more efficient atlas packing algorithm
This commit is contained in:
parent
fb90ac8e48
commit
bbf66945e7
|
@ -47,21 +47,15 @@ struct _EditorAtlasWorkRectResult {
|
|||
|
||||
void EditorAtlas::fit(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
|
||||
|
||||
//super simple, almost brute force scanline stacking fitter
|
||||
//it's pretty basic for now, but it tries to make sure that the aspect ratio of the
|
||||
//resulting atlas is somehow square. This is necesary because video cards have limits
|
||||
//on texture size (usually 2048 or 4096), so the more square a texture, the more chances
|
||||
//it will work in every hardware.
|
||||
// for example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
|
||||
// 256x8192 atlas (won't work anywhere).
|
||||
|
||||
ERR_FAIL_COND(p_rects.size() == 0);
|
||||
|
||||
Vector<_EditorAtlasWorkRect> wrects;
|
||||
wrects.resize(p_rects.size());
|
||||
long total_area = 0;
|
||||
for (int i = 0; i < p_rects.size(); i++) {
|
||||
wrects[i].s = p_rects[i];
|
||||
wrects[i].idx = i;
|
||||
total_area += p_rects[i].width * p_rects[i].height;
|
||||
}
|
||||
wrects.sort();
|
||||
int widest = wrects[0].s.width;
|
||||
|
@ -76,37 +70,59 @@ void EditorAtlas::fit(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result,
|
|||
if (w < widest)
|
||||
continue;
|
||||
|
||||
Vector<int> hmax;
|
||||
hmax.resize(w);
|
||||
for (int j = 0; j < w; j++)
|
||||
hmax[j] = 0;
|
||||
|
||||
//place them
|
||||
int ofs = 0;
|
||||
Vector<int> wmax;
|
||||
wmax.resize(total_area / w);
|
||||
for (int j = 0; j < wmax.size(); j++)
|
||||
wmax[j] = 0;
|
||||
|
||||
for (int j = 0; j < wrects.size(); j++) {
|
||||
|
||||
if (ofs + wrects[j].s.width > w) {
|
||||
int new_x = 0;
|
||||
int new_y = 0;
|
||||
|
||||
ofs = 0;
|
||||
}
|
||||
int piece_w = wrects[j].s.width;
|
||||
int piece_h = wrects[j].s.height;
|
||||
|
||||
int from_y = 0;
|
||||
for (int k = 0; k < wrects[j].s.width; k++) {
|
||||
bool found_place;
|
||||
|
||||
if (hmax[ofs + k] > from_y)
|
||||
from_y = hmax[ofs + k];
|
||||
}
|
||||
do {
|
||||
found_place = true;
|
||||
new_x = 0;
|
||||
if (wmax.size() <= new_y + piece_h) {
|
||||
int prevS = wmax.size();
|
||||
wmax.resize(new_y + piece_h + 128);
|
||||
for (int k = prevS; k < wmax.size(); k++)
|
||||
wmax[k] = 0;
|
||||
}
|
||||
for (int k = 0; k < piece_h; k++) {
|
||||
if (new_x < wmax[new_y + k]) new_x = wmax[new_y + k];
|
||||
if (new_x + piece_w > w) {
|
||||
new_y += k + 1;
|
||||
found_place = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (found_place) {
|
||||
// one more check is calculating lost space of atlas
|
||||
long lost_area = 0;
|
||||
for (int k = 0; k < piece_h; k++) {
|
||||
lost_area += new_x - wmax[new_y + k];
|
||||
}
|
||||
if (lost_area >= piece_w * piece_h / 2) {
|
||||
found_place = false;
|
||||
new_y++;
|
||||
}
|
||||
}
|
||||
} while (!found_place);
|
||||
|
||||
wrects[j].p.x = ofs;
|
||||
wrects[j].p.y = from_y;
|
||||
wrects[j].p.x = new_x;
|
||||
wrects[j].p.y = new_y;
|
||||
|
||||
int end_h = from_y + wrects[j].s.height;
|
||||
int end_w = ofs + wrects[j].s.width;
|
||||
int end_h = new_y + piece_h;
|
||||
int end_w = new_x + piece_w;
|
||||
|
||||
for (int k = 0; k < wrects[j].s.width; k++) {
|
||||
|
||||
hmax[ofs + k] = end_h;
|
||||
for (int k = 0; k < piece_h; k++) {
|
||||
wmax[new_y + k] = end_w;
|
||||
}
|
||||
|
||||
if (end_h > max_h)
|
||||
|
@ -114,8 +130,6 @@ void EditorAtlas::fit(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result,
|
|||
|
||||
if (end_w > max_w)
|
||||
max_w = end_w;
|
||||
|
||||
ofs += wrects[j].s.width;
|
||||
}
|
||||
|
||||
_EditorAtlasWorkRectResult result;
|
||||
|
@ -123,21 +137,23 @@ void EditorAtlas::fit(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result,
|
|||
result.max_h = max_h;
|
||||
result.max_w = max_w;
|
||||
results.push_back(result);
|
||||
float efficiency = float(max_w * max_h) / float(next_power_of_2(max_w) * next_power_of_2(max_h));
|
||||
print_line("Processing atlas: width " + itos(w) + " ,height " + itos(max_h) + " ,efficiency " + rtos(efficiency));
|
||||
}
|
||||
|
||||
//find the result with the best aspect ratio
|
||||
//find the result with the most efficiency
|
||||
|
||||
int best = -1;
|
||||
float best_aspect = 1e20;
|
||||
float max_eff = 0;
|
||||
|
||||
for (int i = 0; i < results.size(); i++) {
|
||||
|
||||
float h = results[i].max_h;
|
||||
float w = results[i].max_w;
|
||||
float aspect = h > w ? h / w : w / h;
|
||||
if (aspect < best_aspect) {
|
||||
float efficiency = float(w * h) / float(next_power_of_2(w) * next_power_of_2(h));
|
||||
if (efficiency > max_eff) {
|
||||
best = i;
|
||||
best_aspect = aspect;
|
||||
max_eff = efficiency;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue