Refactor baking code for Curve2D

The main change is to caculate tangent directly from bezier curve, without going
through discretized polyline, avoiding pitfalls of discretization. A similar refacor
had been applied to Curve3D.

The test cases for Curve2D is updated, comparing floating point with is_equal_approxmiate()
instead of `==`, in order to avoid float precision problem.
This commit is contained in:
Yaohua Xiong 2022-11-24 20:43:34 +08:00
parent 8912f3e4a7
commit 91e9ad92f5
9 changed files with 221 additions and 142 deletions

View File

@ -115,7 +115,7 @@
<param index="3" name="end" type="float" />
<param index="4" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on a one-dimensional [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by the given [param control_1], [param control_2], and [param end] points.
Returns the derivative at the given [param t] on a one-dimensional [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate">
@ -126,7 +126,7 @@
<param index="3" name="end" type="float" />
<param index="4" name="t" type="float" />
<description>
Returns the point at the given [param t] on a one-dimensional [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by the given [param control_1], [param control_2], and [param end] points.
Returns the point at the given [param t] on a one-dimensional [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bytes_to_var">

View File

@ -51,7 +51,7 @@
<return type="Vector2" />
<param index="0" name="to_point" type="Vector2" />
<description>
Returns the closest baked point (in curve's local space) to [param to_point].
Returns the closest point on baked segments (in curve's local space) to [param to_point].
[param to_point] must be in this curve's local space.
</description>
</method>
@ -94,7 +94,7 @@
</method>
<method name="sample_baked" qualifiers="const">
<return type="Vector2" />
<param index="0" name="offset" type="float" />
<param index="0" name="offset" type="float" default="0.0" />
<param index="1" name="cubic" type="bool" default="false" />
<description>
Returns a point within the curve at position [param offset], where [param offset] is measured as a pixel distance along the curve.
@ -104,13 +104,10 @@
</method>
<method name="sample_baked_with_rotation" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="offset" type="float" />
<param index="0" name="offset" type="float" default="0.0" />
<param index="1" name="cubic" type="bool" default="false" />
<param index="2" name="loop" type="bool" default="true" />
<param index="3" name="lookahead" type="float" default="4.0" />
<description>
Similar to [method sample_baked], but returns [Transform2D] that includes a rotation along the curve. Returns empty transform if length of the curve is [code]0[/code].
Use [param loop] to smooth the tangent at the end of the curve. [param lookahead] defines the distance to a nearby point for calculating the tangent vector.
[codeblock]
var transform = curve.sample_baked_with_rotation(offset)
position = transform.get_origin()
@ -160,6 +157,13 @@
[param tolerance_degrees] controls how many degrees the midpoint of a segment may deviate from the real curve, before the segment has to be subdivided.
</description>
</method>
<method name="tessellate_even_length" qualifiers="const">
<return type="PackedVector2Array" />
<param index="0" name="max_stages" type="int" default="5" />
<param index="1" name="tolerance_length" type="float" default="20.0" />
<description>
</description>
</method>
</methods>
<members>
<member name="bake_interval" type="float" setter="set_bake_interval" getter="get_bake_interval" default="5.0">

View File

@ -114,7 +114,7 @@
</method>
<method name="sample_baked" qualifiers="const">
<return type="Vector3" />
<param index="0" name="offset" type="float" />
<param index="0" name="offset" type="float" default="0.0" />
<param index="1" name="cubic" type="bool" default="false" />
<description>
Returns a point within the curve at position [param offset], where [param offset] is measured as a distance in 3D units along the curve.
@ -134,7 +134,7 @@
</method>
<method name="sample_baked_with_rotation" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="offset" type="float" />
<param index="0" name="offset" type="float" default="0.0" />
<param index="1" name="cubic" type="bool" default="false" />
<param index="2" name="apply_tilt" type="bool" default="false" />
<description>

View File

@ -93,7 +93,7 @@
<param index="2" name="end" type="Vector2" />
<param index="3" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate" qualifiers="const">
@ -103,7 +103,7 @@
<param index="2" name="end" type="Vector2" />
<param index="3" name="t" type="float" />
<description>
Returns the point at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
Returns the point at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bounce" qualifiers="const">

View File

@ -69,7 +69,7 @@
<param index="2" name="end" type="Vector3" />
<param index="3" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate" qualifiers="const">
@ -79,7 +79,7 @@
<param index="2" name="end" type="Vector3" />
<param index="3" name="t" type="float" />
<description>
Returns the point at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
Returns the point at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bounce" qualifiers="const">

View File

@ -177,7 +177,7 @@ void PathFollow2D::_update_transform() {
}
if (rotates) {
Transform2D xform = c->sample_baked_with_rotation(progress, cubic, loop, lookahead);
Transform2D xform = c->sample_baked_with_rotation(progress, cubic);
xform.translate_local(v_offset, h_offset);
set_rotation(xform[1].angle());
set_position(xform[2]);

View File

@ -341,7 +341,7 @@ real_t Curve::sample_local_nocheck(int p_index, real_t p_local_offset) const {
const Point a = _points[p_index];
const Point b = _points[p_index + 1];
/* Cubic bezier
/* Cubic bézier
*
* ac-----bc
* / \
@ -774,6 +774,22 @@ void Curve2D::_bake_segment2d(RBMap<real_t, Vector2> &r_bake, real_t p_begin, re
}
}
void Curve2D::_bake_segment2d_even_length(RBMap<real_t, Vector2> &r_bake, real_t p_begin, real_t p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, real_t p_length) const {
Vector2 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin);
Vector2 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end);
real_t length = beg.distance_to(end);
if (length > p_length && p_depth < p_max_depth) {
real_t mp = (p_begin + p_end) * 0.5;
Vector2 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp);
r_bake[mp] = mid;
_bake_segment2d_even_length(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length);
_bake_segment2d_even_length(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length);
}
}
void Curve2D::_bake() const {
if (!baked_cache_dirty) {
return;
@ -785,94 +801,62 @@ void Curve2D::_bake() const {
if (points.size() == 0) {
baked_point_cache.clear();
baked_dist_cache.clear();
baked_forward_vector_cache.clear();
return;
}
if (points.size() == 1) {
baked_point_cache.resize(1);
baked_point_cache.set(0, points[0].position);
baked_dist_cache.resize(1);
baked_dist_cache.set(0, 0.0);
baked_forward_vector_cache.resize(1);
baked_forward_vector_cache.set(0, Vector2(0.0, 0.1));
return;
}
Vector2 position = points[0].position;
real_t dist = 0.0;
// Tesselate curve to (almost) even length segments
{
Vector<RBMap<real_t, Vector2>> midpoints = _tessellate_even_length(10, bake_interval);
List<Vector2> pointlist;
List<real_t> distlist;
// Start always from origin.
pointlist.push_back(position);
distlist.push_back(0.0);
for (int i = 0; i < points.size() - 1; i++) {
real_t step = 0.1; // at least 10 substeps ought to be enough?
real_t p = 0.0;
while (p < 1.0) {
real_t np = p + step;
if (np > 1.0) {
np = 1.0;
}
Vector2 npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, np);
real_t d = position.distance_to(npp);
if (d > bake_interval) {
// OK! between P and NP there _has_ to be Something, let's go searching!
int iterations = 10; //lots of detail!
real_t low = p;
real_t hi = np;
real_t mid = low + (hi - low) * 0.5;
for (int j = 0; j < iterations; j++) {
npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, mid);
d = position.distance_to(npp);
if (bake_interval < d) {
hi = mid;
} else {
low = mid;
}
mid = low + (hi - low) * 0.5;
}
position = npp;
p = mid;
dist += d;
pointlist.push_back(position);
distlist.push_back(dist);
} else {
p = np;
}
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
pc++;
pc += midpoints[i].size();
}
Vector2 npp = points[i + 1].position;
real_t d = position.distance_to(npp);
baked_point_cache.resize(pc);
baked_dist_cache.resize(pc);
baked_forward_vector_cache.resize(pc);
position = npp;
dist += d;
Vector2 *bpw = baked_point_cache.ptrw();
Vector2 *bfw = baked_forward_vector_cache.ptrw();
pointlist.push_back(position);
distlist.push_back(dist);
}
// Collect positions and sample tilts and tangents for each baked points.
bpw[0] = points[0].position;
bfw[0] = points[0].position.bezier_derivative(points[0].position + points[0].out, points[1].position + points[1].in, points[1].position, 0.0).normalized();
int pidx = 0;
baked_max_ofs = dist;
for (int i = 0; i < points.size() - 1; i++) {
for (const KeyValue<real_t, Vector2> &E : midpoints[i]) {
pidx++;
bpw[pidx] = E.value;
bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, E.key).normalized();
}
baked_point_cache.resize(pointlist.size());
baked_dist_cache.resize(distlist.size());
pidx++;
bpw[pidx] = points[i + 1].position;
bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, 1.0).normalized();
}
Vector2 *w = baked_point_cache.ptrw();
real_t *wd = baked_dist_cache.ptrw();
for (int i = 0; i < pointlist.size(); i++) {
w[i] = pointlist[i];
wd[i] = distlist[i];
// Recalculate the baked distances.
real_t *bdw = baked_dist_cache.ptrw();
bdw[0] = 0.0;
for (int i = 0; i < pc - 1; i++) {
bdw[i + 1] = bdw[i] + bpw[i].distance_to(bpw[i + 1]);
}
baked_max_ofs = bdw[pc - 1];
}
}
@ -884,27 +868,15 @@ real_t Curve2D::get_baked_length() const {
return baked_max_ofs;
}
Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const {
if (baked_cache_dirty) {
_bake();
}
Curve2D::Interval Curve2D::_find_interval(real_t p_offset) const {
Interval interval = {
-1,
0.0
};
ERR_FAIL_COND_V_MSG(baked_cache_dirty, interval, "Backed cache is dirty");
// Validate: Curve may not have baked points.
int pc = baked_point_cache.size();
ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D.");
if (pc == 1) {
return baked_point_cache.get(0);
}
const Vector2 *r = baked_point_cache.ptr();
if (p_offset < 0) {
return r[0];
}
if (p_offset >= baked_max_ofs) {
return r[pc - 1];
}
ERR_FAIL_COND_V_MSG(pc < 2, interval, "Less than two points in cache");
int start = 0;
int end = pc;
@ -924,9 +896,27 @@ Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const {
real_t offset_end = baked_dist_cache[idx + 1];
real_t idx_interval = offset_end - offset_begin;
ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, Vector2(), "Couldn't find baked segment.");
ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, interval, "Offset out of range.");
real_t frac = (p_offset - offset_begin) / idx_interval;
interval.idx = idx;
if (idx_interval < FLT_EPSILON) {
interval.frac = 0.5; // For a very short interval, 0.5 is a reasonable choice.
ERR_FAIL_V_MSG(interval, "Zero length interval.");
}
interval.frac = (p_offset - offset_begin) / idx_interval;
return interval;
}
Vector2 Curve2D::_sample_baked(Interval p_interval, bool p_cubic) const {
// Assuming p_interval is valid.
ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Vector2(), "Invalid interval");
int idx = p_interval.idx;
real_t frac = p_interval.frac;
const Vector2 *r = baked_point_cache.ptr();
int pc = baked_point_cache.size();
if (p_cubic) {
Vector2 pre = idx > 0 ? r[idx - 1] : r[idx];
@ -937,44 +927,70 @@ Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const {
}
}
Transform2D Curve2D::sample_baked_with_rotation(real_t p_offset, bool p_cubic, bool p_loop, real_t p_lookahead) const {
real_t path_length = get_baked_length(); // Ensure baked.
ERR_FAIL_COND_V_MSG(path_length == 0, Transform2D(), "Length of Curve2D is 0.");
Transform2D Curve2D::_sample_posture(Interval p_interval) const {
// Assuming that p_interval is valid.
ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Transform2D(), "Invalid interval");
Vector2 pos = sample_baked(p_offset, p_cubic);
int idx = p_interval.idx;
real_t frac = p_interval.frac;
real_t ahead = p_offset + p_lookahead;
Vector2 forward_begin = baked_forward_vector_cache[idx];
Vector2 forward_end = baked_forward_vector_cache[idx + 1];
if (p_loop && ahead >= path_length) {
// If our lookahead will loop, we need to check if the path is closed.
int point_count = get_point_count();
if (point_count > 0) {
Vector2 start_point = get_point_position(0);
Vector2 end_point = get_point_position(point_count - 1);
if (start_point == end_point) {
// Since the path is closed we want to 'smooth off'
// the corner at the start/end.
// So we wrap the lookahead back round.
ahead = Math::fmod(ahead, path_length);
}
}
// Build frames at both ends of the interval, then interpolate.
const Vector2 forward = forward_begin.slerp(forward_end, frac).normalized();
const Vector2 side = Vector2(-forward.y, forward.x);
return Transform2D(forward, side, Vector2(0.0, 0.0));
}
Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const {
if (baked_cache_dirty) {
_bake();
}
Vector2 ahead_pos = sample_baked(ahead, p_cubic);
// Validate: Curve may not have baked points.
int pc = baked_point_cache.size();
ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D.");
Vector2 tangent_to_curve;
if (ahead_pos == pos) {
// This will happen at the end of non-looping or non-closed paths.
// We'll try a look behind instead, in order to get a meaningful angle.
tangent_to_curve =
(pos - sample_baked(p_offset - p_lookahead, p_cubic)).normalized();
} else {
tangent_to_curve = (ahead_pos - pos).normalized();
if (pc == 1) {
return baked_point_cache[0];
}
Vector2 normal_of_curve = -tangent_to_curve.orthogonal();
p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic.
return Transform2D(normal_of_curve, tangent_to_curve, pos);
Curve2D::Interval interval = _find_interval(p_offset);
return _sample_baked(interval, p_cubic);
}
Transform2D Curve2D::sample_baked_with_rotation(real_t p_offset, bool p_cubic) const {
if (baked_cache_dirty) {
_bake();
}
// Validate: Curve may not have baked points.
const int point_count = baked_point_cache.size();
ERR_FAIL_COND_V_MSG(point_count == 0, Transform2D(), "No points in Curve3D.");
if (point_count == 1) {
Transform2D t;
t.set_origin(baked_point_cache.get(0));
ERR_FAIL_V_MSG(t, "Only 1 point in Curve2D.");
}
p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic.
// 0. Find interval for all sampling steps.
Curve2D::Interval interval = _find_interval(p_offset);
// 1. Sample position.
Vector2 pos = _sample_baked(interval, p_cubic);
// 2. Sample rotation frame.
Transform2D frame = _sample_posture(interval);
frame.set_origin(pos);
return frame;
}
PackedVector2Array Curve2D::get_baked_points() const {
@ -1147,6 +1163,50 @@ PackedVector2Array Curve2D::tessellate(int p_max_stages, real_t p_tolerance) con
return tess;
}
Vector<RBMap<real_t, Vector2>> Curve2D::_tessellate_even_length(int p_max_stages, real_t p_length) const {
Vector<RBMap<real_t, Vector2>> midpoints;
ERR_FAIL_COND_V_MSG(points.size() < 2, midpoints, "Curve must have at least 2 control point");
midpoints.resize(points.size() - 1);
for (int i = 0; i < points.size() - 1; i++) {
_bake_segment2d_even_length(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_length);
}
return midpoints;
}
PackedVector2Array Curve2D::tessellate_even_length(int p_max_stages, real_t p_length) const {
PackedVector2Array tess;
Vector<RBMap<real_t, Vector2>> midpoints = _tessellate_even_length(p_max_stages, p_length);
if (midpoints.size() == 0) {
return tess;
}
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
pc++;
pc += midpoints[i].size();
}
tess.resize(pc);
Vector2 *bpw = tess.ptrw();
bpw[0] = points[0].position;
int pidx = 0;
for (int i = 0; i < points.size() - 1; i++) {
for (const KeyValue<real_t, Vector2> &E : midpoints[i]) {
pidx++;
bpw[pidx] = E.value;
}
pidx++;
bpw[pidx] = points[i + 1].position;
}
return tess;
}
bool Curve2D::_set(const StringName &p_name, const Variant &p_value) {
Vector<String> components = String(p_name).split("/", true, 2);
if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) {
@ -1224,12 +1284,13 @@ void Curve2D::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_bake_interval"), &Curve2D::get_bake_interval);
ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve2D::get_baked_length);
ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve2D::sample_baked, DEFVAL(false));
ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "loop", "lookahead"), &Curve2D::sample_baked_with_rotation, DEFVAL(false), DEFVAL(true), DEFVAL(4.0));
ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve2D::sample_baked, DEFVAL(0.0), DEFVAL(false));
ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic"), &Curve2D::sample_baked_with_rotation, DEFVAL(0.0), DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve2D::get_baked_points);
ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve2D::get_closest_point);
ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve2D::get_closest_offset);
ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve2D::tessellate, DEFVAL(5), DEFVAL(4));
ClassDB::bind_method(D_METHOD("tessellate_even_length", "max_stages", "tolerance_length"), &Curve2D::tessellate_even_length, DEFVAL(5), DEFVAL(20.0));
ClassDB::bind_method(D_METHOD("_get_data"), &Curve2D::_get_data);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve2D::_set_data);
@ -2133,8 +2194,8 @@ void Curve3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("is_up_vector_enabled"), &Curve3D::is_up_vector_enabled);
ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve3D::get_baked_length);
ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve3D::sample_baked, DEFVAL(false));
ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "apply_tilt"), &Curve3D::sample_baked_with_rotation, DEFVAL(false), DEFVAL(false));
ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve3D::sample_baked, DEFVAL(0.0), DEFVAL(false));
ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "apply_tilt"), &Curve3D::sample_baked_with_rotation, DEFVAL(0.0), DEFVAL(false), DEFVAL(false));
ClassDB::bind_method(D_METHOD("sample_baked_up_vector", "offset", "apply_tilt"), &Curve3D::sample_baked_up_vector, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve3D::get_baked_points);
ClassDB::bind_method(D_METHOD("get_baked_tilts"), &Curve3D::get_baked_tilts);

View File

@ -172,6 +172,7 @@ class Curve2D : public Resource {
mutable bool baked_cache_dirty = false;
mutable PackedVector2Array baked_point_cache;
mutable PackedVector2Array baked_forward_vector_cache;
mutable Vector<real_t> baked_dist_cache;
mutable real_t baked_max_ofs = 0.0;
@ -181,7 +182,16 @@ class Curve2D : public Resource {
real_t bake_interval = 5.0;
struct Interval {
int idx;
real_t frac;
};
Interval _find_interval(real_t p_offset) const;
Vector2 _sample_baked(Interval p_interval, bool p_cubic) const;
Transform2D _sample_posture(Interval p_interval) const;
void _bake_segment2d(RBMap<real_t, Vector2> &r_bake, real_t p_begin, real_t p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, real_t p_tol) const;
void _bake_segment2d_even_length(RBMap<real_t, Vector2> &r_bake, real_t p_begin, real_t p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, real_t p_length) const;
Dictionary _get_data() const;
void _set_data(const Dictionary &p_data);
@ -192,6 +202,8 @@ class Curve2D : public Resource {
void _add_point(const Vector2 &p_position, const Vector2 &p_in = Vector2(), const Vector2 &p_out = Vector2(), int p_atpos = -1);
void _remove_point(int p_index);
Vector<RBMap<real_t, Vector2>> _tessellate_even_length(int p_max_stages = 5, real_t p_length = 0.2) const;
protected:
static void _bind_methods();
@ -216,12 +228,13 @@ public:
real_t get_baked_length() const;
Vector2 sample_baked(real_t p_offset, bool p_cubic = false) const;
Transform2D sample_baked_with_rotation(real_t p_offset, bool p_cubic = false, bool p_loop = true, real_t p_lookahead = 4.0) const;
Transform2D sample_baked_with_rotation(real_t p_offset, bool p_cubic = false) const;
PackedVector2Array get_baked_points() const; //useful for going through
Vector2 get_closest_point(const Vector2 &p_to_point) const;
real_t get_closest_offset(const Vector2 &p_to_point) const;
PackedVector2Array tessellate(int p_max_stages = 5, real_t p_tolerance = 4) const; //useful for display
PackedVector2Array tessellate_even_length(int p_max_stages = 5, real_t p_length = 20.0) const; // Useful for baking.
Curve2D();
};

View File

@ -31,6 +31,7 @@
#ifndef TEST_CURVE_H
#define TEST_CURVE_H
#include "core/math/math_funcs.h"
#include "scene/resources/curve.h"
#include "tests/test_macros.h"
@ -229,7 +230,7 @@ TEST_CASE("[Curve2D] Linear sampling should return exact value") {
for (int i = 0; i < len; i++) {
Vector2 pos = curve->sample_baked(i);
CHECK_MESSAGE(pos.x == i, "sample_baked should return exact value");
CHECK_MESSAGE(Math::is_equal_approx(pos.x, i), "sample_baked should return exact value");
}
}
@ -245,7 +246,7 @@ TEST_CASE("[Curve3D] Linear sampling should return exact value") {
for (int i = 0; i < len; i++) {
Vector3 pos = curve->sample_baked(i);
CHECK_MESSAGE(pos.x == i, "sample_baked should return exact value");
CHECK_MESSAGE(Math::is_equal_approx(pos.x, i), "sample_baked should return exact value");
}
}