Fix non UTF8-encoded thirdparty files
This commit is contained in:
parent
0acdeb2e12
commit
b7e737639f
14
thirdparty/assimp/code/res/resource.h
vendored
14
thirdparty/assimp/code/res/resource.h
vendored
@ -1,14 +0,0 @@
|
||||
//{{NO_DEPENDENCIES}}
|
||||
// Microsoft Visual C++ generated include file.
|
||||
// Used by assimp.rc
|
||||
|
||||
// Nächste Standardwerte für neue Objekte
|
||||
//
|
||||
#ifdef APSTUDIO_INVOKED
|
||||
#ifndef APSTUDIO_READONLY_SYMBOLS
|
||||
#define _APS_NEXT_RESOURCE_VALUE 101
|
||||
#define _APS_NEXT_COMMAND_VALUE 40001
|
||||
#define _APS_NEXT_CONTROL_VALUE 1001
|
||||
#define _APS_NEXT_SYMED_VALUE 101
|
||||
#endif
|
||||
#endif
|
8
thirdparty/misc/clipper.cpp
vendored
8
thirdparty/misc/clipper.cpp
vendored
@ -4329,10 +4329,10 @@ double DistanceFromLineSqrd(
|
||||
const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2)
|
||||
{
|
||||
//The equation of a line in general form (Ax + By + C = 0)
|
||||
//given 2 points (x¹,y¹) & (x²,y²) is ...
|
||||
//(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
|
||||
//A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
|
||||
//perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
|
||||
//given 2 points (x¹,y¹) & (x²,y²) is ...
|
||||
//(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
|
||||
//A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
|
||||
//perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
|
||||
//see http://en.wikipedia.org/wiki/Perpendicular_distance
|
||||
double A = double(ln1.Y - ln2.Y);
|
||||
double B = double(ln2.X - ln1.X);
|
||||
|
44
thirdparty/xatlas/xatlas.cpp
vendored
44
thirdparty/xatlas/xatlas.cpp
vendored
@ -4388,7 +4388,7 @@ private:
|
||||
class Solver
|
||||
{
|
||||
public:
|
||||
// Solve the symmetric system: At·A·x = At·b
|
||||
// Solve the symmetric system: At·A·x = At·b
|
||||
static bool LeastSquaresSolver(const sparse::Matrix &A, const FullVector &b, FullVector &x, float epsilon = 1e-5f)
|
||||
{
|
||||
xaDebugAssert(A.width() == x.dimension());
|
||||
@ -4477,22 +4477,22 @@ private:
|
||||
* Gradient method.
|
||||
*
|
||||
* Solving sparse linear systems:
|
||||
* (1) A·x = b
|
||||
* (1) A·x = b
|
||||
*
|
||||
* The conjugate gradient algorithm solves (1) only in the case that A is
|
||||
* symmetric and positive definite. It is based on the idea of minimizing the
|
||||
* function
|
||||
*
|
||||
* (2) f(x) = 1/2·x·A·x - b·x
|
||||
* (2) f(x) = 1/2·x·A·x - b·x
|
||||
*
|
||||
* This function is minimized when its gradient
|
||||
*
|
||||
* (3) df = A·x - b
|
||||
* (3) df = A·x - b
|
||||
*
|
||||
* is zero, which is equivalent to (1). The minimization is carried out by
|
||||
* generating a succession of search directions p.k and improved minimizers x.k.
|
||||
* At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k·p.k),
|
||||
* and x.k+1 is set equal to the new point x.k + alfa.k·p.k. The p.k and x.k are
|
||||
* At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k·p.k),
|
||||
* and x.k+1 is set equal to the new point x.k + alfa.k·p.k. The p.k and x.k are
|
||||
* built up in such a way that x.k+1 is also the minimizer of f over the whole
|
||||
* vector space of directions already taken, {p.1, p.2, . . . , p.k}. After N
|
||||
* iterations you arrive at the minimizer over the entire vector space, i.e., the
|
||||
@ -4520,7 +4520,7 @@ private:
|
||||
float delta_new;
|
||||
float alpha;
|
||||
float beta;
|
||||
// r = b - A·x;
|
||||
// r = b - A·x;
|
||||
sparse::copy(b, r);
|
||||
sparse::sgemv(-1, A, x, 1, r);
|
||||
// p = r;
|
||||
@ -4529,24 +4529,24 @@ private:
|
||||
delta_0 = delta_new;
|
||||
while (i < i_max && delta_new > epsilon * epsilon * delta_0) {
|
||||
i++;
|
||||
// q = A·p
|
||||
// q = A·p
|
||||
mult(A, p, q);
|
||||
// alpha = delta_new / p·q
|
||||
// alpha = delta_new / p·q
|
||||
alpha = delta_new / sparse::dot( p, q );
|
||||
// x = alfa·p + x
|
||||
// x = alfa·p + x
|
||||
sparse::saxpy(alpha, p, x);
|
||||
if ((i & 31) == 0) { // recompute r after 32 steps
|
||||
// r = b - A·x
|
||||
// r = b - A·x
|
||||
sparse::copy(b, r);
|
||||
sparse::sgemv(-1, A, x, 1, r);
|
||||
} else {
|
||||
// r = r - alpha·q
|
||||
// r = r - alpha·q
|
||||
sparse::saxpy(-alpha, q, r);
|
||||
}
|
||||
delta_old = delta_new;
|
||||
delta_new = sparse::dot( r, r );
|
||||
beta = delta_new / delta_old;
|
||||
// p = beta·p + r
|
||||
// p = beta·p + r
|
||||
sparse::scal(beta, p);
|
||||
sparse::saxpy(1, r, p);
|
||||
}
|
||||
@ -4572,35 +4572,35 @@ private:
|
||||
float delta_new;
|
||||
float alpha;
|
||||
float beta;
|
||||
// r = b - A·x
|
||||
// r = b - A·x
|
||||
sparse::copy(b, r);
|
||||
sparse::sgemv(-1, A, x, 1, r);
|
||||
// p = M^-1 · r
|
||||
// p = M^-1 · r
|
||||
preconditioner.apply(r, p);
|
||||
delta_new = sparse::dot(r, p);
|
||||
delta_0 = delta_new;
|
||||
while (i < i_max && delta_new > epsilon * epsilon * delta_0) {
|
||||
i++;
|
||||
// q = A·p
|
||||
// q = A·p
|
||||
mult(A, p, q);
|
||||
// alpha = delta_new / p·q
|
||||
// alpha = delta_new / p·q
|
||||
alpha = delta_new / sparse::dot(p, q);
|
||||
// x = alfa·p + x
|
||||
// x = alfa·p + x
|
||||
sparse::saxpy(alpha, p, x);
|
||||
if ((i & 31) == 0) { // recompute r after 32 steps
|
||||
// r = b - A·x
|
||||
// r = b - A·x
|
||||
sparse::copy(b, r);
|
||||
sparse::sgemv(-1, A, x, 1, r);
|
||||
} else {
|
||||
// r = r - alfa·q
|
||||
// r = r - alfa·q
|
||||
sparse::saxpy(-alpha, q, r);
|
||||
}
|
||||
// s = M^-1 · r
|
||||
// s = M^-1 · r
|
||||
preconditioner.apply(r, s);
|
||||
delta_old = delta_new;
|
||||
delta_new = sparse::dot( r, s );
|
||||
beta = delta_new / delta_old;
|
||||
// p = s + beta·p
|
||||
// p = s + beta·p
|
||||
sparse::scal(beta, p);
|
||||
sparse::saxpy(1, s, p);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user