From 283cac859c01550cfb6470157cdbf69f12c5f38b Mon Sep 17 00:00:00 2001
From: bonjorno7 <jorijndegraaf@gmail.com>
Date: Sat, 13 May 2023 00:02:56 +0200
Subject: [PATCH] Make ok_color functions static

It needs to be a class to prevent build errors, but the functions can at least be static, so you don't have to instance the class.
---
 core/math/color.cpp        | 12 +++-----
 thirdparty/misc/ok_color.h | 58 +++++++++++++++++++-------------------
 2 files changed, 33 insertions(+), 37 deletions(-)

diff --git a/core/math/color.cpp b/core/math/color.cpp
index 0d9325f2362..d36306d9687 100644
--- a/core/math/color.cpp
+++ b/core/math/color.cpp
@@ -247,8 +247,7 @@ void Color::set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha) {
 	hsl.h = p_h;
 	hsl.s = p_s;
 	hsl.l = p_l;
-	ok_color new_ok_color;
-	ok_color::RGB rgb = new_ok_color.okhsl_to_srgb(hsl);
+	ok_color::RGB rgb = ok_color::okhsl_to_srgb(hsl);
 	Color c = Color(rgb.r, rgb.g, rgb.b, p_alpha).clamp();
 	r = c.r;
 	g = c.g;
@@ -595,8 +594,7 @@ float Color::get_ok_hsl_h() const {
 	rgb.r = r;
 	rgb.g = g;
 	rgb.b = b;
-	ok_color new_ok_color;
-	ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
+	ok_color::HSL ok_hsl = ok_color::srgb_to_okhsl(rgb);
 	if (Math::is_nan(ok_hsl.h)) {
 		return 0.0f;
 	}
@@ -608,8 +606,7 @@ float Color::get_ok_hsl_s() const {
 	rgb.r = r;
 	rgb.g = g;
 	rgb.b = b;
-	ok_color new_ok_color;
-	ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
+	ok_color::HSL ok_hsl = ok_color::srgb_to_okhsl(rgb);
 	if (Math::is_nan(ok_hsl.s)) {
 		return 0.0f;
 	}
@@ -621,8 +618,7 @@ float Color::get_ok_hsl_l() const {
 	rgb.r = r;
 	rgb.g = g;
 	rgb.b = b;
-	ok_color new_ok_color;
-	ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
+	ok_color::HSL ok_hsl = ok_color::srgb_to_okhsl(rgb);
 	if (Math::is_nan(ok_hsl.l)) {
 		return 0.0f;
 	}
diff --git a/thirdparty/misc/ok_color.h b/thirdparty/misc/ok_color.h
index dbc7dafc367..4d0f0049bdf 100644
--- a/thirdparty/misc/ok_color.h
+++ b/thirdparty/misc/ok_color.h
@@ -33,13 +33,13 @@ struct HSL { float h; float s; float l; };
 struct LC { float L; float C; };
 
 // Alternative representation of (L_cusp, C_cusp)
-// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp) 
+// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp)
 // The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L
 struct ST { float S; float T; };
 
 static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f;
 
-float clamp(float x, float min, float max)
+static float clamp(float x, float min, float max)
 {
 	if (x < min)
 		return min;
@@ -49,22 +49,22 @@ float clamp(float x, float min, float max)
 	return x;
 }
 
-float sgn(float x)
+static float sgn(float x)
 {
 	return (float)(0.f < x) - (float)(x < 0.f);
 }
 
-float srgb_transfer_function(float a)
+static float srgb_transfer_function(float a)
 {
 	return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f;
 }
 
-float srgb_transfer_function_inv(float a)
+static float srgb_transfer_function_inv(float a)
 {
 	return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
 }
 
-Lab linear_srgb_to_oklab(RGB c)
+static Lab linear_srgb_to_oklab(RGB c)
 {
 	float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
 	float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
@@ -81,7 +81,7 @@ Lab linear_srgb_to_oklab(RGB c)
 	};
 }
 
-RGB oklab_to_linear_srgb(Lab c)
+static RGB oklab_to_linear_srgb(Lab c)
 {
 	float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b;
 	float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b;
@@ -101,7 +101,7 @@ RGB oklab_to_linear_srgb(Lab c)
 // Finds the maximum saturation possible for a given hue that fits in sRGB
 // Saturation here is defined as S = C/L
 // a and b must be normalized so a^2 + b^2 == 1
-float compute_max_saturation(float a, float b)
+static float compute_max_saturation(float a, float b)
 {
 	// Max saturation will be when one of r, g or b goes below zero.
 
@@ -132,7 +132,7 @@ float compute_max_saturation(float a, float b)
 
 	// Do one step Halley's method to get closer
 	// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
-	// this should be sufficient for most applications, otherwise do two/three steps 
+	// this should be sufficient for most applications, otherwise do two/three steps
 
 	float k_l = +0.3963377774f * a + 0.2158037573f * b;
 	float k_m = -0.1055613458f * a - 0.0638541728f * b;
@@ -167,7 +167,7 @@ float compute_max_saturation(float a, float b)
 
 // finds L_cusp and C_cusp for a given hue
 // a and b must be normalized so a^2 + b^2 == 1
-LC find_cusp(float a, float b)
+static LC find_cusp(float a, float b)
 {
 	// First, find the maximum saturation (saturation S = C/L)
 	float S_cusp = compute_max_saturation(a, b);
@@ -180,11 +180,11 @@ LC find_cusp(float a, float b)
 	return { L_cusp , C_cusp };
 }
 
-// Finds intersection of the line defined by 
+// Finds intersection of the line defined by
 // L = L0 * (1 - t) + t * L1;
 // C = t * C1;
 // a and b must be normalized so a^2 + b^2 == 1
-float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
+static float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
 {
 	// Find the intersection for upper and lower half seprately
 	float t;
@@ -269,7 +269,7 @@ float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC
 	return t;
 }
 
-float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
+static float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
 {
 	// Find the cusp of the gamut triangle
 	LC cusp = find_cusp(a, b);
@@ -277,7 +277,7 @@ float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
 	return find_gamut_intersection(a, b, L1, C1, L0, cusp);
 }
 
-RGB gamut_clip_preserve_chroma(RGB rgb)
+static RGB gamut_clip_preserve_chroma(RGB rgb)
 {
 	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
 		return rgb;
@@ -299,7 +299,7 @@ RGB gamut_clip_preserve_chroma(RGB rgb)
 	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
 }
 
-RGB gamut_clip_project_to_0_5(RGB rgb)
+static RGB gamut_clip_project_to_0_5(RGB rgb)
 {
 	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
 		return rgb;
@@ -321,7 +321,7 @@ RGB gamut_clip_project_to_0_5(RGB rgb)
 	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
 }
 
-RGB gamut_clip_project_to_L_cusp(RGB rgb)
+static RGB gamut_clip_project_to_L_cusp(RGB rgb)
 {
 	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
 		return rgb;
@@ -347,7 +347,7 @@ RGB gamut_clip_project_to_L_cusp(RGB rgb)
 	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
 }
 
-RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
+static RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
 {
 	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
 		return rgb;
@@ -371,7 +371,7 @@ RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
 	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
 }
 
-RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
+static RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
 {
 	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
 		return rgb;
@@ -400,7 +400,7 @@ RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
 	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
 }
 
-float toe(float x)
+static float toe(float x)
 {
 	constexpr float k_1 = 0.206f;
 	constexpr float k_2 = 0.03f;
@@ -408,7 +408,7 @@ float toe(float x)
 	return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));
 }
 
-float toe_inv(float x)
+static float toe_inv(float x)
 {
 	constexpr float k_1 = 0.206f;
 	constexpr float k_2 = 0.03f;
@@ -416,7 +416,7 @@ float toe_inv(float x)
 	return (x * x + k_1 * x) / (k_3 * (x + k_2));
 }
 
-ST to_ST(LC cusp)
+static ST to_ST(LC cusp)
 {
 	float L = cusp.L;
 	float C = cusp.C;
@@ -426,7 +426,7 @@ ST to_ST(LC cusp)
 // Returns a smooth approximation of the location of the cusp
 // This polynomial was created by an optimization process
 // It has been designed so that S_mid < S_max and T_mid < T_max
-ST get_ST_mid(float a_, float b_)
+static ST get_ST_mid(float a_, float b_)
 {
 	float S = 0.11516993f + 1.f / (
 		+7.44778970f + 4.15901240f * b_
@@ -448,13 +448,13 @@ ST get_ST_mid(float a_, float b_)
 }
 
 struct Cs { float C_0; float C_mid; float C_max; };
-Cs get_Cs(float L, float a_, float b_)
+static Cs get_Cs(float L, float a_, float b_)
 {
 	LC cusp = find_cusp(a_, b_);
 
 	float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);
 	ST ST_max = to_ST(cusp);
-	
+
 	// Scale factor to compensate for the curved part of gamut shape:
 	float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T);
 
@@ -481,7 +481,7 @@ Cs get_Cs(float L, float a_, float b_)
 	return { C_0, C_mid, C_max };
 }
 
-RGB okhsl_to_srgb(HSL hsl)
+static RGB okhsl_to_srgb(HSL hsl)
 {
 	float h = hsl.h;
 	float s = hsl.s;
@@ -539,7 +539,7 @@ RGB okhsl_to_srgb(HSL hsl)
 	};
 }
 
-HSL srgb_to_okhsl(RGB rgb)
+static HSL srgb_to_okhsl(RGB rgb)
 {
 	Lab lab = linear_srgb_to_oklab({
 		srgb_transfer_function_inv(rgb.r),
@@ -588,7 +588,7 @@ HSL srgb_to_okhsl(RGB rgb)
 }
 
 
-RGB okhsv_to_srgb(HSV hsv)
+static RGB okhsv_to_srgb(HSV hsv)
 {
 	float h = hsv.h;
 	float s = hsv.s;
@@ -596,7 +596,7 @@ RGB okhsv_to_srgb(HSV hsv)
 
 	float a_ = cosf(2.f * pi * h);
 	float b_ = sinf(2.f * pi * h);
-	
+
 	LC cusp = find_cusp(a_, b_);
 	ST ST_max = to_ST(cusp);
 	float S_max = ST_max.S;
@@ -635,7 +635,7 @@ RGB okhsv_to_srgb(HSV hsv)
 	};
 }
 
-HSV srgb_to_okhsv(RGB rgb)
+static HSV srgb_to_okhsv(RGB rgb)
 {
 	Lab lab = linear_srgb_to_oklab({
 		srgb_transfer_function_inv(rgb.r),