TinyEXR: Sync with upstream master branch

Fixes #24247.
This commit is contained in:
Rémi Verschelde 2018-12-10 08:15:16 +01:00
parent bf59b73250
commit 9105538b45
3 changed files with 179 additions and 78 deletions

View File

@ -382,7 +382,7 @@ License: Expat
Files: ./thirdparty/tinyexr/ Files: ./thirdparty/tinyexr/
Comment: TinyEXR Comment: TinyEXR
Copyright: 2014-2017, Syoyo Fujita Copyright: 2014-2018, Syoyo Fujita
2002, Industrial Light & Magic, a division of Lucas Digital Ltd. LLC 2002, Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
License: BSD-3-clause License: BSD-3-clause

View File

@ -503,7 +503,7 @@ changes are marked with `// -- GODOT --` comments.
## tinyexr ## tinyexr
- Upstream: https://github.com/syoyo/tinyexr - Upstream: https://github.com/syoyo/tinyexr
- Version: git (2d5375f, 2018) - Version: git (5ae30aa, 2018)
- License: BSD-3-Clause - License: BSD-3-Clause
Files extracted from upstream source: Files extracted from upstream source:

View File

@ -116,6 +116,8 @@ extern "C" {
#define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-7) #define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-7)
#define TINYEXR_ERROR_INVALID_HEADER (-8) #define TINYEXR_ERROR_INVALID_HEADER (-8)
#define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-9) #define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-9)
#define TINYEXR_ERROR_CANT_WRITE_FILE (-10)
#define TINYEXR_ERROR_SERIALZATION_FAILED (-11)
// @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf } // @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf }
@ -279,9 +281,12 @@ extern int LoadEXR(float **out_rgba, int *width, int *height,
// Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero
// value. // value.
// Save image as fp32(FLOAT) format when `save_as_fp16` is 0. // Save image as fp32(FLOAT) format when `save_as_fp16` is 0.
// Use ZIP compression by default.
// Returns negative value and may set error string in `err` when there's an
// error
extern int SaveEXR(const float *data, const int width, const int height, extern int SaveEXR(const float *data, const int width, const int height,
const int components, const int save_as_fp16, const int components, const int save_as_fp16,
const char *filename); const char *filename, const char **err);
// Initialize EXRHeader struct // Initialize EXRHeader struct
extern void InitEXRHeader(EXRHeader *exr_header); extern void InitEXRHeader(EXRHeader *exr_header);
@ -400,9 +405,9 @@ extern int SaveEXRImageToFile(const EXRImage *image,
// Saves multi-channel, single-frame OpenEXR image to a memory. // Saves multi-channel, single-frame OpenEXR image to a memory.
// Image is compressed using EXRImage.compression value. // Image is compressed using EXRImage.compression value.
// Return the number of bytes if succes. // Return the number of bytes if success.
// Returns negative value and may set error string in `err` when there's an // Return zero and will set error string in `err` when there's an
// error // error.
// When there was an error message, Application must free `err` with // When there was an error message, Application must free `err` with
// FreeEXRErrorMessage() // FreeEXRErrorMessage()
extern size_t SaveEXRImageToMemory(const EXRImage *image, extern size_t SaveEXRImageToMemory(const EXRImage *image,
@ -524,15 +529,23 @@ namespace miniz {
#if __has_warning("-Wcomma") #if __has_warning("-Wcomma")
#pragma clang diagnostic ignored "-Wcomma" #pragma clang diagnostic ignored "-Wcomma"
#endif #endif
#if __has_warning("-Wmacro-redefined") #if __has_warning("-Wmacro-redefined")
#pragma clang diagnostic ignored "-Wmacro-redefined" #pragma clang diagnostic ignored "-Wmacro-redefined"
#endif #endif
#if __has_warning("-Wcast-qual") #if __has_warning("-Wcast-qual")
#pragma clang diagnostic ignored "-Wcast-qual" #pragma clang diagnostic ignored "-Wcast-qual"
#endif #endif
#if __has_warning("-Wzero-as-null-pointer-constant") #if __has_warning("-Wzero-as-null-pointer-constant")
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif #endif
#if __has_warning("-Wtautological-constant-compare")
#pragma clang diagnostic ignored "-Wtautological-constant-compare"
#endif
#endif #endif
/* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP /* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP
@ -2518,10 +2531,10 @@ tinfl_status tinfl_decompress(tinfl_decompressor *r,
tinfl_status status = TINFL_STATUS_FAILED; tinfl_status status = TINFL_STATUS_FAILED;
mz_uint32 num_bits, dist, counter, num_extra; mz_uint32 num_bits, dist, counter, num_extra;
tinfl_bit_buf_t bit_buf; tinfl_bit_buf_t bit_buf;
const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = const mz_uint8 *pIn_buf_cur = pIn_buf_next,
pIn_buf_next + *pIn_buf_size; *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = mz_uint8 *pOut_buf_cur = pOut_buf_next,
pOut_buf_next + *pOut_buf_size; *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
size_t out_buf_size_mask = size_t out_buf_size_mask =
(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)
? (size_t)-1 ? (size_t)-1
@ -2938,8 +2951,7 @@ void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
tinfl_status status = tinfl_decompress( tinfl_status status = tinfl_decompress(
&decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size, &decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size,
(mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL, (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL,
&dst_buf_size, &dst_buf_size, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) { if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) {
MZ_FREE(pBuf); MZ_FREE(pBuf);
@ -2993,7 +3005,8 @@ int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
tinfl_status status = tinfl_status status =
tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs, tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs,
&in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
(flags & ~(TINFL_FLAG_HAS_MORE_INPUT | (flags &
~(TINFL_FLAG_HAS_MORE_INPUT |
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))); TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
in_buf_ofs += in_buf_size; in_buf_ofs += in_buf_size;
if ((dst_buf_size) && if ((dst_buf_size) &&
@ -3119,9 +3132,7 @@ static const mz_uint8 s_tdefl_large_dist_extra[128] = {
// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted
// values. // values.
typedef struct { typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq;
mz_uint16 m_key, m_sym_index;
} tdefl_sym_freq;
static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms, static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms,
tdefl_sym_freq *pSyms0, tdefl_sym_freq *pSyms0,
tdefl_sym_freq *pSyms1) { tdefl_sym_freq *pSyms1) {
@ -5265,8 +5276,7 @@ mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS); n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS);
n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1); n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1);
pStat->m_comment_size = n; pStat->m_comment_size = n;
memcpy(pStat->m_comment, memcpy(pStat->m_comment, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS), MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS),
n); n);
@ -10087,9 +10097,10 @@ static bool DecodePixelData(/* out */ unsigned char **out_images,
unsigned short *outLine = unsigned short *outLine =
reinterpret_cast<unsigned short *>(out_images[c]); reinterpret_cast<unsigned short *>(out_images[c]);
if (line_order == 0) { if (line_order == 0) {
outLine += (y + v) * x_stride; outLine += (size_t(y) + v) * size_t(x_stride);
} else { } else {
outLine += (height - 1 - (y + v)) * x_stride; outLine +=
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
} }
for (int u = 0; u < width; u++) { for (int u = 0; u < width; u++) {
@ -10105,9 +10116,10 @@ static bool DecodePixelData(/* out */ unsigned char **out_images,
} else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
float *outLine = reinterpret_cast<float *>(out_images[c]); float *outLine = reinterpret_cast<float *>(out_images[c]);
if (line_order == 0) { if (line_order == 0) {
outLine += (y + v) * x_stride; outLine += (size_t(y) + v) * size_t(x_stride);
} else { } else {
outLine += (height - 1 - (y + v)) * x_stride; outLine +=
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
} }
if (reinterpret_cast<const unsigned char *>(line_ptr + width) > if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
@ -10140,9 +10152,10 @@ static bool DecodePixelData(/* out */ unsigned char **out_images,
float *outLine = reinterpret_cast<float *>(out_images[c]); float *outLine = reinterpret_cast<float *>(out_images[c]);
if (line_order == 0) { if (line_order == 0) {
outLine += (y + v) * x_stride; outLine += (size_t(y) + v) * size_t(x_stride);
} else { } else {
outLine += (height - 1 - (y + v)) * x_stride; outLine +=
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
} }
if (reinterpret_cast<const unsigned char *>(line_ptr + width) > if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
@ -10167,9 +10180,10 @@ static bool DecodePixelData(/* out */ unsigned char **out_images,
unsigned int *outLine = unsigned int *outLine =
reinterpret_cast<unsigned int *>(out_images[c]); reinterpret_cast<unsigned int *>(out_images[c]);
if (line_order == 0) { if (line_order == 0) {
outLine += (y + v) * x_stride; outLine += (size_t(y) + v) * size_t(x_stride);
} else { } else {
outLine += (height - 1 - (y + v)) * x_stride; outLine +=
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
} }
for (int u = 0; u < width; u++) { for (int u = 0; u < width; u++) {
@ -11133,15 +11147,46 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
} }
} }
if ((idxA == 0) && (idxR == -1) && (idxG == -1) && (idxB == -1)) { if (exr_header.num_channels == 1) {
// Alpha channel only. // Grayscale channel only.
if (exr_header.tiled) {
// todo.implement this
}
(*out_rgba) = reinterpret_cast<float *>( (*out_rgba) = reinterpret_cast<float *>(
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
static_cast<size_t>(exr_image.height))); static_cast<size_t>(exr_image.height)));
if (exr_header.tiled) {
// todo.implement this
for (int it = 0; it < exr_image.num_tiles; it++) {
for (int j = 0; j < exr_header.tile_size_y; j++) {
for (int i = 0; i < exr_header.tile_size_x; i++) {
const int ii =
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
const int jj =
exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
const int idx = ii + jj * exr_image.width;
// out of region check.
if (ii >= exr_image.width) {
continue;
}
if (jj >= exr_image.height) {
continue;
}
const int srcIdx = i + j * exr_header.tile_size_x;
unsigned char **src = exr_image.tiles[it].images;
(*out_rgba)[4 * idx + 0] =
reinterpret_cast<float **>(src)[0][srcIdx];
(*out_rgba)[4 * idx + 1] =
reinterpret_cast<float **>(src)[0][srcIdx];
(*out_rgba)[4 * idx + 2] =
reinterpret_cast<float **>(src)[0][srcIdx];
(*out_rgba)[4 * idx + 3] =
reinterpret_cast<float **>(src)[0][srcIdx];
}
}
}
} else {
for (int i = 0; i < exr_image.width * exr_image.height; i++) { for (int i = 0; i < exr_image.width * exr_image.height; i++) {
const float val = reinterpret_cast<float **>(exr_image.images)[0][i]; const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
(*out_rgba)[4 * i + 0] = val; (*out_rgba)[4 * i + 0] = val;
@ -11149,6 +11194,7 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
(*out_rgba)[4 * i + 2] = val; (*out_rgba)[4 * i + 2] = val;
(*out_rgba)[4 * i + 3] = val; (*out_rgba)[4 * i + 3] = val;
} }
}
} else { } else {
// Assume RGB(A) // Assume RGB(A)
@ -11179,7 +11225,7 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
static_cast<size_t>(exr_image.height))); static_cast<size_t>(exr_image.height)));
if (exr_header.tiled) { if (exr_header.tiled) {
for (int it = 0; it < exr_image.num_tiles; it++) { for (int it = 0; it < exr_image.num_tiles; it++) {
for (int j = 0; j < exr_header.tile_size_y; j++) for (int j = 0; j < exr_header.tile_size_y; j++) {
for (int i = 0; i < exr_header.tile_size_x; i++) { for (int i = 0; i < exr_header.tile_size_x; i++) {
const int ii = const int ii =
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i; exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
@ -11210,6 +11256,7 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
} }
} }
} }
}
} else { } else {
for (int i = 0; i < exr_image.width * exr_image.height; i++) { for (int i = 0; i < exr_image.width * exr_image.height; i++) {
(*out_rgba)[4 * i + 0] = (*out_rgba)[4 * i + 0] =
@ -11356,6 +11403,40 @@ int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
static_cast<size_t>(exr_image.height))); static_cast<size_t>(exr_image.height)));
if (exr_header.tiled) {
for (int it = 0; it < exr_image.num_tiles; it++) {
for (int j = 0; j < exr_header.tile_size_y; j++)
for (int i = 0; i < exr_header.tile_size_x; i++) {
const int ii =
exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
const int jj =
exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
const int idx = ii + jj * exr_image.width;
// out of region check.
if (ii >= exr_image.width) {
continue;
}
if (jj >= exr_image.height) {
continue;
}
const int srcIdx = i + j * exr_header.tile_size_x;
unsigned char **src = exr_image.tiles[it].images;
(*out_rgba)[4 * idx + 0] =
reinterpret_cast<float **>(src)[idxR][srcIdx];
(*out_rgba)[4 * idx + 1] =
reinterpret_cast<float **>(src)[idxG][srcIdx];
(*out_rgba)[4 * idx + 2] =
reinterpret_cast<float **>(src)[idxB][srcIdx];
if (idxA != -1) {
(*out_rgba)[4 * idx + 3] =
reinterpret_cast<float **>(src)[idxA][srcIdx];
} else {
(*out_rgba)[4 * idx + 3] = 1.0;
}
}
}
} else {
for (int i = 0; i < exr_image.width * exr_image.height; i++) { for (int i = 0; i < exr_image.width * exr_image.height; i++) {
(*out_rgba)[4 * i + 0] = (*out_rgba)[4 * i + 0] =
reinterpret_cast<float **>(exr_image.images)[idxR][i]; reinterpret_cast<float **>(exr_image.images)[idxR][i];
@ -11370,6 +11451,7 @@ int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
(*out_rgba)[4 * i + 3] = 1.0; (*out_rgba)[4 * i + 3] = 1.0;
} }
} }
}
(*width) = exr_image.width; (*width) = exr_image.width;
(*height) = exr_image.height; (*height) = exr_image.height;
@ -11452,7 +11534,7 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
if (exr_image == NULL || memory_out == NULL || if (exr_image == NULL || memory_out == NULL ||
exr_header->compression_type < 0) { exr_header->compression_type < 0) {
tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToMemory", err); tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToMemory", err);
return 0; // @fixme return 0;
} }
#if !TINYEXR_USE_PIZ #if !TINYEXR_USE_PIZ
@ -11623,8 +11705,6 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
sizeof( sizeof(
tinyexr::tinyexr_int64); // sizeof(header) + sizeof(offsetTable) tinyexr::tinyexr_int64); // sizeof(header) + sizeof(offsetTable)
std::vector<unsigned char> data;
std::vector<std::vector<unsigned char> > data_list( std::vector<std::vector<unsigned char> > data_list(
static_cast<size_t>(num_blocks)); static_cast<size_t>(num_blocks));
std::vector<size_t> channel_offset_list( std::vector<size_t> channel_offset_list(
@ -11863,8 +11943,8 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
#if TINYEXR_USE_PIZ #if TINYEXR_USE_PIZ
unsigned int bufLen = unsigned int bufLen =
1024 + static_cast<unsigned int>( 8192 + static_cast<unsigned int>(
1.2 * static_cast<unsigned int>( 2 * static_cast<unsigned int>(
buf.size())); // @fixme { compute good bound. } buf.size())); // @fixme { compute good bound. }
std::vector<unsigned char> block(bufLen); std::vector<unsigned char> block(bufLen);
unsigned int outSize = static_cast<unsigned int>(block.size()); unsigned int outSize = static_cast<unsigned int>(block.size());
@ -11924,13 +12004,12 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
} // omp parallel } // omp parallel
for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) { for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
data.insert(data.end(), data_list[i].begin(), data_list[i].end());
offsets[i] = offset; offsets[i] = offset;
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i])); tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
offset += data_list[i].size(); offset += data_list[i].size();
} }
size_t totalSize = static_cast<size_t>(offset);
{ {
memory.insert( memory.insert(
memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)), memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)),
@ -11938,14 +12017,21 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks)); sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks));
} }
{ memory.insert(memory.end(), data.begin(), data.end()); } if ( memory.size() == 0 ) {
tinyexr::SetErrorMessage("Output memory size is zero", err);
return 0;
}
assert(memory.size() > 0); (*memory_out) = static_cast<unsigned char *>(malloc(totalSize));
(*memory_out) = static_cast<unsigned char *>(malloc(memory.size()));
memcpy((*memory_out), &memory.at(0), memory.size()); memcpy((*memory_out), &memory.at(0), memory.size());
unsigned char *memory_ptr = *memory_out + memory.size();
return memory.size(); // OK for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
memcpy(memory_ptr, &data_list[i].at(0), data_list[i].size());
memory_ptr += data_list[i].size();
}
return totalSize; // OK
} }
int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header, int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
@ -11960,7 +12046,7 @@ int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
tinyexr::SetErrorMessage("PIZ compression is not supported in this build", tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
err); err);
return 0; return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
} }
#endif #endif
@ -11968,7 +12054,7 @@ int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
tinyexr::SetErrorMessage("ZFP compression is not supported in this build", tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
err); err);
return 0; return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
} }
#endif #endif
@ -11980,19 +12066,28 @@ int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
#endif #endif
if (!fp) { if (!fp) {
tinyexr::SetErrorMessage("Cannot write a file", err); tinyexr::SetErrorMessage("Cannot write a file", err);
return TINYEXR_ERROR_CANT_OPEN_FILE; return TINYEXR_ERROR_CANT_WRITE_FILE;
} }
unsigned char *mem = NULL; unsigned char *mem = NULL;
size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err); size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err);
if (mem_size == 0) {
return TINYEXR_ERROR_SERIALZATION_FAILED;
}
size_t written_size = 0;
if ((mem_size > 0) && mem) { if ((mem_size > 0) && mem) {
fwrite(mem, 1, mem_size, fp); written_size = fwrite(mem, 1, mem_size, fp);
} }
free(mem); free(mem);
fclose(fp); fclose(fp);
if (written_size != mem_size) {
tinyexr::SetErrorMessage("Cannot write a file", err);
return TINYEXR_ERROR_CANT_WRITE_FILE;
}
return TINYEXR_SUCCESS; return TINYEXR_SUCCESS;
} }
@ -12861,20 +12956,27 @@ int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
} }
int SaveEXR(const float *data, int width, int height, int components, int SaveEXR(const float *data, int width, int height, int components,
const int save_as_fp16, const char *outfilename) { const int save_as_fp16, const char *outfilename, const char **err) {
if ((components == 1) || components == 3 || components == 4) { if ((components == 1) || components == 3 || components == 4) {
// OK // OK
} else { } else {
std::stringstream ss;
ss << "Unsupported component value : " << components << std::endl;
tinyexr::SetErrorMessage(ss.str(), err);
return TINYEXR_ERROR_INVALID_ARGUMENT; return TINYEXR_ERROR_INVALID_ARGUMENT;
} }
// Assume at least 16x16 pixels.
if (width < 16) return TINYEXR_ERROR_INVALID_ARGUMENT;
if (height < 16) return TINYEXR_ERROR_INVALID_ARGUMENT;
EXRHeader header; EXRHeader header;
InitEXRHeader(&header); InitEXRHeader(&header);
if ((width < 16) && (height < 16)) {
// No compression for small image.
header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE;
} else {
header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
}
EXRImage image; EXRImage image;
InitEXRImage(&image); InitEXRImage(&image);
@ -12980,8 +13082,7 @@ int SaveEXR(const float *data, int width, int height, int components,
} }
} }
const char *err; int ret = SaveEXRImageToFile(&image, &header, outfilename, err);
int ret = SaveEXRImageToFile(&image, &header, outfilename, &err);
if (ret != TINYEXR_SUCCESS) { if (ret != TINYEXR_SUCCESS) {
return ret; return ret;
} }