Merge pull request #64729 from raulsntos/csharp-xform-operator

C#: Replace `Xform` and `XformInv` with `*` operator
This commit is contained in:
Rémi Verschelde 2022-08-23 07:47:09 +02:00 committed by GitHub
commit 7e4817a096
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 292 additions and 181 deletions

View File

@ -26,7 +26,7 @@ public partial class _CLASS_ : _BASE_
// Get the input direction and handle the movement/deceleration.
// As good practice, you should replace UI actions with custom gameplay actions.
Vector2 inputDir = Input.GetVector("ui_left", "ui_right", "ui_up", "ui_down");
Vector3 direction = Transform.basis.Xform(new Vector3(inputDir.x, 0, inputDir.y)).Normalized();
Vector3 direction = (Transform.basis * new Vector3(inputDir.x, 0, inputDir.y)).Normalized();
if (direction != Vector3.Zero)
{
velocity.x = direction.x * Speed;

View File

@ -618,41 +618,6 @@ namespace Godot
return tr;
}
/// <summary>
/// Returns a vector transformed (multiplied) by the basis matrix.
/// </summary>
/// <seealso cref="XformInv(Vector3)"/>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
public Vector3 Xform(Vector3 v)
{
return new Vector3
(
Row0.Dot(v),
Row1.Dot(v),
Row2.Dot(v)
);
}
/// <summary>
/// Returns a vector transformed (multiplied) by the transposed basis matrix.
///
/// Note: This results in a multiplication by the inverse of the
/// basis matrix only if it represents a rotation-reflection.
/// </summary>
/// <seealso cref="Xform(Vector3)"/>
/// <param name="v">A vector to inversely transform.</param>
/// <returns>The inversely transformed vector.</returns>
public Vector3 XformInv(Vector3 v)
{
return new Vector3
(
Row0[0] * v.x + Row1[0] * v.y + Row2[0] * v.z,
Row0[1] * v.x + Row1[1] * v.y + Row2[1] * v.z,
Row0[2] * v.x + Row1[2] * v.y + Row2[2] * v.z
);
}
private static readonly Basis[] _orthoBases = {
new Basis(1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 1f),
new Basis(0f, -1f, 0f, 1f, 0f, 0f, 0f, 0f, 1f),
@ -856,6 +821,41 @@ namespace Godot
);
}
/// <summary>
/// Returns a Vector3 transformed (multiplied) by the basis matrix.
/// </summary>
/// <param name="basis">The basis matrix transformation to apply.</param>
/// <param name="vector">A Vector3 to transform.</param>
/// <returns>The transformed Vector3.</returns>
public static Vector3 operator *(Basis basis, Vector3 vector)
{
return new Vector3
(
basis.Row0.Dot(vector),
basis.Row1.Dot(vector),
basis.Row2.Dot(vector)
);
}
/// <summary>
/// Returns a Vector3 transformed (multiplied) by the transposed basis matrix.
///
/// Note: This results in a multiplication by the inverse of the
/// basis matrix only if it represents a rotation-reflection.
/// </summary>
/// <param name="vector">A Vector3 to inversely transform.</param>
/// <param name="basis">The basis matrix transformation to apply.</param>
/// <returns>The inversely transformed vector.</returns>
public static Vector3 operator *(Vector3 vector, Basis basis)
{
return new Vector3
(
basis.Row0[0] * vector.x + basis.Row1[0] * vector.y + basis.Row2[0] * vector.z,
basis.Row0[1] * vector.x + basis.Row1[1] * vector.y + basis.Row2[1] * vector.z,
basis.Row0[2] * vector.x + basis.Row1[2] * vector.y + basis.Row2[2] * vector.z
);
}
/// <summary>
/// Returns <see langword="true"/> if the basis matrices are exactly
/// equal. Note: Due to floating-point precision errors, consider using

View File

@ -355,7 +355,7 @@ namespace Godot
public int GetPixelsPerMeter(int forPixelWidth)
{
Vector3 result = Xform(new Vector3(1, 0, -1));
Vector3 result = this * new Vector3(1, 0, -1);
return (int)((result.x * (real_t)0.5 + (real_t)0.5) * forPixelWidth);
}
@ -588,21 +588,53 @@ namespace Godot
}
/// <summary>
/// Returns a vector transformed (multiplied) by this projection.
/// Returns a Vector4 transformed (multiplied) by the projection.
/// </summary>
/// <param name="proj">The projection to apply.</param>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
public static Vector4 operator *(Projection proj, Vector4 v)
/// <param name="vector">A Vector4 to transform.</param>
/// <returns>The transformed Vector4.</returns>
public static Vector4 operator *(Projection proj, Vector4 vector)
{
return new Vector4(
proj.x.x * v.x + proj.y.x * v.y + proj.z.x * v.z + proj.w.x * v.w,
proj.x.y * v.x + proj.y.y * v.y + proj.z.y * v.z + proj.w.y * v.w,
proj.x.z * v.x + proj.y.z * v.y + proj.z.z * v.z + proj.w.z * v.w,
proj.x.w * v.x + proj.y.w * v.y + proj.z.w * v.z + proj.w.w * v.w
proj.x.x * vector.x + proj.y.x * vector.y + proj.z.x * vector.z + proj.w.x * vector.w,
proj.x.y * vector.x + proj.y.y * vector.y + proj.z.y * vector.z + proj.w.y * vector.w,
proj.x.z * vector.x + proj.y.z * vector.y + proj.z.z * vector.z + proj.w.z * vector.w,
proj.x.w * vector.x + proj.y.w * vector.y + proj.z.w * vector.z + proj.w.w * vector.w
);
}
/// <summary>
/// Returns a Vector4 transformed (multiplied) by the inverse projection.
/// </summary>
/// <param name="proj">The projection to apply.</param>
/// <param name="vector">A Vector4 to transform.</param>
/// <returns>The inversely transformed Vector4.</returns>
public static Vector4 operator *(Vector4 vector, Projection proj)
{
return new Vector4(
proj.x.x * vector.x + proj.x.y * vector.y + proj.x.z * vector.z + proj.x.w * vector.w,
proj.y.x * vector.x + proj.y.y * vector.y + proj.y.z * vector.z + proj.y.w * vector.w,
proj.z.x * vector.x + proj.z.y * vector.y + proj.z.z * vector.z + proj.z.w * vector.w,
proj.w.x * vector.x + proj.w.y * vector.y + proj.w.z * vector.z + proj.w.w * vector.w
);
}
/// <summary>
/// Returns a Vector3 transformed (multiplied) by the projection.
/// </summary>
/// <param name="proj">The projection to apply.</param>
/// <param name="vector">A Vector3 to transform.</param>
/// <returns>The transformed Vector3.</returns>
public static Vector3 operator *(Projection proj, Vector3 vector)
{
Vector3 ret = new Vector3(
proj.x.x * vector.x + proj.y.x * vector.y + proj.z.x * vector.z + proj.w.x,
proj.x.y * vector.x + proj.y.y * vector.y + proj.z.y * vector.z + proj.w.y,
proj.x.z * vector.x + proj.y.z * vector.y + proj.z.z * vector.z + proj.w.z
);
return ret / (proj.x.w * vector.x + proj.y.w * vector.y + proj.z.w * vector.z + proj.w.w);
}
/// <summary>
/// Returns <see langword="true"/> if the projections are exactly equal.
/// </summary>
@ -714,21 +746,6 @@ namespace Godot
}
}
/// <summary>
/// Returns a vector transformed (multiplied) by this projection.
/// </summary>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
private Vector3 Xform(Vector3 v)
{
Vector3 ret = new Vector3(
x.x * v.x + y.x * v.y + z.x * v.z + w.x,
x.y * v.x + y.y * v.y + z.y * v.z + w.y,
x.z * v.x + y.z * v.y + z.z * v.z + w.z
);
return ret / (x.w * v.x + y.w * v.y + z.w * v.z + w.w);
}
// Constants
private static readonly Projection _zero = new Projection(
new Vector4(0, 0, 0, 0),

View File

@ -313,24 +313,6 @@ namespace Godot
);
}
/// <summary>
/// Returns a vector transformed (multiplied) by this quaternion.
/// </summary>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
public Vector3 Xform(Vector3 v)
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
var u = new Vector3(x, y, z);
Vector3 uv = u.Cross(v);
return v + (((uv * w) + u.Cross(uv)) * 2);
}
// Constants
private static readonly Quaternion _identity = new Quaternion(0, 0, 0, 1);
@ -460,6 +442,36 @@ namespace Godot
);
}
/// <summary>
/// Returns a Vector3 rotated (multiplied) by the quaternion.
/// </summary>
/// <param name="quaternion">The quaternion to rotate by.</param>
/// <param name="vector">A Vector3 to transform.</param>
/// <returns>The rotated Vector3.</returns>
public static Vector3 operator *(Quaternion quaternion, Vector3 vector)
{
#if DEBUG
if (!quaternion.IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
var u = new Vector3(quaternion.x, quaternion.y, quaternion.z);
Vector3 uv = u.Cross(vector);
return vector + (((uv * quaternion.w) + u.Cross(uv)) * 2);
}
/// <summary>
/// Returns a Vector3 rotated (multiplied) by the inverse quaternion.
/// </summary>
/// <param name="vector">A Vector3 to inversely rotate.</param>
/// <param name="quaternion">The quaternion to rotate by.</param>
/// <returns>The inversely rotated Vector3.</returns>
public static Vector3 operator *(Vector3 vector, Quaternion quaternion)
{
return quaternion.Inverse() * vector;
}
/// <summary>
/// Adds each component of the left <see cref="Quaternion"/>
/// to the right <see cref="Quaternion"/>. This operation is not
@ -502,38 +514,6 @@ namespace Godot
return new Quaternion(-quat.x, -quat.y, -quat.z, -quat.w);
}
/// <summary>
/// Rotates (multiplies) the <see cref="Vector3"/>
/// by the given <see cref="Quaternion"/>.
/// </summary>
/// <param name="quat">The quaternion to rotate by.</param>
/// <param name="vec">The vector to rotate.</param>
/// <returns>The rotated vector.</returns>
public static Vector3 operator *(Quaternion quat, Vector3 vec)
{
#if DEBUG
if (!quat.IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized.");
}
#endif
var u = new Vector3(quat.x, quat.y, quat.z);
Vector3 uv = u.Cross(vec);
return vec + (((uv * quat.w) + u.Cross(uv)) * 2);
}
/// <summary>
/// Inversely rotates (multiplies) the <see cref="Vector3"/>
/// by the given <see cref="Quaternion"/>.
/// </summary>
/// <param name="vec">The vector to rotate.</param>
/// <param name="quat">The quaternion to rotate by.</param>
/// <returns>The inversely rotated vector.</returns>
public static Vector3 operator *(Vector3 vec, Quaternion quat)
{
return quat.Inverse() * vec;
}
/// <summary>
/// Multiplies each component of the <see cref="Quaternion"/>
/// by the given <see cref="real_t"/>. This operation is not

View File

@ -384,31 +384,6 @@ namespace Godot
return copy;
}
/// <summary>
/// Returns a vector transformed (multiplied) by this transformation matrix.
/// </summary>
/// <seealso cref="XformInv(Vector2)"/>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
[Obsolete("Xform is deprecated. Use the multiplication operator (Transform2D * Vector2) instead.")]
public Vector2 Xform(Vector2 v)
{
return new Vector2(Tdotx(v), Tdoty(v)) + origin;
}
/// <summary>
/// Returns a vector transformed (multiplied) by the inverse transformation matrix.
/// </summary>
/// <seealso cref="Xform(Vector2)"/>
/// <param name="v">A vector to inversely transform.</param>
/// <returns>The inversely transformed vector.</returns>
[Obsolete("XformInv is deprecated. Use the multiplication operator (Vector2 * Transform2D) instead.")]
public Vector2 XformInv(Vector2 v)
{
Vector2 vInv = v - origin;
return new Vector2(x.Dot(vInv), y.Dot(vInv));
}
// Constants
private static readonly Transform2D _identity = new Transform2D(1, 0, 0, 1, 0, 0);
private static readonly Transform2D _flipX = new Transform2D(-1, 0, 0, 1, 0, 0);
@ -502,7 +477,7 @@ namespace Godot
}
/// <summary>
/// Returns a Vector2 transformed (multiplied) by transformation matrix.
/// Returns a Vector2 transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="vector">A Vector2 to transform.</param>
@ -525,7 +500,7 @@ namespace Godot
}
/// <summary>
/// Returns a Rect2 transformed (multiplied) by transformation matrix.
/// Returns a Rect2 transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="rect">A Rect2 to transform.</param>
@ -536,7 +511,7 @@ namespace Godot
Vector2 toX = transform.x * rect.Size.x;
Vector2 toY = transform.y * rect.Size.y;
return new Rect2(pos, rect.Size).Expand(pos + toX).Expand(pos + toY).Expand(pos + toX + toY);
return new Rect2(pos, new Vector2()).Expand(pos + toX).Expand(pos + toY).Expand(pos + toX + toY);
}
/// <summary>
@ -552,11 +527,11 @@ namespace Godot
Vector2 to2 = new Vector2(rect.Position.x + rect.Size.x, rect.Position.y + rect.Size.y) * transform;
Vector2 to3 = new Vector2(rect.Position.x + rect.Size.x, rect.Position.y) * transform;
return new Rect2(pos, rect.Size).Expand(to1).Expand(to2).Expand(to3);
return new Rect2(pos, new Vector2()).Expand(to1).Expand(to2).Expand(to3);
}
/// <summary>
/// Returns a copy of the given Vector2[] transformed (multiplied) by transformation matrix.
/// Returns a copy of the given Vector2[] transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="array">A Vector2[] to transform.</param>

View File

@ -108,7 +108,7 @@ namespace Godot
public Transform3D AffineInverse()
{
Basis basisInv = basis.Inverse();
return new Transform3D(basisInv, basisInv.Xform(-origin));
return new Transform3D(basisInv, basisInv * -origin);
}
/// <summary>
@ -147,7 +147,7 @@ namespace Godot
public Transform3D Inverse()
{
Basis basisTr = basis.Transposed();
return new Transform3D(basisTr, basisTr.Xform(-origin));
return new Transform3D(basisTr, basisTr * -origin);
}
/// <summary>
@ -286,43 +286,6 @@ namespace Godot
));
}
/// <summary>
/// Returns a vector transformed (multiplied) by this transformation matrix.
/// </summary>
/// <seealso cref="XformInv(Vector3)"/>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
public Vector3 Xform(Vector3 v)
{
return new Vector3
(
basis.Row0.Dot(v) + origin.x,
basis.Row1.Dot(v) + origin.y,
basis.Row2.Dot(v) + origin.z
);
}
/// <summary>
/// Returns a vector transformed (multiplied) by the transposed transformation matrix.
///
/// Note: This results in a multiplication by the inverse of the
/// transformation matrix only if it represents a rotation-reflection.
/// </summary>
/// <seealso cref="Xform(Vector3)"/>
/// <param name="v">A vector to inversely transform.</param>
/// <returns>The inversely transformed vector.</returns>
public Vector3 XformInv(Vector3 v)
{
Vector3 vInv = v - origin;
return new Vector3
(
(basis.Row0[0] * vInv.x) + (basis.Row1[0] * vInv.y) + (basis.Row2[0] * vInv.z),
(basis.Row0[1] * vInv.x) + (basis.Row1[1] * vInv.y) + (basis.Row2[1] * vInv.z),
(basis.Row0[2] * vInv.x) + (basis.Row1[2] * vInv.y) + (basis.Row2[2] * vInv.z)
);
}
// Constants
private static readonly Transform3D _identity = new Transform3D(Basis.Identity, Vector3.Zero);
private static readonly Transform3D _flipX = new Transform3D(new Basis(-1, 0, 0, 0, 1, 0, 0, 0, 1), Vector3.Zero);
@ -399,11 +362,187 @@ namespace Godot
/// <returns>The composed transform.</returns>
public static Transform3D operator *(Transform3D left, Transform3D right)
{
left.origin = left.Xform(right.origin);
left.origin = left * right.origin;
left.basis *= right.basis;
return left;
}
/// <summary>
/// Returns a Vector3 transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="vector">A Vector3 to transform.</param>
/// <returns>The transformed Vector3.</returns>
public static Vector3 operator *(Transform3D transform, Vector3 vector)
{
return new Vector3
(
transform.basis.Row0.Dot(vector) + transform.origin.x,
transform.basis.Row1.Dot(vector) + transform.origin.y,
transform.basis.Row2.Dot(vector) + transform.origin.z
);
}
/// <summary>
/// Returns a Vector3 transformed (multiplied) by the transposed transformation matrix.
///
/// Note: This results in a multiplication by the inverse of the
/// transformation matrix only if it represents a rotation-reflection.
/// </summary>
/// <param name="vector">A Vector3 to inversely transform.</param>
/// <param name="transform">The transformation to apply.</param>
/// <returns>The inversely transformed Vector3.</returns>
public static Vector3 operator *(Vector3 vector, Transform3D transform)
{
Vector3 vInv = vector - transform.origin;
return new Vector3
(
(transform.basis.Row0[0] * vInv.x) + (transform.basis.Row1[0] * vInv.y) + (transform.basis.Row2[0] * vInv.z),
(transform.basis.Row0[1] * vInv.x) + (transform.basis.Row1[1] * vInv.y) + (transform.basis.Row2[1] * vInv.z),
(transform.basis.Row0[2] * vInv.x) + (transform.basis.Row1[2] * vInv.y) + (transform.basis.Row2[2] * vInv.z)
);
}
/// <summary>
/// Returns an AABB transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="aabb">An AABB to transform.</param>
/// <returns>The transformed AABB.</returns>
public static AABB operator *(Transform3D transform, AABB aabb)
{
Vector3 min = aabb.Position;
Vector3 max = aabb.Position + aabb.Size;
Vector3 tmin = transform.origin;
Vector3 tmax = transform.origin;
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
real_t e = transform.basis[i][j] * min[j];
real_t f = transform.basis[i][j] * max[j];
if (e < f)
{
tmin[i] += e;
tmax[i] += f;
}
else
{
tmin[i] += f;
tmax[i] += e;
}
}
}
return new AABB(tmin, tmax - tmin);
}
/// <summary>
/// Returns an AABB transformed (multiplied) by the inverse transformation matrix.
/// </summary>
/// <param name="aabb">An AABB to inversely transform.</param>
/// <param name="transform">The transformation to apply.</param>
/// <returns>The inversely transformed AABB.</returns>
public static AABB operator *(AABB aabb, Transform3D transform)
{
Vector3 pos = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y + aabb.Size.y, aabb.Position.z + aabb.Size.z) * transform;
Vector3 to1 = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y + aabb.Size.y, aabb.Position.z) * transform;
Vector3 to2 = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y, aabb.Position.z + aabb.Size.z) * transform;
Vector3 to3 = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y, aabb.Position.z) * transform;
Vector3 to4 = new Vector3(aabb.Position.x, aabb.Position.y + aabb.Size.y, aabb.Position.z + aabb.Size.z) * transform;
Vector3 to5 = new Vector3(aabb.Position.x, aabb.Position.y + aabb.Size.y, aabb.Position.z) * transform;
Vector3 to6 = new Vector3(aabb.Position.x, aabb.Position.y, aabb.Position.z + aabb.Size.z) * transform;
Vector3 to7 = new Vector3(aabb.Position.x, aabb.Position.y, aabb.Position.z) * transform;
return new AABB(pos, new Vector3()).Expand(to1).Expand(to2).Expand(to3).Expand(to4).Expand(to5).Expand(to6).Expand(to7);
}
/// <summary>
/// Returns a Plane transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="plane">A Plane to transform.</param>
/// <returns>The transformed Plane.</returns>
public static Plane operator *(Transform3D transform, Plane plane)
{
Basis bInvTrans = transform.basis.Inverse().Transposed();
// Transform a single point on the plane.
Vector3 point = transform * (plane.Normal * plane.D);
// Use inverse transpose for correct normals with non-uniform scaling.
Vector3 normal = (bInvTrans * plane.Normal).Normalized();
real_t d = normal.Dot(point);
return new Plane(normal, d);
}
/// <summary>
/// Returns a Plane transformed (multiplied) by the inverse transformation matrix.
/// </summary>
/// <param name="plane">A Plane to inversely transform.</param>
/// <param name="transform">The transformation to apply.</param>
/// <returns>The inversely transformed Plane.</returns>
public static Plane operator *(Plane plane, Transform3D transform)
{
Transform3D tInv = transform.AffineInverse();
Basis bTrans = transform.basis.Transposed();
// Transform a single point on the plane.
Vector3 point = tInv * (plane.Normal * plane.D);
// Note that instead of precalculating the transpose, an alternative
// would be to use the transpose for the basis transform.
// However that would be less SIMD friendly (requiring a swizzle).
// So the cost is one extra precalced value in the calling code.
// This is probably worth it, as this could be used in bottleneck areas. And
// where it is not a bottleneck, the non-fast method is fine.
// Use transpose for correct normals with non-uniform scaling.
Vector3 normal = (bTrans * plane.Normal).Normalized();
real_t d = normal.Dot(point);
return new Plane(normal, d);
}
/// <summary>
/// Returns a copy of the given Vector3[] transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="array">A Vector3[] to transform.</param>
/// <returns>The transformed copy of the Vector3[].</returns>
public static Vector3[] operator *(Transform3D transform, Vector3[] array)
{
Vector3[] newArray = new Vector3[array.Length];
for (int i = 0; i < array.Length; i++)
{
newArray[i] = transform * array[i];
}
return newArray;
}
/// <summary>
/// Returns a copy of the given Vector3[] transformed (multiplied) by the inverse transformation matrix.
/// </summary>
/// <param name="array">A Vector3[] to inversely transform.</param>
/// <param name="transform">The transformation to apply.</param>
/// <returns>The inversely transformed copy of the Vector3[].</returns>
public static Vector3[] operator *(Vector3[] array, Transform3D transform)
{
Vector3[] newArray = new Vector3[array.Length];
for (int i = 0; i < array.Length; i++)
{
newArray[i] = array[i] * transform;
}
return newArray;
}
/// <summary>
/// Returns <see langword="true"/> if the transforms are exactly equal.
/// Note: Due to floating-point precision errors, consider using

View File

@ -518,7 +518,7 @@ namespace Godot
throw new ArgumentException("Argument is not normalized", nameof(axis));
}
#endif
return new Basis(axis, angle).Xform(this);
return new Basis(axis, angle) * this;
}
/// <summary>