recast: Update to upstream version 1.6.0
Release notes:
- https://github.com/recastnavigation/recastnavigation/releases/tag/v1.6.0
(cherry picked from commit 2058b63067
)
This commit is contained in:
parent
d5d02b9a85
commit
84b9202d87
|
@ -614,7 +614,7 @@ in 10.40, it can be found in the `patches` folder.
|
|||
## recastnavigation
|
||||
|
||||
- Upstream: https://github.com/recastnavigation/recastnavigation
|
||||
- Version: git (4fef0446609b23d6ac180ed822817571525528a1, 2022)
|
||||
- Version: 1.6.0 (6dc1667f580357e8a2154c28b7867bea7e8ad3a7, 2023)
|
||||
- License: zlib
|
||||
|
||||
Files extracted from upstream source:
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -19,11 +19,11 @@
|
|||
#ifndef RECASTALLOC_H
|
||||
#define RECASTALLOC_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "RecastAssert.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
enum rcAllocHint
|
||||
|
@ -47,18 +47,27 @@ typedef void (rcFreeFunc)(void* ptr);
|
|||
/// Sets the base custom allocation functions to be used by Recast.
|
||||
/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
|
||||
/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
|
||||
///
|
||||
/// @see rcAlloc, rcFree
|
||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
|
||||
|
||||
/// Allocates a memory block.
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see rcFree
|
||||
///
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
///
|
||||
/// @see rcFree, rcAllocSetCustom
|
||||
void* rcAlloc(size_t size, rcAllocHint hint);
|
||||
|
||||
/// Deallocates a memory block.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
|
||||
/// @see rcAlloc
|
||||
/// Deallocates a memory block. If @p ptr is NULL, this does nothing.
|
||||
///
|
||||
/// @warning This function leaves the value of @p ptr unchanged. So it still
|
||||
/// points to the same (now invalid) location, and not to null.
|
||||
///
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
|
||||
///
|
||||
/// @see rcAlloc, rcAllocSetCustom
|
||||
void rcFree(void* ptr);
|
||||
|
||||
/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use).
|
||||
|
|
|
@ -19,13 +19,10 @@
|
|||
#ifndef RECASTASSERT_H
|
||||
#define RECASTASSERT_H
|
||||
|
||||
// Note: This header file's only purpose is to include define assert.
|
||||
// Feel free to change the file and include your own implementation instead.
|
||||
|
||||
#ifdef NDEBUG
|
||||
|
||||
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
|
||||
# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
|
||||
// From https://web.archive.org/web/20210117002833/http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
|
||||
# define rcAssert(x) do { (void)sizeof(x); } while ((void)(__LINE__==-1), false)
|
||||
|
||||
#else
|
||||
|
||||
|
@ -38,7 +35,7 @@ typedef void (rcAssertFailFunc)(const char* expression, const char* file, int li
|
|||
|
||||
/// Sets the base custom assertion failure function to be used by Recast.
|
||||
/// @param[in] assertFailFunc The function to be used in case of failure of #dtAssert
|
||||
void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc);
|
||||
void rcAssertFailSetCustom(rcAssertFailFunc* assertFailFunc);
|
||||
|
||||
/// Gets the base custom assertion failure function to be used by Recast.
|
||||
rcAssertFailFunc* rcAssertFailGetCustom();
|
||||
|
@ -47,8 +44,8 @@ rcAssertFailFunc* rcAssertFailGetCustom();
|
|||
# define rcAssert(expression) \
|
||||
{ \
|
||||
rcAssertFailFunc* failFunc = rcAssertFailGetCustom(); \
|
||||
if(failFunc == NULL) { assert(expression); } \
|
||||
else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
|
||||
if (failFunc == NULL) { assert(expression); } \
|
||||
else if (!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -16,81 +16,65 @@
|
|||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
namespace
|
||||
{
|
||||
/// Allocates and constructs an object of the given type, returning a pointer.
|
||||
/// TODO: Support constructor args.
|
||||
/// @param[in] hint Hint to the allocator.
|
||||
template <typename T>
|
||||
T* rcNew(rcAllocHint hint) {
|
||||
T* ptr = (T*)rcAlloc(sizeof(T), hint);
|
||||
/// @param[in] allocLifetime Allocation lifetime hint
|
||||
template<typename T>
|
||||
T* rcNew(const rcAllocHint allocLifetime)
|
||||
{
|
||||
T* ptr = (T*)rcAlloc(sizeof(T), allocLifetime);
|
||||
::new(rcNewTag(), (void*)ptr) T();
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/// Destroys and frees an object allocated with rcNew.
|
||||
/// @param[in] ptr The object pointer to delete.
|
||||
template <typename T>
|
||||
void rcDelete(T* ptr) {
|
||||
if (ptr) {
|
||||
template<typename T>
|
||||
void rcDelete(T* ptr)
|
||||
{
|
||||
if (ptr)
|
||||
{
|
||||
ptr->~T();
|
||||
rcFree((void*)ptr);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
float rcSqrt(float x)
|
||||
{
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
/// @class rcContext
|
||||
/// @par
|
||||
///
|
||||
/// This class does not provide logging or timer functionality on its
|
||||
/// own. Both must be provided by a concrete implementation
|
||||
/// by overriding the protected member functions. Also, this class does not
|
||||
/// provide an interface for extracting log messages. (Only adding them.)
|
||||
/// So concrete implementations must provide one.
|
||||
///
|
||||
/// If no logging or timers are required, just pass an instance of this
|
||||
/// class through the Recast build process.
|
||||
///
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Example:
|
||||
/// @code
|
||||
/// // Where ctx is an instance of rcContext and filepath is a char array.
|
||||
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
|
||||
/// @endcode
|
||||
void rcContext::log(const rcLogCategory category, const char* format, ...)
|
||||
{
|
||||
if (!m_logEnabled)
|
||||
{
|
||||
return;
|
||||
}
|
||||
static const int MSG_SIZE = 512;
|
||||
char msg[MSG_SIZE];
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
int len = vsnprintf(msg, MSG_SIZE, format, ap);
|
||||
va_list argList;
|
||||
va_start(argList, format);
|
||||
int len = vsnprintf(msg, MSG_SIZE, format, argList);
|
||||
if (len >= MSG_SIZE)
|
||||
{
|
||||
len = MSG_SIZE-1;
|
||||
msg[MSG_SIZE-1] = '\0';
|
||||
len = MSG_SIZE - 1;
|
||||
msg[MSG_SIZE - 1] = '\0';
|
||||
|
||||
const char* errorMessage = "Log message was truncated";
|
||||
doLog(RC_LOG_ERROR, errorMessage, (int)strlen(errorMessage));
|
||||
}
|
||||
va_end(ap);
|
||||
va_end(argList);
|
||||
doLog(category, msg, len);
|
||||
}
|
||||
|
||||
|
@ -103,16 +87,22 @@ rcHeightfield* rcAllocHeightfield()
|
|||
{
|
||||
return rcNew<rcHeightfield>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreeHeightField(rcHeightfield* heightfield)
|
||||
{
|
||||
rcDelete(heightfield);
|
||||
}
|
||||
|
||||
rcHeightfield::rcHeightfield()
|
||||
: width()
|
||||
, height()
|
||||
, bmin()
|
||||
, bmax()
|
||||
, cs()
|
||||
, ch()
|
||||
, spans()
|
||||
, pools()
|
||||
, freelist()
|
||||
: width()
|
||||
, height()
|
||||
, bmin()
|
||||
, bmax()
|
||||
, cs()
|
||||
, ch()
|
||||
, spans()
|
||||
, pools()
|
||||
, freelist()
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -129,40 +119,36 @@ rcHeightfield::~rcHeightfield()
|
|||
}
|
||||
}
|
||||
|
||||
void rcFreeHeightField(rcHeightfield* hf)
|
||||
{
|
||||
rcDelete(hf);
|
||||
}
|
||||
|
||||
rcCompactHeightfield* rcAllocCompactHeightfield()
|
||||
{
|
||||
return rcNew<rcCompactHeightfield>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
|
||||
void rcFreeCompactHeightfield(rcCompactHeightfield* compactHeightfield)
|
||||
{
|
||||
rcDelete(chf);
|
||||
rcDelete(compactHeightfield);
|
||||
}
|
||||
|
||||
rcCompactHeightfield::rcCompactHeightfield()
|
||||
: width(),
|
||||
height(),
|
||||
spanCount(),
|
||||
walkableHeight(),
|
||||
walkableClimb(),
|
||||
borderSize(),
|
||||
maxDistance(),
|
||||
maxRegions(),
|
||||
bmin(),
|
||||
bmax(),
|
||||
cs(),
|
||||
ch(),
|
||||
cells(),
|
||||
spans(),
|
||||
dist(),
|
||||
areas()
|
||||
: width()
|
||||
, height()
|
||||
, spanCount()
|
||||
, walkableHeight()
|
||||
, walkableClimb()
|
||||
, borderSize()
|
||||
, maxDistance()
|
||||
, maxRegions()
|
||||
, bmin()
|
||||
, bmax()
|
||||
, cs()
|
||||
, ch()
|
||||
, cells()
|
||||
, spans()
|
||||
, dist()
|
||||
, areas()
|
||||
{
|
||||
}
|
||||
|
||||
rcCompactHeightfield::~rcCompactHeightfield()
|
||||
{
|
||||
rcFree(cells);
|
||||
|
@ -175,13 +161,18 @@ rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
|
|||
{
|
||||
return rcNew<rcHeightfieldLayerSet>(RC_ALLOC_PERM);
|
||||
}
|
||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
|
||||
|
||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* layerSet)
|
||||
{
|
||||
rcDelete(lset);
|
||||
rcDelete(layerSet);
|
||||
}
|
||||
|
||||
rcHeightfieldLayerSet::rcHeightfieldLayerSet()
|
||||
: layers(), nlayers() {}
|
||||
: layers()
|
||||
, nlayers()
|
||||
{
|
||||
}
|
||||
|
||||
rcHeightfieldLayerSet::~rcHeightfieldLayerSet()
|
||||
{
|
||||
for (int i = 0; i < nlayers; ++i)
|
||||
|
@ -198,22 +189,26 @@ rcContourSet* rcAllocContourSet()
|
|||
{
|
||||
return rcNew<rcContourSet>(RC_ALLOC_PERM);
|
||||
}
|
||||
void rcFreeContourSet(rcContourSet* cset)
|
||||
|
||||
void rcFreeContourSet(rcContourSet* contourSet)
|
||||
{
|
||||
rcDelete(cset);
|
||||
rcDelete(contourSet);
|
||||
}
|
||||
|
||||
rcContourSet::rcContourSet()
|
||||
: conts(),
|
||||
nconts(),
|
||||
bmin(),
|
||||
bmax(),
|
||||
cs(),
|
||||
ch(),
|
||||
width(),
|
||||
height(),
|
||||
borderSize(),
|
||||
maxError() {}
|
||||
: conts()
|
||||
, nconts()
|
||||
, bmin()
|
||||
, bmax()
|
||||
, cs()
|
||||
, ch()
|
||||
, width()
|
||||
, height()
|
||||
, borderSize()
|
||||
, maxError()
|
||||
{
|
||||
}
|
||||
|
||||
rcContourSet::~rcContourSet()
|
||||
{
|
||||
for (int i = 0; i < nconts; ++i)
|
||||
|
@ -224,32 +219,34 @@ rcContourSet::~rcContourSet()
|
|||
rcFree(conts);
|
||||
}
|
||||
|
||||
|
||||
rcPolyMesh* rcAllocPolyMesh()
|
||||
{
|
||||
return rcNew<rcPolyMesh>(RC_ALLOC_PERM);
|
||||
}
|
||||
void rcFreePolyMesh(rcPolyMesh* pmesh)
|
||||
|
||||
void rcFreePolyMesh(rcPolyMesh* polyMesh)
|
||||
{
|
||||
rcDelete(pmesh);
|
||||
rcDelete(polyMesh);
|
||||
}
|
||||
|
||||
rcPolyMesh::rcPolyMesh()
|
||||
: verts(),
|
||||
polys(),
|
||||
regs(),
|
||||
flags(),
|
||||
areas(),
|
||||
nverts(),
|
||||
npolys(),
|
||||
maxpolys(),
|
||||
nvp(),
|
||||
bmin(),
|
||||
bmax(),
|
||||
cs(),
|
||||
ch(),
|
||||
borderSize(),
|
||||
maxEdgeError() {}
|
||||
: verts()
|
||||
, polys()
|
||||
, regs()
|
||||
, flags()
|
||||
, areas()
|
||||
, nverts()
|
||||
, npolys()
|
||||
, maxpolys()
|
||||
, nvp()
|
||||
, bmin()
|
||||
, bmax()
|
||||
, cs()
|
||||
, ch()
|
||||
, borderSize()
|
||||
, maxEdgeError()
|
||||
{
|
||||
}
|
||||
|
||||
rcPolyMesh::~rcPolyMesh()
|
||||
{
|
||||
|
@ -262,319 +259,284 @@ rcPolyMesh::~rcPolyMesh()
|
|||
|
||||
rcPolyMeshDetail* rcAllocPolyMeshDetail()
|
||||
{
|
||||
rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM);
|
||||
memset(dmesh, 0, sizeof(rcPolyMeshDetail));
|
||||
return dmesh;
|
||||
return rcNew<rcPolyMeshDetail>(RC_ALLOC_PERM);
|
||||
}
|
||||
|
||||
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
|
||||
void rcFreePolyMeshDetail(rcPolyMeshDetail* detailMesh)
|
||||
{
|
||||
if (!dmesh) return;
|
||||
rcFree(dmesh->meshes);
|
||||
rcFree(dmesh->verts);
|
||||
rcFree(dmesh->tris);
|
||||
rcFree(dmesh);
|
||||
if (detailMesh == NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
rcFree(detailMesh->meshes);
|
||||
rcFree(detailMesh->verts);
|
||||
rcFree(detailMesh->tris);
|
||||
rcFree(detailMesh);
|
||||
}
|
||||
|
||||
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
|
||||
rcPolyMeshDetail::rcPolyMeshDetail()
|
||||
: meshes()
|
||||
, verts()
|
||||
, tris()
|
||||
, nmeshes()
|
||||
, nverts()
|
||||
, ntris()
|
||||
{
|
||||
}
|
||||
|
||||
void rcCalcBounds(const float* verts, int numVerts, float* minBounds, float* maxBounds)
|
||||
{
|
||||
// Calculate bounding box.
|
||||
rcVcopy(bmin, verts);
|
||||
rcVcopy(bmax, verts);
|
||||
for (int i = 1; i < nv; ++i)
|
||||
rcVcopy(minBounds, verts);
|
||||
rcVcopy(maxBounds, verts);
|
||||
for (int i = 1; i < numVerts; ++i)
|
||||
{
|
||||
const float* v = &verts[i*3];
|
||||
rcVmin(bmin, v);
|
||||
rcVmax(bmax, v);
|
||||
const float* v = &verts[i * 3];
|
||||
rcVmin(minBounds, v);
|
||||
rcVmax(maxBounds, v);
|
||||
}
|
||||
}
|
||||
|
||||
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
|
||||
void rcCalcGridSize(const float* minBounds, const float* maxBounds, const float cellSize, int* sizeX, int* sizeZ)
|
||||
{
|
||||
*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
|
||||
*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
|
||||
*sizeX = (int)((maxBounds[0] - minBounds[0]) / cellSize + 0.5f);
|
||||
*sizeZ = (int)((maxBounds[2] - minBounds[2]) / cellSize + 0.5f);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocHeightfield, rcHeightfield
|
||||
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
|
||||
const float* bmin, const float* bmax,
|
||||
float cs, float ch)
|
||||
bool rcCreateHeightfield(rcContext* context, rcHeightfield& heightfield, int sizeX, int sizeZ,
|
||||
const float* minBounds, const float* maxBounds,
|
||||
float cellSize, float cellHeight)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
|
||||
hf.width = width;
|
||||
hf.height = height;
|
||||
rcVcopy(hf.bmin, bmin);
|
||||
rcVcopy(hf.bmax, bmax);
|
||||
hf.cs = cs;
|
||||
hf.ch = ch;
|
||||
hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM);
|
||||
if (!hf.spans)
|
||||
rcIgnoreUnused(context);
|
||||
|
||||
heightfield.width = sizeX;
|
||||
heightfield.height = sizeZ;
|
||||
rcVcopy(heightfield.bmin, minBounds);
|
||||
rcVcopy(heightfield.bmax, maxBounds);
|
||||
heightfield.cs = cellSize;
|
||||
heightfield.ch = cellHeight;
|
||||
heightfield.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*) * heightfield.width * heightfield.height, RC_ALLOC_PERM);
|
||||
if (!heightfield.spans)
|
||||
{
|
||||
return false;
|
||||
memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
|
||||
}
|
||||
memset(heightfield.spans, 0, sizeof(rcSpan*) * heightfield.width * heightfield.height);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
|
||||
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* faceNormal)
|
||||
{
|
||||
float e0[3], e1[3];
|
||||
rcVsub(e0, v1, v0);
|
||||
rcVsub(e1, v2, v0);
|
||||
rcVcross(norm, e0, e1);
|
||||
rcVnormalize(norm);
|
||||
rcVcross(faceNormal, e0, e1);
|
||||
rcVnormalize(faceNormal);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Only sets the area id's for the walkable triangles. Does not alter the
|
||||
/// area id's for unwalkable triangles.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
||||
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
|
||||
const float* verts, int nv,
|
||||
const int* tris, int nt,
|
||||
unsigned char* areas)
|
||||
void rcMarkWalkableTriangles(rcContext* context, const float walkableSlopeAngle,
|
||||
const float* verts, const int numVerts,
|
||||
const int* tris, const int numTris,
|
||||
unsigned char* triAreaIDs)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
rcIgnoreUnused(nv);
|
||||
|
||||
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
|
||||
rcIgnoreUnused(context);
|
||||
rcIgnoreUnused(numVerts);
|
||||
|
||||
const float walkableThr = cosf(walkableSlopeAngle / 180.0f * RC_PI);
|
||||
|
||||
float norm[3];
|
||||
|
||||
for (int i = 0; i < nt; ++i)
|
||||
|
||||
for (int i = 0; i < numTris; ++i)
|
||||
{
|
||||
const int* tri = &tris[i*3];
|
||||
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
|
||||
const int* tri = &tris[i * 3];
|
||||
calcTriNormal(&verts[tri[0] * 3], &verts[tri[1] * 3], &verts[tri[2] * 3], norm);
|
||||
// Check if the face is walkable.
|
||||
if (norm[1] > walkableThr)
|
||||
areas[i] = RC_WALKABLE_AREA;
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Only sets the area id's for the unwalkable triangles. Does not alter the
|
||||
/// area id's for walkable triangles.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
||||
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
|
||||
const float* verts, int /*nv*/,
|
||||
const int* tris, int nt,
|
||||
unsigned char* areas)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
|
||||
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
|
||||
|
||||
float norm[3];
|
||||
|
||||
for (int i = 0; i < nt; ++i)
|
||||
{
|
||||
const int* tri = &tris[i*3];
|
||||
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
|
||||
// Check if the face is walkable.
|
||||
if (norm[1] <= walkableThr)
|
||||
areas[i] = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
|
||||
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
|
||||
const int w = hf.width;
|
||||
const int h = hf.height;
|
||||
int spanCount = 0;
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
|
||||
triAreaIDs[i] = RC_WALKABLE_AREA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void rcClearUnwalkableTriangles(rcContext* context, const float walkableSlopeAngle,
|
||||
const float* verts, int numVerts,
|
||||
const int* tris, int numTris,
|
||||
unsigned char* triAreaIDs)
|
||||
{
|
||||
rcIgnoreUnused(context);
|
||||
rcIgnoreUnused(numVerts);
|
||||
|
||||
// The minimum Y value for a face normal of a triangle with a walkable slope.
|
||||
const float walkableLimitY = cosf(walkableSlopeAngle / 180.0f * RC_PI);
|
||||
|
||||
float faceNormal[3];
|
||||
for (int i = 0; i < numTris; ++i)
|
||||
{
|
||||
const int* tri = &tris[i * 3];
|
||||
calcTriNormal(&verts[tri[0] * 3], &verts[tri[1] * 3], &verts[tri[2] * 3], faceNormal);
|
||||
// Check if the face is walkable.
|
||||
if (faceNormal[1] <= walkableLimitY)
|
||||
{
|
||||
triAreaIDs[i] = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int rcGetHeightFieldSpanCount(rcContext* context, const rcHeightfield& heightfield)
|
||||
{
|
||||
rcIgnoreUnused(context);
|
||||
|
||||
const int numCols = heightfield.width * heightfield.height;
|
||||
int spanCount = 0;
|
||||
for (int columnIndex = 0; columnIndex < numCols; ++columnIndex)
|
||||
{
|
||||
for (rcSpan* span = heightfield.spans[columnIndex]; span != NULL; span = span->next)
|
||||
{
|
||||
if (span->area != RC_NULL_AREA)
|
||||
{
|
||||
if (s->area != RC_NULL_AREA)
|
||||
spanCount++;
|
||||
spanCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return spanCount;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// This is just the beginning of the process of fully building a compact heightfield.
|
||||
/// Various filters may be applied, then the distance field and regions built.
|
||||
/// E.g: #rcBuildDistanceField and #rcBuildRegions
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
|
||||
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& hf, rcCompactHeightfield& chf)
|
||||
bool rcBuildCompactHeightfield(rcContext* context, const int walkableHeight, const int walkableClimb,
|
||||
const rcHeightfield& heightfield, rcCompactHeightfield& compactHeightfield)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
|
||||
|
||||
const int w = hf.width;
|
||||
const int h = hf.height;
|
||||
const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);
|
||||
rcAssert(context);
|
||||
|
||||
rcScopedTimer timer(context, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
|
||||
|
||||
const int xSize = heightfield.width;
|
||||
const int zSize = heightfield.height;
|
||||
const int spanCount = rcGetHeightFieldSpanCount(context, heightfield);
|
||||
|
||||
// Fill in header.
|
||||
chf.width = w;
|
||||
chf.height = h;
|
||||
chf.spanCount = spanCount;
|
||||
chf.walkableHeight = walkableHeight;
|
||||
chf.walkableClimb = walkableClimb;
|
||||
chf.maxRegions = 0;
|
||||
rcVcopy(chf.bmin, hf.bmin);
|
||||
rcVcopy(chf.bmax, hf.bmax);
|
||||
chf.bmax[1] += walkableHeight*hf.ch;
|
||||
chf.cs = hf.cs;
|
||||
chf.ch = hf.ch;
|
||||
chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
|
||||
if (!chf.cells)
|
||||
compactHeightfield.width = xSize;
|
||||
compactHeightfield.height = zSize;
|
||||
compactHeightfield.spanCount = spanCount;
|
||||
compactHeightfield.walkableHeight = walkableHeight;
|
||||
compactHeightfield.walkableClimb = walkableClimb;
|
||||
compactHeightfield.maxRegions = 0;
|
||||
rcVcopy(compactHeightfield.bmin, heightfield.bmin);
|
||||
rcVcopy(compactHeightfield.bmax, heightfield.bmax);
|
||||
compactHeightfield.bmax[1] += walkableHeight * heightfield.ch;
|
||||
compactHeightfield.cs = heightfield.cs;
|
||||
compactHeightfield.ch = heightfield.ch;
|
||||
compactHeightfield.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell) * xSize * zSize, RC_ALLOC_PERM);
|
||||
if (!compactHeightfield.cells)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
|
||||
context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", xSize * zSize);
|
||||
return false;
|
||||
}
|
||||
memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
|
||||
chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.spans)
|
||||
memset(compactHeightfield.cells, 0, sizeof(rcCompactCell) * xSize * zSize);
|
||||
compactHeightfield.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan) * spanCount, RC_ALLOC_PERM);
|
||||
if (!compactHeightfield.spans)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
|
||||
context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
|
||||
return false;
|
||||
}
|
||||
memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
|
||||
chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.areas)
|
||||
memset(compactHeightfield.spans, 0, sizeof(rcCompactSpan) * spanCount);
|
||||
compactHeightfield.areas = (unsigned char*)rcAlloc(sizeof(unsigned char) * spanCount, RC_ALLOC_PERM);
|
||||
if (!compactHeightfield.areas)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
|
||||
context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
|
||||
return false;
|
||||
}
|
||||
memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);
|
||||
|
||||
memset(compactHeightfield.areas, RC_NULL_AREA, sizeof(unsigned char) * spanCount);
|
||||
|
||||
const int MAX_HEIGHT = 0xffff;
|
||||
|
||||
|
||||
// Fill in cells and spans.
|
||||
int idx = 0;
|
||||
for (int y = 0; y < h; ++y)
|
||||
int currentCellIndex = 0;
|
||||
const int numColumns = xSize * zSize;
|
||||
for (int columnIndex = 0; columnIndex < numColumns; ++columnIndex)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
const rcSpan* span = heightfield.spans[columnIndex];
|
||||
|
||||
// If there are no spans at this cell, just leave the data to index=0, count=0.
|
||||
if (span == NULL)
|
||||
{
|
||||
const rcSpan* s = hf.spans[x + y*w];
|
||||
// If there are no spans at this cell, just leave the data to index=0, count=0.
|
||||
if (!s) continue;
|
||||
rcCompactCell& c = chf.cells[x+y*w];
|
||||
c.index = idx;
|
||||
c.count = 0;
|
||||
while (s)
|
||||
continue;
|
||||
}
|
||||
|
||||
rcCompactCell& cell = compactHeightfield.cells[columnIndex];
|
||||
cell.index = currentCellIndex;
|
||||
cell.count = 0;
|
||||
|
||||
for (; span != NULL; span = span->next)
|
||||
{
|
||||
if (span->area != RC_NULL_AREA)
|
||||
{
|
||||
if (s->area != RC_NULL_AREA)
|
||||
{
|
||||
const int bot = (int)s->smax;
|
||||
const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
|
||||
chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
|
||||
chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
|
||||
chf.areas[idx] = s->area;
|
||||
idx++;
|
||||
c.count++;
|
||||
}
|
||||
s = s->next;
|
||||
const int bot = (int)span->smax;
|
||||
const int top = span->next ? (int)span->next->smin : MAX_HEIGHT;
|
||||
compactHeightfield.spans[currentCellIndex].y = (unsigned short)rcClamp(bot, 0, 0xffff);
|
||||
compactHeightfield.spans[currentCellIndex].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
|
||||
compactHeightfield.areas[currentCellIndex] = span->area;
|
||||
currentCellIndex++;
|
||||
cell.count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Find neighbour connections.
|
||||
const int MAX_LAYERS = RC_NOT_CONNECTED-1;
|
||||
int tooHighNeighbour = 0;
|
||||
for (int y = 0; y < h; ++y)
|
||||
const int MAX_LAYERS = RC_NOT_CONNECTED - 1;
|
||||
int maxLayerIndex = 0;
|
||||
const int zStride = xSize; // for readability
|
||||
for (int z = 0; z < zSize; ++z)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
for (int x = 0; x < xSize; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
|
||||
for (int i = (int)cell.index, ni = (int)(cell.index + cell.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
|
||||
rcCompactSpan& span = compactHeightfield.spans[i];
|
||||
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
rcSetCon(s, dir, RC_NOT_CONNECTED);
|
||||
const int nx = x + rcGetDirOffsetX(dir);
|
||||
const int ny = y + rcGetDirOffsetY(dir);
|
||||
rcSetCon(span, dir, RC_NOT_CONNECTED);
|
||||
const int neighborX = x + rcGetDirOffsetX(dir);
|
||||
const int neighborZ = z + rcGetDirOffsetY(dir);
|
||||
// First check that the neighbour cell is in bounds.
|
||||
if (nx < 0 || ny < 0 || nx >= w || ny >= h)
|
||||
if (neighborX < 0 || neighborZ < 0 || neighborX >= xSize || neighborZ >= zSize)
|
||||
{
|
||||
continue;
|
||||
|
||||
}
|
||||
|
||||
// Iterate over all neighbour spans and check if any of the is
|
||||
// accessible from current cell.
|
||||
const rcCompactCell& nc = chf.cells[nx+ny*w];
|
||||
for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
|
||||
const rcCompactCell& neighborCell = compactHeightfield.cells[neighborX + neighborZ * zStride];
|
||||
for (int k = (int)neighborCell.index, nk = (int)(neighborCell.index + neighborCell.count); k < nk; ++k)
|
||||
{
|
||||
const rcCompactSpan& ns = chf.spans[k];
|
||||
const int bot = rcMax(s.y, ns.y);
|
||||
const int top = rcMin(s.y+s.h, ns.y+ns.h);
|
||||
const rcCompactSpan& neighborSpan = compactHeightfield.spans[k];
|
||||
const int bot = rcMax(span.y, neighborSpan.y);
|
||||
const int top = rcMin(span.y + span.h, neighborSpan.y + neighborSpan.h);
|
||||
|
||||
// Check that the gap between the spans is walkable,
|
||||
// and that the climb height between the gaps is not too high.
|
||||
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
|
||||
if ((top - bot) >= walkableHeight && rcAbs((int)neighborSpan.y - (int)span.y) <= walkableClimb)
|
||||
{
|
||||
// Mark direction as walkable.
|
||||
const int lidx = k - (int)nc.index;
|
||||
if (lidx < 0 || lidx > MAX_LAYERS)
|
||||
const int layerIndex = k - (int)neighborCell.index;
|
||||
if (layerIndex < 0 || layerIndex > MAX_LAYERS)
|
||||
{
|
||||
tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
|
||||
maxLayerIndex = rcMax(maxLayerIndex, layerIndex);
|
||||
continue;
|
||||
}
|
||||
rcSetCon(s, dir, lidx);
|
||||
rcSetCon(span, dir, layerIndex);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tooHighNeighbour > MAX_LAYERS)
|
||||
|
||||
if (maxLayerIndex > MAX_LAYERS)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
|
||||
tooHighNeighbour, MAX_LAYERS);
|
||||
context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
|
||||
maxLayerIndex, MAX_LAYERS);
|
||||
}
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
|
||||
{
|
||||
int size = 0;
|
||||
size += sizeof(hf);
|
||||
size += hf.width * hf.height * sizeof(rcSpan*);
|
||||
|
||||
rcSpanPool* pool = hf.pools;
|
||||
while (pool)
|
||||
{
|
||||
size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
|
||||
pool = pool->next;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
|
||||
{
|
||||
int size = 0;
|
||||
size += sizeof(rcCompactHeightfield);
|
||||
size += sizeof(rcCompactSpan) * chf.spanCount;
|
||||
size += sizeof(rcCompactCell) * chf.width * chf.height;
|
||||
return size;
|
||||
}
|
||||
*/
|
||||
|
|
|
@ -16,12 +16,9 @@
|
|||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
static void *rcAllocDefault(size_t size, rcAllocHint)
|
||||
static void* rcAllocDefault(size_t size, rcAllocHint)
|
||||
{
|
||||
return malloc(size);
|
||||
}
|
||||
|
@ -34,27 +31,21 @@ static void rcFreeDefault(void *ptr)
|
|||
static rcAllocFunc* sRecastAllocFunc = rcAllocDefault;
|
||||
static rcFreeFunc* sRecastFreeFunc = rcFreeDefault;
|
||||
|
||||
/// @see rcAlloc, rcFree
|
||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
|
||||
void rcAllocSetCustom(rcAllocFunc* allocFunc, rcFreeFunc* freeFunc)
|
||||
{
|
||||
sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault;
|
||||
sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault;
|
||||
}
|
||||
|
||||
/// @see rcAllocSetCustom
|
||||
void* rcAlloc(size_t size, rcAllocHint hint)
|
||||
{
|
||||
return sRecastAllocFunc(size, hint);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// @warning This function leaves the value of @p ptr unchanged. So it still
|
||||
/// points to the same (now invalid) location, and not to null.
|
||||
///
|
||||
/// @see rcAllocSetCustom
|
||||
void rcFree(void* ptr)
|
||||
{
|
||||
if (ptr)
|
||||
if (ptr != NULL)
|
||||
{
|
||||
sRecastFreeFunc(ptr);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
|
||||
static rcAssertFailFunc* sRecastAssertFailFunc = 0;
|
||||
|
||||
void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc)
|
||||
void rcAssertFailSetCustom(rcAssertFailFunc* assertFailFunc)
|
||||
{
|
||||
sRecastAssertFailFunc = assertFailFunc;
|
||||
}
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
@ -102,7 +101,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
|
|||
}
|
||||
|
||||
static void walkContour(int x, int y, int i,
|
||||
rcCompactHeightfield& chf,
|
||||
const rcCompactHeightfield& chf,
|
||||
unsigned char* flags, rcIntArray& points)
|
||||
{
|
||||
// Choose the first non-connected edge
|
||||
|
@ -542,7 +541,7 @@ static bool vequal(const int* a, const int* b)
|
|||
return a[0] == b[0] && a[2] == b[2];
|
||||
}
|
||||
|
||||
static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
|
||||
static bool intersectSegContour(const int* d0, const int* d1, int i, int n, const int* verts)
|
||||
{
|
||||
// For each edge (k,k+1) of P
|
||||
for (int k = 0; k < n; k++)
|
||||
|
@ -778,9 +777,9 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
|
|||
for (int j = 0; j < ndiags; j++)
|
||||
{
|
||||
const int* pt = &outline->verts[diags[j].vert*4];
|
||||
bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
|
||||
bool intersect = intersectSegContour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
|
||||
for (int k = i; k < region.nholes && !intersect; k++)
|
||||
intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
|
||||
intersect |= intersectSegContour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
|
||||
if (!intersect)
|
||||
{
|
||||
index = diags[j].vert;
|
||||
|
@ -821,7 +820,7 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
|
|||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
|
||||
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf,
|
||||
const float maxError, const int maxEdgeLen,
|
||||
rcContourSet& cset, const int buildFlags)
|
||||
{
|
||||
|
|
|
@ -16,186 +16,168 @@
|
|||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Allows the formation of walkable regions that will flow over low lying
|
||||
/// objects such as curbs, and up structures such as stairways.
|
||||
///
|
||||
/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
|
||||
///
|
||||
/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call
|
||||
/// #rcFilterLedgeSpans after calling this filter.
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
#include <stdlib.h>
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES);
|
||||
|
||||
const int w = solid.width;
|
||||
const int h = solid.height;
|
||||
|
||||
for (int y = 0; y < h; ++y)
|
||||
void rcFilterLowHangingWalkableObstacles(rcContext* context, const int walkableClimb, rcHeightfield& heightfield)
|
||||
{
|
||||
rcAssert(context);
|
||||
|
||||
rcScopedTimer timer(context, RC_TIMER_FILTER_LOW_OBSTACLES);
|
||||
|
||||
const int xSize = heightfield.width;
|
||||
const int zSize = heightfield.height;
|
||||
|
||||
for (int z = 0; z < zSize; ++z)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
for (int x = 0; x < xSize; ++x)
|
||||
{
|
||||
rcSpan* ps = 0;
|
||||
bool previousWalkable = false;
|
||||
rcSpan* previousSpan = NULL;
|
||||
bool previousWasWalkable = false;
|
||||
unsigned char previousArea = RC_NULL_AREA;
|
||||
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next)
|
||||
|
||||
for (rcSpan* span = heightfield.spans[x + z * xSize]; span != NULL; previousSpan = span, span = span->next)
|
||||
{
|
||||
const bool walkable = s->area != RC_NULL_AREA;
|
||||
const bool walkable = span->area != RC_NULL_AREA;
|
||||
// If current span is not walkable, but there is walkable
|
||||
// span just below it, mark the span above it walkable too.
|
||||
if (!walkable && previousWalkable)
|
||||
if (!walkable && previousWasWalkable)
|
||||
{
|
||||
if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb)
|
||||
s->area = previousArea;
|
||||
if (rcAbs((int)span->smax - (int)previousSpan->smax) <= walkableClimb)
|
||||
{
|
||||
span->area = previousArea;
|
||||
}
|
||||
}
|
||||
// Copy walkable flag so that it cannot propagate
|
||||
// past multiple non-walkable objects.
|
||||
previousWalkable = walkable;
|
||||
previousArea = s->area;
|
||||
previousWasWalkable = walkable;
|
||||
previousArea = span->area;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
|
||||
/// from the current span's maximum.
|
||||
/// This method removes the impact of the overestimation of conservative voxelization
|
||||
/// so the resulting mesh will not have regions hanging in the air over ledges.
|
||||
///
|
||||
/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& solid)
|
||||
void rcFilterLedgeSpans(rcContext* context, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& heightfield)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER);
|
||||
rcScopedTimer timer(context, RC_TIMER_FILTER_BORDER);
|
||||
|
||||
const int w = solid.width;
|
||||
const int h = solid.height;
|
||||
const int MAX_HEIGHT = 0xffff;
|
||||
const int xSize = heightfield.width;
|
||||
const int zSize = heightfield.height;
|
||||
const int MAX_HEIGHT = 0xffff; // TODO (graham): Move this to a more visible constant and update usages.
|
||||
|
||||
// Mark border spans.
|
||||
for (int y = 0; y < h; ++y)
|
||||
for (int z = 0; z < zSize; ++z)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
for (int x = 0; x < xSize; ++x)
|
||||
{
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
|
||||
for (rcSpan* span = heightfield.spans[x + z * xSize]; span; span = span->next)
|
||||
{
|
||||
// Skip non walkable spans.
|
||||
if (s->area == RC_NULL_AREA)
|
||||
if (span->area == RC_NULL_AREA)
|
||||
{
|
||||
continue;
|
||||
|
||||
const int bot = (int)(s->smax);
|
||||
const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
|
||||
|
||||
}
|
||||
|
||||
const int bot = (int)(span->smax);
|
||||
const int top = span->next ? (int)(span->next->smin) : MAX_HEIGHT;
|
||||
|
||||
// Find neighbours minimum height.
|
||||
int minh = MAX_HEIGHT;
|
||||
int minNeighborHeight = MAX_HEIGHT;
|
||||
|
||||
// Min and max height of accessible neighbours.
|
||||
int asmin = s->smax;
|
||||
int asmax = s->smax;
|
||||
int accessibleNeighborMinHeight = span->smax;
|
||||
int accessibleNeighborMaxHeight = span->smax;
|
||||
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
for (int direction = 0; direction < 4; ++direction)
|
||||
{
|
||||
int dx = x + rcGetDirOffsetX(dir);
|
||||
int dy = y + rcGetDirOffsetY(dir);
|
||||
int dx = x + rcGetDirOffsetX(direction);
|
||||
int dy = z + rcGetDirOffsetY(direction);
|
||||
// Skip neighbours which are out of bounds.
|
||||
if (dx < 0 || dy < 0 || dx >= w || dy >= h)
|
||||
if (dx < 0 || dy < 0 || dx >= xSize || dy >= zSize)
|
||||
{
|
||||
minh = rcMin(minh, -walkableClimb - bot);
|
||||
minNeighborHeight = rcMin(minNeighborHeight, -walkableClimb - bot);
|
||||
continue;
|
||||
}
|
||||
|
||||
// From minus infinity to the first span.
|
||||
rcSpan* ns = solid.spans[dx + dy*w];
|
||||
int nbot = -walkableClimb;
|
||||
int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
|
||||
// Skip neightbour if the gap between the spans is too small.
|
||||
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
|
||||
minh = rcMin(minh, nbot - bot);
|
||||
const rcSpan* neighborSpan = heightfield.spans[dx + dy * xSize];
|
||||
int neighborBot = -walkableClimb;
|
||||
int neighborTop = neighborSpan ? (int)neighborSpan->smin : MAX_HEIGHT;
|
||||
|
||||
// Rest of the spans.
|
||||
for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
|
||||
// Skip neighbour if the gap between the spans is too small.
|
||||
if (rcMin(top, neighborTop) - rcMax(bot, neighborBot) > walkableHeight)
|
||||
{
|
||||
nbot = (int)ns->smax;
|
||||
ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
|
||||
// Skip neightbour if the gap between the spans is too small.
|
||||
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
|
||||
{
|
||||
minh = rcMin(minh, nbot - bot);
|
||||
minNeighborHeight = rcMin(minNeighborHeight, neighborBot - bot);
|
||||
}
|
||||
|
||||
// Rest of the spans.
|
||||
for (neighborSpan = heightfield.spans[dx + dy * xSize]; neighborSpan; neighborSpan = neighborSpan->next)
|
||||
{
|
||||
neighborBot = (int)neighborSpan->smax;
|
||||
neighborTop = neighborSpan->next ? (int)neighborSpan->next->smin : MAX_HEIGHT;
|
||||
|
||||
// Skip neighbour if the gap between the spans is too small.
|
||||
if (rcMin(top, neighborTop) - rcMax(bot, neighborBot) > walkableHeight)
|
||||
{
|
||||
minNeighborHeight = rcMin(minNeighborHeight, neighborBot - bot);
|
||||
|
||||
// Find min/max accessible neighbour height.
|
||||
if (rcAbs(nbot - bot) <= walkableClimb)
|
||||
if (rcAbs(neighborBot - bot) <= walkableClimb)
|
||||
{
|
||||
if (nbot < asmin) asmin = nbot;
|
||||
if (nbot > asmax) asmax = nbot;
|
||||
if (neighborBot < accessibleNeighborMinHeight) accessibleNeighborMinHeight = neighborBot;
|
||||
if (neighborBot > accessibleNeighborMaxHeight) accessibleNeighborMaxHeight = neighborBot;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// The current span is close to a ledge if the drop to any
|
||||
// neighbour span is less than the walkableClimb.
|
||||
if (minh < -walkableClimb)
|
||||
if (minNeighborHeight < -walkableClimb)
|
||||
{
|
||||
s->area = RC_NULL_AREA;
|
||||
span->area = RC_NULL_AREA;
|
||||
}
|
||||
// If the difference between all neighbours is too large,
|
||||
// we are at steep slope, mark the span as ledge.
|
||||
else if ((asmax - asmin) > walkableClimb)
|
||||
else if ((accessibleNeighborMaxHeight - accessibleNeighborMinHeight) > walkableClimb)
|
||||
{
|
||||
s->area = RC_NULL_AREA;
|
||||
span->area = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// For this filter, the clearance above the span is the distance from the span's
|
||||
/// maximum to the next higher span's minimum. (Same grid column.)
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid)
|
||||
void rcFilterWalkableLowHeightSpans(rcContext* context, const int walkableHeight, rcHeightfield& heightfield)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE);
|
||||
rcScopedTimer timer(context, RC_TIMER_FILTER_WALKABLE);
|
||||
|
||||
const int w = solid.width;
|
||||
const int h = solid.height;
|
||||
const int xSize = heightfield.width;
|
||||
const int zSize = heightfield.height;
|
||||
const int MAX_HEIGHT = 0xffff;
|
||||
|
||||
// Remove walkable flag from spans which do not have enough
|
||||
// space above them for the agent to stand there.
|
||||
for (int y = 0; y < h; ++y)
|
||||
for (int z = 0; z < zSize; ++z)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
for (int x = 0; x < xSize; ++x)
|
||||
{
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
|
||||
for (rcSpan* span = heightfield.spans[x + z*xSize]; span; span = span->next)
|
||||
{
|
||||
const int bot = (int)(s->smax);
|
||||
const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
|
||||
if ((top - bot) <= walkableHeight)
|
||||
s->area = RC_NULL_AREA;
|
||||
const int bot = (int)(span->smax);
|
||||
const int top = span->next ? (int)(span->next->smin) : MAX_HEIGHT;
|
||||
if ((top - bot) < walkableHeight)
|
||||
{
|
||||
span->area = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
@ -29,8 +28,21 @@
|
|||
|
||||
// Must be 255 or smaller (not 256) because layer IDs are stored as
|
||||
// a byte where 255 is a special value.
|
||||
static const int RC_MAX_LAYERS = 63;
|
||||
static const int RC_MAX_NEIS = 16;
|
||||
#ifndef RC_MAX_LAYERS_DEF
|
||||
#define RC_MAX_LAYERS_DEF 63
|
||||
#endif
|
||||
|
||||
#if RC_MAX_LAYERS_DEF > 255
|
||||
#error RC_MAX_LAYERS_DEF must be 255 or smaller
|
||||
#endif
|
||||
|
||||
#ifndef RC_MAX_NEIS_DEF
|
||||
#define RC_MAX_NEIS_DEF 16
|
||||
#endif
|
||||
|
||||
// Keep type checking.
|
||||
static const int RC_MAX_LAYERS = RC_MAX_LAYERS_DEF;
|
||||
static const int RC_MAX_NEIS = RC_MAX_NEIS_DEF;
|
||||
|
||||
struct rcLayerRegion
|
||||
{
|
||||
|
@ -89,7 +101,7 @@ struct rcLayerSweepSpan
|
|||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
|
||||
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
bool rcBuildHeightfieldLayers(rcContext* ctx, const rcCompactHeightfield& chf,
|
||||
const int borderSize, const int walkableHeight,
|
||||
rcHeightfieldLayerSet& lset)
|
||||
{
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
@ -35,7 +34,7 @@ static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
|
|||
const int nverts, const int vertsPerPoly)
|
||||
{
|
||||
// Based on code by Eric Lengyel from:
|
||||
// http://www.terathon.com/code/edges.php
|
||||
// https://web.archive.org/web/20080704083314/http://www.terathon.com/code/edges.php
|
||||
|
||||
int maxEdgeCount = npolys*vertsPerPoly;
|
||||
unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP);
|
||||
|
@ -987,7 +986,7 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
|
|||
/// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
|
||||
///
|
||||
/// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
|
||||
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
|
||||
bool rcBuildPolyMesh(rcContext* ctx, const rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
|
|
@ -16,377 +16,485 @@
|
|||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax)
|
||||
/// Check whether two bounding boxes overlap
|
||||
///
|
||||
/// @param[in] aMin Min axis extents of bounding box A
|
||||
/// @param[in] aMax Max axis extents of bounding box A
|
||||
/// @param[in] bMin Min axis extents of bounding box B
|
||||
/// @param[in] bMax Max axis extents of bounding box B
|
||||
/// @returns true if the two bounding boxes overlap. False otherwise.
|
||||
static bool overlapBounds(const float* aMin, const float* aMax, const float* bMin, const float* bMax)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
return
|
||||
aMin[0] <= bMax[0] && aMax[0] >= bMin[0] &&
|
||||
aMin[1] <= bMax[1] && aMax[1] >= bMin[1] &&
|
||||
aMin[2] <= bMax[2] && aMax[2] >= bMin[2];
|
||||
}
|
||||
|
||||
inline bool overlapInterval(unsigned short amin, unsigned short amax,
|
||||
unsigned short bmin, unsigned short bmax)
|
||||
{
|
||||
if (amax < bmin) return false;
|
||||
if (amin > bmax) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// Allocates a new span in the heightfield.
|
||||
/// Use a memory pool and free list to minimize actual allocations.
|
||||
///
|
||||
/// @param[in] hf The heightfield
|
||||
/// @returns A pointer to the allocated or re-used span memory.
|
||||
static rcSpan* allocSpan(rcHeightfield& hf)
|
||||
{
|
||||
// If running out of memory, allocate new page and update the freelist.
|
||||
if (!hf.freelist || !hf.freelist->next)
|
||||
// If necessary, allocate new page and update the freelist.
|
||||
if (hf.freelist == NULL || hf.freelist->next == NULL)
|
||||
{
|
||||
// Create new page.
|
||||
// Allocate memory for the new pool.
|
||||
rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
|
||||
if (!pool) return 0;
|
||||
rcSpanPool* spanPool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
|
||||
if (spanPool == NULL)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Add the pool into the list of pools.
|
||||
pool->next = hf.pools;
|
||||
hf.pools = pool;
|
||||
// Add new items to the free list.
|
||||
rcSpan* freelist = hf.freelist;
|
||||
rcSpan* head = &pool->items[0];
|
||||
rcSpan* it = &pool->items[RC_SPANS_PER_POOL];
|
||||
spanPool->next = hf.pools;
|
||||
hf.pools = spanPool;
|
||||
|
||||
// Add new spans to the free list.
|
||||
rcSpan* freeList = hf.freelist;
|
||||
rcSpan* head = &spanPool->items[0];
|
||||
rcSpan* it = &spanPool->items[RC_SPANS_PER_POOL];
|
||||
do
|
||||
{
|
||||
--it;
|
||||
it->next = freelist;
|
||||
freelist = it;
|
||||
it->next = freeList;
|
||||
freeList = it;
|
||||
}
|
||||
while (it != head);
|
||||
hf.freelist = it;
|
||||
}
|
||||
|
||||
// Pop item from in front of the free list.
|
||||
rcSpan* it = hf.freelist;
|
||||
|
||||
// Pop item from the front of the free list.
|
||||
rcSpan* newSpan = hf.freelist;
|
||||
hf.freelist = hf.freelist->next;
|
||||
return it;
|
||||
return newSpan;
|
||||
}
|
||||
|
||||
static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
|
||||
/// Releases the memory used by the span back to the heightfield, so it can be re-used for new spans.
|
||||
/// @param[in] hf The heightfield.
|
||||
/// @param[in] span A pointer to the span to free
|
||||
static void freeSpan(rcHeightfield& hf, rcSpan* span)
|
||||
{
|
||||
if (!ptr) return;
|
||||
// Add the node in front of the free list.
|
||||
ptr->next = hf.freelist;
|
||||
hf.freelist = ptr;
|
||||
}
|
||||
|
||||
static bool addSpan(rcHeightfield& hf, const int x, const int y,
|
||||
const unsigned short smin, const unsigned short smax,
|
||||
const unsigned char area, const int flagMergeThr)
|
||||
{
|
||||
|
||||
int idx = x + y*hf.width;
|
||||
|
||||
rcSpan* s = allocSpan(hf);
|
||||
if (!s)
|
||||
return false;
|
||||
s->smin = smin;
|
||||
s->smax = smax;
|
||||
s->area = area;
|
||||
s->next = 0;
|
||||
|
||||
// Empty cell, add the first span.
|
||||
if (!hf.spans[idx])
|
||||
if (span == NULL)
|
||||
{
|
||||
hf.spans[idx] = s;
|
||||
return true;
|
||||
return;
|
||||
}
|
||||
rcSpan* prev = 0;
|
||||
rcSpan* cur = hf.spans[idx];
|
||||
|
||||
// Insert and merge spans.
|
||||
while (cur)
|
||||
// Add the span to the front of the free list.
|
||||
span->next = hf.freelist;
|
||||
hf.freelist = span;
|
||||
}
|
||||
|
||||
/// Adds a span to the heightfield. If the new span overlaps existing spans,
|
||||
/// it will merge the new span with the existing ones.
|
||||
///
|
||||
/// @param[in] hf Heightfield to add spans to
|
||||
/// @param[in] x The new span's column cell x index
|
||||
/// @param[in] z The new span's column cell z index
|
||||
/// @param[in] min The new span's minimum cell index
|
||||
/// @param[in] max The new span's maximum cell index
|
||||
/// @param[in] areaID The new span's area type ID
|
||||
/// @param[in] flagMergeThreshold How close two spans maximum extents need to be to merge area type IDs
|
||||
static bool addSpan(rcHeightfield& hf,
|
||||
const int x, const int z,
|
||||
const unsigned short min, const unsigned short max,
|
||||
const unsigned char areaID, const int flagMergeThreshold)
|
||||
{
|
||||
// Create the new span.
|
||||
rcSpan* newSpan = allocSpan(hf);
|
||||
if (newSpan == NULL)
|
||||
{
|
||||
if (cur->smin > s->smax)
|
||||
return false;
|
||||
}
|
||||
newSpan->smin = min;
|
||||
newSpan->smax = max;
|
||||
newSpan->area = areaID;
|
||||
newSpan->next = NULL;
|
||||
|
||||
const int columnIndex = x + z * hf.width;
|
||||
rcSpan* previousSpan = NULL;
|
||||
rcSpan* currentSpan = hf.spans[columnIndex];
|
||||
|
||||
// Insert the new span, possibly merging it with existing spans.
|
||||
while (currentSpan != NULL)
|
||||
{
|
||||
if (currentSpan->smin > newSpan->smax)
|
||||
{
|
||||
// Current span is further than the new span, break.
|
||||
// Current span is completely after the new span, break.
|
||||
break;
|
||||
}
|
||||
else if (cur->smax < s->smin)
|
||||
|
||||
if (currentSpan->smax < newSpan->smin)
|
||||
{
|
||||
// Current span is before the new span advance.
|
||||
prev = cur;
|
||||
cur = cur->next;
|
||||
// Current span is completely before the new span. Keep going.
|
||||
previousSpan = currentSpan;
|
||||
currentSpan = currentSpan->next;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Merge spans.
|
||||
if (cur->smin < s->smin)
|
||||
s->smin = cur->smin;
|
||||
if (cur->smax > s->smax)
|
||||
s->smax = cur->smax;
|
||||
// The new span overlaps with an existing span. Merge them.
|
||||
if (currentSpan->smin < newSpan->smin)
|
||||
{
|
||||
newSpan->smin = currentSpan->smin;
|
||||
}
|
||||
if (currentSpan->smax > newSpan->smax)
|
||||
{
|
||||
newSpan->smax = currentSpan->smax;
|
||||
}
|
||||
|
||||
// Merge flags.
|
||||
if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr)
|
||||
s->area = rcMax(s->area, cur->area);
|
||||
if (rcAbs((int)newSpan->smax - (int)currentSpan->smax) <= flagMergeThreshold)
|
||||
{
|
||||
// Higher area ID numbers indicate higher resolution priority.
|
||||
newSpan->area = rcMax(newSpan->area, currentSpan->area);
|
||||
}
|
||||
|
||||
// Remove current span.
|
||||
rcSpan* next = cur->next;
|
||||
freeSpan(hf, cur);
|
||||
if (prev)
|
||||
prev->next = next;
|
||||
// Remove the current span since it's now merged with newSpan.
|
||||
// Keep going because there might be other overlapping spans that also need to be merged.
|
||||
rcSpan* next = currentSpan->next;
|
||||
freeSpan(hf, currentSpan);
|
||||
if (previousSpan)
|
||||
{
|
||||
previousSpan->next = next;
|
||||
}
|
||||
else
|
||||
hf.spans[idx] = next;
|
||||
cur = next;
|
||||
{
|
||||
hf.spans[columnIndex] = next;
|
||||
}
|
||||
currentSpan = next;
|
||||
}
|
||||
}
|
||||
|
||||
// Insert new span.
|
||||
if (prev)
|
||||
// Insert new span after prev
|
||||
if (previousSpan != NULL)
|
||||
{
|
||||
s->next = prev->next;
|
||||
prev->next = s;
|
||||
newSpan->next = previousSpan->next;
|
||||
previousSpan->next = newSpan;
|
||||
}
|
||||
else
|
||||
{
|
||||
s->next = hf.spans[idx];
|
||||
hf.spans[idx] = s;
|
||||
// This span should go before the others in the list
|
||||
newSpan->next = hf.spans[columnIndex];
|
||||
hf.spans[columnIndex] = newSpan;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The span addition can be set to favor flags. If the span is merged to
|
||||
/// another span and the new @p smax is within @p flagMergeThr units
|
||||
/// from the existing span, the span flags are merged.
|
||||
///
|
||||
/// @see rcHeightfield, rcSpan.
|
||||
bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
|
||||
const unsigned short smin, const unsigned short smax,
|
||||
const unsigned char area, const int flagMergeThr)
|
||||
bool rcAddSpan(rcContext* context, rcHeightfield& heightfield,
|
||||
const int x, const int z,
|
||||
const unsigned short spanMin, const unsigned short spanMax,
|
||||
const unsigned char areaID, const int flagMergeThreshold)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context);
|
||||
|
||||
if (!addSpan(hf, x, y, smin, smax, area, flagMergeThr))
|
||||
if (!addSpan(heightfield, x, z, spanMin, spanMax, areaID, flagMergeThreshold))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
|
||||
context->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// divides a convex polygons into two convex polygons on both sides of a line
|
||||
static void dividePoly(const float* in, int nin,
|
||||
float* out1, int* nout1,
|
||||
float* out2, int* nout2,
|
||||
float x, int axis)
|
||||
enum rcAxis
|
||||
{
|
||||
float d[12];
|
||||
for (int i = 0; i < nin; ++i)
|
||||
d[i] = x - in[i*3+axis];
|
||||
RC_AXIS_X = 0,
|
||||
RC_AXIS_Y = 1,
|
||||
RC_AXIS_Z = 2
|
||||
};
|
||||
|
||||
int m = 0, n = 0;
|
||||
for (int i = 0, j = nin-1; i < nin; j=i, ++i)
|
||||
/// Divides a convex polygon of max 12 vertices into two convex polygons
|
||||
/// across a separating axis.
|
||||
///
|
||||
/// @param[in] inVerts The input polygon vertices
|
||||
/// @param[in] inVertsCount The number of input polygon vertices
|
||||
/// @param[out] outVerts1 Resulting polygon 1's vertices
|
||||
/// @param[out] outVerts1Count The number of resulting polygon 1 vertices
|
||||
/// @param[out] outVerts2 Resulting polygon 2's vertices
|
||||
/// @param[out] outVerts2Count The number of resulting polygon 2 vertices
|
||||
/// @param[in] axisOffset THe offset along the specified axis
|
||||
/// @param[in] axis The separating axis
|
||||
static void dividePoly(const float* inVerts, int inVertsCount,
|
||||
float* outVerts1, int* outVerts1Count,
|
||||
float* outVerts2, int* outVerts2Count,
|
||||
float axisOffset, rcAxis axis)
|
||||
{
|
||||
rcAssert(inVertsCount <= 12);
|
||||
|
||||
// How far positive or negative away from the separating axis is each vertex.
|
||||
float inVertAxisDelta[12];
|
||||
for (int inVert = 0; inVert < inVertsCount; ++inVert)
|
||||
{
|
||||
bool ina = d[j] >= 0;
|
||||
bool inb = d[i] >= 0;
|
||||
if (ina != inb)
|
||||
inVertAxisDelta[inVert] = axisOffset - inVerts[inVert * 3 + axis];
|
||||
}
|
||||
|
||||
int poly1Vert = 0;
|
||||
int poly2Vert = 0;
|
||||
for (int inVertA = 0, inVertB = inVertsCount - 1; inVertA < inVertsCount; inVertB = inVertA, ++inVertA)
|
||||
{
|
||||
// If the two vertices are on the same side of the separating axis
|
||||
bool sameSide = (inVertAxisDelta[inVertA] >= 0) == (inVertAxisDelta[inVertB] >= 0);
|
||||
|
||||
if (!sameSide)
|
||||
{
|
||||
float s = d[j] / (d[j] - d[i]);
|
||||
out1[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
|
||||
out1[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
|
||||
out1[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
|
||||
rcVcopy(out2 + n*3, out1 + m*3);
|
||||
m++;
|
||||
n++;
|
||||
// add the i'th point to the right polygon. Do NOT add points that are on the dividing line
|
||||
float s = inVertAxisDelta[inVertB] / (inVertAxisDelta[inVertB] - inVertAxisDelta[inVertA]);
|
||||
outVerts1[poly1Vert * 3 + 0] = inVerts[inVertB * 3 + 0] + (inVerts[inVertA * 3 + 0] - inVerts[inVertB * 3 + 0]) * s;
|
||||
outVerts1[poly1Vert * 3 + 1] = inVerts[inVertB * 3 + 1] + (inVerts[inVertA * 3 + 1] - inVerts[inVertB * 3 + 1]) * s;
|
||||
outVerts1[poly1Vert * 3 + 2] = inVerts[inVertB * 3 + 2] + (inVerts[inVertA * 3 + 2] - inVerts[inVertB * 3 + 2]) * s;
|
||||
rcVcopy(&outVerts2[poly2Vert * 3], &outVerts1[poly1Vert * 3]);
|
||||
poly1Vert++;
|
||||
poly2Vert++;
|
||||
|
||||
// add the inVertA point to the right polygon. Do NOT add points that are on the dividing line
|
||||
// since these were already added above
|
||||
if (d[i] > 0)
|
||||
if (inVertAxisDelta[inVertA] > 0)
|
||||
{
|
||||
rcVcopy(out1 + m*3, in + i*3);
|
||||
m++;
|
||||
rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]);
|
||||
poly1Vert++;
|
||||
}
|
||||
else if (d[i] < 0)
|
||||
else if (inVertAxisDelta[inVertA] < 0)
|
||||
{
|
||||
rcVcopy(out2 + n*3, in + i*3);
|
||||
n++;
|
||||
rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]);
|
||||
poly2Vert++;
|
||||
}
|
||||
}
|
||||
else // same side
|
||||
else
|
||||
{
|
||||
// add the i'th point to the right polygon. Addition is done even for points on the dividing line
|
||||
if (d[i] >= 0)
|
||||
// add the inVertA point to the right polygon. Addition is done even for points on the dividing line
|
||||
if (inVertAxisDelta[inVertA] >= 0)
|
||||
{
|
||||
rcVcopy(out1 + m*3, in + i*3);
|
||||
m++;
|
||||
if (d[i] != 0)
|
||||
rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]);
|
||||
poly1Vert++;
|
||||
if (inVertAxisDelta[inVertA] != 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
rcVcopy(out2 + n*3, in + i*3);
|
||||
n++;
|
||||
rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]);
|
||||
poly2Vert++;
|
||||
}
|
||||
}
|
||||
|
||||
*nout1 = m;
|
||||
*nout2 = n;
|
||||
*outVerts1Count = poly1Vert;
|
||||
*outVerts2Count = poly2Vert;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Rasterize a single triangle to the heightfield.
|
||||
///
|
||||
/// This code is extremely hot, so much care should be given to maintaining maximum perf here.
|
||||
///
|
||||
/// @param[in] v0 Triangle vertex 0
|
||||
/// @param[in] v1 Triangle vertex 1
|
||||
/// @param[in] v2 Triangle vertex 2
|
||||
/// @param[in] areaID The area ID to assign to the rasterized spans
|
||||
/// @param[in] hf Heightfield to rasterize into
|
||||
/// @param[in] hfBBMin The min extents of the heightfield bounding box
|
||||
/// @param[in] hfBBMax The max extents of the heightfield bounding box
|
||||
/// @param[in] cellSize The x and z axis size of a voxel in the heightfield
|
||||
/// @param[in] inverseCellSize 1 / cellSize
|
||||
/// @param[in] inverseCellHeight 1 / cellHeight
|
||||
/// @param[in] flagMergeThreshold The threshold in which area flags will be merged
|
||||
/// @returns true if the operation completes successfully. false if there was an error adding spans to the heightfield.
|
||||
static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
|
||||
const unsigned char area, rcHeightfield& hf,
|
||||
const float* bmin, const float* bmax,
|
||||
const float cs, const float ics, const float ich,
|
||||
const int flagMergeThr)
|
||||
const unsigned char areaID, rcHeightfield& hf,
|
||||
const float* hfBBMin, const float* hfBBMax,
|
||||
const float cellSize, const float inverseCellSize, const float inverseCellHeight,
|
||||
const int flagMergeThreshold)
|
||||
{
|
||||
// Calculate the bounding box of the triangle.
|
||||
float triBBMin[3];
|
||||
rcVcopy(triBBMin, v0);
|
||||
rcVmin(triBBMin, v1);
|
||||
rcVmin(triBBMin, v2);
|
||||
|
||||
float triBBMax[3];
|
||||
rcVcopy(triBBMax, v0);
|
||||
rcVmax(triBBMax, v1);
|
||||
rcVmax(triBBMax, v2);
|
||||
|
||||
// If the triangle does not touch the bounding box of the heightfield, skip the triangle.
|
||||
if (!overlapBounds(triBBMin, triBBMax, hfBBMin, hfBBMax))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
const int w = hf.width;
|
||||
const int h = hf.height;
|
||||
float tmin[3], tmax[3];
|
||||
const float by = bmax[1] - bmin[1];
|
||||
|
||||
// Calculate the bounding box of the triangle.
|
||||
rcVcopy(tmin, v0);
|
||||
rcVcopy(tmax, v0);
|
||||
rcVmin(tmin, v1);
|
||||
rcVmin(tmin, v2);
|
||||
rcVmax(tmax, v1);
|
||||
rcVmax(tmax, v2);
|
||||
|
||||
// If the triangle does not touch the bbox of the heightfield, skip the triagle.
|
||||
if (!overlapBounds(bmin, bmax, tmin, tmax))
|
||||
return true;
|
||||
|
||||
// Calculate the footprint of the triangle on the grid's y-axis
|
||||
int y0 = (int)((tmin[2] - bmin[2])*ics);
|
||||
int y1 = (int)((tmax[2] - bmin[2])*ics);
|
||||
const float by = hfBBMax[1] - hfBBMin[1];
|
||||
|
||||
// Calculate the footprint of the triangle on the grid's z-axis
|
||||
int z0 = (int)((triBBMin[2] - hfBBMin[2]) * inverseCellSize);
|
||||
int z1 = (int)((triBBMax[2] - hfBBMin[2]) * inverseCellSize);
|
||||
|
||||
// use -1 rather than 0 to cut the polygon properly at the start of the tile
|
||||
y0 = rcClamp(y0, -1, h-1);
|
||||
y1 = rcClamp(y1, 0, h-1);
|
||||
|
||||
z0 = rcClamp(z0, -1, h - 1);
|
||||
z1 = rcClamp(z1, 0, h - 1);
|
||||
|
||||
// Clip the triangle into all grid cells it touches.
|
||||
float buf[7*3*4];
|
||||
float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3;
|
||||
float buf[7 * 3 * 4];
|
||||
float* in = buf;
|
||||
float* inRow = buf + 7 * 3;
|
||||
float* p1 = inRow + 7 * 3;
|
||||
float* p2 = p1 + 7 * 3;
|
||||
|
||||
rcVcopy(&in[0], v0);
|
||||
rcVcopy(&in[1*3], v1);
|
||||
rcVcopy(&in[2*3], v2);
|
||||
int nvrow, nvIn = 3;
|
||||
|
||||
for (int y = y0; y <= y1; ++y)
|
||||
rcVcopy(&in[1 * 3], v1);
|
||||
rcVcopy(&in[2 * 3], v2);
|
||||
int nvRow;
|
||||
int nvIn = 3;
|
||||
|
||||
for (int z = z0; z <= z1; ++z)
|
||||
{
|
||||
// Clip polygon to row. Store the remaining polygon as well
|
||||
const float cz = bmin[2] + y*cs;
|
||||
dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2);
|
||||
const float cellZ = hfBBMin[2] + (float)z * cellSize;
|
||||
dividePoly(in, nvIn, inRow, &nvRow, p1, &nvIn, cellZ + cellSize, RC_AXIS_Z);
|
||||
rcSwap(in, p1);
|
||||
if (nvrow < 3) continue;
|
||||
if (y < 0) continue;
|
||||
// find the horizontal bounds in the row
|
||||
float minX = inrow[0], maxX = inrow[0];
|
||||
for (int i=1; i<nvrow; ++i)
|
||||
|
||||
if (nvRow < 3)
|
||||
{
|
||||
if (minX > inrow[i*3]) minX = inrow[i*3];
|
||||
if (maxX < inrow[i*3]) maxX = inrow[i*3];
|
||||
}
|
||||
int x0 = (int)((minX - bmin[0])*ics);
|
||||
int x1 = (int)((maxX - bmin[0])*ics);
|
||||
if (x1 < 0 || x0 >= w) {
|
||||
continue;
|
||||
}
|
||||
x0 = rcClamp(x0, -1, w-1);
|
||||
x1 = rcClamp(x1, 0, w-1);
|
||||
if (z < 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// find X-axis bounds of the row
|
||||
float minX = inRow[0];
|
||||
float maxX = inRow[0];
|
||||
for (int vert = 1; vert < nvRow; ++vert)
|
||||
{
|
||||
if (minX > inRow[vert * 3])
|
||||
{
|
||||
minX = inRow[vert * 3];
|
||||
}
|
||||
if (maxX < inRow[vert * 3])
|
||||
{
|
||||
maxX = inRow[vert * 3];
|
||||
}
|
||||
}
|
||||
int x0 = (int)((minX - hfBBMin[0]) * inverseCellSize);
|
||||
int x1 = (int)((maxX - hfBBMin[0]) * inverseCellSize);
|
||||
if (x1 < 0 || x0 >= w)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
x0 = rcClamp(x0, -1, w - 1);
|
||||
x1 = rcClamp(x1, 0, w - 1);
|
||||
|
||||
int nv, nv2 = nvrow;
|
||||
int nv;
|
||||
int nv2 = nvRow;
|
||||
|
||||
for (int x = x0; x <= x1; ++x)
|
||||
{
|
||||
// Clip polygon to column. store the remaining polygon as well
|
||||
const float cx = bmin[0] + x*cs;
|
||||
dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0);
|
||||
rcSwap(inrow, p2);
|
||||
if (nv < 3) continue;
|
||||
if (x < 0) continue;
|
||||
// Calculate min and max of the span.
|
||||
float smin = p1[1], smax = p1[1];
|
||||
for (int i = 1; i < nv; ++i)
|
||||
const float cx = hfBBMin[0] + (float)x * cellSize;
|
||||
dividePoly(inRow, nv2, p1, &nv, p2, &nv2, cx + cellSize, RC_AXIS_X);
|
||||
rcSwap(inRow, p2);
|
||||
|
||||
if (nv < 3)
|
||||
{
|
||||
smin = rcMin(smin, p1[i*3+1]);
|
||||
smax = rcMax(smax, p1[i*3+1]);
|
||||
continue;
|
||||
}
|
||||
if (x < 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
smin -= bmin[1];
|
||||
smax -= bmin[1];
|
||||
// Skip the span if it is outside the heightfield bbox
|
||||
if (smax < 0.0f) continue;
|
||||
if (smin > by) continue;
|
||||
// Clamp the span to the heightfield bbox.
|
||||
if (smin < 0.0f) smin = 0;
|
||||
if (smax > by) smax = by;
|
||||
|
||||
// Calculate min and max of the span.
|
||||
float spanMin = p1[1];
|
||||
float spanMax = p1[1];
|
||||
for (int vert = 1; vert < nv; ++vert)
|
||||
{
|
||||
spanMin = rcMin(spanMin, p1[vert * 3 + 1]);
|
||||
spanMax = rcMax(spanMax, p1[vert * 3 + 1]);
|
||||
}
|
||||
spanMin -= hfBBMin[1];
|
||||
spanMax -= hfBBMin[1];
|
||||
|
||||
// Skip the span if it's completely outside the heightfield bounding box
|
||||
if (spanMax < 0.0f)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
if (spanMin > by)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Clamp the span to the heightfield bounding box.
|
||||
if (spanMin < 0.0f)
|
||||
{
|
||||
spanMin = 0;
|
||||
}
|
||||
if (spanMax > by)
|
||||
{
|
||||
spanMax = by;
|
||||
}
|
||||
|
||||
// Snap the span to the heightfield height grid.
|
||||
unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
|
||||
unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
|
||||
|
||||
if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr))
|
||||
unsigned short spanMinCellIndex = (unsigned short)rcClamp((int)floorf(spanMin * inverseCellHeight), 0, RC_SPAN_MAX_HEIGHT);
|
||||
unsigned short spanMaxCellIndex = (unsigned short)rcClamp((int)ceilf(spanMax * inverseCellHeight), (int)spanMinCellIndex + 1, RC_SPAN_MAX_HEIGHT);
|
||||
|
||||
if (!addSpan(hf, x, z, spanMinCellIndex, spanMaxCellIndex, areaID, flagMergeThreshold))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// No spans will be added if the triangle does not overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
|
||||
const unsigned char area, rcHeightfield& solid,
|
||||
const int flagMergeThr)
|
||||
bool rcRasterizeTriangle(rcContext* context,
|
||||
const float* v0, const float* v1, const float* v2,
|
||||
const unsigned char areaID, rcHeightfield& heightfield, const int flagMergeThreshold)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context != NULL);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
if (!rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
// Rasterize the single triangle.
|
||||
const float inverseCellSize = 1.0f / heightfield.cs;
|
||||
const float inverseCellHeight = 1.0f / heightfield.ch;
|
||||
if (!rasterizeTri(v0, v1, v2, areaID, heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
|
||||
context->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
const int* tris, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
bool rcRasterizeTriangles(rcContext* context,
|
||||
const float* verts, const int /*nv*/,
|
||||
const int* tris, const unsigned char* triAreaIDs, const int numTris,
|
||||
rcHeightfield& heightfield, const int flagMergeThreshold)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context != NULL);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
// Rasterize triangles.
|
||||
for (int i = 0; i < nt; ++i)
|
||||
// Rasterize the triangles.
|
||||
const float inverseCellSize = 1.0f / heightfield.cs;
|
||||
const float inverseCellHeight = 1.0f / heightfield.ch;
|
||||
for (int triIndex = 0; triIndex < numTris; ++triIndex)
|
||||
{
|
||||
const float* v0 = &verts[tris[i*3+0]*3];
|
||||
const float* v1 = &verts[tris[i*3+1]*3];
|
||||
const float* v2 = &verts[tris[i*3+2]*3];
|
||||
// Rasterize.
|
||||
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
const float* v0 = &verts[tris[triIndex * 3 + 0] * 3];
|
||||
const float* v1 = &verts[tris[triIndex * 3 + 1] * 3];
|
||||
const float* v2 = &verts[tris[triIndex * 3 + 2] * 3];
|
||||
if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -394,31 +502,26 @@ bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
|||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
const unsigned short* tris, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
bool rcRasterizeTriangles(rcContext* context,
|
||||
const float* verts, const int /*nv*/,
|
||||
const unsigned short* tris, const unsigned char* triAreaIDs, const int numTris,
|
||||
rcHeightfield& heightfield, const int flagMergeThreshold)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context != NULL);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
// Rasterize triangles.
|
||||
for (int i = 0; i < nt; ++i)
|
||||
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
// Rasterize the triangles.
|
||||
const float inverseCellSize = 1.0f / heightfield.cs;
|
||||
const float inverseCellHeight = 1.0f / heightfield.ch;
|
||||
for (int triIndex = 0; triIndex < numTris; ++triIndex)
|
||||
{
|
||||
const float* v0 = &verts[tris[i*3+0]*3];
|
||||
const float* v1 = &verts[tris[i*3+1]*3];
|
||||
const float* v2 = &verts[tris[i*3+2]*3];
|
||||
// Rasterize.
|
||||
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
const float* v0 = &verts[tris[triIndex * 3 + 0] * 3];
|
||||
const float* v1 = &verts[tris[triIndex * 3 + 1] * 3];
|
||||
const float* v2 = &verts[tris[triIndex * 3 + 2] * 3];
|
||||
if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -426,30 +529,25 @@ bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
|||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
bool rcRasterizeTriangles(rcContext* context,
|
||||
const float* verts, const unsigned char* triAreaIDs, const int numTris,
|
||||
rcHeightfield& heightfield, const int flagMergeThreshold)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
rcAssert(context != NULL);
|
||||
|
||||
rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
// Rasterize triangles.
|
||||
for (int i = 0; i < nt; ++i)
|
||||
// Rasterize the triangles.
|
||||
const float inverseCellSize = 1.0f / heightfield.cs;
|
||||
const float inverseCellHeight = 1.0f / heightfield.ch;
|
||||
for (int triIndex = 0; triIndex < numTris; ++triIndex)
|
||||
{
|
||||
const float* v0 = &verts[(i*3+0)*3];
|
||||
const float* v1 = &verts[(i*3+1)*3];
|
||||
const float* v2 = &verts[(i*3+2)*3];
|
||||
// Rasterize.
|
||||
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
const float* v0 = &verts[(triIndex * 3 + 0) * 3];
|
||||
const float* v1 = &verts[(triIndex * 3 + 1) * 3];
|
||||
const float* v2 = &verts[(triIndex * 3 + 2) * 3];
|
||||
if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
|
Loading…
Reference in New Issue