Pad etcpak input to 4x4 blocks. Fixes #49981
This commit is contained in:
parent
f8b8d0d4b8
commit
b1b20f5f91
|
@ -1434,12 +1434,11 @@ int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &
|
||||||
}
|
}
|
||||||
|
|
||||||
// Set mipmap size.
|
// Set mipmap size.
|
||||||
// It might be necessary to put this after the minimum mipmap size check because of the possible occurrence of "1 >> 1".
|
|
||||||
if (r_mm_width) {
|
if (r_mm_width) {
|
||||||
*r_mm_width = bw >> 1;
|
*r_mm_width = w;
|
||||||
}
|
}
|
||||||
if (r_mm_height) {
|
if (r_mm_height) {
|
||||||
*r_mm_height = bh >> 1;
|
*r_mm_height = h;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Reach target mipmap.
|
// Reach target mipmap.
|
||||||
|
|
|
@ -132,8 +132,35 @@ void _compress_etcpak(EtcpakType p_compresstype, Image *r_img, float p_lossy_qua
|
||||||
// Compress image data and (if required) mipmaps.
|
// Compress image data and (if required) mipmaps.
|
||||||
|
|
||||||
const bool mipmaps = r_img->has_mipmaps();
|
const bool mipmaps = r_img->has_mipmaps();
|
||||||
const int width = r_img->get_width();
|
int width = r_img->get_width();
|
||||||
const int height = r_img->get_height();
|
int height = r_img->get_height();
|
||||||
|
|
||||||
|
/*
|
||||||
|
The first mipmap level of a compressed texture must be a multiple of 4. Quote from D3D11.3 spec:
|
||||||
|
|
||||||
|
BC format surfaces are always multiples of full blocks, each block representing 4x4 pixels.
|
||||||
|
For mipmaps, the top level map is required to be a multiple of 4 size in all dimensions.
|
||||||
|
The sizes for the lower level maps are computed as they are for all mipmapped surfaces,
|
||||||
|
and thus may not be a multiple of 4, for example a top level map of 20 results in a second level
|
||||||
|
map size of 10. For these cases, there is a differing 'physical' size and a 'virtual' size.
|
||||||
|
The virtual size is that computed for each mip level without adjustment, which is 10 for the example.
|
||||||
|
The physical size is the virtual size rounded up to the next multiple of 4, which is 12 for the example,
|
||||||
|
and this represents the actual memory size. The sampling hardware will apply texture address
|
||||||
|
processing based on the virtual size (using, for example, border color if specified for accesses
|
||||||
|
beyond 10), and thus for the example case will not access the 11th and 12th row of the resource.
|
||||||
|
So for mipmap chains when an axis becomes < 4 in size, only texels 'a','b','e','f'
|
||||||
|
are used for a 2x2 map, and texel 'a' is used for 1x1. Note that this is similar to, but distinct from,
|
||||||
|
the surface pitch, which can encompass additional padding beyond the physical surface size.
|
||||||
|
*/
|
||||||
|
int next_width = (width + 3) & ~3;
|
||||||
|
int next_height = (height + 3) & ~3;
|
||||||
|
if (next_width != width || next_height != height) {
|
||||||
|
r_img->resize(next_width, next_height, Image::INTERPOLATE_LANCZOS);
|
||||||
|
width = r_img->get_width();
|
||||||
|
height = r_img->get_height();
|
||||||
|
}
|
||||||
|
ERR_FAIL_COND(width % 4 != 0 || height % 4 != 0); // Should be guaranteed by above
|
||||||
|
|
||||||
const uint8_t *src_read = r_img->get_data().ptr();
|
const uint8_t *src_read = r_img->get_data().ptr();
|
||||||
|
|
||||||
print_verbose(vformat("ETCPAK: Encoding image size %dx%d to format %s.", width, height, Image::get_format_name(target_format)));
|
print_verbose(vformat("ETCPAK: Encoding image size %dx%d to format %s.", width, height, Image::get_format_name(target_format)));
|
||||||
|
@ -144,24 +171,48 @@ void _compress_etcpak(EtcpakType p_compresstype, Image *r_img, float p_lossy_qua
|
||||||
uint8_t *dest_write = dest_data.ptrw();
|
uint8_t *dest_write = dest_data.ptrw();
|
||||||
|
|
||||||
int mip_count = mipmaps ? Image::get_image_required_mipmaps(width, height, target_format) : 0;
|
int mip_count = mipmaps ? Image::get_image_required_mipmaps(width, height, target_format) : 0;
|
||||||
|
Vector<uint32_t> padded_src;
|
||||||
|
|
||||||
for (int i = 0; i < mip_count + 1; i++) {
|
for (int i = 0; i < mip_count + 1; i++) {
|
||||||
// Get write mip metrics for target image.
|
// Get write mip metrics for target image.
|
||||||
int mip_w, mip_h;
|
int orig_mip_w, orig_mip_h;
|
||||||
int mip_ofs = Image::get_image_mipmap_offset_and_dimensions(width, height, target_format, i, mip_w, mip_h);
|
int mip_ofs = Image::get_image_mipmap_offset_and_dimensions(width, height, target_format, i, orig_mip_w, orig_mip_h);
|
||||||
// Ensure that mip offset is a multiple of 8 (etcpak expects uint64_t pointer).
|
// Ensure that mip offset is a multiple of 8 (etcpak expects uint64_t pointer).
|
||||||
ERR_FAIL_COND(mip_ofs % 8 != 0);
|
ERR_FAIL_COND(mip_ofs % 8 != 0);
|
||||||
uint64_t *dest_mip_write = (uint64_t *)&dest_write[mip_ofs];
|
uint64_t *dest_mip_write = (uint64_t *)&dest_write[mip_ofs];
|
||||||
|
|
||||||
// Block size. Align stride to multiple of 4 (RGBA8).
|
// Block size. Align stride to multiple of 4 (RGBA8).
|
||||||
mip_w = (mip_w + 3) & ~3;
|
int mip_w = (orig_mip_w + 3) & ~3;
|
||||||
mip_h = (mip_h + 3) & ~3;
|
int mip_h = (orig_mip_h + 3) & ~3;
|
||||||
const uint32_t blocks = mip_w * mip_h / 16;
|
const uint32_t blocks = mip_w * mip_h / 16;
|
||||||
|
|
||||||
// Get mip data from source image for reading.
|
// Get mip data from source image for reading.
|
||||||
int src_mip_ofs = r_img->get_mipmap_offset(i);
|
int src_mip_ofs = r_img->get_mipmap_offset(i);
|
||||||
const uint32_t *src_mip_read = (const uint32_t *)&src_read[src_mip_ofs];
|
const uint32_t *src_mip_read = (const uint32_t *)&src_read[src_mip_ofs];
|
||||||
|
|
||||||
|
// Pad textures to nearest block by smearing.
|
||||||
|
if (mip_w != orig_mip_w || mip_h != orig_mip_h) {
|
||||||
|
padded_src.resize(mip_w * mip_h);
|
||||||
|
uint32_t *ptrw = padded_src.ptrw();
|
||||||
|
int x = 0, y = 0;
|
||||||
|
for (y = 0; y < orig_mip_h; y++) {
|
||||||
|
for (x = 0; x < orig_mip_w; x++) {
|
||||||
|
ptrw[mip_w * y + x] = src_mip_read[orig_mip_w * y + x];
|
||||||
|
}
|
||||||
|
// First, smear in x.
|
||||||
|
for (; x < mip_w; x++) {
|
||||||
|
ptrw[mip_w * y + x] = ptrw[mip_w * y + x - 1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Then, smear in y.
|
||||||
|
for (; y < mip_h; y++) {
|
||||||
|
for (x = 0; x < mip_w; x++) {
|
||||||
|
ptrw[mip_w * y + x] = ptrw[mip_w * y + x - mip_w];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Override the src_mip_read pointer to our temporary Vector.
|
||||||
|
src_mip_read = padded_src.ptr();
|
||||||
|
}
|
||||||
if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1) {
|
if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1) {
|
||||||
CompressEtc1RgbDither(src_mip_read, dest_mip_write, blocks, mip_w);
|
CompressEtc1RgbDither(src_mip_read, dest_mip_write, blocks, mip_w);
|
||||||
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2 || p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_RA_AS_RG) {
|
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2 || p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_RA_AS_RG) {
|
||||||
|
|
Loading…
Reference in New Issue