LightmapGI: Reduce warnings and increase probe accuracy

This commit is contained in:
Per Melin 2024-04-11 21:57:24 +02:00
parent b8fa48be04
commit a990e42207
1 changed files with 50 additions and 9 deletions

View File

@ -397,7 +397,10 @@ int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const Loc
const BSPSimplex &s = p_simplices[p_simplex]; const BSPSimplex &s = p_simplices[p_simplex];
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
const Vector3 v = p_points[s.vertices[i]]; const Vector3 v = p_points[s.vertices[i]];
if (p_plane.has_point(v)) { // The tolerance used here comes from experiments on scenes up to
// 1000x1000x100 meters. If it's any smaller, some simplices will
// appear to self-intersect due to a lack of precision in Plane.
if (p_plane.has_point(v, 1.0 / (1 << 13))) {
// Coplanar. // Coplanar.
} else if (p_plane.is_point_over(v)) { } else if (p_plane.is_point_over(v)) {
over++; over++;
@ -419,7 +422,8 @@ int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const Loc
//#define DEBUG_BSP //#define DEBUG_BSP
int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) { int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) {
//if we reach here, it means there is more than one simplex ERR_FAIL_COND_V(p_simplex_indices.size() < 2, -1);
int32_t node_index = (int32_t)bsp_nodes.size(); int32_t node_index = (int32_t)bsp_nodes.size();
bsp_nodes.push_back(BSPNode()); bsp_nodes.push_back(BSPNode());
@ -477,13 +481,14 @@ int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const Loc
float score = 0; //by default, score is 0 (worst) float score = 0; //by default, score is 0 (worst)
if (over_count > 0) { if (over_count > 0) {
//give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced // Simplices that are intersected by the plane are moved into both the over
score = float(under_count) / over_count; // and under subtrees which makes the entire tree deeper, so the best plane
// will have the least intersections while separating the simplices evenly.
float balance = float(under_count) / over_count;
float separation = float(over_count + under_count) / p_simplex_indices.size();
score = balance * separation * separation;
} }
//adjusting priority over least splits, probably not a great idea
//score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score
if (score > best_plane_score) { if (score > best_plane_score) {
best_plane = plane; best_plane = plane;
best_plane_score = score; best_plane_score = score;
@ -491,6 +496,44 @@ int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const Loc
} }
} }
// We often end up with two (or on rare occasions, three) simplices that are
// either disjoint or share one vertex and don't have a separating plane
// among their faces. The fallback is to loop through new planes created
// with one vertex of the first simplex and two vertices of the second until
// we find a winner.
if (best_plane_score == 0) {
const BSPSimplex &simplex0 = p_simplices[p_simplex_indices[0]];
const BSPSimplex &simplex1 = p_simplices[p_simplex_indices[1]];
for (uint32_t i = 0; i < 4 && !best_plane_score; i++) {
Vector3 v0 = p_points[simplex0.vertices[i]];
for (uint32_t j = 0; j < 3 && !best_plane_score; j++) {
if (simplex0.vertices[i] == simplex1.vertices[j]) {
break;
}
Vector3 v1 = p_points[simplex1.vertices[j]];
for (uint32_t k = j + 1; k < 4; k++) {
if (simplex0.vertices[i] == simplex1.vertices[k]) {
break;
}
Vector3 v2 = p_points[simplex1.vertices[k]];
Plane plane = Plane(v0, v1, v2);
if (plane == Plane()) { // When v0, v1, and v2 are collinear, they can't form a plane.
continue;
}
int32_t side0 = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[0]);
int32_t side1 = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[1]);
if ((side0 == 1 && side1 == -1) || (side0 == -1 && side1 == 1)) {
best_plane = plane;
best_plane_score = 1.0;
break;
}
}
}
}
}
LocalVector<int32_t> indices_over; LocalVector<int32_t> indices_over;
LocalVector<int32_t> indices_under; LocalVector<int32_t> indices_under;
@ -515,8 +558,6 @@ int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const Loc
#endif #endif
if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) { if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) {
ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug
// Failed to separate the tetrahedrons using planes // Failed to separate the tetrahedrons using planes
// this means Delaunay broke at some point. // this means Delaunay broke at some point.
// Luckily, because we are using tetrahedrons, we can resort to // Luckily, because we are using tetrahedrons, we can resort to