Add QOA (Quite OK Audio) as a WAV compression mode
This commit is contained in:
parent
658e97c93a
commit
b9cbf2c96f
|
@ -412,6 +412,11 @@ Comment: PolyPartition / Triangulator
|
|||
Copyright: 2011-2021, Ivan Fratric and contributors
|
||||
License: Expat
|
||||
|
||||
Files: ./thirdparty/misc/qoa.h
|
||||
Comment: Quite OK Audio Format
|
||||
Copyright: 2023, Dominic Szablewski
|
||||
License: Expat
|
||||
|
||||
Files: ./thirdparty/misc/r128.c
|
||||
./thirdparty/misc/r128.h
|
||||
Comment: r128 library
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
<return type="int" enum="Error" />
|
||||
<param index="0" name="path" type="String" />
|
||||
<description>
|
||||
Saves the AudioStreamWAV as a WAV file to [param path]. Samples with IMA ADPCM format can't be saved.
|
||||
Saves the AudioStreamWAV as a WAV file to [param path]. Samples with IMA ADPCM or QOA formats can't be saved.
|
||||
[b]Note:[/b] A [code].wav[/code] extension is automatically appended to [param path] if it is missing.
|
||||
</description>
|
||||
</method>
|
||||
|
@ -56,6 +56,9 @@
|
|||
<constant name="FORMAT_IMA_ADPCM" value="2" enum="Format">
|
||||
Audio is compressed using IMA ADPCM.
|
||||
</constant>
|
||||
<constant name="FORMAT_QOA" value="3" enum="Format">
|
||||
Audio is compressed as QOA ([url=https://qoaformat.org/]Quite OK Audio[/url]).
|
||||
</constant>
|
||||
<constant name="LOOP_DISABLED" value="0" enum="LoopMode">
|
||||
Audio does not loop.
|
||||
</constant>
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
The compression mode to use on import.
|
||||
[b]Disabled:[/b] Imports audio data without any compression. This results in the highest possible quality.
|
||||
[b]RAM (Ima-ADPCM):[/b] Performs fast lossy compression on import. Low CPU cost, but quality is noticeably decreased compared to Ogg Vorbis or even MP3.
|
||||
[b]QOA ([url=https://qoaformat.org/]Quite OK Audio[/url]):[/b] Performs lossy compression on import. CPU cost is slightly higher than IMA-ADPCM, but quality is much higher.
|
||||
</member>
|
||||
<member name="edit/loop_begin" type="int" setter="" getter="" default="0">
|
||||
The begin loop point to use when [member edit/loop_mode] is [b]Forward[/b], [b]Ping-Pong[/b] or [b]Backward[/b]. This is set in seconds after the beginning of the audio file.
|
||||
|
|
|
@ -90,7 +90,7 @@ void ResourceImporterWAV::get_import_options(const String &p_path, List<ImportOp
|
|||
r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "edit/loop_mode", PROPERTY_HINT_ENUM, "Detect From WAV,Disabled,Forward,Ping-Pong,Backward", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), 0));
|
||||
r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "edit/loop_begin"), 0));
|
||||
r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "edit/loop_end"), -1));
|
||||
r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "compress/mode", PROPERTY_HINT_ENUM, "Disabled,RAM (Ima-ADPCM)"), 0));
|
||||
r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "compress/mode", PROPERTY_HINT_ENUM, "Disabled,RAM (Ima-ADPCM),QOA (Quite OK Audio)"), 0));
|
||||
}
|
||||
|
||||
Error ResourceImporterWAV::import(const String &p_source_file, const String &p_save_path, const HashMap<StringName, Variant> &p_options, List<String> *r_platform_variants, List<String> *r_gen_files, Variant *r_metadata) {
|
||||
|
@ -456,13 +456,13 @@ Error ResourceImporterWAV::import(const String &p_source_file, const String &p_s
|
|||
is16 = false;
|
||||
}
|
||||
|
||||
Vector<uint8_t> dst_data;
|
||||
Vector<uint8_t> pcm_data;
|
||||
AudioStreamWAV::Format dst_format;
|
||||
|
||||
if (compression == 1) {
|
||||
dst_format = AudioStreamWAV::FORMAT_IMA_ADPCM;
|
||||
if (format_channels == 1) {
|
||||
_compress_ima_adpcm(data, dst_data);
|
||||
_compress_ima_adpcm(data, pcm_data);
|
||||
} else {
|
||||
//byte interleave
|
||||
Vector<float> left;
|
||||
|
@ -484,9 +484,9 @@ Error ResourceImporterWAV::import(const String &p_source_file, const String &p_s
|
|||
_compress_ima_adpcm(right, bright);
|
||||
|
||||
int dl = bleft.size();
|
||||
dst_data.resize(dl * 2);
|
||||
pcm_data.resize(dl * 2);
|
||||
|
||||
uint8_t *w = dst_data.ptrw();
|
||||
uint8_t *w = pcm_data.ptrw();
|
||||
const uint8_t *rl = bleft.ptr();
|
||||
const uint8_t *rr = bright.ptr();
|
||||
|
||||
|
@ -498,13 +498,14 @@ Error ResourceImporterWAV::import(const String &p_source_file, const String &p_s
|
|||
|
||||
} else {
|
||||
dst_format = is16 ? AudioStreamWAV::FORMAT_16_BITS : AudioStreamWAV::FORMAT_8_BITS;
|
||||
dst_data.resize(data.size() * (is16 ? 2 : 1));
|
||||
bool enforce16 = is16 || compression == 2;
|
||||
pcm_data.resize(data.size() * (enforce16 ? 2 : 1));
|
||||
{
|
||||
uint8_t *w = dst_data.ptrw();
|
||||
uint8_t *w = pcm_data.ptrw();
|
||||
|
||||
int ds = data.size();
|
||||
for (int i = 0; i < ds; i++) {
|
||||
if (is16) {
|
||||
if (enforce16) {
|
||||
int16_t v = CLAMP(data[i] * 32768, -32768, 32767);
|
||||
encode_uint16(v, &w[i * 2]);
|
||||
} else {
|
||||
|
@ -515,6 +516,23 @@ Error ResourceImporterWAV::import(const String &p_source_file, const String &p_s
|
|||
}
|
||||
}
|
||||
|
||||
Vector<uint8_t> dst_data;
|
||||
if (compression == 2) {
|
||||
dst_format = AudioStreamWAV::FORMAT_QOA;
|
||||
qoa_desc desc = { 0, 0, 0, { { { 0 }, { 0 } } } };
|
||||
uint32_t qoa_len = 0;
|
||||
|
||||
desc.samplerate = rate;
|
||||
desc.samples = frames;
|
||||
desc.channels = format_channels;
|
||||
|
||||
void *encoded = qoa_encode((short *)pcm_data.ptrw(), &desc, &qoa_len);
|
||||
dst_data.resize(qoa_len);
|
||||
memcpy(dst_data.ptrw(), encoded, qoa_len);
|
||||
} else {
|
||||
dst_data = pcm_data;
|
||||
}
|
||||
|
||||
Ref<AudioStreamWAV> sample;
|
||||
sample.instantiate();
|
||||
sample->set_data(dst_data);
|
||||
|
|
|
@ -86,15 +86,15 @@ void AudioStreamPlaybackWAV::seek(double p_time) {
|
|||
offset = uint64_t(p_time * base->mix_rate) << MIX_FRAC_BITS;
|
||||
}
|
||||
|
||||
template <typename Depth, bool is_stereo, bool is_ima_adpcm>
|
||||
void AudioStreamPlaybackWAV::do_resample(const Depth *p_src, AudioFrame *p_dst, int64_t &p_offset, int32_t &p_increment, uint32_t p_amount, IMA_ADPCM_State *p_ima_adpcm) {
|
||||
template <typename Depth, bool is_stereo, bool is_ima_adpcm, bool is_qoa>
|
||||
void AudioStreamPlaybackWAV::do_resample(const Depth *p_src, AudioFrame *p_dst, int64_t &p_offset, int32_t &p_increment, uint32_t p_amount, IMA_ADPCM_State *p_ima_adpcm, QOA_State *p_qoa) {
|
||||
// this function will be compiled branchless by any decent compiler
|
||||
|
||||
int32_t final, final_r, next, next_r;
|
||||
int32_t final = 0, final_r = 0, next = 0, next_r = 0;
|
||||
while (p_amount) {
|
||||
p_amount--;
|
||||
int64_t pos = p_offset >> MIX_FRAC_BITS;
|
||||
if (is_stereo && !is_ima_adpcm) {
|
||||
if (is_stereo && !is_ima_adpcm && !is_qoa) {
|
||||
pos <<= 1;
|
||||
}
|
||||
|
||||
|
@ -174,6 +174,51 @@ void AudioStreamPlaybackWAV::do_resample(const Depth *p_src, AudioFrame *p_dst,
|
|||
final_r = p_ima_adpcm[1].predictor;
|
||||
}
|
||||
|
||||
} else {
|
||||
if (is_qoa) {
|
||||
if (pos != p_qoa->cache_pos) { // Prevents triple decoding on lower mix rates.
|
||||
for (int i = 0; i < 2; i++) {
|
||||
// Sign operations prevent triple decoding on backward loops, maxing prevents pop.
|
||||
uint32_t interp_pos = MIN(pos + (i * sign) + (sign < 0), p_qoa->desc->samples - 1);
|
||||
uint32_t new_data_ofs = 8 + interp_pos / QOA_FRAME_LEN * p_qoa->frame_len;
|
||||
|
||||
if (p_qoa->data_ofs != new_data_ofs) {
|
||||
p_qoa->data_ofs = new_data_ofs;
|
||||
const uint8_t *src_ptr = (const uint8_t *)base->data;
|
||||
src_ptr += p_qoa->data_ofs + AudioStreamWAV::DATA_PAD;
|
||||
qoa_decode_frame(src_ptr, p_qoa->frame_len, p_qoa->desc, p_qoa->dec, &p_qoa->dec_len);
|
||||
}
|
||||
|
||||
uint32_t dec_idx = (interp_pos % QOA_FRAME_LEN) * p_qoa->desc->channels;
|
||||
|
||||
if ((sign > 0 && i == 0) || (sign < 0 && i == 1)) {
|
||||
final = p_qoa->dec[dec_idx];
|
||||
p_qoa->cache[0] = final;
|
||||
if (is_stereo) {
|
||||
final_r = p_qoa->dec[dec_idx + 1];
|
||||
p_qoa->cache_r[0] = final_r;
|
||||
}
|
||||
} else {
|
||||
next = p_qoa->dec[dec_idx];
|
||||
p_qoa->cache[1] = next;
|
||||
if (is_stereo) {
|
||||
next_r = p_qoa->dec[dec_idx + 1];
|
||||
p_qoa->cache_r[1] = next_r;
|
||||
}
|
||||
}
|
||||
}
|
||||
p_qoa->cache_pos = pos;
|
||||
} else {
|
||||
final = p_qoa->cache[0];
|
||||
if (is_stereo) {
|
||||
final_r = p_qoa->cache_r[0];
|
||||
}
|
||||
|
||||
next = p_qoa->cache[1];
|
||||
if (is_stereo) {
|
||||
next_r = p_qoa->cache_r[1];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
final = p_src[pos];
|
||||
if (is_stereo) {
|
||||
|
@ -200,7 +245,7 @@ void AudioStreamPlaybackWAV::do_resample(const Depth *p_src, AudioFrame *p_dst,
|
|||
next_r <<= 8;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
int32_t frac = int64_t(p_offset & MIX_FRAC_MASK);
|
||||
|
||||
final = final + ((next - final) * frac >> MIX_FRAC_BITS);
|
||||
|
@ -240,6 +285,9 @@ int AudioStreamPlaybackWAV::mix(AudioFrame *p_buffer, float p_rate_scale, int p_
|
|||
case AudioStreamWAV::FORMAT_IMA_ADPCM:
|
||||
len *= 2;
|
||||
break;
|
||||
case AudioStreamWAV::FORMAT_QOA:
|
||||
len = qoa.desc->samples * qoa.desc->channels;
|
||||
break;
|
||||
}
|
||||
|
||||
if (base->stereo) {
|
||||
|
@ -368,27 +416,34 @@ int AudioStreamPlaybackWAV::mix(AudioFrame *p_buffer, float p_rate_scale, int p_
|
|||
switch (base->format) {
|
||||
case AudioStreamWAV::FORMAT_8_BITS: {
|
||||
if (is_stereo) {
|
||||
do_resample<int8_t, true, false>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm);
|
||||
do_resample<int8_t, true, false, false>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
} else {
|
||||
do_resample<int8_t, false, false>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm);
|
||||
do_resample<int8_t, false, false, false>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
}
|
||||
} break;
|
||||
case AudioStreamWAV::FORMAT_16_BITS: {
|
||||
if (is_stereo) {
|
||||
do_resample<int16_t, true, false>((int16_t *)data, dst_buff, offset, increment, target, ima_adpcm);
|
||||
do_resample<int16_t, true, false, false>((int16_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
} else {
|
||||
do_resample<int16_t, false, false>((int16_t *)data, dst_buff, offset, increment, target, ima_adpcm);
|
||||
do_resample<int16_t, false, false, false>((int16_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
}
|
||||
|
||||
} break;
|
||||
case AudioStreamWAV::FORMAT_IMA_ADPCM: {
|
||||
if (is_stereo) {
|
||||
do_resample<int8_t, true, true>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm);
|
||||
do_resample<int8_t, true, true, false>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
} else {
|
||||
do_resample<int8_t, false, true>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm);
|
||||
do_resample<int8_t, false, true, false>((int8_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
}
|
||||
|
||||
} break;
|
||||
case AudioStreamWAV::FORMAT_QOA: {
|
||||
if (is_stereo) {
|
||||
do_resample<uint8_t, true, false, true>((uint8_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
} else {
|
||||
do_resample<uint8_t, false, false, true>((uint8_t *)data, dst_buff, offset, increment, target, ima_adpcm, &qoa);
|
||||
}
|
||||
} break;
|
||||
}
|
||||
|
||||
dst_buff += target;
|
||||
|
@ -412,6 +467,16 @@ void AudioStreamPlaybackWAV::tag_used_streams() {
|
|||
|
||||
AudioStreamPlaybackWAV::AudioStreamPlaybackWAV() {}
|
||||
|
||||
AudioStreamPlaybackWAV::~AudioStreamPlaybackWAV() {
|
||||
if (qoa.desc) {
|
||||
memfree(qoa.desc);
|
||||
}
|
||||
|
||||
if (qoa.dec) {
|
||||
memfree(qoa.dec);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////
|
||||
|
||||
void AudioStreamWAV::set_format(Format p_format) {
|
||||
|
@ -475,6 +540,10 @@ double AudioStreamWAV::get_length() const {
|
|||
case AudioStreamWAV::FORMAT_IMA_ADPCM:
|
||||
len *= 2;
|
||||
break;
|
||||
case AudioStreamWAV::FORMAT_QOA:
|
||||
qoa_desc desc = { 0, 0, 0, { { { 0 }, { 0 } } } };
|
||||
qoa_decode_header((uint8_t *)data + DATA_PAD, QOA_MIN_FILESIZE, &desc);
|
||||
len = desc.samples * desc.channels;
|
||||
}
|
||||
|
||||
if (stereo) {
|
||||
|
@ -526,8 +595,8 @@ Vector<uint8_t> AudioStreamWAV::get_data() const {
|
|||
}
|
||||
|
||||
Error AudioStreamWAV::save_to_wav(const String &p_path) {
|
||||
if (format == AudioStreamWAV::FORMAT_IMA_ADPCM) {
|
||||
WARN_PRINT("Saving IMA_ADPC samples are not supported yet");
|
||||
if (format == AudioStreamWAV::FORMAT_IMA_ADPCM || format == AudioStreamWAV::FORMAT_QOA) {
|
||||
WARN_PRINT("Saving IMA_ADPCM and QOA samples is not supported yet");
|
||||
return ERR_UNAVAILABLE;
|
||||
}
|
||||
|
||||
|
@ -548,6 +617,7 @@ Error AudioStreamWAV::save_to_wav(const String &p_path) {
|
|||
byte_pr_sample = 1;
|
||||
break;
|
||||
case AudioStreamWAV::FORMAT_16_BITS:
|
||||
case AudioStreamWAV::FORMAT_QOA:
|
||||
byte_pr_sample = 2;
|
||||
break;
|
||||
case AudioStreamWAV::FORMAT_IMA_ADPCM:
|
||||
|
@ -590,6 +660,7 @@ Error AudioStreamWAV::save_to_wav(const String &p_path) {
|
|||
}
|
||||
break;
|
||||
case AudioStreamWAV::FORMAT_16_BITS:
|
||||
case AudioStreamWAV::FORMAT_QOA:
|
||||
for (unsigned int i = 0; i < data_bytes / 2; i++) {
|
||||
uint16_t data_point = decode_uint16(&read_data[i * 2]);
|
||||
file->store_16(data_point);
|
||||
|
@ -607,6 +678,16 @@ Ref<AudioStreamPlayback> AudioStreamWAV::instantiate_playback() {
|
|||
Ref<AudioStreamPlaybackWAV> sample;
|
||||
sample.instantiate();
|
||||
sample->base = Ref<AudioStreamWAV>(this);
|
||||
|
||||
if (format == AudioStreamWAV::FORMAT_QOA) {
|
||||
sample->qoa.desc = (qoa_desc *)memalloc(sizeof(qoa_desc));
|
||||
qoa_decode_header((uint8_t *)data + DATA_PAD, QOA_MIN_FILESIZE, sample->qoa.desc);
|
||||
sample->qoa.frame_len = qoa_max_frame_size(sample->qoa.desc);
|
||||
int samples_len = (sample->qoa.desc->samples > QOA_FRAME_LEN ? QOA_FRAME_LEN : sample->qoa.desc->samples);
|
||||
int alloc_len = sample->qoa.desc->channels * samples_len * sizeof(int16_t);
|
||||
sample->qoa.dec = (int16_t *)memalloc(alloc_len);
|
||||
}
|
||||
|
||||
return sample;
|
||||
}
|
||||
|
||||
|
@ -639,7 +720,7 @@ void AudioStreamWAV::_bind_methods() {
|
|||
ClassDB::bind_method(D_METHOD("save_to_wav", "path"), &AudioStreamWAV::save_to_wav);
|
||||
|
||||
ADD_PROPERTY(PropertyInfo(Variant::PACKED_BYTE_ARRAY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "set_data", "get_data");
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "format", PROPERTY_HINT_ENUM, "8-Bit,16-Bit,IMA-ADPCM"), "set_format", "get_format");
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "format", PROPERTY_HINT_ENUM, "8-Bit,16-Bit,IMA-ADPCM,QOA"), "set_format", "get_format");
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "loop_mode", PROPERTY_HINT_ENUM, "Disabled,Forward,Ping-Pong,Backward"), "set_loop_mode", "get_loop_mode");
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "loop_begin"), "set_loop_begin", "get_loop_begin");
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "loop_end"), "set_loop_end", "get_loop_end");
|
||||
|
@ -649,6 +730,7 @@ void AudioStreamWAV::_bind_methods() {
|
|||
BIND_ENUM_CONSTANT(FORMAT_8_BITS);
|
||||
BIND_ENUM_CONSTANT(FORMAT_16_BITS);
|
||||
BIND_ENUM_CONSTANT(FORMAT_IMA_ADPCM);
|
||||
BIND_ENUM_CONSTANT(FORMAT_QOA);
|
||||
|
||||
BIND_ENUM_CONSTANT(LOOP_DISABLED);
|
||||
BIND_ENUM_CONSTANT(LOOP_FORWARD);
|
||||
|
|
|
@ -31,7 +31,11 @@
|
|||
#ifndef AUDIO_STREAM_WAV_H
|
||||
#define AUDIO_STREAM_WAV_H
|
||||
|
||||
#define QOA_IMPLEMENTATION
|
||||
#define QOA_NO_STDIO
|
||||
|
||||
#include "servers/audio/audio_stream.h"
|
||||
#include "thirdparty/misc/qoa.h"
|
||||
|
||||
class AudioStreamWAV;
|
||||
|
||||
|
@ -54,14 +58,25 @@ class AudioStreamPlaybackWAV : public AudioStreamPlayback {
|
|||
int32_t window_ofs = 0;
|
||||
} ima_adpcm[2];
|
||||
|
||||
struct QOA_State {
|
||||
qoa_desc *desc = nullptr;
|
||||
uint32_t data_ofs = 0;
|
||||
uint32_t frame_len = 0;
|
||||
int16_t *dec = nullptr;
|
||||
uint32_t dec_len = 0;
|
||||
int64_t cache_pos = -1;
|
||||
int16_t cache[2] = { 0, 0 };
|
||||
int16_t cache_r[2] = { 0, 0 };
|
||||
} qoa;
|
||||
|
||||
int64_t offset = 0;
|
||||
int sign = 1;
|
||||
bool active = false;
|
||||
friend class AudioStreamWAV;
|
||||
Ref<AudioStreamWAV> base;
|
||||
|
||||
template <typename Depth, bool is_stereo, bool is_ima_adpcm>
|
||||
void do_resample(const Depth *p_src, AudioFrame *p_dst, int64_t &p_offset, int32_t &p_increment, uint32_t p_amount, IMA_ADPCM_State *p_ima_adpcm);
|
||||
template <typename Depth, bool is_stereo, bool is_ima_adpcm, bool is_qoa>
|
||||
void do_resample(const Depth *p_src, AudioFrame *p_dst, int64_t &p_offset, int32_t &p_increment, uint32_t p_amount, IMA_ADPCM_State *p_ima_adpcm, QOA_State *p_qoa);
|
||||
|
||||
public:
|
||||
virtual void start(double p_from_pos = 0.0) override;
|
||||
|
@ -78,6 +93,7 @@ public:
|
|||
virtual void tag_used_streams() override;
|
||||
|
||||
AudioStreamPlaybackWAV();
|
||||
~AudioStreamPlaybackWAV();
|
||||
};
|
||||
|
||||
class AudioStreamWAV : public AudioStream {
|
||||
|
@ -88,7 +104,8 @@ public:
|
|||
enum Format {
|
||||
FORMAT_8_BITS,
|
||||
FORMAT_16_BITS,
|
||||
FORMAT_IMA_ADPCM
|
||||
FORMAT_IMA_ADPCM,
|
||||
FORMAT_QOA,
|
||||
};
|
||||
|
||||
// Keep the ResourceImporterWAV `edit/loop_mode` enum hint in sync with these options.
|
||||
|
|
|
@ -667,6 +667,11 @@ Collection of single-file libraries used in Godot components.
|
|||
* Version: git (7bdffb428b2b19ad1c43aa44c714dcc104177e84, 2021)
|
||||
* Modifications: Change from STL to Godot types (see provided patch).
|
||||
* License: MIT
|
||||
- `qoa.h`
|
||||
* Upstream: https://github.com/phoboslab/qoa
|
||||
* Version: git (e4c751d61af2c395ea828c5888e728c1953bf09f, 2024)
|
||||
* Modifications: Inlined functions and patched compiler warnings.
|
||||
* License: MIT
|
||||
- `r128.{c,h}`
|
||||
* Upstream: https://github.com/fahickman/r128
|
||||
* Version: git (6fc177671c47640d5bb69af10cf4ee91050015a1, 2023)
|
||||
|
|
|
@ -0,0 +1,155 @@
|
|||
diff --git a/qoa.h b/qoa.h
|
||||
index aa8fb59434..2dde8df098 100644
|
||||
--- a/qoa.h
|
||||
+++ b/qoa.h
|
||||
@@ -140,14 +140,14 @@ typedef struct {
|
||||
#endif
|
||||
} qoa_desc;
|
||||
|
||||
-unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
|
||||
-unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
|
||||
-void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
|
||||
+inline unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
|
||||
+inline unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
|
||||
+inline void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
|
||||
|
||||
-unsigned int qoa_max_frame_size(qoa_desc *qoa);
|
||||
-unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
|
||||
-unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
|
||||
-short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
|
||||
+inline unsigned int qoa_max_frame_size(qoa_desc *qoa);
|
||||
+inline unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
|
||||
+inline unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
|
||||
+inline short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
|
||||
|
||||
#ifndef QOA_NO_STDIO
|
||||
|
||||
@@ -366,7 +366,7 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
|
||||
), bytes, &p);
|
||||
|
||||
|
||||
- for (int c = 0; c < channels; c++) {
|
||||
+ for (unsigned int c = 0; c < channels; c++) {
|
||||
/* Write the current LMS state */
|
||||
qoa_uint64_t weights = 0;
|
||||
qoa_uint64_t history = 0;
|
||||
@@ -380,9 +380,9 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
|
||||
|
||||
/* We encode all samples with the channels interleaved on a slice level.
|
||||
E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/
|
||||
- for (int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
|
||||
+ for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
|
||||
|
||||
- for (int c = 0; c < channels; c++) {
|
||||
+ for (unsigned int c = 0; c < channels; c++) {
|
||||
int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index);
|
||||
int slice_start = sample_index * channels + c;
|
||||
int slice_end = (sample_index + slice_len) * channels + c;
|
||||
@@ -391,10 +391,9 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
|
||||
16 scalefactors, encode all samples for the current slice and
|
||||
meassure the total squared error. */
|
||||
qoa_uint64_t best_rank = -1;
|
||||
- qoa_uint64_t best_error = -1;
|
||||
- qoa_uint64_t best_slice;
|
||||
- qoa_lms_t best_lms;
|
||||
- int best_scalefactor;
|
||||
+ qoa_uint64_t best_slice = -1;
|
||||
+ qoa_lms_t best_lms = {{-1, -1, -1, -1}, {-1, -1, -1, -1}};
|
||||
+ int best_scalefactor = -1;
|
||||
|
||||
for (int sfi = 0; sfi < 16; sfi++) {
|
||||
/* There is a strong correlation between the scalefactors of
|
||||
@@ -408,7 +407,6 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
|
||||
qoa_lms_t lms = qoa->lms[c];
|
||||
qoa_uint64_t slice = scalefactor;
|
||||
qoa_uint64_t current_rank = 0;
|
||||
- qoa_uint64_t current_error = 0;
|
||||
|
||||
for (int si = slice_start; si < slice_end; si += channels) {
|
||||
int sample = sample_data[si];
|
||||
@@ -438,7 +436,6 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
|
||||
qoa_uint64_t error_sq = error * error;
|
||||
|
||||
current_rank += error_sq + weights_penalty * weights_penalty;
|
||||
- current_error += error_sq;
|
||||
if (current_rank > best_rank) {
|
||||
break;
|
||||
}
|
||||
@@ -449,7 +446,6 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
|
||||
|
||||
if (current_rank < best_rank) {
|
||||
best_rank = current_rank;
|
||||
- best_error = current_error;
|
||||
best_slice = slice;
|
||||
best_lms = lms;
|
||||
best_scalefactor = scalefactor;
|
||||
@@ -492,9 +488,9 @@ void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len)
|
||||
num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */
|
||||
num_slices * 8 * qoa->channels; /* 8 byte slices */
|
||||
|
||||
- unsigned char *bytes = QOA_MALLOC(encoded_size);
|
||||
+ unsigned char *bytes = (unsigned char *)QOA_MALLOC(encoded_size);
|
||||
|
||||
- for (int c = 0; c < qoa->channels; c++) {
|
||||
+ for (unsigned int c = 0; c < qoa->channels; c++) {
|
||||
/* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the
|
||||
prediction of the first few ms of a file. */
|
||||
qoa->lms[c].weights[0] = 0;
|
||||
@@ -517,7 +513,7 @@ void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len)
|
||||
#endif
|
||||
|
||||
int frame_len = QOA_FRAME_LEN;
|
||||
- for (int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
|
||||
+ for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
|
||||
frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);
|
||||
const short *frame_samples = sample_data + sample_index * qoa->channels;
|
||||
unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p);
|
||||
@@ -580,14 +576,14 @@ unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa
|
||||
|
||||
/* Read and verify the frame header */
|
||||
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||||
- int channels = (frame_header >> 56) & 0x0000ff;
|
||||
- int samplerate = (frame_header >> 32) & 0xffffff;
|
||||
- int samples = (frame_header >> 16) & 0x00ffff;
|
||||
- int frame_size = (frame_header ) & 0x00ffff;
|
||||
+ unsigned int channels = (frame_header >> 56) & 0x0000ff;
|
||||
+ unsigned int samplerate = (frame_header >> 32) & 0xffffff;
|
||||
+ unsigned int samples = (frame_header >> 16) & 0x00ffff;
|
||||
+ unsigned int frame_size = (frame_header ) & 0x00ffff;
|
||||
|
||||
int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels;
|
||||
int num_slices = data_size / 8;
|
||||
- int max_total_samples = num_slices * QOA_SLICE_LEN;
|
||||
+ unsigned int max_total_samples = num_slices * QOA_SLICE_LEN;
|
||||
|
||||
if (
|
||||
channels != qoa->channels ||
|
||||
@@ -600,7 +596,7 @@ unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa
|
||||
|
||||
|
||||
/* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */
|
||||
- for (int c = 0; c < channels; c++) {
|
||||
+ for (unsigned int c = 0; c < channels; c++) {
|
||||
qoa_uint64_t history = qoa_read_u64(bytes, &p);
|
||||
qoa_uint64_t weights = qoa_read_u64(bytes, &p);
|
||||
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||
@@ -613,8 +609,8 @@ unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa
|
||||
|
||||
|
||||
/* Decode all slices for all channels in this frame */
|
||||
- for (int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
|
||||
- for (int c = 0; c < channels; c++) {
|
||||
+ for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
|
||||
+ for (unsigned int c = 0; c < channels; c++) {
|
||||
qoa_uint64_t slice = qoa_read_u64(bytes, &p);
|
||||
|
||||
int scalefactor = (slice >> 60) & 0xf;
|
||||
@@ -647,7 +643,7 @@ short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||||
|
||||
/* Calculate the required size of the sample buffer and allocate */
|
||||
int total_samples = qoa->samples * qoa->channels;
|
||||
- short *sample_data = QOA_MALLOC(total_samples * sizeof(short));
|
||||
+ short *sample_data = (short *)QOA_MALLOC(total_samples * sizeof(short));
|
||||
|
||||
unsigned int sample_index = 0;
|
||||
unsigned int frame_len;
|
|
@ -0,0 +1,728 @@
|
|||
/*
|
||||
|
||||
Copyright (c) 2023, Dominic Szablewski - https://phoboslab.org
|
||||
SPDX-License-Identifier: MIT
|
||||
|
||||
QOA - The "Quite OK Audio" format for fast, lossy audio compression
|
||||
|
||||
|
||||
-- Data Format
|
||||
|
||||
QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels,
|
||||
sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits.
|
||||
|
||||
The compression method employed in QOA is lossy; it discards some information
|
||||
from the uncompressed PCM data. For many types of audio signals this compression
|
||||
is "transparent", i.e. the difference from the original file is often not
|
||||
audible.
|
||||
|
||||
QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single
|
||||
sample therefore requires 3.2 bits of storage space, resulting in a 5x
|
||||
compression (16 / 3.2).
|
||||
|
||||
A QOA file consists of an 8 byte file header, followed by a number of frames.
|
||||
Each frame contains an 8 byte frame header, the current 16 byte en-/decoder
|
||||
state per channel and 256 slices per channel. Each slice is 8 bytes wide and
|
||||
encodes 20 samples of audio data.
|
||||
|
||||
All values, including the slices, are big endian. The file layout is as follows:
|
||||
|
||||
struct {
|
||||
struct {
|
||||
char magic[4]; // magic bytes "qoaf"
|
||||
uint32_t samples; // samples per channel in this file
|
||||
} file_header;
|
||||
|
||||
struct {
|
||||
struct {
|
||||
uint8_t num_channels; // no. of channels
|
||||
uint24_t samplerate; // samplerate in hz
|
||||
uint16_t fsamples; // samples per channel in this frame
|
||||
uint16_t fsize; // frame size (includes this header)
|
||||
} frame_header;
|
||||
|
||||
struct {
|
||||
int16_t history[4]; // most recent last
|
||||
int16_t weights[4]; // most recent last
|
||||
} lms_state[num_channels];
|
||||
|
||||
qoa_slice_t slices[256][num_channels];
|
||||
|
||||
} frames[ceil(samples / (256 * 20))];
|
||||
} qoa_file_t;
|
||||
|
||||
Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized
|
||||
residuals `qrNN`:
|
||||
|
||||
.- QOA_SLICE -- 64 bits, 20 samples --------------------------/ /------------.
|
||||
| Byte[0] | Byte[1] | Byte[2] \ \ Byte[7] |
|
||||
| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 / / 2 1 0 |
|
||||
|------------+--------+--------+--------+---------+---------+-\ \--+---------|
|
||||
| sf_quant | qr00 | qr01 | qr02 | qr03 | qr04 | / / | qr19 |
|
||||
`-------------------------------------------------------------\ \------------`
|
||||
|
||||
Each frame except the last must contain exactly 256 slices per channel. The last
|
||||
frame may contain between 1 .. 256 (inclusive) slices per channel. The last
|
||||
slice (for each channel) in the last frame may contain less than 20 samples; the
|
||||
slice still must be 8 bytes wide, with the unused samples zeroed out.
|
||||
|
||||
Channels are interleaved per slice. E.g. for 2 channel stereo:
|
||||
slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ...
|
||||
|
||||
A valid QOA file or stream must have at least one frame. Each frame must contain
|
||||
at least one channel and one sample with a samplerate between 1 .. 16777215
|
||||
(inclusive).
|
||||
|
||||
If the total number of samples is not known by the encoder, the samples in the
|
||||
file header may be set to 0x00000000 to indicate that the encoder is
|
||||
"streaming". In a streaming context, the samplerate and number of channels may
|
||||
differ from frame to frame. For static files (those with samples set to a
|
||||
non-zero value), each frame must have the same number of channels and same
|
||||
samplerate.
|
||||
|
||||
Note that this implementation of QOA only handles files with a known total
|
||||
number of samples.
|
||||
|
||||
A decoder should support at least 8 channels. The channel layout for channel
|
||||
counts 1 .. 8 is:
|
||||
|
||||
1. Mono
|
||||
2. L, R
|
||||
3. L, R, C
|
||||
4. FL, FR, B/SL, B/SR
|
||||
5. FL, FR, C, B/SL, B/SR
|
||||
6. FL, FR, C, LFE, B/SL, B/SR
|
||||
7. FL, FR, C, LFE, B, SL, SR
|
||||
8. FL, FR, C, LFE, BL, BR, SL, SR
|
||||
|
||||
QOA predicts each audio sample based on the previously decoded ones using a
|
||||
"Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the
|
||||
dequantized residual forms the final output sample.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
Header - Public functions */
|
||||
|
||||
#ifndef QOA_H
|
||||
#define QOA_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define QOA_MIN_FILESIZE 16
|
||||
#define QOA_MAX_CHANNELS 8
|
||||
|
||||
#define QOA_SLICE_LEN 20
|
||||
#define QOA_SLICES_PER_FRAME 256
|
||||
#define QOA_FRAME_LEN (QOA_SLICES_PER_FRAME * QOA_SLICE_LEN)
|
||||
#define QOA_LMS_LEN 4
|
||||
#define QOA_MAGIC 0x716f6166 /* 'qoaf' */
|
||||
|
||||
#define QOA_FRAME_SIZE(channels, slices) \
|
||||
(8 + QOA_LMS_LEN * 4 * channels + 8 * slices * channels)
|
||||
|
||||
typedef struct {
|
||||
int history[QOA_LMS_LEN];
|
||||
int weights[QOA_LMS_LEN];
|
||||
} qoa_lms_t;
|
||||
|
||||
typedef struct {
|
||||
unsigned int channels;
|
||||
unsigned int samplerate;
|
||||
unsigned int samples;
|
||||
qoa_lms_t lms[QOA_MAX_CHANNELS];
|
||||
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||
double error;
|
||||
#endif
|
||||
} qoa_desc;
|
||||
|
||||
inline unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
|
||||
inline unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
|
||||
inline void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
|
||||
|
||||
inline unsigned int qoa_max_frame_size(qoa_desc *qoa);
|
||||
inline unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
|
||||
inline unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
|
||||
inline short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
|
||||
|
||||
#ifndef QOA_NO_STDIO
|
||||
|
||||
int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa);
|
||||
void *qoa_read(const char *filename, qoa_desc *qoa);
|
||||
|
||||
#endif /* QOA_NO_STDIO */
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* QOA_H */
|
||||
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
Implementation */
|
||||
|
||||
#ifdef QOA_IMPLEMENTATION
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifndef QOA_MALLOC
|
||||
#define QOA_MALLOC(sz) malloc(sz)
|
||||
#define QOA_FREE(p) free(p)
|
||||
#endif
|
||||
|
||||
typedef unsigned long long qoa_uint64_t;
|
||||
|
||||
|
||||
/* The quant_tab provides an index into the dequant_tab for residuals in the
|
||||
range of -8 .. 8. It maps this range to just 3bits and becomes less accurate at
|
||||
the higher end. Note that the residual zero is identical to the lowest positive
|
||||
value. This is mostly fine, since the qoa_div() function always rounds away
|
||||
from zero. */
|
||||
|
||||
static const int qoa_quant_tab[17] = {
|
||||
7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */
|
||||
0, /* 0 */
|
||||
0, 2, 2, 4, 4, 6, 6, 6 /* 1.. 8 */
|
||||
};
|
||||
|
||||
|
||||
/* We have 16 different scalefactors. Like the quantized residuals these become
|
||||
less accurate at the higher end. In theory, the highest scalefactor that we
|
||||
would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we
|
||||
rely on the LMS filter to predict samples accurately enough that a maximum
|
||||
residual of one quarter of the 16 bit range is sufficient. I.e. with the
|
||||
scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14.
|
||||
|
||||
The scalefactor values are computed as:
|
||||
scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */
|
||||
|
||||
static const int qoa_scalefactor_tab[16] = {
|
||||
1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048
|
||||
};
|
||||
|
||||
|
||||
/* The reciprocal_tab maps each of the 16 scalefactors to their rounded
|
||||
reciprocals 1/scalefactor. This allows us to calculate the scaled residuals in
|
||||
the encoder with just one multiplication instead of an expensive division. We
|
||||
do this in .16 fixed point with integers, instead of floats.
|
||||
|
||||
The reciprocal_tab is computed as:
|
||||
reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */
|
||||
|
||||
static const int qoa_reciprocal_tab[16] = {
|
||||
65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32
|
||||
};
|
||||
|
||||
|
||||
/* The dequant_tab maps each of the scalefactors and quantized residuals to
|
||||
their unscaled & dequantized version.
|
||||
|
||||
Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4
|
||||
instead of 1. The dequant_tab assumes the following dequantized values for each
|
||||
of the quant_tab indices and is computed as:
|
||||
float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7};
|
||||
dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q])
|
||||
|
||||
The rounding employed here is "to nearest, ties away from zero", i.e. positive
|
||||
and negative values are treated symmetrically.
|
||||
*/
|
||||
|
||||
static const int qoa_dequant_tab[16][8] = {
|
||||
{ 1, -1, 3, -3, 5, -5, 7, -7},
|
||||
{ 5, -5, 18, -18, 32, -32, 49, -49},
|
||||
{ 16, -16, 53, -53, 95, -95, 147, -147},
|
||||
{ 34, -34, 113, -113, 203, -203, 315, -315},
|
||||
{ 63, -63, 210, -210, 378, -378, 588, -588},
|
||||
{ 104, -104, 345, -345, 621, -621, 966, -966},
|
||||
{ 158, -158, 528, -528, 950, -950, 1477, -1477},
|
||||
{ 228, -228, 760, -760, 1368, -1368, 2128, -2128},
|
||||
{ 316, -316, 1053, -1053, 1895, -1895, 2947, -2947},
|
||||
{ 422, -422, 1405, -1405, 2529, -2529, 3934, -3934},
|
||||
{ 548, -548, 1828, -1828, 3290, -3290, 5117, -5117},
|
||||
{ 696, -696, 2320, -2320, 4176, -4176, 6496, -6496},
|
||||
{ 868, -868, 2893, -2893, 5207, -5207, 8099, -8099},
|
||||
{1064, -1064, 3548, -3548, 6386, -6386, 9933, -9933},
|
||||
{1286, -1286, 4288, -4288, 7718, -7718, 12005, -12005},
|
||||
{1536, -1536, 5120, -5120, 9216, -9216, 14336, -14336},
|
||||
};
|
||||
|
||||
|
||||
/* The Least Mean Squares Filter is the heart of QOA. It predicts the next
|
||||
sample based on the previous 4 reconstructed samples. It does so by continuously
|
||||
adjusting 4 weights based on the residual of the previous prediction.
|
||||
|
||||
The next sample is predicted as the sum of (weight[i] * history[i]).
|
||||
|
||||
The adjustment of the weights is done with a "Sign-Sign-LMS" that adds or
|
||||
subtracts the residual to each weight, based on the corresponding sample from
|
||||
the history. This, surprisingly, is sufficient to get worthwhile predictions.
|
||||
|
||||
This is all done with fixed point integers. Hence the right-shifts when updating
|
||||
the weights and calculating the prediction. */
|
||||
|
||||
static int qoa_lms_predict(qoa_lms_t *lms) {
|
||||
int prediction = 0;
|
||||
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||
prediction += lms->weights[i] * lms->history[i];
|
||||
}
|
||||
return prediction >> 13;
|
||||
}
|
||||
|
||||
static void qoa_lms_update(qoa_lms_t *lms, int sample, int residual) {
|
||||
int delta = residual >> 4;
|
||||
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||
lms->weights[i] += lms->history[i] < 0 ? -delta : delta;
|
||||
}
|
||||
|
||||
for (int i = 0; i < QOA_LMS_LEN-1; i++) {
|
||||
lms->history[i] = lms->history[i+1];
|
||||
}
|
||||
lms->history[QOA_LMS_LEN-1] = sample;
|
||||
}
|
||||
|
||||
|
||||
/* qoa_div() implements a rounding division, but avoids rounding to zero for
|
||||
small numbers. E.g. 0.1 will be rounded to 1. Note that 0 itself still
|
||||
returns as 0, which is handled in the qoa_quant_tab[].
|
||||
qoa_div() takes an index into the .16 fixed point qoa_reciprocal_tab as an
|
||||
argument, so it can do the division with a cheaper integer multiplication. */
|
||||
|
||||
static inline int qoa_div(int v, int scalefactor) {
|
||||
int reciprocal = qoa_reciprocal_tab[scalefactor];
|
||||
int n = (v * reciprocal + (1 << 15)) >> 16;
|
||||
n = n + ((v > 0) - (v < 0)) - ((n > 0) - (n < 0)); /* round away from 0 */
|
||||
return n;
|
||||
}
|
||||
|
||||
static inline int qoa_clamp(int v, int min, int max) {
|
||||
if (v < min) { return min; }
|
||||
if (v > max) { return max; }
|
||||
return v;
|
||||
}
|
||||
|
||||
/* This specialized clamp function for the signed 16 bit range improves decode
|
||||
performance quite a bit. The extra if() statement works nicely with the CPUs
|
||||
branch prediction as this branch is rarely taken. */
|
||||
|
||||
static inline int qoa_clamp_s16(int v) {
|
||||
if ((unsigned int)(v + 32768) > 65535) {
|
||||
if (v < -32768) { return -32768; }
|
||||
if (v > 32767) { return 32767; }
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) {
|
||||
bytes += *p;
|
||||
*p += 8;
|
||||
return
|
||||
((qoa_uint64_t)(bytes[0]) << 56) | ((qoa_uint64_t)(bytes[1]) << 48) |
|
||||
((qoa_uint64_t)(bytes[2]) << 40) | ((qoa_uint64_t)(bytes[3]) << 32) |
|
||||
((qoa_uint64_t)(bytes[4]) << 24) | ((qoa_uint64_t)(bytes[5]) << 16) |
|
||||
((qoa_uint64_t)(bytes[6]) << 8) | ((qoa_uint64_t)(bytes[7]) << 0);
|
||||
}
|
||||
|
||||
static inline void qoa_write_u64(qoa_uint64_t v, unsigned char *bytes, unsigned int *p) {
|
||||
bytes += *p;
|
||||
*p += 8;
|
||||
bytes[0] = (v >> 56) & 0xff;
|
||||
bytes[1] = (v >> 48) & 0xff;
|
||||
bytes[2] = (v >> 40) & 0xff;
|
||||
bytes[3] = (v >> 32) & 0xff;
|
||||
bytes[4] = (v >> 24) & 0xff;
|
||||
bytes[5] = (v >> 16) & 0xff;
|
||||
bytes[6] = (v >> 8) & 0xff;
|
||||
bytes[7] = (v >> 0) & 0xff;
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
Encoder */
|
||||
|
||||
unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes) {
|
||||
unsigned int p = 0;
|
||||
qoa_write_u64(((qoa_uint64_t)QOA_MAGIC << 32) | qoa->samples, bytes, &p);
|
||||
return p;
|
||||
}
|
||||
|
||||
unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes) {
|
||||
unsigned int channels = qoa->channels;
|
||||
|
||||
unsigned int p = 0;
|
||||
unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN;
|
||||
unsigned int frame_size = QOA_FRAME_SIZE(channels, slices);
|
||||
int prev_scalefactor[QOA_MAX_CHANNELS] = {0};
|
||||
|
||||
/* Write the frame header */
|
||||
qoa_write_u64((
|
||||
(qoa_uint64_t)qoa->channels << 56 |
|
||||
(qoa_uint64_t)qoa->samplerate << 32 |
|
||||
(qoa_uint64_t)frame_len << 16 |
|
||||
(qoa_uint64_t)frame_size
|
||||
), bytes, &p);
|
||||
|
||||
|
||||
for (unsigned int c = 0; c < channels; c++) {
|
||||
/* Write the current LMS state */
|
||||
qoa_uint64_t weights = 0;
|
||||
qoa_uint64_t history = 0;
|
||||
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||
history = (history << 16) | (qoa->lms[c].history[i] & 0xffff);
|
||||
weights = (weights << 16) | (qoa->lms[c].weights[i] & 0xffff);
|
||||
}
|
||||
qoa_write_u64(history, bytes, &p);
|
||||
qoa_write_u64(weights, bytes, &p);
|
||||
}
|
||||
|
||||
/* We encode all samples with the channels interleaved on a slice level.
|
||||
E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/
|
||||
for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
|
||||
|
||||
for (unsigned int c = 0; c < channels; c++) {
|
||||
int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index);
|
||||
int slice_start = sample_index * channels + c;
|
||||
int slice_end = (sample_index + slice_len) * channels + c;
|
||||
|
||||
/* Brute for search for the best scalefactor. Just go through all
|
||||
16 scalefactors, encode all samples for the current slice and
|
||||
meassure the total squared error. */
|
||||
qoa_uint64_t best_rank = -1;
|
||||
qoa_uint64_t best_slice = -1;
|
||||
qoa_lms_t best_lms = {{-1, -1, -1, -1}, {-1, -1, -1, -1}};
|
||||
int best_scalefactor = -1;
|
||||
|
||||
for (int sfi = 0; sfi < 16; sfi++) {
|
||||
/* There is a strong correlation between the scalefactors of
|
||||
neighboring slices. As an optimization, start testing
|
||||
the best scalefactor of the previous slice first. */
|
||||
int scalefactor = (sfi + prev_scalefactor[c]) % 16;
|
||||
|
||||
/* We have to reset the LMS state to the last known good one
|
||||
before trying each scalefactor, as each pass updates the LMS
|
||||
state when encoding. */
|
||||
qoa_lms_t lms = qoa->lms[c];
|
||||
qoa_uint64_t slice = scalefactor;
|
||||
qoa_uint64_t current_rank = 0;
|
||||
|
||||
for (int si = slice_start; si < slice_end; si += channels) {
|
||||
int sample = sample_data[si];
|
||||
int predicted = qoa_lms_predict(&lms);
|
||||
|
||||
int residual = sample - predicted;
|
||||
int scaled = qoa_div(residual, scalefactor);
|
||||
int clamped = qoa_clamp(scaled, -8, 8);
|
||||
int quantized = qoa_quant_tab[clamped + 8];
|
||||
int dequantized = qoa_dequant_tab[scalefactor][quantized];
|
||||
int reconstructed = qoa_clamp_s16(predicted + dequantized);
|
||||
|
||||
|
||||
/* If the weights have grown too large, we introduce a penalty
|
||||
here. This prevents pops/clicks in certain problem cases */
|
||||
int weights_penalty = ((
|
||||
lms.weights[0] * lms.weights[0] +
|
||||
lms.weights[1] * lms.weights[1] +
|
||||
lms.weights[2] * lms.weights[2] +
|
||||
lms.weights[3] * lms.weights[3]
|
||||
) >> 18) - 0x8ff;
|
||||
if (weights_penalty < 0) {
|
||||
weights_penalty = 0;
|
||||
}
|
||||
|
||||
long long error = (sample - reconstructed);
|
||||
qoa_uint64_t error_sq = error * error;
|
||||
|
||||
current_rank += error_sq + weights_penalty * weights_penalty;
|
||||
if (current_rank > best_rank) {
|
||||
break;
|
||||
}
|
||||
|
||||
qoa_lms_update(&lms, reconstructed, dequantized);
|
||||
slice = (slice << 3) | quantized;
|
||||
}
|
||||
|
||||
if (current_rank < best_rank) {
|
||||
best_rank = current_rank;
|
||||
best_slice = slice;
|
||||
best_lms = lms;
|
||||
best_scalefactor = scalefactor;
|
||||
}
|
||||
}
|
||||
|
||||
prev_scalefactor[c] = best_scalefactor;
|
||||
|
||||
qoa->lms[c] = best_lms;
|
||||
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||
qoa->error += best_error;
|
||||
#endif
|
||||
|
||||
/* If this slice was shorter than QOA_SLICE_LEN, we have to left-
|
||||
shift all encoded data, to ensure the rightmost bits are the empty
|
||||
ones. This should only happen in the last frame of a file as all
|
||||
slices are completely filled otherwise. */
|
||||
best_slice <<= (QOA_SLICE_LEN - slice_len) * 3;
|
||||
qoa_write_u64(best_slice, bytes, &p);
|
||||
}
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len) {
|
||||
if (
|
||||
qoa->samples == 0 ||
|
||||
qoa->samplerate == 0 || qoa->samplerate > 0xffffff ||
|
||||
qoa->channels == 0 || qoa->channels > QOA_MAX_CHANNELS
|
||||
) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Calculate the encoded size and allocate */
|
||||
unsigned int num_frames = (qoa->samples + QOA_FRAME_LEN-1) / QOA_FRAME_LEN;
|
||||
unsigned int num_slices = (qoa->samples + QOA_SLICE_LEN-1) / QOA_SLICE_LEN;
|
||||
unsigned int encoded_size = 8 + /* 8 byte file header */
|
||||
num_frames * 8 + /* 8 byte frame headers */
|
||||
num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */
|
||||
num_slices * 8 * qoa->channels; /* 8 byte slices */
|
||||
|
||||
unsigned char *bytes = (unsigned char *)QOA_MALLOC(encoded_size);
|
||||
|
||||
for (unsigned int c = 0; c < qoa->channels; c++) {
|
||||
/* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the
|
||||
prediction of the first few ms of a file. */
|
||||
qoa->lms[c].weights[0] = 0;
|
||||
qoa->lms[c].weights[1] = 0;
|
||||
qoa->lms[c].weights[2] = -(1<<13);
|
||||
qoa->lms[c].weights[3] = (1<<14);
|
||||
|
||||
/* Explicitly set the history samples to 0, as we might have some
|
||||
garbage in there. */
|
||||
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||
qoa->lms[c].history[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Encode the header and go through all frames */
|
||||
unsigned int p = qoa_encode_header(qoa, bytes);
|
||||
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||
qoa->error = 0;
|
||||
#endif
|
||||
|
||||
int frame_len = QOA_FRAME_LEN;
|
||||
for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
|
||||
frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);
|
||||
const short *frame_samples = sample_data + sample_index * qoa->channels;
|
||||
unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p);
|
||||
p += frame_size;
|
||||
}
|
||||
|
||||
*out_len = p;
|
||||
return bytes;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
Decoder */
|
||||
|
||||
unsigned int qoa_max_frame_size(qoa_desc *qoa) {
|
||||
return QOA_FRAME_SIZE(qoa->channels, QOA_SLICES_PER_FRAME);
|
||||
}
|
||||
|
||||
unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||||
unsigned int p = 0;
|
||||
if (size < QOA_MIN_FILESIZE) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Read the file header, verify the magic number ('qoaf') and read the
|
||||
total number of samples. */
|
||||
qoa_uint64_t file_header = qoa_read_u64(bytes, &p);
|
||||
|
||||
if ((file_header >> 32) != QOA_MAGIC) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
qoa->samples = file_header & 0xffffffff;
|
||||
if (!qoa->samples) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Peek into the first frame header to get the number of channels and
|
||||
the samplerate. */
|
||||
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||||
qoa->channels = (frame_header >> 56) & 0x0000ff;
|
||||
qoa->samplerate = (frame_header >> 32) & 0xffffff;
|
||||
|
||||
if (qoa->channels == 0 || qoa->samples == 0 || qoa->samplerate == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 8;
|
||||
}
|
||||
|
||||
unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len) {
|
||||
unsigned int p = 0;
|
||||
*frame_len = 0;
|
||||
|
||||
if (size < 8 + QOA_LMS_LEN * 4 * qoa->channels) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Read and verify the frame header */
|
||||
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||||
unsigned int channels = (frame_header >> 56) & 0x0000ff;
|
||||
unsigned int samplerate = (frame_header >> 32) & 0xffffff;
|
||||
unsigned int samples = (frame_header >> 16) & 0x00ffff;
|
||||
unsigned int frame_size = (frame_header ) & 0x00ffff;
|
||||
|
||||
int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels;
|
||||
int num_slices = data_size / 8;
|
||||
unsigned int max_total_samples = num_slices * QOA_SLICE_LEN;
|
||||
|
||||
if (
|
||||
channels != qoa->channels ||
|
||||
samplerate != qoa->samplerate ||
|
||||
frame_size > size ||
|
||||
samples * channels > max_total_samples
|
||||
) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */
|
||||
for (unsigned int c = 0; c < channels; c++) {
|
||||
qoa_uint64_t history = qoa_read_u64(bytes, &p);
|
||||
qoa_uint64_t weights = qoa_read_u64(bytes, &p);
|
||||
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||
qoa->lms[c].history[i] = ((signed short)(history >> 48));
|
||||
history <<= 16;
|
||||
qoa->lms[c].weights[i] = ((signed short)(weights >> 48));
|
||||
weights <<= 16;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Decode all slices for all channels in this frame */
|
||||
for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
|
||||
for (unsigned int c = 0; c < channels; c++) {
|
||||
qoa_uint64_t slice = qoa_read_u64(bytes, &p);
|
||||
|
||||
int scalefactor = (slice >> 60) & 0xf;
|
||||
int slice_start = sample_index * channels + c;
|
||||
int slice_end = qoa_clamp(sample_index + QOA_SLICE_LEN, 0, samples) * channels + c;
|
||||
|
||||
for (int si = slice_start; si < slice_end; si += channels) {
|
||||
int predicted = qoa_lms_predict(&qoa->lms[c]);
|
||||
int quantized = (slice >> 57) & 0x7;
|
||||
int dequantized = qoa_dequant_tab[scalefactor][quantized];
|
||||
int reconstructed = qoa_clamp_s16(predicted + dequantized);
|
||||
|
||||
sample_data[si] = reconstructed;
|
||||
slice <<= 3;
|
||||
|
||||
qoa_lms_update(&qoa->lms[c], reconstructed, dequantized);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*frame_len = samples;
|
||||
return p;
|
||||
}
|
||||
|
||||
short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||||
unsigned int p = qoa_decode_header(bytes, size, qoa);
|
||||
if (!p) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Calculate the required size of the sample buffer and allocate */
|
||||
int total_samples = qoa->samples * qoa->channels;
|
||||
short *sample_data = (short *)QOA_MALLOC(total_samples * sizeof(short));
|
||||
|
||||
unsigned int sample_index = 0;
|
||||
unsigned int frame_len;
|
||||
unsigned int frame_size;
|
||||
|
||||
/* Decode all frames */
|
||||
do {
|
||||
short *sample_ptr = sample_data + sample_index * qoa->channels;
|
||||
frame_size = qoa_decode_frame(bytes + p, size - p, qoa, sample_ptr, &frame_len);
|
||||
|
||||
p += frame_size;
|
||||
sample_index += frame_len;
|
||||
} while (frame_size && sample_index < qoa->samples);
|
||||
|
||||
qoa->samples = sample_index;
|
||||
return sample_data;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
File read/write convenience functions */
|
||||
|
||||
#ifndef QOA_NO_STDIO
|
||||
#include <stdio.h>
|
||||
|
||||
int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa) {
|
||||
FILE *f = fopen(filename, "wb");
|
||||
unsigned int size;
|
||||
void *encoded;
|
||||
|
||||
if (!f) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
encoded = qoa_encode(sample_data, qoa, &size);
|
||||
if (!encoded) {
|
||||
fclose(f);
|
||||
return 0;
|
||||
}
|
||||
|
||||
fwrite(encoded, 1, size, f);
|
||||
fclose(f);
|
||||
|
||||
QOA_FREE(encoded);
|
||||
return size;
|
||||
}
|
||||
|
||||
void *qoa_read(const char *filename, qoa_desc *qoa) {
|
||||
FILE *f = fopen(filename, "rb");
|
||||
int size, bytes_read;
|
||||
void *data;
|
||||
short *sample_data;
|
||||
|
||||
if (!f) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
fseek(f, 0, SEEK_END);
|
||||
size = ftell(f);
|
||||
if (size <= 0) {
|
||||
fclose(f);
|
||||
return NULL;
|
||||
}
|
||||
fseek(f, 0, SEEK_SET);
|
||||
|
||||
data = QOA_MALLOC(size);
|
||||
if (!data) {
|
||||
fclose(f);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bytes_read = fread(data, 1, size, f);
|
||||
fclose(f);
|
||||
|
||||
sample_data = qoa_decode(data, bytes_read, qoa);
|
||||
QOA_FREE(data);
|
||||
return sample_data;
|
||||
}
|
||||
|
||||
#endif /* QOA_NO_STDIO */
|
||||
#endif /* QOA_IMPLEMENTATION */
|
Loading…
Reference in New Issue