diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h index 0d209402dd9..a75f2fb4ab6 100644 --- a/core/math/math_funcs.h +++ b/core/math/math_funcs.h @@ -272,13 +272,20 @@ public: return diff < epsilon; } - static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b, real_t epsilon = CMP_EPSILON) { - // TODO: Comparing floats for approximate-equality is non-trivial. - // Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators. - // A proper implementation in terms of ULPs should eventually replace the contents of this function. - // See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details. + static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) { + real_t tolerance = CMP_EPSILON * abs(a); + if (tolerance < CMP_EPSILON) { + tolerance = CMP_EPSILON; + } + return abs(a - b) < tolerance; + } - return abs(a - b) < epsilon; + static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b, real_t tolerance) { + return abs(a - b) < tolerance; + } + + static _ALWAYS_INLINE_ bool is_zero_approx(real_t s) { + return abs(s) < CMP_EPSILON; } static _ALWAYS_INLINE_ float absf(float g) { diff --git a/core/math/plane.cpp b/core/math/plane.cpp index cd3cbce300f..b01853c4ac5 100644 --- a/core/math/plane.cpp +++ b/core/math/plane.cpp @@ -110,7 +110,7 @@ bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 real_t den = normal.dot(segment); //printf("den is %i\n",den); - if (Math::abs(den) <= CMP_EPSILON) { + if (Math::is_zero_approx(den)) { return false; } @@ -135,7 +135,7 @@ bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vec real_t den = normal.dot(segment); //printf("den is %i\n",den); - if (Math::abs(den) <= CMP_EPSILON) { + if (Math::is_zero_approx(den)) { return false; } diff --git a/core/math/plane.h b/core/math/plane.h index 1c6e4b816bc..ec817edd2ca 100644 --- a/core/math/plane.h +++ b/core/math/plane.h @@ -125,12 +125,12 @@ Plane::Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_ bool Plane::operator==(const Plane &p_plane) const { - return normal == p_plane.normal && d == p_plane.d; + return normal == p_plane.normal && Math::is_equal_approx(d, p_plane.d); } bool Plane::operator!=(const Plane &p_plane) const { - return normal != p_plane.normal || d != p_plane.d; + return normal != p_plane.normal || !Math::is_equal_approx(d, p_plane.d); } #endif // PLANE_H diff --git a/core/math/vector2.h b/core/math/vector2.h index 9a214ef9b55..a0c6024c9fb 100644 --- a/core/math/vector2.h +++ b/core/math/vector2.h @@ -106,8 +106,8 @@ struct Vector2 { bool operator==(const Vector2 &p_vec2) const; bool operator!=(const Vector2 &p_vec2) const; - bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); } - bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); } + bool operator<(const Vector2 &p_vec2) const { return (Math::is_equal_approx(x, p_vec2.x)) ? (y < p_vec2.y) : (x < p_vec2.x); } + bool operator<=(const Vector2 &p_vec2) const { return (Math::is_equal_approx(x, p_vec2.x)) ? (y <= p_vec2.y) : (x < p_vec2.x); } real_t angle() const; @@ -213,11 +213,11 @@ _FORCE_INLINE_ Vector2 Vector2::operator-() const { _FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const { - return x == p_vec2.x && y == p_vec2.y; + return Math::is_equal_approx(x, p_vec2.x) && Math::is_equal_approx(y, p_vec2.y); } _FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const { - return x != p_vec2.x || y != p_vec2.y; + return !Math::is_equal_approx(x, p_vec2.x) || !Math::is_equal_approx(y, p_vec2.y); } Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const { diff --git a/core/math/vector3.h b/core/math/vector3.h index e9074c5bd42..21fc09653f4 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -341,17 +341,17 @@ Vector3 Vector3::operator-() const { bool Vector3::operator==(const Vector3 &p_v) const { - return (x == p_v.x && y == p_v.y && z == p_v.z); + return (Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z)); } bool Vector3::operator!=(const Vector3 &p_v) const { - return (x != p_v.x || y != p_v.y || z != p_v.z); + return (!Math::is_equal_approx(x, p_v.x) || !Math::is_equal_approx(y, p_v.y) || !Math::is_equal_approx(z, p_v.z)); } bool Vector3::operator<(const Vector3 &p_v) const { - if (x == p_v.x) { - if (y == p_v.y) + if (Math::is_equal_approx(x, p_v.x)) { + if (Math::is_equal_approx(y, p_v.y)) return z < p_v.z; else return y < p_v.y; @@ -362,8 +362,8 @@ bool Vector3::operator<(const Vector3 &p_v) const { bool Vector3::operator<=(const Vector3 &p_v) const { - if (x == p_v.x) { - if (y == p_v.y) + if (Math::is_equal_approx(x, p_v.x)) { + if (Math::is_equal_approx(y, p_v.y)) return z <= p_v.z; else return y < p_v.y; @@ -402,13 +402,14 @@ real_t Vector3::length_squared() const { void Vector3::normalize() { - real_t l = length(); - if (l == 0) { + real_t lengthsq = length_squared(); + if (lengthsq == 0) { x = y = z = 0; } else { - x /= l; - y /= l; - z /= l; + real_t length = Math::sqrt(lengthsq); + x /= length; + y /= length; + z /= length; } } diff --git a/scene/resources/animation.cpp b/scene/resources/animation.cpp index e58ec9d71e4..1caa24d4119 100644 --- a/scene/resources/animation.cpp +++ b/scene/resources/animation.cpp @@ -1477,7 +1477,7 @@ int Animation::_find(const Vector &p_keys, float p_time) const { middle = (low + high) / 2; - if (Math::abs(p_time - keys[middle].time) < CMP_EPSILON) { //match + if (Math::is_equal_approx(p_time, keys[middle].time)) { //match return middle; } else if (p_time < keys[middle].time) high = middle - 1; //search low end of array