Replace Quaternion Euler constructor with from_euler method

This commit is contained in:
Aaron Franke 2022-11-01 08:11:09 -05:00
parent e6751549cf
commit 83634119d4
No known key found for this signature in database
GPG Key ID: 40A1750B977E56BF
11 changed files with 68 additions and 65 deletions

View File

@ -330,7 +330,7 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
// (ax, ay, az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
Quaternion::Quaternion(const Vector3 &p_euler) {
Quaternion Quaternion::from_euler(const Vector3 &p_euler) {
real_t half_a1 = p_euler.y * 0.5f;
real_t half_a2 = p_euler.x * 0.5f;
real_t half_a3 = p_euler.z * 0.5f;
@ -346,8 +346,9 @@ Quaternion::Quaternion(const Vector3 &p_euler) {
real_t cos_a3 = Math::cos(half_a3);
real_t sin_a3 = Math::sin(half_a3);
x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
return Quaternion(
sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
-sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
}

View File

@ -69,6 +69,7 @@ struct _NO_DISCARD_ Quaternion {
Vector3 get_euler_xyz() const;
Vector3 get_euler_yxz() const;
Vector3 get_euler() const { return get_euler_yxz(); };
static Quaternion from_euler(const Vector3 &p_euler);
Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
@ -128,8 +129,6 @@ struct _NO_DISCARD_ Quaternion {
Quaternion(const Vector3 &p_axis, real_t p_angle);
Quaternion(const Vector3 &p_euler);
Quaternion(const Quaternion &p_q) :
x(p_q.x),
y(p_q.y),

View File

@ -1806,6 +1806,7 @@ static void _register_variant_builtin_methods() {
bind_method(Quaternion, spherical_cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray());
bind_method(Quaternion, spherical_cubic_interpolate_in_time, sarray("b", "pre_a", "post_b", "weight", "b_t", "pre_a_t", "post_b_t"), varray());
bind_method(Quaternion, get_euler, sarray(), varray());
bind_static_method(Quaternion, from_euler, sarray("euler"), varray());
bind_method(Quaternion, get_axis, sarray(), varray());
bind_method(Quaternion, get_angle, sarray(), varray());

View File

@ -141,7 +141,6 @@ void Variant::_register_variant_constructors() {
add_constructor<VariantConstructor<Quaternion, Vector3, double>>(sarray("axis", "angle"));
add_constructor<VariantConstructor<Quaternion, Vector3, Vector3>>(sarray("arc_from", "arc_to"));
add_constructor<VariantConstructor<Quaternion, double, double, double, double>>(sarray("x", "y", "z", "w"));
add_constructor<VariantConstructor<Quaternion, Vector3>>(sarray("euler_yxz"));
add_constructor<VariantConstructNoArgs<::AABB>>(sarray());
add_constructor<VariantConstructor<::AABB, ::AABB>>(sarray("from"));

View File

@ -41,12 +41,6 @@
Constructs a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector.
</description>
</constructor>
<constructor name="Quaternion">
<return type="Quaternion" />
<param index="0" name="euler_yxz" type="Vector3" />
<description>
</description>
</constructor>
<constructor name="Quaternion">
<return type="Quaternion" />
<param index="0" name="from" type="Basis" />
@ -86,6 +80,13 @@
<description>
</description>
</method>
<method name="from_euler" qualifiers="static">
<return type="Quaternion" />
<param index="0" name="euler" type="Vector3" />
<description>
Constructs a Quaternion from Euler angles in YXZ rotation order.
</description>
</method>
<method name="get_angle" qualifiers="const">
<return type="float" />
<description>

View File

@ -2688,7 +2688,7 @@ void EditorPropertyQuaternion::_custom_value_changed(double val) {
v.y = Math::deg_to_rad(edit_euler.y);
v.z = Math::deg_to_rad(edit_euler.z);
Quaternion temp_q = Quaternion(v);
Quaternion temp_q = Quaternion::from_euler(v);
spin[0]->set_value(temp_q.x);
spin[1]->set_value(temp_q.y);
spin[2]->set_value(temp_q.z);

View File

@ -6289,7 +6289,7 @@ GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Vector3 rotation_radian = p_animation->track_get_key_value(p_track_i, key_i);
p_track.rotation_track.values.write[key_i] = Quaternion(rotation_radian);
p_track.rotation_track.values.write[key_i] = Quaternion::from_euler(rotation_radian);
}
} else if (path.contains(":scale")) {
p_track.scale_track.times = times;

View File

@ -506,35 +506,6 @@ namespace Godot
this = basis.GetQuaternion();
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> that will perform a rotation specified by
/// Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last),
/// given in the vector format as (X angle, Y angle, Z angle).
/// </summary>
/// <param name="eulerYXZ">Euler angles that the quaternion will be rotated by.</param>
public Quaternion(Vector3 eulerYXZ)
{
real_t halfA1 = eulerYXZ.y * 0.5f;
real_t halfA2 = eulerYXZ.x * 0.5f;
real_t halfA3 = eulerYXZ.z * 0.5f;
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cosA1 = Mathf.Cos(halfA1);
real_t sinA1 = Mathf.Sin(halfA1);
real_t cosA2 = Mathf.Cos(halfA2);
real_t sinA2 = Mathf.Sin(halfA2);
real_t cosA3 = Mathf.Cos(halfA3);
real_t sinA3 = Mathf.Sin(halfA3);
x = (sinA1 * cosA2 * sinA3) + (cosA1 * sinA2 * cosA3);
y = (sinA1 * cosA2 * cosA3) - (cosA1 * sinA2 * sinA3);
z = (cosA1 * cosA2 * sinA3) - (sinA1 * sinA2 * cosA3);
w = (sinA1 * sinA2 * sinA3) + (cosA1 * cosA2 * cosA3);
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> that will rotate around the given axis
/// by the specified angle. The axis must be a normalized vector.
@ -572,6 +543,37 @@ namespace Godot
}
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> that will perform a rotation specified by
/// Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last),
/// given in the vector format as (X angle, Y angle, Z angle).
/// </summary>
/// <param name="eulerYXZ">Euler angles that the quaternion will be rotated by.</param>
public static Quaternion FromEuler(Vector3 eulerYXZ)
{
real_t halfA1 = eulerYXZ.y * 0.5f;
real_t halfA2 = eulerYXZ.x * 0.5f;
real_t halfA3 = eulerYXZ.z * 0.5f;
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cosA1 = Mathf.Cos(halfA1);
real_t sinA1 = Mathf.Sin(halfA1);
real_t cosA2 = Mathf.Cos(halfA2);
real_t sinA2 = Mathf.Sin(halfA2);
real_t cosA3 = Mathf.Cos(halfA3);
real_t sinA3 = Mathf.Sin(halfA3);
return new Quaternion(
(sinA1 * cosA2 * sinA3) + (cosA1 * sinA2 * cosA3),
(sinA1 * cosA2 * cosA3) - (cosA1 * sinA2 * sinA3),
(cosA1 * cosA2 * sinA3) - (sinA1 * sinA2 * cosA3),
(sinA1 * sinA2 * sinA3) + (cosA1 * cosA2 * cosA3)
);
}
/// <summary>
/// Composes these two quaternions by multiplying them together.
/// This has the effect of rotating the second quaternion

View File

@ -47,9 +47,9 @@ Quaternion quat_euler_yxz_deg(Vector3 angle) {
// Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler
// constructor and quaternion product, both tested separately.
Quaternion q_y(Vector3(0.0, yaw, 0.0));
Quaternion q_p(Vector3(pitch, 0.0, 0.0));
Quaternion q_r(Vector3(0.0, 0.0, roll));
Quaternion q_y = Quaternion::from_euler(Vector3(0.0, yaw, 0.0));
Quaternion q_p = Quaternion::from_euler(Vector3(pitch, 0.0, 0.0));
Quaternion q_r = Quaternion::from_euler(Vector3(0.0, 0.0, roll));
// Roll-Z is followed by Pitch-X, then Yaw-Y.
Quaternion q_yxz = q_y * q_p * q_r;
@ -134,21 +134,21 @@ TEST_CASE("[Quaternion] Construct Euler SingleAxis") {
double roll = Math::deg_to_rad(10.0);
Vector3 euler_y(0.0, yaw, 0.0);
Quaternion q_y(euler_y);
Quaternion q_y = Quaternion::from_euler(euler_y);
CHECK(q_y[0] == doctest::Approx(0.0));
CHECK(q_y[1] == doctest::Approx(0.382684));
CHECK(q_y[2] == doctest::Approx(0.0));
CHECK(q_y[3] == doctest::Approx(0.923879));
Vector3 euler_p(pitch, 0.0, 0.0);
Quaternion q_p(euler_p);
Quaternion q_p = Quaternion::from_euler(euler_p);
CHECK(q_p[0] == doctest::Approx(0.258819));
CHECK(q_p[1] == doctest::Approx(0.0));
CHECK(q_p[2] == doctest::Approx(0.0));
CHECK(q_p[3] == doctest::Approx(0.965926));
Vector3 euler_r(0.0, 0.0, roll);
Quaternion q_r(euler_r);
Quaternion q_r = Quaternion::from_euler(euler_r);
CHECK(q_r[0] == doctest::Approx(0.0));
CHECK(q_r[1] == doctest::Approx(0.0));
CHECK(q_r[2] == doctest::Approx(0.0871558));
@ -163,11 +163,11 @@ TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") {
// Generate YXZ comparison data (Z-then-X-then-Y) using single-axis Euler
// constructor and quaternion product, both tested separately.
Vector3 euler_y(0.0, yaw, 0.0);
Quaternion q_y(euler_y);
Quaternion q_y = Quaternion::from_euler(euler_y);
Vector3 euler_p(pitch, 0.0, 0.0);
Quaternion q_p(euler_p);
Quaternion q_p = Quaternion::from_euler(euler_p);
Vector3 euler_r(0.0, 0.0, roll);
Quaternion q_r(euler_r);
Quaternion q_r = Quaternion::from_euler(euler_r);
// Roll-Z is followed by Pitch-X.
Quaternion check_xz = q_p * q_r;
@ -176,7 +176,7 @@ TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") {
// Test construction from YXZ Euler angles.
Vector3 euler_yxz(pitch, yaw, roll);
Quaternion q(euler_yxz);
Quaternion q = Quaternion::from_euler(euler_yxz);
CHECK(q[0] == doctest::Approx(check_yxz[0]));
CHECK(q[1] == doctest::Approx(check_yxz[1]));
CHECK(q[2] == doctest::Approx(check_yxz[2]));
@ -191,7 +191,7 @@ TEST_CASE("[Quaternion] Construct Basis Euler") {
double pitch = Math::deg_to_rad(30.0);
double roll = Math::deg_to_rad(10.0);
Vector3 euler_yxz(pitch, yaw, roll);
Quaternion q_yxz(euler_yxz);
Quaternion q_yxz = Quaternion::from_euler(euler_yxz);
Basis basis_axes = Basis::from_euler(euler_yxz);
Quaternion q(basis_axes);
CHECK(q.is_equal_approx(q_yxz));
@ -209,7 +209,7 @@ TEST_CASE("[Quaternion] Construct Basis Axes") {
// Quaternion from local calculation.
Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34));
// Quaternion from Euler angles constructor.
Quaternion q_euler(euler_yxz);
Quaternion q_euler = Quaternion::from_euler(euler_yxz);
CHECK(q_calc.is_equal_approx(q_local));
CHECK(q_local.is_equal_approx(q_euler));
@ -253,21 +253,21 @@ TEST_CASE("[Quaternion] Product") {
double roll = Math::deg_to_rad(10.0);
Vector3 euler_y(0.0, yaw, 0.0);
Quaternion q_y(euler_y);
Quaternion q_y = Quaternion::from_euler(euler_y);
CHECK(q_y[0] == doctest::Approx(0.0));
CHECK(q_y[1] == doctest::Approx(0.382684));
CHECK(q_y[2] == doctest::Approx(0.0));
CHECK(q_y[3] == doctest::Approx(0.923879));
Vector3 euler_p(pitch, 0.0, 0.0);
Quaternion q_p(euler_p);
Quaternion q_p = Quaternion::from_euler(euler_p);
CHECK(q_p[0] == doctest::Approx(0.258819));
CHECK(q_p[1] == doctest::Approx(0.0));
CHECK(q_p[2] == doctest::Approx(0.0));
CHECK(q_p[3] == doctest::Approx(0.965926));
Vector3 euler_r(0.0, 0.0, roll);
Quaternion q_r(euler_r);
Quaternion q_r = Quaternion::from_euler(euler_r);
CHECK(q_r[0] == doctest::Approx(0.0));
CHECK(q_r[1] == doctest::Approx(0.0));
CHECK(q_r[2] == doctest::Approx(0.0871558));

View File

@ -140,13 +140,13 @@ TEST_CASE("[Animation] Create 3D rotation track") {
Ref<Animation> animation = memnew(Animation);
const int track_index = animation->add_track(Animation::TYPE_ROTATION_3D);
animation->track_set_path(track_index, NodePath("Enemy:rotation"));
animation->rotation_track_insert_key(track_index, 0.0, Quaternion(Vector3(0, 1, 2)));
animation->rotation_track_insert_key(track_index, 0.5, Quaternion(Vector3(3.5, 4, 5)));
animation->rotation_track_insert_key(track_index, 0.0, Quaternion::from_euler(Vector3(0, 1, 2)));
animation->rotation_track_insert_key(track_index, 0.5, Quaternion::from_euler(Vector3(3.5, 4, 5)));
CHECK(animation->get_track_count() == 1);
CHECK(!animation->track_is_compressed(0));
CHECK(Quaternion(animation->track_get_key_value(0, 0)).is_equal_approx(Quaternion(Vector3(0, 1, 2))));
CHECK(Quaternion(animation->track_get_key_value(0, 1)).is_equal_approx(Quaternion(Vector3(3.5, 4, 5))));
CHECK(Quaternion(animation->track_get_key_value(0, 0)).is_equal_approx(Quaternion::from_euler(Vector3(0, 1, 2))));
CHECK(Quaternion(animation->track_get_key_value(0, 1)).is_equal_approx(Quaternion::from_euler(Vector3(3.5, 4, 5))));
Quaternion r_interpolation;

View File

@ -86,7 +86,7 @@ TEST_SUITE("Validate tests") {
Plane plane(Vector3(1, 1, 1), 1.0);
INFO(plane);
Quaternion quat(Vector3(0.5, 1.0, 2.0));
Quaternion quat = Quaternion::from_euler(Vector3(0.5, 1.0, 2.0));
INFO(quat);
AABB aabb(Vector3(), Vector3(100, 100, 100));