Merge pull request #35816 from touilleMan/dictionary-operator==-true-comparison

Modify Array/Dictionary::operator== to do real key/value comparison
This commit is contained in:
Emmanuel Leblond 2021-11-02 00:00:38 +01:00 committed by GitHub
commit 795cd2eb38
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1031 additions and 101 deletions

View File

@ -207,8 +207,12 @@ public:
(*list_element)->get().second = p_value;
return Element(*list_element);
}
typename InternalList::Element *new_element = list.push_back(Pair<const K *, V>(nullptr, p_value));
// Incorrectly set the first value of the pair with a value that will
// be invalid as soon as we leave this function...
typename InternalList::Element *new_element = list.push_back(Pair<const K *, V>(&p_key, p_value));
// ...this is needed here in case the hashmap recursively reference itself...
typename InternalMap::Element *e = map.set(p_key, new_element);
// ...now we can set the right value !
new_element->get().first = &e->key();
return Element(new_element);

View File

@ -277,6 +277,9 @@ struct BuildIndexSequence : BuildIndexSequence<N - 1, N - 1, Is...> {};
template <size_t... Is>
struct BuildIndexSequence<0, Is...> : IndexSequence<Is...> {};
// Limit the depth of recursive algorithms when dealing with Array/Dictionary
#define MAX_RECURSION 100
#ifdef DEBUG_ENABLED
#define DEBUG_METHODS_ENABLED
#endif

View File

@ -97,11 +97,38 @@ void Array::clear() {
}
bool Array::operator==(const Array &p_array) const {
return _p == p_array._p;
return recursive_equal(p_array, 0);
}
bool Array::operator!=(const Array &p_array) const {
return !operator==(p_array);
return !recursive_equal(p_array, 0);
}
bool Array::recursive_equal(const Array &p_array, int recursion_count) const {
// Cheap checks
if (_p == p_array._p) {
return true;
}
const Vector<Variant> &a1 = _p->array;
const Vector<Variant> &a2 = p_array._p->array;
const int size = a1.size();
if (size != a2.size()) {
return false;
}
// Heavy O(n) check
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return true;
}
recursion_count++;
for (int i = 0; i < size; i++) {
if (!a1[i].hash_compare(a2[i], recursion_count)) {
return false;
}
}
return true;
}
bool Array::operator<(const Array &p_array) const {
@ -132,10 +159,20 @@ bool Array::operator>=(const Array &p_array) const {
}
uint32_t Array::hash() const {
uint32_t h = hash_djb2_one_32(0);
return recursive_hash(0);
}
uint32_t Array::recursive_hash(int recursion_count) const {
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return 0;
}
uint32_t h = hash_djb2_one_32(Variant::ARRAY);
recursion_count++;
for (int i = 0; i < _p->array.size(); i++) {
h = hash_djb2_one_32(_p->array[i].hash(), h);
h = hash_djb2_one_32(_p->array[i].recursive_hash(recursion_count), h);
}
return h;
}
@ -300,12 +337,29 @@ const Variant &Array::get(int p_idx) const {
}
Array Array::duplicate(bool p_deep) const {
return recursive_duplicate(p_deep, 0);
}
Array Array::recursive_duplicate(bool p_deep, int recursion_count) const {
Array new_arr;
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return new_arr;
}
int element_count = size();
new_arr.resize(element_count);
new_arr._p->typed = _p->typed;
for (int i = 0; i < element_count; i++) {
new_arr[i] = p_deep ? get(i).duplicate(p_deep) : get(i);
if (p_deep) {
recursion_count++;
for (int i = 0; i < element_count; i++) {
new_arr[i] = get(i).recursive_duplicate(true, recursion_count);
}
} else {
for (int i = 0; i < element_count; i++) {
new_arr[i] = get(i);
}
}
return new_arr;

View File

@ -63,8 +63,10 @@ public:
bool operator==(const Array &p_array) const;
bool operator!=(const Array &p_array) const;
bool recursive_equal(const Array &p_array, int recursion_count) const;
uint32_t hash() const;
uint32_t recursive_hash(int recursion_count) const;
void operator=(const Array &p_array);
void push_back(const Variant &p_value);
@ -100,6 +102,7 @@ public:
Variant pop_at(int p_pos);
Array duplicate(bool p_deep = false) const;
Array recursive_duplicate(bool p_deep, int recursion_count) const;
Array slice(int p_begin, int p_end, int p_step = 1, bool p_deep = false) const;
Array filter(const Callable &p_callable) const;

View File

@ -188,11 +188,35 @@ bool Dictionary::erase(const Variant &p_key) {
}
bool Dictionary::operator==(const Dictionary &p_dictionary) const {
return _p == p_dictionary._p;
return recursive_equal(p_dictionary, 0);
}
bool Dictionary::operator!=(const Dictionary &p_dictionary) const {
return _p != p_dictionary._p;
return !recursive_equal(p_dictionary, 0);
}
bool Dictionary::recursive_equal(const Dictionary &p_dictionary, int recursion_count) const {
// Cheap checks
if (_p == p_dictionary._p) {
return true;
}
if (_p->variant_map.size() != p_dictionary._p->variant_map.size()) {
return false;
}
// Heavy O(n) check
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return true;
}
recursion_count++;
for (OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator>::ConstElement this_E = ((const OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator> *)&_p->variant_map)->front(); this_E; this_E = this_E.next()) {
OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator>::ConstElement other_E = ((const OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator> *)&p_dictionary._p->variant_map)->find(this_E.key());
if (!other_E || !this_E.value().hash_compare(other_E.value(), recursion_count)) {
return false;
}
}
return true;
}
void Dictionary::_ref(const Dictionary &p_from) const {
@ -225,11 +249,21 @@ void Dictionary::_unref() const {
}
uint32_t Dictionary::hash() const {
return recursive_hash(0);
}
uint32_t Dictionary::recursive_hash(int recursion_count) const {
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return 0;
}
uint32_t h = hash_djb2_one_32(Variant::DICTIONARY);
recursion_count++;
for (OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator>::Element E = _p->variant_map.front(); E; E = E.next()) {
h = hash_djb2_one_32(E.key().hash(), h);
h = hash_djb2_one_32(E.value().hash(), h);
h = hash_djb2_one_32(E.key().recursive_hash(recursion_count), h);
h = hash_djb2_one_32(E.value().recursive_hash(recursion_count), h);
}
return h;
@ -286,10 +320,26 @@ const Variant *Dictionary::next(const Variant *p_key) const {
}
Dictionary Dictionary::duplicate(bool p_deep) const {
return recursive_duplicate(p_deep, 0);
}
Dictionary Dictionary::recursive_duplicate(bool p_deep, int recursion_count) const {
Dictionary n;
for (OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator>::Element E = _p->variant_map.front(); E; E = E.next()) {
n[E.key()] = p_deep ? E.value().duplicate(true) : E.value();
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return n;
}
if (p_deep) {
recursion_count++;
for (OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator>::Element E = _p->variant_map.front(); E; E = E.next()) {
n[E.key().recursive_duplicate(true, recursion_count)] = E.value().recursive_duplicate(true, recursion_count);
}
} else {
for (OrderedHashMap<Variant, Variant, VariantHasher, VariantComparator>::Element E = _p->variant_map.front(); E; E = E.next()) {
n[E.key()] = E.value();
}
}
return n;

View File

@ -70,8 +70,10 @@ public:
bool operator==(const Dictionary &p_dictionary) const;
bool operator!=(const Dictionary &p_dictionary) const;
bool recursive_equal(const Dictionary &p_dictionary, int recursion_count) const;
uint32_t hash() const;
uint32_t recursive_hash(int recursion_count) const;
void operator=(const Dictionary &p_dictionary);
const Variant *next(const Variant *p_key = nullptr) const;
@ -80,6 +82,7 @@ public:
Array values() const;
Dictionary duplicate(bool p_deep = false) const;
Dictionary recursive_duplicate(bool p_deep, int recursion_count) const;
const void *id() const;

View File

@ -784,16 +784,11 @@ bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type
}
bool Variant::operator==(const Variant &p_variant) const {
if (type != p_variant.type) { //evaluation of operator== needs to be more strict
return false;
}
bool v;
Variant r;
evaluate(OP_EQUAL, *this, p_variant, r, v);
return r;
return hash_compare(p_variant);
}
bool Variant::operator!=(const Variant &p_variant) const {
// Don't use `!hash_compare(p_variant)` given it makes use of OP_EQUAL
if (type != p_variant.type) { //evaluation of operator== needs to be more strict
return true;
}
@ -1617,25 +1612,23 @@ struct _VariantStrPair {
};
Variant::operator String() const {
List<const void *> stack;
return stringify(stack);
return stringify(0);
}
template <class T>
String stringify_vector(const T &vec, List<const void *> &stack) {
String stringify_vector(const T &vec, int recursion_count) {
String str("[");
for (int i = 0; i < vec.size(); i++) {
if (i > 0) {
str += ", ";
}
str = str + Variant(vec[i]).stringify(stack);
str = str + Variant(vec[i]).stringify(recursion_count);
}
str += "]";
return str;
}
String Variant::stringify(List<const void *> &stack) const {
String Variant::stringify(int recursion_count) const {
switch (type) {
case NIL:
return "null";
@ -1679,23 +1672,22 @@ String Variant::stringify(List<const void *> &stack) const {
return operator Color();
case DICTIONARY: {
const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem);
if (stack.find(d.id())) {
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return "{...}";
}
stack.push_back(d.id());
//const String *K=nullptr;
String str("{");
List<Variant> keys;
d.get_key_list(&keys);
Vector<_VariantStrPair> pairs;
for (const Variant &E : keys) {
recursion_count++;
for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
_VariantStrPair sp;
sp.key = E.stringify(stack);
sp.value = d[E].stringify(stack);
sp.key = E->get().stringify(recursion_count);
sp.value = d[E->get()].stringify(recursion_count);
pairs.push_back(sp);
}
@ -1710,46 +1702,43 @@ String Variant::stringify(List<const void *> &stack) const {
}
str += "}";
stack.erase(d.id());
return str;
} break;
case PACKED_VECTOR2_ARRAY: {
return stringify_vector(operator Vector<Vector2>(), stack);
return stringify_vector(operator Vector<Vector2>(), recursion_count);
} break;
case PACKED_VECTOR3_ARRAY: {
return stringify_vector(operator Vector<Vector3>(), stack);
return stringify_vector(operator Vector<Vector3>(), recursion_count);
} break;
case PACKED_COLOR_ARRAY: {
return stringify_vector(operator Vector<Color>(), stack);
return stringify_vector(operator Vector<Color>(), recursion_count);
} break;
case PACKED_STRING_ARRAY: {
return stringify_vector(operator Vector<String>(), stack);
return stringify_vector(operator Vector<String>(), recursion_count);
} break;
case PACKED_BYTE_ARRAY: {
return stringify_vector(operator Vector<uint8_t>(), stack);
return stringify_vector(operator Vector<uint8_t>(), recursion_count);
} break;
case PACKED_INT32_ARRAY: {
return stringify_vector(operator Vector<int32_t>(), stack);
return stringify_vector(operator Vector<int32_t>(), recursion_count);
} break;
case PACKED_INT64_ARRAY: {
return stringify_vector(operator Vector<int64_t>(), stack);
return stringify_vector(operator Vector<int64_t>(), recursion_count);
} break;
case PACKED_FLOAT32_ARRAY: {
return stringify_vector(operator Vector<float>(), stack);
return stringify_vector(operator Vector<float>(), recursion_count);
} break;
case PACKED_FLOAT64_ARRAY: {
return stringify_vector(operator Vector<double>(), stack);
return stringify_vector(operator Vector<double>(), recursion_count);
} break;
case ARRAY: {
Array arr = operator Array();
if (stack.find(arr.id())) {
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return "[...]";
}
stack.push_back(arr.id());
String str = stringify_vector(arr, stack);
stack.erase(arr.id());
String str = stringify_vector(arr, recursion_count);
return str;
} break;
@ -2768,6 +2757,10 @@ Variant::Variant(const Variant &p_variant) {
}
uint32_t Variant::hash() const {
return recursive_hash(0);
}
uint32_t Variant::recursive_hash(int recursion_count) const {
switch (type) {
case NIL: {
return 0;
@ -2895,7 +2888,7 @@ uint32_t Variant::hash() const {
return reinterpret_cast<const NodePath *>(_data._mem)->hash();
} break;
case DICTIONARY: {
return reinterpret_cast<const Dictionary *>(_data._mem)->hash();
return reinterpret_cast<const Dictionary *>(_data._mem)->recursive_hash(recursion_count);
} break;
case CALLABLE: {
@ -2909,7 +2902,7 @@ uint32_t Variant::hash() const {
} break;
case ARRAY: {
const Array &arr = *reinterpret_cast<const Array *>(_data._mem);
return arr.hash();
return arr.recursive_hash(recursion_count);
} break;
case PACKED_BYTE_ARRAY: {
@ -3083,7 +3076,7 @@ uint32_t Variant::hash() const {
\
return true
bool Variant::hash_compare(const Variant &p_variant) const {
bool Variant::hash_compare(const Variant &p_variant, int recursion_count) const {
if (type != p_variant.type) {
return false;
}
@ -3214,14 +3207,19 @@ bool Variant::hash_compare(const Variant &p_variant) const {
const Array &l = *(reinterpret_cast<const Array *>(_data._mem));
const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem));
if (l.size() != r.size()) {
if (!l.recursive_equal(r, recursion_count + 1)) {
return false;
}
for (int i = 0; i < l.size(); ++i) {
if (!l[i].hash_compare(r[i])) {
return false;
}
return true;
} break;
case DICTIONARY: {
const Dictionary &l = *(reinterpret_cast<const Dictionary *>(_data._mem));
const Dictionary &r = *(reinterpret_cast<const Dictionary *>(p_variant._data._mem));
if (!l.recursive_equal(r, recursion_count + 1)) {
return false;
}
return true;

View File

@ -481,7 +481,8 @@ public:
static PTROperatorEvaluator get_ptr_operator_evaluator(Operator p_operator, Type p_type_a, Type p_type_b);
void zero();
Variant duplicate(bool deep = false) const;
Variant duplicate(bool p_deep = false) const;
Variant recursive_duplicate(bool p_deep, int recursion_count) const;
static void blend(const Variant &a, const Variant &b, float c, Variant &r_dst);
static void interpolate(const Variant &a, const Variant &b, float c, Variant &r_dst);
@ -659,10 +660,11 @@ public:
bool operator!=(const Variant &p_variant) const;
bool operator<(const Variant &p_variant) const;
uint32_t hash() const;
uint32_t recursive_hash(int recursion_count) const;
bool hash_compare(const Variant &p_variant) const;
bool hash_compare(const Variant &p_variant, int recursion_count = 0) const;
bool booleanize() const;
String stringify(List<const void *> &stack) const;
String stringify(int recursion_count = 0) const;
String to_json_string() const;
void static_assign(const Variant &p_variant);

View File

@ -1443,7 +1443,7 @@ static String rtos_fix(double p_value) {
}
}
Error VariantWriter::write(const Variant &p_variant, StoreStringFunc p_store_string_func, void *p_store_string_ud, EncodeResourceFunc p_encode_res_func, void *p_encode_res_ud) {
Error VariantWriter::write(const Variant &p_variant, StoreStringFunc p_store_string_func, void *p_store_string_ud, EncodeResourceFunc p_encode_res_func, void *p_encode_res_ud, int recursion_count) {
switch (p_variant.get_type()) {
case Variant::NIL: {
p_store_string_func(p_store_string_ud, "null");
@ -1639,41 +1639,56 @@ Error VariantWriter::write(const Variant &p_variant, StoreStringFunc p_store_str
case Variant::DICTIONARY: {
Dictionary dict = p_variant;
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
p_store_string_func(p_store_string_ud, "{}");
} else {
recursion_count++;
List<Variant> keys;
dict.get_key_list(&keys);
keys.sort();
List<Variant> keys;
dict.get_key_list(&keys);
keys.sort();
p_store_string_func(p_store_string_ud, "{\n");
for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
/*
if (!_check_type(dict[E]))
continue;
*/
write(E->get(), p_store_string_func, p_store_string_ud, p_encode_res_func, p_encode_res_ud);
p_store_string_func(p_store_string_ud, ": ");
write(dict[E->get()], p_store_string_func, p_store_string_ud, p_encode_res_func, p_encode_res_ud);
if (E->next()) {
p_store_string_func(p_store_string_ud, ",\n");
} else {
p_store_string_func(p_store_string_ud, "\n");
p_store_string_func(p_store_string_ud, "{\n");
for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
/*
if (!_check_type(dict[E->get()]))
continue;
*/
write(E->get(), p_store_string_func, p_store_string_ud, p_encode_res_func, p_encode_res_ud, recursion_count);
p_store_string_func(p_store_string_ud, ": ");
write(dict[E->get()], p_store_string_func, p_store_string_ud, p_encode_res_func, p_encode_res_ud, recursion_count);
if (E->next()) {
p_store_string_func(p_store_string_ud, ",\n");
} else {
p_store_string_func(p_store_string_ud, "\n");
}
}
}
p_store_string_func(p_store_string_ud, "}");
p_store_string_func(p_store_string_ud, "}");
}
} break;
case Variant::ARRAY: {
p_store_string_func(p_store_string_ud, "[");
Array array = p_variant;
int len = array.size();
for (int i = 0; i < len; i++) {
if (i > 0) {
p_store_string_func(p_store_string_ud, ", ");
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
p_store_string_func(p_store_string_ud, "[]");
} else {
recursion_count++;
p_store_string_func(p_store_string_ud, "[");
Array array = p_variant;
int len = array.size();
for (int i = 0; i < len; i++) {
if (i > 0) {
p_store_string_func(p_store_string_ud, ", ");
}
write(array[i], p_store_string_func, p_store_string_ud, p_encode_res_func, p_encode_res_ud, recursion_count);
}
write(array[i], p_store_string_func, p_store_string_ud, p_encode_res_func, p_encode_res_ud);
p_store_string_func(p_store_string_ud, "]");
}
p_store_string_func(p_store_string_ud, "]");
} break;

View File

@ -140,7 +140,7 @@ public:
typedef Error (*StoreStringFunc)(void *ud, const String &p_string);
typedef String (*EncodeResourceFunc)(void *ud, const RES &p_resource);
static Error write(const Variant &p_variant, StoreStringFunc p_store_string_func, void *p_store_string_ud, EncodeResourceFunc p_encode_res_func, void *p_encode_res_ud);
static Error write(const Variant &p_variant, StoreStringFunc p_store_string_func, void *p_store_string_ud, EncodeResourceFunc p_encode_res_func, void *p_encode_res_ud, int recursion_count = 0);
static Error write_to_string(const Variant &p_variant, String &r_string, EncodeResourceFunc p_encode_res_func = nullptr, void *p_encode_res_ud = nullptr);
};

View File

@ -1824,11 +1824,15 @@ Variant Variant::iter_get(const Variant &r_iter, bool &r_valid) const {
return Variant();
}
Variant Variant::duplicate(bool deep) const {
Variant Variant::duplicate(bool p_deep) const {
return recursive_duplicate(p_deep, 0);
}
Variant Variant::recursive_duplicate(bool p_deep, int recursion_count) const {
switch (type) {
case OBJECT: {
/* breaks stuff :(
if (deep && !_get_obj().ref.is_null()) {
if (p_deep && !_get_obj().ref.is_null()) {
Ref<Resource> resource = _get_obj().ref;
if (resource.is_valid()) {
return resource->duplicate(true);
@ -1838,9 +1842,9 @@ Variant Variant::duplicate(bool deep) const {
return *this;
} break;
case DICTIONARY:
return operator Dictionary().duplicate(deep);
return operator Dictionary().recursive_duplicate(p_deep, recursion_count);
case ARRAY:
return operator Array().duplicate(deep);
return operator Array().recursive_duplicate(p_deep, recursion_count);
case PACKED_BYTE_ARRAY:
return operator Vector<uint8_t>().duplicate();
case PACKED_INT32_ARRAY:

View File

@ -494,7 +494,6 @@
<member name="line_length_guidelines" type="int[]" setter="set_line_length_guidelines" getter="get_line_length_guidelines" default="[]">
Draws vertical lines at the provided columns. The first entry is considered a main hard guideline and is draw more prominently
</member>
<member name="structured_text_bidi_override_options" type="Array" setter="set_structured_text_bidi_override_options" getter="get_structured_text_bidi_override_options" override="true" default="[]" />
<member name="symbol_lookup_on_click" type="bool" setter="set_symbol_lookup_on_click_enabled" getter="is_symbol_lookup_on_click_enabled" default="false">
Set when a validated word from [signal symbol_validate] is clicked, the [signal symbol_lookup] should be emitted.
</member>

View File

@ -43,6 +43,25 @@
namespace TestArray {
static inline Array build_array() {
return Array();
}
template <typename... Targs>
static inline Array build_array(Variant item, Targs... Fargs) {
Array a = build_array(Fargs...);
a.push_front(item);
return a;
}
static inline Dictionary build_dictionary() {
return Dictionary();
}
template <typename... Targs>
static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
Dictionary d = build_dictionary(Fargs...);
d[key] = item;
return d;
}
TEST_CASE("[Array] size(), clear(), and is_empty()") {
Array arr;
CHECK(arr.size() == 0);
@ -232,6 +251,221 @@ TEST_CASE("[Array] max() and min()") {
CHECK(max == 5);
CHECK(min == 2);
}
TEST_CASE("[Array] Duplicate array") {
// a = [1, [2, 2], {3: 3}]
Array a = build_array(1, build_array(2, 2), build_dictionary(3, 3));
// Deep copy
Array deep_a = a.duplicate(true);
CHECK_MESSAGE(deep_a.id() != a.id(), "Should create a new array");
CHECK_MESSAGE(Array(deep_a[1]).id() != Array(a[1]).id(), "Should clone nested array");
CHECK_MESSAGE(Dictionary(deep_a[2]).id() != Dictionary(a[2]).id(), "Should clone nested dictionary");
CHECK_EQ(deep_a, a);
deep_a.push_back(1);
CHECK_NE(deep_a, a);
deep_a.pop_back();
Array(deep_a[1]).push_back(1);
CHECK_NE(deep_a, a);
Array(deep_a[1]).pop_back();
CHECK_EQ(deep_a, a);
// Shallow copy
Array shallow_a = a.duplicate(false);
CHECK_MESSAGE(shallow_a.id() != a.id(), "Should create a new array");
CHECK_MESSAGE(Array(shallow_a[1]).id() == Array(a[1]).id(), "Should keep nested array");
CHECK_MESSAGE(Dictionary(shallow_a[2]).id() == Dictionary(a[2]).id(), "Should keep nested dictionary");
CHECK_EQ(shallow_a, a);
Array(shallow_a).push_back(1);
CHECK_NE(shallow_a, a);
}
TEST_CASE("[Array] Duplicate recursive array") {
// Self recursive
Array a;
a.push_back(a);
Array a_shallow = a.duplicate(false);
CHECK_EQ(a, a_shallow);
// Deep copy of recursive array endup with recursion limit and return
// an invalid result (multiple nested arrays), the point is we should
// not end up with a segfault and an error log should be printed
ERR_PRINT_OFF;
a.duplicate(true);
ERR_PRINT_ON;
// Nested recursive
Array a1;
Array a2;
a2.push_back(a1);
a1.push_back(a2);
Array a1_shallow = a1.duplicate(false);
CHECK_EQ(a1, a1_shallow);
// Same deep copy issue as above
ERR_PRINT_OFF;
a1.duplicate(true);
ERR_PRINT_ON;
// Break the recursivity otherwise Array teardown will leak memory
a.clear();
a1.clear();
a2.clear();
}
TEST_CASE("[Array] Hash array") {
// a = [1, [2, 2], {3: 3}]
Array a = build_array(1, build_array(2, 2), build_dictionary(3, 3));
uint32_t original_hash = a.hash();
a.push_back(1);
CHECK_NE(a.hash(), original_hash);
a.pop_back();
CHECK_EQ(a.hash(), original_hash);
Array(a[1]).push_back(1);
CHECK_NE(a.hash(), original_hash);
Array(a[1]).pop_back();
CHECK_EQ(a.hash(), original_hash);
(Dictionary(a[2]))[1] = 1;
CHECK_NE(a.hash(), original_hash);
Dictionary(a[2]).erase(1);
CHECK_EQ(a.hash(), original_hash);
Array a2 = a.duplicate(true);
CHECK_EQ(a2.hash(), a.hash());
}
TEST_CASE("[Array] Hash recursive array") {
Array a1;
a1.push_back(a1);
Array a2;
a2.push_back(a2);
// Hash should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(a1.hash(), a2.hash());
ERR_PRINT_ON;
// Break the recursivity otherwise Array teardown will leak memory
a1.clear();
a2.clear();
}
TEST_CASE("[Array] Empty comparison") {
Array a1;
Array a2;
// test both operator== and operator!=
CHECK_EQ(a1, a2);
CHECK_FALSE(a1 != a2);
}
TEST_CASE("[Array] Flat comparison") {
Array a1 = build_array(1);
Array a2 = build_array(1);
Array other_a = build_array(2);
// test both operator== and operator!=
CHECK_EQ(a1, a1); // compare self
CHECK_FALSE(a1 != a1);
CHECK_EQ(a1, a2); // different equivalent arrays
CHECK_FALSE(a1 != a2);
CHECK_NE(a1, other_a); // different arrays with different content
CHECK_FALSE(a1 == other_a);
}
TEST_CASE("[Array] Nested array comparison") {
// a1 = [[[1], 2], 3]
Array a1 = build_array(build_array(build_array(1), 2), 3);
Array a2 = a1.duplicate(true);
// other_a = [[[1, 0], 2], 3]
Array other_a = build_array(build_array(build_array(1, 0), 2), 3);
// test both operator== and operator!=
CHECK_EQ(a1, a1); // compare self
CHECK_FALSE(a1 != a1);
CHECK_EQ(a1, a2); // different equivalent arrays
CHECK_FALSE(a1 != a2);
CHECK_NE(a1, other_a); // different arrays with different content
CHECK_FALSE(a1 == other_a);
}
TEST_CASE("[Array] Nested dictionary comparison") {
// a1 = [{1: 2}, 3]
Array a1 = build_array(build_dictionary(1, 2), 3);
Array a2 = a1.duplicate(true);
// other_a = [{1: 0}, 3]
Array other_a = build_array(build_dictionary(1, 0), 3);
// test both operator== and operator!=
CHECK_EQ(a1, a1); // compare self
CHECK_FALSE(a1 != a1);
CHECK_EQ(a1, a2); // different equivalent arrays
CHECK_FALSE(a1 != a2);
CHECK_NE(a1, other_a); // different arrays with different content
CHECK_FALSE(a1 == other_a);
}
TEST_CASE("[Array] Recursive comparison") {
Array a1;
a1.push_back(a1);
Array a2;
a2.push_back(a2);
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(a1, a2);
CHECK_FALSE(a1 != a2);
ERR_PRINT_ON;
a1.push_back(1);
a2.push_back(1);
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(a1, a2);
CHECK_FALSE(a1 != a2);
ERR_PRINT_ON;
a1.push_back(1);
a2.push_back(2);
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_NE(a1, a2);
CHECK_FALSE(a1 == a2);
ERR_PRINT_ON;
// Break the recursivity otherwise Array tearndown will leak memory
a1.clear();
a2.clear();
}
TEST_CASE("[Array] Recursive self comparison") {
Array a1;
Array a2;
a2.push_back(a1);
a1.push_back(a2);
CHECK_EQ(a1, a1);
CHECK_FALSE(a1 != a1);
// Break the recursivity otherwise Array tearndown will leak memory
a1.clear();
a2.clear();
}
} // namespace TestArray
#endif // TEST_ARRAY_H

View File

@ -39,6 +39,25 @@
namespace TestDictionary {
static inline Array build_array() {
return Array();
}
template <typename... Targs>
static inline Array build_array(Variant item, Targs... Fargs) {
Array a = build_array(Fargs...);
a.push_front(item);
return a;
}
static inline Dictionary build_dictionary() {
return Dictionary();
}
template <typename... Targs>
static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
Dictionary d = build_dictionary(Fargs...);
d[key] = item;
return d;
}
TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
Dictionary map;
map["Hello"] = 0;
@ -61,15 +80,6 @@ TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
CHECK(int(map[false]) == 128);
}
TEST_CASE("[Dictionary] == and != operators") {
Dictionary map1;
Dictionary map2;
CHECK(map1 != map2);
map1[1] = 3;
map2 = map1;
CHECK(map1 == map2);
}
TEST_CASE("[Dictionary] get_key_lists()") {
Dictionary map;
List<Variant> keys;
@ -155,5 +165,344 @@ TEST_CASE("[Dictionary] keys() and values()") {
CHECK(int(keys[0]) == 1);
CHECK(int(values[0]) == 3);
}
TEST_CASE("[Dictionary] Duplicate dictionary") {
// d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
Dictionary k2 = build_dictionary(2, 2);
Array k3 = build_array(3);
Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
// Deep copy
Dictionary deep_d = d.duplicate(true);
CHECK_MESSAGE(deep_d.id() != d.id(), "Should create a new dictionary");
CHECK_MESSAGE(Dictionary(deep_d[1]).id() != Dictionary(d[1]).id(), "Should clone nested dictionary");
CHECK_MESSAGE(Array(deep_d[k2]).id() != Array(d[k2]).id(), "Should clone nested array");
CHECK_EQ(deep_d, d);
deep_d[0] = 0;
CHECK_NE(deep_d, d);
deep_d.erase(0);
Dictionary(deep_d[1]).operator[](0) = 0;
CHECK_NE(deep_d, d);
Dictionary(deep_d[1]).erase(0);
CHECK_EQ(deep_d, d);
// Keys should also be copied
k2[0] = 0;
CHECK_NE(deep_d, d);
k2.erase(0);
CHECK_EQ(deep_d, d);
k3.push_back(0);
CHECK_NE(deep_d, d);
k3.pop_back();
CHECK_EQ(deep_d, d);
// Shallow copy
Dictionary shallow_d = d.duplicate(false);
CHECK_MESSAGE(shallow_d.id() != d.id(), "Should create a new array");
CHECK_MESSAGE(Dictionary(shallow_d[1]).id() == Dictionary(d[1]).id(), "Should keep nested dictionary");
CHECK_MESSAGE(Array(shallow_d[2]).id() == Array(d[2]).id(), "Should keep nested array");
CHECK_EQ(shallow_d, d);
shallow_d[0] = 0;
CHECK_NE(shallow_d, d);
shallow_d.erase(0);
#if 0 // TODO: recursion in dict key currently is buggy
// Keys should also be shallowed
k2[0] = 0;
CHECK_EQ(shallow_d, d);
k2.erase(0);
k3.push_back(0);
CHECK_EQ(shallow_d, d);
#endif
}
TEST_CASE("[Dictionary] Duplicate recursive dictionary") {
// Self recursive
Dictionary d;
d[1] = d;
Dictionary d_shallow = d.duplicate(false);
CHECK_EQ(d, d_shallow);
// Deep copy of recursive dictionary endup with recursion limit and return
// an invalid result (multiple nested dictionaries), the point is we should
// not end up with a segfault and an error log should be printed
ERR_PRINT_OFF;
d.duplicate(true);
ERR_PRINT_ON;
// Nested recursive
Dictionary d1;
Dictionary d2;
d1[2] = d2;
d2[1] = d1;
Dictionary d1_shallow = d1.duplicate(false);
CHECK_EQ(d1, d1_shallow);
// Same deep copy issue as above
ERR_PRINT_OFF;
d1.duplicate(true);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary teardown will leak memory
d.clear();
d1.clear();
d2.clear();
}
#if 0 // TODO: duplicate recursion in dict key is currently buggy
TEST_CASE("[Dictionary] Duplicate recursive dictionary on keys") {
// Self recursive
Dictionary d;
d[d] = d;
Dictionary d_shallow = d.duplicate(false);
CHECK_EQ(d, d_shallow);
// Deep copy of recursive dictionary endup with recursion limit and return
// an invalid result (multiple nested dictionaries), the point is we should
// not end up with a segfault and an error log should be printed
ERR_PRINT_OFF;
d.duplicate(true);
ERR_PRINT_ON;
// Nested recursive
Dictionary d1;
Dictionary d2;
d1[d2] = d2;
d2[d1] = d1;
Dictionary d1_shallow = d1.duplicate(false);
CHECK_EQ(d1, d1_shallow);
// Same deep copy issue as above
ERR_PRINT_OFF;
d1.duplicate(true);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary teardown will leak memory
d.clear();
d1.clear();
d2.clear();
}
#endif
TEST_CASE("[Dictionary] Hash dictionary") {
// d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
Dictionary k2 = build_dictionary(2, 2);
Array k3 = build_array(3);
Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
uint32_t original_hash = d.hash();
// Modify dict change the hash
d[0] = 0;
CHECK_NE(d.hash(), original_hash);
d.erase(0);
CHECK_EQ(d.hash(), original_hash);
// Modify nested item change the hash
Dictionary(d[1]).operator[](0) = 0;
CHECK_NE(d.hash(), original_hash);
Dictionary(d[1]).erase(0);
Array(d[k2]).push_back(0);
CHECK_NE(d.hash(), original_hash);
Array(d[k2]).pop_back();
// Modify a key change the hash
k2[0] = 0;
CHECK_NE(d.hash(), original_hash);
k2.erase(0);
CHECK_EQ(d.hash(), original_hash);
k3.push_back(0);
CHECK_NE(d.hash(), original_hash);
k3.pop_back();
CHECK_EQ(d.hash(), original_hash);
// Duplication doesn't change the hash
Dictionary d2 = d.duplicate(true);
CHECK_EQ(d2.hash(), original_hash);
}
TEST_CASE("[Dictionary] Hash recursive dictionary") {
Dictionary d;
d[1] = d;
// Hash should reach recursion limit, we just make sure this doesn't blow up
ERR_PRINT_OFF;
d.hash();
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary teardown will leak memory
d.clear();
}
#if 0 // TODO: recursion in dict key is currently buggy
TEST_CASE("[Dictionary] Hash recursive dictionary on keys") {
Dictionary d;
d[d] = 1;
// Hash should reach recursion limit, we just make sure this doesn't blow up
ERR_PRINT_OFF;
d.hash();
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary teardown will leak memory
d.clear();
}
#endif
TEST_CASE("[Dictionary] Empty comparison") {
Dictionary d1;
Dictionary d2;
// test both operator== and operator!=
CHECK_EQ(d1, d2);
CHECK_FALSE(d1 != d2);
}
TEST_CASE("[Dictionary] Flat comparison") {
Dictionary d1 = build_dictionary(1, 1);
Dictionary d2 = build_dictionary(1, 1);
Dictionary other_d = build_dictionary(2, 1);
// test both operator== and operator!=
CHECK_EQ(d1, d1); // compare self
CHECK_FALSE(d1 != d1);
CHECK_EQ(d1, d2); // different equivalent arrays
CHECK_FALSE(d1 != d2);
CHECK_NE(d1, other_d); // different arrays with different content
CHECK_FALSE(d1 == other_d);
}
TEST_CASE("[Dictionary] Nested dictionary comparison") {
// d1 = {1: {2: {3: 4}}}
Dictionary d1 = build_dictionary(1, build_dictionary(2, build_dictionary(3, 4)));
Dictionary d2 = d1.duplicate(true);
// other_d = {1: {2: {3: 0}}}
Dictionary other_d = build_dictionary(1, build_dictionary(2, build_dictionary(3, 0)));
// test both operator== and operator!=
CHECK_EQ(d1, d1); // compare self
CHECK_FALSE(d1 != d1);
CHECK_EQ(d1, d2); // different equivalent arrays
CHECK_FALSE(d1 != d2);
CHECK_NE(d1, other_d); // different arrays with different content
CHECK_FALSE(d1 == other_d);
}
TEST_CASE("[Dictionary] Nested array comparison") {
// d1 = {1: [2, 3]}
Dictionary d1 = build_dictionary(1, build_array(2, 3));
Dictionary d2 = d1.duplicate(true);
// other_d = {1: [2, 0]}
Dictionary other_d = build_dictionary(1, build_array(2, 0));
// test both operator== and operator!=
CHECK_EQ(d1, d1); // compare self
CHECK_FALSE(d1 != d1);
CHECK_EQ(d1, d2); // different equivalent arrays
CHECK_FALSE(d1 != d2);
CHECK_NE(d1, other_d); // different arrays with different content
CHECK_FALSE(d1 == other_d);
}
TEST_CASE("[Dictionary] Recursive comparison") {
Dictionary d1;
d1[1] = d1;
Dictionary d2;
d2[1] = d2;
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(d1, d2);
CHECK_FALSE(d1 != d2);
ERR_PRINT_ON;
d1[2] = 2;
d2[2] = 2;
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(d1, d2);
CHECK_FALSE(d1 != d2);
ERR_PRINT_ON;
d1[3] = 3;
d2[3] = 0;
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_NE(d1, d2);
CHECK_FALSE(d1 == d2);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary teardown will leak memory
d1.clear();
d2.clear();
}
#if 0 // TODO: recursion in dict key is currently buggy
TEST_CASE("[Dictionary] Recursive comparison on keys") {
Dictionary d1;
// Hash computation should reach recursion limit
ERR_PRINT_OFF;
d1[d1] = 1;
ERR_PRINT_ON;
Dictionary d2;
// Hash computation should reach recursion limit
ERR_PRINT_OFF;
d2[d2] = 1;
ERR_PRINT_ON;
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(d1, d2);
CHECK_FALSE(d1 != d2);
ERR_PRINT_ON;
d1[2] = 2;
d2[2] = 2;
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_EQ(d1, d2);
CHECK_FALSE(d1 != d2);
ERR_PRINT_ON;
d1[3] = 3;
d2[3] = 0;
// Comparison should reach recursion limit
ERR_PRINT_OFF;
CHECK_NE(d1, d2);
CHECK_FALSE(d1 == d2);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary teardown will leak memory
d1.clear();
d2.clear();
}
#endif
TEST_CASE("[Dictionary] Recursive self comparison") {
Dictionary d1;
Dictionary d2;
d1[1] = d2;
d2[1] = d1;
CHECK_EQ(d1, d1);
CHECK_FALSE(d1 != d1);
// Break the recursivity otherwise Dictionary teardown will leak memory
d1.clear();
d2.clear();
}
} // namespace TestDictionary
#endif // TEST_DICTIONARY_H

View File

@ -33,6 +33,7 @@
#include "core/object/callable_method_pointer.h"
#include "core/object/class_db.h"
#include "core/string/print_string.h"
#include "core/templates/map.h"
#include "core/variant/variant.h"

View File

@ -38,6 +38,25 @@
namespace TestVariant {
static inline Array build_array() {
return Array();
}
template <typename... Targs>
static inline Array build_array(Variant item, Targs... Fargs) {
Array a = build_array(Fargs...);
a.push_front(item);
return a;
}
static inline Dictionary build_dictionary() {
return Dictionary();
}
template <typename... Targs>
static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
Dictionary d = build_dictionary(Fargs...);
d[key] = item;
return d;
}
TEST_CASE("[Variant] Writer and parser integer") {
int64_t a32 = 2147483648; // 2^31, so out of bounds for 32-bit signed int [-2^31, +2^31-1].
String a32_str;
@ -700,6 +719,198 @@ TEST_CASE("[Variant] Assignment To Color from Bool,Int,Float,String,Vec2,Vec2i,V
vec3i_v = col_v;
CHECK(vec3i_v.get_type() == Variant::COLOR);
}
TEST_CASE("[Variant] Writer and parser array") {
Array a = build_array(1, String("hello"), build_array(Variant()));
String a_str;
VariantWriter::write_to_string(a, a_str);
CHECK_EQ(a_str, "[1, \"hello\", [null]]");
VariantParser::StreamString ss;
String errs;
int line;
Variant a_parsed;
ss.s = a_str;
VariantParser::parse(&ss, a_parsed, errs, line);
CHECK_MESSAGE(a_parsed == Variant(a), "Should parse back.");
}
TEST_CASE("[Variant] Writer recursive array") {
// There is no way to accurately represent a recursive array,
// the only thing we can do is make sure the writer doesn't blow up
// Self recursive
Array a;
a.push_back(a);
// Writer should it recursion limit while visiting the array
ERR_PRINT_OFF;
String a_str;
VariantWriter::write_to_string(a, a_str);
ERR_PRINT_ON;
// Nested recursive
Array a1;
Array a2;
a1.push_back(a2);
a2.push_back(a1);
// Writer should it recursion limit while visiting the array
ERR_PRINT_OFF;
String a1_str;
VariantWriter::write_to_string(a1, a1_str);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary tearndown will leak memory
a.clear();
a1.clear();
a2.clear();
}
TEST_CASE("[Variant] Writer and parser dictionary") {
// d = {{1: 2}: 3, 4: "hello", 5: {null: []}}
Dictionary d = build_dictionary(build_dictionary(1, 2), 3, 4, String("hello"), 5, build_dictionary(Variant(), build_array()));
String d_str;
VariantWriter::write_to_string(d, d_str);
CHECK_EQ(d_str, "{\n4: \"hello\",\n5: {\nnull: []\n},\n{\n1: 2\n}: 3\n}");
VariantParser::StreamString ss;
String errs;
int line;
Variant d_parsed;
ss.s = d_str;
VariantParser::parse(&ss, d_parsed, errs, line);
CHECK_MESSAGE(d_parsed == Variant(d), "Should parse back.");
}
TEST_CASE("[Variant] Writer recursive dictionary") {
// There is no way to accurately represent a recursive dictionary,
// the only thing we can do is make sure the writer doesn't blow up
// Self recursive
Dictionary d;
d[1] = d;
// Writer should it recursion limit while visiting the dictionary
ERR_PRINT_OFF;
String d_str;
VariantWriter::write_to_string(d, d_str);
ERR_PRINT_ON;
// Nested recursive
Dictionary d1;
Dictionary d2;
d1[2] = d2;
d2[1] = d1;
// Writer should it recursion limit while visiting the dictionary
ERR_PRINT_OFF;
String d1_str;
VariantWriter::write_to_string(d1, d1_str);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary tearndown will leak memory
d.clear();
d1.clear();
d2.clear();
}
#if 0 // TODO: recursion in dict key is currently buggy
TEST_CASE("[Variant] Writer recursive dictionary on keys") {
// There is no way to accurately represent a recursive dictionary,
// the only thing we can do is make sure the writer doesn't blow up
// Self recursive
Dictionary d;
d[d] = 1;
// Writer should it recursion limit while visiting the dictionary
ERR_PRINT_OFF;
String d_str;
VariantWriter::write_to_string(d, d_str);
ERR_PRINT_ON;
// Nested recursive
Dictionary d1;
Dictionary d2;
d1[d2] = 2;
d2[d1] = 1;
// Writer should it recursion limit while visiting the dictionary
ERR_PRINT_OFF;
String d1_str;
VariantWriter::write_to_string(d1, d1_str);
ERR_PRINT_ON;
// Break the recursivity otherwise Dictionary tearndown will leak memory
d.clear();
d1.clear();
d2.clear();
}
#endif
TEST_CASE("[Variant] Basic comparison") {
CHECK_EQ(Variant(1), Variant(1));
CHECK_FALSE(Variant(1) != Variant(1));
CHECK_NE(Variant(1), Variant(2));
CHECK_EQ(Variant(String("foo")), Variant(String("foo")));
CHECK_NE(Variant(String("foo")), Variant(String("bar")));
// Check "empty" version of different types are not equivalents
CHECK_NE(Variant(0), Variant());
CHECK_NE(Variant(String()), Variant());
CHECK_NE(Variant(Array()), Variant());
CHECK_NE(Variant(Dictionary()), Variant());
}
TEST_CASE("[Variant] Nested array comparison") {
Array a1 = build_array(1, build_array(2, 3));
Array a2 = build_array(1, build_array(2, 3));
Array a_other = build_array(1, build_array(2, 4));
Variant v_a1 = a1;
Variant v_a1_ref2 = a1;
Variant v_a2 = a2;
Variant v_a_other = a_other;
// test both operator== and operator!=
CHECK_EQ(v_a1, v_a1);
CHECK_FALSE(v_a1 != v_a1);
CHECK_EQ(v_a1, v_a1_ref2);
CHECK_FALSE(v_a1 != v_a1_ref2);
CHECK_EQ(v_a1, v_a2);
CHECK_FALSE(v_a1 != v_a2);
CHECK_NE(v_a1, v_a_other);
CHECK_FALSE(v_a1 == v_a_other);
}
TEST_CASE("[Variant] Nested dictionary comparison") {
Dictionary d1 = build_dictionary(build_dictionary(1, 2), build_dictionary(3, 4));
Dictionary d2 = build_dictionary(build_dictionary(1, 2), build_dictionary(3, 4));
Dictionary d_other_key = build_dictionary(build_dictionary(1, 0), build_dictionary(3, 4));
Dictionary d_other_val = build_dictionary(build_dictionary(1, 2), build_dictionary(3, 0));
Variant v_d1 = d1;
Variant v_d1_ref2 = d1;
Variant v_d2 = d2;
Variant v_d_other_key = d_other_key;
Variant v_d_other_val = d_other_val;
// test both operator== and operator!=
CHECK_EQ(v_d1, v_d1);
CHECK_FALSE(v_d1 != v_d1);
CHECK_EQ(v_d1, v_d1_ref2);
CHECK_FALSE(v_d1 != v_d1_ref2);
CHECK_EQ(v_d1, v_d2);
CHECK_FALSE(v_d1 != v_d2);
CHECK_NE(v_d1, v_d_other_key);
CHECK_FALSE(v_d1 == v_d_other_key);
CHECK_NE(v_d1, v_d_other_val);
CHECK_FALSE(v_d1 == v_d_other_val);
}
} // namespace TestVariant
#endif // TEST_VARIANT_H