Fix pingpong with loop wrap is not working
This commit is contained in:
parent
f382a2b59b
commit
8745c206c4
@ -220,7 +220,7 @@ Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const
|
||||
ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
|
||||
Quaternion q2 = to_q * ln.exp();
|
||||
|
||||
// To cancel error made by Expmap ambiguity, do blends.
|
||||
// To cancel error made by Expmap ambiguity, do blending.
|
||||
return q1.slerp(q2, p_weight);
|
||||
}
|
||||
|
||||
@ -271,7 +271,7 @@ Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b
|
||||
ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
Quaternion q2 = to_q * ln.exp();
|
||||
|
||||
// To cancel error made by Expmap ambiguity, do blends.
|
||||
// To cancel error made by Expmap ambiguity, do blending.
|
||||
return q1.slerp(q2, p_weight);
|
||||
}
|
||||
|
||||
|
@ -194,7 +194,7 @@ namespace Godot
|
||||
0);
|
||||
Quaternion q2 = toQ * ln.Exp();
|
||||
|
||||
// To cancel error made by Expmap ambiguity, do blends.
|
||||
// To cancel error made by Expmap ambiguity, do blending.
|
||||
return q1.Slerp(q2, weight);
|
||||
}
|
||||
|
||||
@ -263,7 +263,7 @@ namespace Godot
|
||||
0);
|
||||
Quaternion q2 = toQ * ln.Exp();
|
||||
|
||||
// To cancel error made by Expmap ambiguity, do blends.
|
||||
// To cancel error made by Expmap ambiguity, do blending.
|
||||
return q1.Slerp(q2, weight);
|
||||
}
|
||||
|
||||
|
@ -2463,145 +2463,127 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol
|
||||
int idx = _find(p_keys, p_time, p_backward);
|
||||
|
||||
ERR_FAIL_COND_V(idx == -2, T());
|
||||
int maxi = len - 1;
|
||||
bool is_start_edge = idx == -1;
|
||||
bool is_end_edge = p_backward ? idx == 0 : idx >= maxi;
|
||||
|
||||
int next = 0;
|
||||
real_t c = 0.0;
|
||||
// prepare for all cases of interpolation
|
||||
// Prepare for all cases of interpolation.
|
||||
real_t delta = 0.0;
|
||||
real_t from = 0.0;
|
||||
|
||||
if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
||||
// loop
|
||||
if (!p_backward) {
|
||||
// no backward
|
||||
if (idx >= 0) {
|
||||
if (idx < len - 1) {
|
||||
next = idx + 1;
|
||||
real_t delta = p_keys[next].time - p_keys[idx].time;
|
||||
real_t from = p_time - p_keys[idx].time;
|
||||
int pre = -1;
|
||||
int next = -1;
|
||||
int post = -1;
|
||||
real_t pre_t = 0.0;
|
||||
real_t to_t = 0.0;
|
||||
real_t post_t = 0.0;
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
} else {
|
||||
next = 0;
|
||||
real_t delta = (length - p_keys[idx].time) + p_keys[next].time;
|
||||
real_t from = p_time - p_keys[idx].time;
|
||||
bool use_cubic = p_interp == INTERPOLATION_CUBIC || p_interp == INTERPOLATION_CUBIC_ANGLE;
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// on loop, behind first key
|
||||
idx = len - 1;
|
||||
next = 0;
|
||||
if (!p_loop_wrap || loop_mode == LOOP_NONE) {
|
||||
if (is_start_edge) {
|
||||
idx = p_backward ? maxi : 0;
|
||||
}
|
||||
next = CLAMP(idx + (p_backward ? -1 : 1), 0, maxi);
|
||||
if (use_cubic) {
|
||||
pre = CLAMP(idx + (p_backward ? 1 : -1), 0, maxi);
|
||||
post = CLAMP(idx + (p_backward ? -2 : 2), 0, maxi);
|
||||
}
|
||||
} else if (loop_mode == LOOP_LINEAR) {
|
||||
if (is_start_edge) {
|
||||
idx = p_backward ? 0 : maxi;
|
||||
}
|
||||
next = Math::posmod(idx + (p_backward ? -1 : 1), len);
|
||||
if (use_cubic) {
|
||||
pre = Math::posmod(idx + (p_backward ? 1 : -1), len);
|
||||
post = Math::posmod(idx + (p_backward ? -2 : 2), len);
|
||||
}
|
||||
if (is_start_edge) {
|
||||
if (!p_backward) {
|
||||
real_t endtime = (length - p_keys[idx].time);
|
||||
if (endtime < 0) { // may be keys past the end
|
||||
endtime = 0;
|
||||
}
|
||||
real_t delta = endtime + p_keys[next].time;
|
||||
real_t from = endtime + p_time;
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// backward
|
||||
if (idx <= len - 1) {
|
||||
if (idx > 0) {
|
||||
next = idx - 1;
|
||||
real_t delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
|
||||
real_t from = (length - p_time) - (length - p_keys[idx].time);
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
} else {
|
||||
next = len - 1;
|
||||
real_t delta = p_keys[idx].time + (length - p_keys[next].time);
|
||||
real_t from = (length - p_time) - (length - p_keys[idx].time);
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
}
|
||||
delta = endtime + p_keys[next].time;
|
||||
from = endtime + p_time;
|
||||
} else {
|
||||
// on loop, in front of last key
|
||||
idx = 0;
|
||||
next = len - 1;
|
||||
real_t endtime = p_keys[idx].time;
|
||||
if (endtime > length) { // may be keys past the end
|
||||
endtime = length;
|
||||
}
|
||||
real_t delta = p_keys[next].time - endtime;
|
||||
real_t from = p_time - endtime;
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
delta = endtime + length - p_keys[next].time;
|
||||
from = endtime + length - p_time;
|
||||
}
|
||||
} else if (is_end_edge) {
|
||||
if (!p_backward) {
|
||||
delta = (length - p_keys[idx].time) + p_keys[next].time;
|
||||
from = p_time - p_keys[idx].time;
|
||||
} else {
|
||||
delta = p_keys[idx].time + (length - p_keys[next].time);
|
||||
from = (length - p_time) - (length - p_keys[idx].time);
|
||||
}
|
||||
}
|
||||
} else { // no loop
|
||||
} else {
|
||||
if (is_start_edge) {
|
||||
idx = p_backward ? len : -1;
|
||||
}
|
||||
next = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -1 : 1)) + 0.5f, (float)len) - 0.5f);
|
||||
if (use_cubic) {
|
||||
pre = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? 1 : -1)) + 0.5f, (float)len) - 0.5f);
|
||||
post = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -2 : 2)) + 0.5f, (float)len) - 0.5f);
|
||||
}
|
||||
idx = (int)Math::round(Math::pingpong((float)idx + 0.5f, (float)len) - 0.5f);
|
||||
if (is_start_edge) {
|
||||
if (!p_backward) {
|
||||
real_t endtime = p_keys[idx].time;
|
||||
if (endtime < 0) { // may be keys past the end
|
||||
endtime = 0;
|
||||
}
|
||||
delta = endtime + p_keys[next].time;
|
||||
from = endtime + p_time;
|
||||
} else {
|
||||
real_t endtime = length - p_keys[idx].time;
|
||||
if (endtime > length) { // may be keys past the end
|
||||
endtime = length;
|
||||
}
|
||||
delta = endtime + length - p_keys[next].time;
|
||||
from = endtime + length - p_time;
|
||||
}
|
||||
} else if (is_end_edge) {
|
||||
if (!p_backward) {
|
||||
delta = length * 2.0 - p_keys[idx].time - p_keys[next].time;
|
||||
from = p_time - p_keys[idx].time;
|
||||
} else {
|
||||
delta = p_keys[idx].time + p_keys[next].time;
|
||||
from = (length - p_time) - (length - p_keys[idx].time);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_start_edge && !is_end_edge) {
|
||||
if (!p_backward) {
|
||||
if (idx >= 0) {
|
||||
if (idx < len - 1) {
|
||||
next = idx + 1;
|
||||
real_t delta = p_keys[next].time - p_keys[idx].time;
|
||||
real_t from = p_time - p_keys[idx].time;
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
} else {
|
||||
next = idx;
|
||||
}
|
||||
} else {
|
||||
idx = next = 0;
|
||||
}
|
||||
delta = p_keys[next].time - p_keys[idx].time;
|
||||
from = p_time - p_keys[idx].time;
|
||||
} else {
|
||||
if (idx <= len - 1) {
|
||||
if (idx > 0) {
|
||||
next = idx - 1;
|
||||
real_t delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
|
||||
real_t from = (length - p_time) - (length - p_keys[idx].time);
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
|
||||
} else {
|
||||
next = idx;
|
||||
}
|
||||
} else {
|
||||
idx = next = len - 1;
|
||||
}
|
||||
delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
|
||||
from = (length - p_time) - (length - p_keys[idx].time);
|
||||
}
|
||||
}
|
||||
|
||||
if (Math::is_zero_approx(delta)) {
|
||||
c = 0;
|
||||
} else {
|
||||
c = from / delta;
|
||||
}
|
||||
|
||||
if (p_ok) {
|
||||
*p_ok = true;
|
||||
}
|
||||
|
||||
real_t tr = p_keys[idx].transition;
|
||||
|
||||
if (tr == 0 || idx == next) {
|
||||
// don't interpolate if not needed
|
||||
if (tr == 0) {
|
||||
// Don't interpolate if not needed.
|
||||
return p_keys[idx].value;
|
||||
}
|
||||
|
||||
@ -2621,48 +2603,11 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol
|
||||
} break;
|
||||
case INTERPOLATION_CUBIC:
|
||||
case INTERPOLATION_CUBIC_ANGLE: {
|
||||
int pre = 0;
|
||||
int post = 0;
|
||||
if (!p_backward) {
|
||||
pre = idx - 1;
|
||||
if (pre < 0) {
|
||||
if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
||||
pre = len - 1;
|
||||
} else {
|
||||
pre = 0;
|
||||
}
|
||||
}
|
||||
post = next + 1;
|
||||
if (post >= len) {
|
||||
if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
||||
post = 0;
|
||||
} else {
|
||||
post = next;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
pre = idx + 1;
|
||||
if (pre >= len) {
|
||||
if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
||||
pre = 0;
|
||||
} else {
|
||||
pre = idx;
|
||||
}
|
||||
}
|
||||
post = next - 1;
|
||||
if (post < 0) {
|
||||
if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
||||
post = len - 1;
|
||||
} else {
|
||||
post = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
real_t pre_t = 0.0;
|
||||
real_t to_t = 0.0;
|
||||
real_t post_t = 0.0;
|
||||
if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
||||
if (!p_loop_wrap || loop_mode == LOOP_NONE) {
|
||||
pre_t = p_keys[pre].time - p_keys[idx].time;
|
||||
to_t = p_keys[next].time - p_keys[idx].time;
|
||||
post_t = p_keys[post].time - p_keys[idx].time;
|
||||
} else if (loop_mode == LOOP_LINEAR) {
|
||||
pre_t = pre > idx ? -length + p_keys[pre].time - p_keys[idx].time : p_keys[pre].time - p_keys[idx].time;
|
||||
to_t = next < idx ? length + p_keys[next].time - p_keys[idx].time : p_keys[next].time - p_keys[idx].time;
|
||||
post_t = next < idx || post <= idx ? length + p_keys[post].time - p_keys[idx].time : p_keys[post].time - p_keys[idx].time;
|
||||
@ -2670,6 +2615,19 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol
|
||||
pre_t = p_keys[pre].time - p_keys[idx].time;
|
||||
to_t = p_keys[next].time - p_keys[idx].time;
|
||||
post_t = p_keys[post].time - p_keys[idx].time;
|
||||
|
||||
if ((pre > idx && idx == next && post < next) || (pre < idx && idx == next && post > next)) {
|
||||
pre_t = p_keys[idx].time - p_keys[pre].time;
|
||||
} else if (pre == idx) {
|
||||
pre_t = idx < next ? -p_keys[idx].time * 2.0 : (length - p_keys[idx].time) * 2.0;
|
||||
}
|
||||
|
||||
if (idx == next) {
|
||||
to_t = pre < idx ? (length - p_keys[idx].time) * 2.0 : -p_keys[idx].time * 2.0;
|
||||
post_t = p_keys[next].time - p_keys[post].time + to_t;
|
||||
} else if (next == post) {
|
||||
post_t = idx < next ? (length - p_keys[next].time) * 2.0 + to_t : -p_keys[next].time * 2.0 + to_t;
|
||||
}
|
||||
}
|
||||
|
||||
if (p_interp == INTERPOLATION_CUBIC_ANGLE) {
|
||||
|
Loading…
Reference in New Issue
Block a user