[Core] Move Vector2 to its own file
Makes 2D math code easier to read and makes Vector2 consistent with Vector3. In the future, we may move other things out of math_2d as well.
This commit is contained in:
parent
52e6f1f25c
commit
9d1b5f4e3b
@ -30,162 +30,6 @@
|
||||
|
||||
#include "math_2d.h"
|
||||
|
||||
real_t Vector2::angle() const {
|
||||
|
||||
return Math::atan2(y, x);
|
||||
}
|
||||
|
||||
real_t Vector2::length() const {
|
||||
|
||||
return Math::sqrt(x * x + y * y);
|
||||
}
|
||||
|
||||
real_t Vector2::length_squared() const {
|
||||
|
||||
return x * x + y * y;
|
||||
}
|
||||
|
||||
void Vector2::normalize() {
|
||||
|
||||
real_t l = x * x + y * y;
|
||||
if (l != 0) {
|
||||
|
||||
l = Math::sqrt(l);
|
||||
x /= l;
|
||||
y /= l;
|
||||
}
|
||||
}
|
||||
|
||||
Vector2 Vector2::normalized() const {
|
||||
|
||||
Vector2 v = *this;
|
||||
v.normalize();
|
||||
return v;
|
||||
}
|
||||
|
||||
bool Vector2::is_normalized() const {
|
||||
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
||||
return Math::is_equal_approx(length_squared(), 1.0);
|
||||
}
|
||||
|
||||
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
|
||||
|
||||
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
||||
}
|
||||
|
||||
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
|
||||
|
||||
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
||||
}
|
||||
|
||||
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
|
||||
|
||||
return Math::atan2(cross(p_vector2), dot(p_vector2));
|
||||
}
|
||||
|
||||
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
|
||||
|
||||
return Math::atan2(y - p_vector2.y, x - p_vector2.x);
|
||||
}
|
||||
|
||||
real_t Vector2::dot(const Vector2 &p_other) const {
|
||||
|
||||
return x * p_other.x + y * p_other.y;
|
||||
}
|
||||
|
||||
real_t Vector2::cross(const Vector2 &p_other) const {
|
||||
|
||||
return x * p_other.y - y * p_other.x;
|
||||
}
|
||||
|
||||
Vector2 Vector2::floor() const {
|
||||
|
||||
return Vector2(Math::floor(x), Math::floor(y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::ceil() const {
|
||||
|
||||
return Vector2(Math::ceil(x), Math::ceil(y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::round() const {
|
||||
|
||||
return Vector2(Math::round(x), Math::round(y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::rotated(real_t p_by) const {
|
||||
|
||||
Vector2 v;
|
||||
v.set_rotation(angle() + p_by);
|
||||
v *= length();
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector2 Vector2::project(const Vector2 &p_vec) const {
|
||||
|
||||
Vector2 v1 = p_vec;
|
||||
Vector2 v2 = *this;
|
||||
return v2 * (v1.dot(v2) / v2.dot(v2));
|
||||
}
|
||||
|
||||
Vector2 Vector2::snapped(const Vector2 &p_by) const {
|
||||
|
||||
return Vector2(
|
||||
Math::stepify(x, p_by.x),
|
||||
Math::stepify(y, p_by.y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::clamped(real_t p_len) const {
|
||||
|
||||
real_t l = length();
|
||||
Vector2 v = *this;
|
||||
if (l > 0 && p_len < l) {
|
||||
|
||||
v /= l;
|
||||
v *= p_len;
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
|
||||
|
||||
Vector2 p0 = p_pre_a;
|
||||
Vector2 p1 = *this;
|
||||
Vector2 p2 = p_b;
|
||||
Vector2 p3 = p_post_b;
|
||||
|
||||
real_t t = p_t;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
Vector2 out;
|
||||
out = 0.5 * ((p1 * 2.0) +
|
||||
(-p0 + p2) * t +
|
||||
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
|
||||
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
|
||||
return out;
|
||||
}
|
||||
|
||||
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
||||
Vector2 Vector2::slide(const Vector2 &p_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2());
|
||||
#endif
|
||||
return *this - p_normal * this->dot(p_normal);
|
||||
}
|
||||
|
||||
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
|
||||
return -reflect(p_normal);
|
||||
}
|
||||
|
||||
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2());
|
||||
#endif
|
||||
return 2.0 * p_normal * this->dot(p_normal) - *this;
|
||||
}
|
||||
|
||||
bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
|
||||
|
||||
real_t min = 0, max = 1;
|
||||
|
@ -33,6 +33,7 @@
|
||||
|
||||
#include "math_funcs.h"
|
||||
#include "ustring.h"
|
||||
#include "vector2.h"
|
||||
/**
|
||||
@author Juan Linietsky <reduzio@gmail.com>
|
||||
*/
|
||||
@ -72,219 +73,6 @@ enum VAlign {
|
||||
VALIGN_BOTTOM
|
||||
};
|
||||
|
||||
struct Vector2 {
|
||||
|
||||
union {
|
||||
real_t x;
|
||||
real_t width;
|
||||
};
|
||||
union {
|
||||
real_t y;
|
||||
real_t height;
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ real_t &operator[](int p_idx) {
|
||||
return p_idx ? y : x;
|
||||
}
|
||||
_FORCE_INLINE_ const real_t &operator[](int p_idx) const {
|
||||
return p_idx ? y : x;
|
||||
}
|
||||
|
||||
void normalize();
|
||||
Vector2 normalized() const;
|
||||
bool is_normalized() const;
|
||||
|
||||
real_t length() const;
|
||||
real_t length_squared() const;
|
||||
|
||||
real_t distance_to(const Vector2 &p_vector2) const;
|
||||
real_t distance_squared_to(const Vector2 &p_vector2) const;
|
||||
real_t angle_to(const Vector2 &p_vector2) const;
|
||||
real_t angle_to_point(const Vector2 &p_vector2) const;
|
||||
|
||||
real_t dot(const Vector2 &p_other) const;
|
||||
real_t cross(const Vector2 &p_other) const;
|
||||
Vector2 project(const Vector2 &p_vec) const;
|
||||
|
||||
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
|
||||
|
||||
Vector2 clamped(real_t p_len) const;
|
||||
|
||||
_FORCE_INLINE_ static Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t);
|
||||
_FORCE_INLINE_ Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const;
|
||||
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_b, real_t p_t) const;
|
||||
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
|
||||
|
||||
Vector2 slide(const Vector2 &p_normal) const;
|
||||
Vector2 bounce(const Vector2 &p_normal) const;
|
||||
Vector2 reflect(const Vector2 &p_normal) const;
|
||||
|
||||
Vector2 operator+(const Vector2 &p_v) const;
|
||||
void operator+=(const Vector2 &p_v);
|
||||
Vector2 operator-(const Vector2 &p_v) const;
|
||||
void operator-=(const Vector2 &p_v);
|
||||
Vector2 operator*(const Vector2 &p_v1) const;
|
||||
|
||||
Vector2 operator*(const real_t &rvalue) const;
|
||||
void operator*=(const real_t &rvalue);
|
||||
void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
|
||||
|
||||
Vector2 operator/(const Vector2 &p_v1) const;
|
||||
|
||||
Vector2 operator/(const real_t &rvalue) const;
|
||||
|
||||
void operator/=(const real_t &rvalue);
|
||||
|
||||
Vector2 operator-() const;
|
||||
|
||||
bool operator==(const Vector2 &p_vec2) const;
|
||||
bool operator!=(const Vector2 &p_vec2) const;
|
||||
|
||||
bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); }
|
||||
bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); }
|
||||
|
||||
real_t angle() const;
|
||||
|
||||
void set_rotation(real_t p_radians) {
|
||||
|
||||
x = Math::cos(p_radians);
|
||||
y = Math::sin(p_radians);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 abs() const {
|
||||
|
||||
return Vector2(Math::abs(x), Math::abs(y));
|
||||
}
|
||||
|
||||
Vector2 rotated(real_t p_by) const;
|
||||
Vector2 tangent() const {
|
||||
|
||||
return Vector2(y, -x);
|
||||
}
|
||||
|
||||
Vector2 floor() const;
|
||||
Vector2 ceil() const;
|
||||
Vector2 round() const;
|
||||
Vector2 snapped(const Vector2 &p_by) const;
|
||||
real_t aspect() const { return width / height; }
|
||||
|
||||
operator String() const { return String::num(x) + ", " + String::num(y); }
|
||||
|
||||
_FORCE_INLINE_ Vector2(real_t p_x, real_t p_y) {
|
||||
x = p_x;
|
||||
y = p_y;
|
||||
}
|
||||
_FORCE_INLINE_ Vector2() {
|
||||
x = 0;
|
||||
y = 0;
|
||||
}
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
|
||||
|
||||
return p_vec - *this * (dot(p_vec) - p_d);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) {
|
||||
|
||||
return p_vec * p_scalar;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
|
||||
|
||||
return Vector2(x + p_v.x, y + p_v.y);
|
||||
}
|
||||
_FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
|
||||
|
||||
x += p_v.x;
|
||||
y += p_v.y;
|
||||
}
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
|
||||
|
||||
return Vector2(x - p_v.x, y - p_v.y);
|
||||
}
|
||||
_FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
|
||||
|
||||
x -= p_v.x;
|
||||
y -= p_v.y;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
|
||||
|
||||
return Vector2(x * p_v1.x, y * p_v1.y);
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const {
|
||||
|
||||
return Vector2(x * rvalue, y * rvalue);
|
||||
};
|
||||
_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) {
|
||||
|
||||
x *= rvalue;
|
||||
y *= rvalue;
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
|
||||
|
||||
return Vector2(x / p_v1.x, y / p_v1.y);
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const {
|
||||
|
||||
return Vector2(x / rvalue, y / rvalue);
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) {
|
||||
|
||||
x /= rvalue;
|
||||
y /= rvalue;
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator-() const {
|
||||
|
||||
return Vector2(-x, -y);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
|
||||
|
||||
return x == p_vec2.x && y == p_vec2.y;
|
||||
}
|
||||
_FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
||||
|
||||
return x != p_vec2.x || y != p_vec2.y;
|
||||
}
|
||||
|
||||
Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const {
|
||||
|
||||
Vector2 res = *this;
|
||||
|
||||
res.x += (p_t * (p_b.x - x));
|
||||
res.y += (p_t * (p_b.y - y));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
Vector2 Vector2::slerp(const Vector2 &p_b, real_t p_t) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V(is_normalized() == false, Vector2());
|
||||
#endif
|
||||
real_t theta = angle_to(p_b);
|
||||
return rotated(theta * p_t);
|
||||
}
|
||||
|
||||
Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
|
||||
|
||||
Vector2 res = p_a;
|
||||
|
||||
res.x += (p_t * (p_b.x - p_a.x));
|
||||
res.y += (p_t * (p_b.y - p_a.y));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef Vector2 Size2;
|
||||
typedef Vector2 Point2;
|
||||
|
||||
struct Transform2D;
|
||||
|
||||
struct Rect2 {
|
||||
|
187
core/math/vector2.cpp
Normal file
187
core/math/vector2.cpp
Normal file
@ -0,0 +1,187 @@
|
||||
/*************************************************************************/
|
||||
/* vector2.cpp */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* https://godotengine.org */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
|
||||
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "vector2.h"
|
||||
|
||||
real_t Vector2::angle() const {
|
||||
|
||||
return Math::atan2(y, x);
|
||||
}
|
||||
|
||||
real_t Vector2::length() const {
|
||||
|
||||
return Math::sqrt(x * x + y * y);
|
||||
}
|
||||
|
||||
real_t Vector2::length_squared() const {
|
||||
|
||||
return x * x + y * y;
|
||||
}
|
||||
|
||||
void Vector2::normalize() {
|
||||
|
||||
real_t l = x * x + y * y;
|
||||
if (l != 0) {
|
||||
|
||||
l = Math::sqrt(l);
|
||||
x /= l;
|
||||
y /= l;
|
||||
}
|
||||
}
|
||||
|
||||
Vector2 Vector2::normalized() const {
|
||||
|
||||
Vector2 v = *this;
|
||||
v.normalize();
|
||||
return v;
|
||||
}
|
||||
|
||||
bool Vector2::is_normalized() const {
|
||||
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
||||
return Math::is_equal_approx(length_squared(), 1.0);
|
||||
}
|
||||
|
||||
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
|
||||
|
||||
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
||||
}
|
||||
|
||||
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
|
||||
|
||||
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
||||
}
|
||||
|
||||
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
|
||||
|
||||
return Math::atan2(cross(p_vector2), dot(p_vector2));
|
||||
}
|
||||
|
||||
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
|
||||
|
||||
return Math::atan2(y - p_vector2.y, x - p_vector2.x);
|
||||
}
|
||||
|
||||
real_t Vector2::dot(const Vector2 &p_other) const {
|
||||
|
||||
return x * p_other.x + y * p_other.y;
|
||||
}
|
||||
|
||||
real_t Vector2::cross(const Vector2 &p_other) const {
|
||||
|
||||
return x * p_other.y - y * p_other.x;
|
||||
}
|
||||
|
||||
Vector2 Vector2::floor() const {
|
||||
|
||||
return Vector2(Math::floor(x), Math::floor(y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::ceil() const {
|
||||
|
||||
return Vector2(Math::ceil(x), Math::ceil(y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::round() const {
|
||||
|
||||
return Vector2(Math::round(x), Math::round(y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::rotated(real_t p_by) const {
|
||||
|
||||
Vector2 v;
|
||||
v.set_rotation(angle() + p_by);
|
||||
v *= length();
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector2 Vector2::project(const Vector2 &p_vec) const {
|
||||
|
||||
Vector2 v1 = p_vec;
|
||||
Vector2 v2 = *this;
|
||||
return v2 * (v1.dot(v2) / v2.dot(v2));
|
||||
}
|
||||
|
||||
Vector2 Vector2::snapped(const Vector2 &p_by) const {
|
||||
|
||||
return Vector2(
|
||||
Math::stepify(x, p_by.x),
|
||||
Math::stepify(y, p_by.y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::clamped(real_t p_len) const {
|
||||
|
||||
real_t l = length();
|
||||
Vector2 v = *this;
|
||||
if (l > 0 && p_len < l) {
|
||||
|
||||
v /= l;
|
||||
v *= p_len;
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
|
||||
|
||||
Vector2 p0 = p_pre_a;
|
||||
Vector2 p1 = *this;
|
||||
Vector2 p2 = p_b;
|
||||
Vector2 p3 = p_post_b;
|
||||
|
||||
real_t t = p_t;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
Vector2 out;
|
||||
out = 0.5 * ((p1 * 2.0) +
|
||||
(-p0 + p2) * t +
|
||||
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
|
||||
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
|
||||
return out;
|
||||
}
|
||||
|
||||
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
||||
Vector2 Vector2::slide(const Vector2 &p_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2());
|
||||
#endif
|
||||
return *this - p_normal * this->dot(p_normal);
|
||||
}
|
||||
|
||||
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
|
||||
return -reflect(p_normal);
|
||||
}
|
||||
|
||||
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2());
|
||||
#endif
|
||||
return 2.0 * p_normal * this->dot(p_normal) - *this;
|
||||
}
|
250
core/math/vector2.h
Normal file
250
core/math/vector2.h
Normal file
@ -0,0 +1,250 @@
|
||||
/*************************************************************************/
|
||||
/* vector2.h */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* https://godotengine.org */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
|
||||
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#ifndef VECTOR2_H
|
||||
#define VECTOR2_H
|
||||
|
||||
#include "math_funcs.h"
|
||||
#include "ustring.h"
|
||||
|
||||
struct Vector2 {
|
||||
|
||||
union {
|
||||
real_t x;
|
||||
real_t width;
|
||||
};
|
||||
union {
|
||||
real_t y;
|
||||
real_t height;
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ real_t &operator[](int p_idx) {
|
||||
return p_idx ? y : x;
|
||||
}
|
||||
_FORCE_INLINE_ const real_t &operator[](int p_idx) const {
|
||||
return p_idx ? y : x;
|
||||
}
|
||||
|
||||
void normalize();
|
||||
Vector2 normalized() const;
|
||||
bool is_normalized() const;
|
||||
|
||||
real_t length() const;
|
||||
real_t length_squared() const;
|
||||
|
||||
real_t distance_to(const Vector2 &p_vector2) const;
|
||||
real_t distance_squared_to(const Vector2 &p_vector2) const;
|
||||
real_t angle_to(const Vector2 &p_vector2) const;
|
||||
real_t angle_to_point(const Vector2 &p_vector2) const;
|
||||
|
||||
real_t dot(const Vector2 &p_other) const;
|
||||
real_t cross(const Vector2 &p_other) const;
|
||||
Vector2 project(const Vector2 &p_vec) const;
|
||||
|
||||
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
|
||||
|
||||
Vector2 clamped(real_t p_len) const;
|
||||
|
||||
_FORCE_INLINE_ static Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t);
|
||||
_FORCE_INLINE_ Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const;
|
||||
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_b, real_t p_t) const;
|
||||
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
|
||||
|
||||
Vector2 slide(const Vector2 &p_normal) const;
|
||||
Vector2 bounce(const Vector2 &p_normal) const;
|
||||
Vector2 reflect(const Vector2 &p_normal) const;
|
||||
|
||||
Vector2 operator+(const Vector2 &p_v) const;
|
||||
void operator+=(const Vector2 &p_v);
|
||||
Vector2 operator-(const Vector2 &p_v) const;
|
||||
void operator-=(const Vector2 &p_v);
|
||||
Vector2 operator*(const Vector2 &p_v1) const;
|
||||
|
||||
Vector2 operator*(const real_t &rvalue) const;
|
||||
void operator*=(const real_t &rvalue);
|
||||
void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
|
||||
|
||||
Vector2 operator/(const Vector2 &p_v1) const;
|
||||
|
||||
Vector2 operator/(const real_t &rvalue) const;
|
||||
|
||||
void operator/=(const real_t &rvalue);
|
||||
|
||||
Vector2 operator-() const;
|
||||
|
||||
bool operator==(const Vector2 &p_vec2) const;
|
||||
bool operator!=(const Vector2 &p_vec2) const;
|
||||
|
||||
bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); }
|
||||
bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); }
|
||||
|
||||
real_t angle() const;
|
||||
|
||||
void set_rotation(real_t p_radians) {
|
||||
|
||||
x = Math::cos(p_radians);
|
||||
y = Math::sin(p_radians);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 abs() const {
|
||||
|
||||
return Vector2(Math::abs(x), Math::abs(y));
|
||||
}
|
||||
|
||||
Vector2 rotated(real_t p_by) const;
|
||||
Vector2 tangent() const {
|
||||
|
||||
return Vector2(y, -x);
|
||||
}
|
||||
|
||||
Vector2 floor() const;
|
||||
Vector2 ceil() const;
|
||||
Vector2 round() const;
|
||||
Vector2 snapped(const Vector2 &p_by) const;
|
||||
real_t aspect() const { return width / height; }
|
||||
|
||||
operator String() const { return String::num(x) + ", " + String::num(y); }
|
||||
|
||||
_FORCE_INLINE_ Vector2(real_t p_x, real_t p_y) {
|
||||
x = p_x;
|
||||
y = p_y;
|
||||
}
|
||||
_FORCE_INLINE_ Vector2() {
|
||||
x = 0;
|
||||
y = 0;
|
||||
}
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
|
||||
|
||||
return p_vec - *this * (dot(p_vec) - p_d);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) {
|
||||
|
||||
return p_vec * p_scalar;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
|
||||
|
||||
return Vector2(x + p_v.x, y + p_v.y);
|
||||
}
|
||||
_FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
|
||||
|
||||
x += p_v.x;
|
||||
y += p_v.y;
|
||||
}
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
|
||||
|
||||
return Vector2(x - p_v.x, y - p_v.y);
|
||||
}
|
||||
_FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
|
||||
|
||||
x -= p_v.x;
|
||||
y -= p_v.y;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
|
||||
|
||||
return Vector2(x * p_v1.x, y * p_v1.y);
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const {
|
||||
|
||||
return Vector2(x * rvalue, y * rvalue);
|
||||
};
|
||||
_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) {
|
||||
|
||||
x *= rvalue;
|
||||
y *= rvalue;
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
|
||||
|
||||
return Vector2(x / p_v1.x, y / p_v1.y);
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const {
|
||||
|
||||
return Vector2(x / rvalue, y / rvalue);
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) {
|
||||
|
||||
x /= rvalue;
|
||||
y /= rvalue;
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ Vector2 Vector2::operator-() const {
|
||||
|
||||
return Vector2(-x, -y);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
|
||||
|
||||
return x == p_vec2.x && y == p_vec2.y;
|
||||
}
|
||||
_FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
||||
|
||||
return x != p_vec2.x || y != p_vec2.y;
|
||||
}
|
||||
|
||||
Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const {
|
||||
|
||||
Vector2 res = *this;
|
||||
|
||||
res.x += (p_t * (p_b.x - x));
|
||||
res.y += (p_t * (p_b.y - y));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
Vector2 Vector2::slerp(const Vector2 &p_b, real_t p_t) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V(is_normalized() == false, Vector2());
|
||||
#endif
|
||||
real_t theta = angle_to(p_b);
|
||||
return rotated(theta * p_t);
|
||||
}
|
||||
|
||||
Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
|
||||
|
||||
Vector2 res = p_a;
|
||||
|
||||
res.x += (p_t * (p_b.x - p_a.x));
|
||||
res.y += (p_t * (p_b.y - p_a.y));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef Vector2 Size2;
|
||||
typedef Vector2 Point2;
|
||||
|
||||
#endif // VECTOR2_H
|
Loading…
Reference in New Issue
Block a user