|
||||
bmin(),
|
||||
bmax(),
|
||||
cs(),
|
||||
ch(),
|
||||
borderSize(),
|
||||
maxEdgeError() {}
|
||||
|
||||
rcPolyMesh::~rcPolyMesh()
|
||||
{
|
||||
rcFree(verts);
|
||||
rcFree(polys);
|
||||
rcFree(regs);
|
||||
rcFree(flags);
|
||||
rcFree(areas);
|
||||
}
|
||||
|
||||
rcPolyMeshDetail* rcAllocPolyMeshDetail()
|
||||
|
@ -58,29 +58,3 @@ void rcFree(void* ptr)
|
||||
if (ptr)
|
||||
sRecastFreeFunc(ptr);
|
||||
}
|
||||
|
||||
/// @class rcIntArray
|
||||
///
|
||||
/// While it is possible to pre-allocate a specific array size during
|
||||
/// construction or by using the #resize method, certain methods will
|
||||
/// automatically resize the array as needed.
|
||||
///
|
||||
/// @warning The array memory is not initialized to zero when the size is
|
||||
/// manually set during construction or when using #resize.
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Using this method ensures the array is at least large enough to hold
|
||||
/// the specified number of elements. This can improve performance by
|
||||
/// avoiding auto-resizing during use.
|
||||
void rcIntArray::doResize(int n)
|
||||
{
|
||||
if (!m_cap) m_cap = n;
|
||||
while (m_cap < n) m_cap *= 2;
|
||||
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
|
||||
rcAssert(newData);
|
||||
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
|
||||
rcFree(m_data);
|
||||
m_data = newData;
|
||||
}
|
||||
|
||||
|
@ -1009,7 +1009,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
if (cset.nconts > 0)
|
||||
{
|
||||
// Calculate winding of all polygons.
|
||||
rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
|
||||
rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP));
|
||||
if (!winding)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
|
||||
|
@ -557,15 +557,16 @@ static float polyMinExtent(const float* verts, const int nverts)
|
||||
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
|
||||
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
|
||||
|
||||
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
|
||||
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
|
||||
{
|
||||
int start = 0, left = 1, right = nhull-1;
|
||||
|
||||
// Start from an ear with shortest perimeter.
|
||||
// This tends to favor well formed triangles as starting point.
|
||||
float dmin = 0;
|
||||
float dmin = FLT_MAX;
|
||||
for (int i = 0; i < nhull; i++)
|
||||
{
|
||||
if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
|
||||
int pi = prev(i, nhull);
|
||||
int ni = next(i, nhull);
|
||||
const float* pv = &verts[hull[pi]*3];
|
||||
@ -770,7 +771,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
|
||||
if (minExtent < sampleDist*2)
|
||||
{
|
||||
triangulateHull(nverts, verts, nhull, hull, tris);
|
||||
triangulateHull(nverts, verts, nhull, hull, nin, tris);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -778,7 +779,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
// We're using the triangulateHull instead of delaunayHull as it tends to
|
||||
// create a bit better triangulation for long thin triangles when there
|
||||
// are no internal points.
|
||||
triangulateHull(nverts, verts, nhull, hull, tris);
|
||||
triangulateHull(nverts, verts, nhull, hull, nin, tris);
|
||||
|
||||
if (tris.size() == 0)
|
||||
{
|
||||
@ -1140,7 +1141,8 @@ static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
|
||||
static unsigned char getEdgeFlags(const float* va, const float* vb,
|
||||
const float* vpoly, const int npoly)
|
||||
{
|
||||
// Return true if edge (va,vb) is part of the polygon.
|
||||
// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
|
||||
// Figure out if edge (va,vb) is part of the polygon boundary.
|
||||
static const float thrSqr = rcSqr(0.001f);
|
||||
for (int i = 0, j = npoly-1; i < npoly; j=i++)
|
||||
{
|
||||
|
@ -25,8 +25,17 @@
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
#include <new>
|
||||
|
||||
namespace
|
||||
{
|
||||
struct LevelStackEntry
|
||||
{
|
||||
LevelStackEntry(int x_, int y_, int index_) : x(x_), y(y_), index(index_) {}
|
||||
int x;
|
||||
int y;
|
||||
int index;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist)
|
||||
{
|
||||
@ -245,17 +254,15 @@ static bool floodRegion(int x, int y, int i,
|
||||
unsigned short level, unsigned short r,
|
||||
rcCompactHeightfield& chf,
|
||||
unsigned short* srcReg, unsigned short* srcDist,
|
||||
rcIntArray& stack)
|
||||
rcTempVector<LevelStackEntry>& stack)
|
||||
{
|
||||
const int w = chf.width;
|
||||
|
||||
const unsigned char area = chf.areas[i];
|
||||
|
||||
// Flood fill mark region.
|
||||
stack.resize(0);
|
||||
stack.push((int)x);
|
||||
stack.push((int)y);
|
||||
stack.push((int)i);
|
||||
stack.clear();
|
||||
stack.push_back(LevelStackEntry(x, y, i));
|
||||
srcReg[i] = r;
|
||||
srcDist[i] = 0;
|
||||
|
||||
@ -264,9 +271,11 @@ static bool floodRegion(int x, int y, int i,
|
||||
|
||||
while (stack.size() > 0)
|
||||
{
|
||||
int ci = stack.pop();
|
||||
int cy = stack.pop();
|
||||
int cx = stack.pop();
|
||||
LevelStackEntry& back = stack.back();
|
||||
int cx = back.x;
|
||||
int cy = back.y;
|
||||
int ci = back.index;
|
||||
stack.pop_back();
|
||||
|
||||
const rcCompactSpan& cs = chf.spans[ci];
|
||||
|
||||
@ -332,9 +341,7 @@ static bool floodRegion(int x, int y, int i,
|
||||
{
|
||||
srcReg[ai] = r;
|
||||
srcDist[ai] = 0;
|
||||
stack.push(ax);
|
||||
stack.push(ay);
|
||||
stack.push(ai);
|
||||
stack.push_back(LevelStackEntry(ax, ay, ai));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -343,12 +350,20 @@ static bool floodRegion(int x, int y, int i,
|
||||
return count > 0;
|
||||
}
|
||||
|
||||
static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
rcCompactHeightfield& chf,
|
||||
unsigned short* srcReg, unsigned short* srcDist,
|
||||
unsigned short* dstReg, unsigned short* dstDist,
|
||||
rcIntArray& stack,
|
||||
bool fillStack)
|
||||
// Struct to keep track of entries in the region table that have been changed.
|
||||
struct DirtyEntry
|
||||
{
|
||||
DirtyEntry(int index_, unsigned short region_, unsigned short distance2_)
|
||||
: index(index_), region(region_), distance2(distance2_) {}
|
||||
int index;
|
||||
unsigned short region;
|
||||
unsigned short distance2;
|
||||
};
|
||||
static void expandRegions(int maxIter, unsigned short level,
|
||||
rcCompactHeightfield& chf,
|
||||
unsigned short* srcReg, unsigned short* srcDist,
|
||||
rcTempVector<LevelStackEntry>& stack,
|
||||
bool fillStack)
|
||||
{
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
@ -356,7 +371,7 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
if (fillStack)
|
||||
{
|
||||
// Find cells revealed by the raised level.
|
||||
stack.resize(0);
|
||||
stack.clear();
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
@ -366,9 +381,7 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
{
|
||||
if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA)
|
||||
{
|
||||
stack.push(x);
|
||||
stack.push(y);
|
||||
stack.push(i);
|
||||
stack.push_back(LevelStackEntry(x, y, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -377,27 +390,26 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
else // use cells in the input stack
|
||||
{
|
||||
// mark all cells which already have a region
|
||||
for (int j=0; j<stack.size(); j+=3)
|
||||
for (int j=0; j<stack.size(); j++)
|
||||
{
|
||||
int i = stack[j+2];
|
||||
int i = stack[j].index;
|
||||
if (srcReg[i] != 0)
|
||||
stack[j+2] = -1;
|
||||
stack[j].index = -1;
|
||||
}
|
||||
}
|
||||
|
||||
rcTempVector<DirtyEntry> dirtyEntries;
|
||||
int iter = 0;
|
||||
while (stack.size() > 0)
|
||||
{
|
||||
int failed = 0;
|
||||
dirtyEntries.clear();
|
||||
|
||||
memcpy(dstReg, srcReg, sizeof(unsigned short)*chf.spanCount);
|
||||
memcpy(dstDist, srcDist, sizeof(unsigned short)*chf.spanCount);
|
||||
|
||||
for (int j = 0; j < stack.size(); j += 3)
|
||||
for (int j = 0; j < stack.size(); j++)
|
||||
{
|
||||
int x = stack[j+0];
|
||||
int y = stack[j+1];
|
||||
int i = stack[j+2];
|
||||
int x = stack[j].x;
|
||||
int y = stack[j].y;
|
||||
int i = stack[j].index;
|
||||
if (i < 0)
|
||||
{
|
||||
failed++;
|
||||
@ -426,9 +438,8 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
}
|
||||
if (r)
|
||||
{
|
||||
stack[j+2] = -1; // mark as used
|
||||
dstReg[i] = r;
|
||||
dstDist[i] = d2;
|
||||
stack[j].index = -1; // mark as used
|
||||
dirtyEntries.push_back(DirtyEntry(i, r, d2));
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -436,11 +447,14 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
}
|
||||
}
|
||||
|
||||
// rcSwap source and dest.
|
||||
rcSwap(srcReg, dstReg);
|
||||
rcSwap(srcDist, dstDist);
|
||||
// Copy entries that differ between src and dst to keep them in sync.
|
||||
for (int i = 0; i < dirtyEntries.size(); i++) {
|
||||
int idx = dirtyEntries[i].index;
|
||||
srcReg[idx] = dirtyEntries[i].region;
|
||||
srcDist[idx] = dirtyEntries[i].distance2;
|
||||
}
|
||||
|
||||
if (failed*3 == stack.size())
|
||||
if (failed == stack.size())
|
||||
break;
|
||||
|
||||
if (level > 0)
|
||||
@ -450,16 +464,14 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return srcReg;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void sortCellsByLevel(unsigned short startLevel,
|
||||
rcCompactHeightfield& chf,
|
||||
unsigned short* srcReg,
|
||||
unsigned int nbStacks, rcIntArray* stacks,
|
||||
const unsigned short* srcReg,
|
||||
unsigned int nbStacks, rcTempVector<LevelStackEntry>* stacks,
|
||||
unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift
|
||||
{
|
||||
const int w = chf.width;
|
||||
@ -467,7 +479,7 @@ static void sortCellsByLevel(unsigned short startLevel,
|
||||
startLevel = startLevel >> loglevelsPerStack;
|
||||
|
||||
for (unsigned int j=0; j<nbStacks; ++j)
|
||||
stacks[j].resize(0);
|
||||
stacks[j].clear();
|
||||
|
||||
// put all cells in the level range into the appropriate stacks
|
||||
for (int y = 0; y < h; ++y)
|
||||
@ -487,26 +499,23 @@ static void sortCellsByLevel(unsigned short startLevel,
|
||||
if (sId < 0)
|
||||
sId = 0;
|
||||
|
||||
stacks[sId].push(x);
|
||||
stacks[sId].push(y);
|
||||
stacks[sId].push(i);
|
||||
stacks[sId].push_back(LevelStackEntry(x, y, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void appendStacks(rcIntArray& srcStack, rcIntArray& dstStack,
|
||||
unsigned short* srcReg)
|
||||
static void appendStacks(const rcTempVector<LevelStackEntry>& srcStack,
|
||||
rcTempVector<LevelStackEntry>& dstStack,
|
||||
const unsigned short* srcReg)
|
||||
{
|
||||
for (int j=0; j<srcStack.size(); j+=3)
|
||||
for (int j=0; j<srcStack.size(); j++)
|
||||
{
|
||||
int i = srcStack[j+2];
|
||||
int i = srcStack[j].index;
|
||||
if ((i < 0) || (srcReg[i] != 0))
|
||||
continue;
|
||||
dstStack.push(srcStack[j]);
|
||||
dstStack.push(srcStack[j+1]);
|
||||
dstStack.push(srcStack[j+2]);
|
||||
dstStack.push_back(srcStack[j]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -671,7 +680,7 @@ static bool isRegionConnectedToBorder(const rcRegion& reg)
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg,
|
||||
static bool isSolidEdge(rcCompactHeightfield& chf, const unsigned short* srcReg,
|
||||
int x, int y, int i, int dir)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
@ -690,7 +699,7 @@ static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg,
|
||||
|
||||
static void walkContour(int x, int y, int i, int dir,
|
||||
rcCompactHeightfield& chf,
|
||||
unsigned short* srcReg,
|
||||
const unsigned short* srcReg,
|
||||
rcIntArray& cont)
|
||||
{
|
||||
int startDir = dir;
|
||||
@ -786,16 +795,15 @@ static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRe
|
||||
const int h = chf.height;
|
||||
|
||||
const int nreg = maxRegionId+1;
|
||||
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
|
||||
if (!regions)
|
||||
{
|
||||
rcTempVector<rcRegion> regions;
|
||||
if (!regions.reserve(nreg)) {
|
||||
ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Construct regions
|
||||
for (int i = 0; i < nreg; ++i)
|
||||
new(®ions[i]) rcRegion((unsigned short)i);
|
||||
regions.push_back(rcRegion((unsigned short) i));
|
||||
|
||||
// Find edge of a region and find connections around the contour.
|
||||
for (int y = 0; y < h; ++y)
|
||||
@ -1021,11 +1029,6 @@ static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRe
|
||||
if (regions[i].overlap)
|
||||
overlaps.push(regions[i].id);
|
||||
|
||||
for (int i = 0; i < nreg; ++i)
|
||||
regions[i].~rcRegion();
|
||||
rcFree(regions);
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1041,22 +1044,21 @@ static void addUniqueConnection(rcRegion& reg, int n)
|
||||
static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
|
||||
unsigned short& maxRegionId,
|
||||
rcCompactHeightfield& chf,
|
||||
unsigned short* srcReg, rcIntArray& /*overlaps*/)
|
||||
unsigned short* srcReg)
|
||||
{
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
|
||||
const int nreg = maxRegionId+1;
|
||||
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
|
||||
if (!regions)
|
||||
{
|
||||
rcTempVector<rcRegion> regions;
|
||||
|
||||
// Construct regions
|
||||
if (!regions.reserve(nreg)) {
|
||||
ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Construct regions
|
||||
for (int i = 0; i < nreg; ++i)
|
||||
new(®ions[i]) rcRegion((unsigned short)i);
|
||||
regions.push_back(rcRegion((unsigned short) i));
|
||||
|
||||
// Find region neighbours and overlapping regions.
|
||||
rcIntArray lregs(32);
|
||||
@ -1234,10 +1236,6 @@ static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
|
||||
srcReg[i] = regions[srcReg[i]].id;
|
||||
}
|
||||
|
||||
for (int i = 0; i < nreg; ++i)
|
||||
regions[i].~rcRegion();
|
||||
rcFree(regions);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1391,9 +1389,9 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
}
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
|
||||
rcIntArray prev(256);
|
||||
|
||||
@ -1535,7 +1533,7 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
|
||||
rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP));
|
||||
rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*2, RC_ALLOC_TEMP));
|
||||
if (!buf)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4);
|
||||
@ -1546,17 +1544,15 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
|
||||
const int LOG_NB_STACKS = 3;
|
||||
const int NB_STACKS = 1 << LOG_NB_STACKS;
|
||||
rcIntArray lvlStacks[NB_STACKS];
|
||||
rcTempVector<LevelStackEntry> lvlStacks[NB_STACKS];
|
||||
for (int i=0; i<NB_STACKS; ++i)
|
||||
lvlStacks[i].resize(1024);
|
||||
lvlStacks[i].reserve(256);
|
||||
|
||||
rcIntArray stack(1024);
|
||||
rcIntArray visited(1024);
|
||||
rcTempVector<LevelStackEntry> stack;
|
||||
stack.reserve(256);
|
||||
|
||||
unsigned short* srcReg = buf;
|
||||
unsigned short* srcDist = buf+chf.spanCount;
|
||||
unsigned short* dstReg = buf+chf.spanCount*2;
|
||||
unsigned short* dstDist = buf+chf.spanCount*3;
|
||||
|
||||
memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount);
|
||||
memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount);
|
||||
@ -1581,9 +1577,9 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
}
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
|
||||
int sId = -1;
|
||||
while (level > 0)
|
||||
@ -1604,22 +1600,19 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND);
|
||||
|
||||
// Expand current regions until no empty connected cells found.
|
||||
if (expandRegions(expandIters, level, chf, srcReg, srcDist, dstReg, dstDist, lvlStacks[sId], false) != srcReg)
|
||||
{
|
||||
rcSwap(srcReg, dstReg);
|
||||
rcSwap(srcDist, dstDist);
|
||||
}
|
||||
expandRegions(expandIters, level, chf, srcReg, srcDist, lvlStacks[sId], false);
|
||||
}
|
||||
|
||||
{
|
||||
rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD);
|
||||
|
||||
// Mark new regions with IDs.
|
||||
for (int j = 0; j<lvlStacks[sId].size(); j += 3)
|
||||
for (int j = 0; j<lvlStacks[sId].size(); j++)
|
||||
{
|
||||
int x = lvlStacks[sId][j];
|
||||
int y = lvlStacks[sId][j+1];
|
||||
int i = lvlStacks[sId][j+2];
|
||||
LevelStackEntry current = lvlStacks[sId][j];
|
||||
int x = current.x;
|
||||
int y = current.y;
|
||||
int i = current.index;
|
||||
if (i >= 0 && srcReg[i] == 0)
|
||||
{
|
||||
if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
|
||||
@ -1638,11 +1631,7 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
}
|
||||
|
||||
// Expand current regions until no empty connected cells found.
|
||||
if (expandRegions(expandIters*8, 0, chf, srcReg, srcDist, dstReg, dstDist, stack, true) != srcReg)
|
||||
{
|
||||
rcSwap(srcReg, dstReg);
|
||||
rcSwap(srcDist, dstDist);
|
||||
}
|
||||
expandRegions(expandIters*8, 0, chf, srcReg, srcDist, stack, true);
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
|
||||
|
||||
@ -1709,9 +1698,9 @@ bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
}
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
|
||||
rcIntArray prev(256);
|
||||
|
||||
@ -1809,9 +1798,8 @@ bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
|
||||
|
||||
// Merge monotone regions to layers and remove small regions.
|
||||
rcIntArray overlaps;
|
||||
chf.maxRegions = id;
|
||||
if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps))
|
||||
if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg))
|
||||
return false;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user