Merge pull request #37722 from reduz/implement-softshadows

Support light size and soft shadows
This commit is contained in:
Rémi Verschelde 2020-04-10 10:24:57 +02:00 committed by GitHub
commit c2f0d58c36
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 520 additions and 54 deletions

View File

@ -216,6 +216,14 @@ bool Light3D::is_editor_only() const {
}
void Light3D::_validate_property(PropertyInfo &property) const {
if (get_light_type() == RS::LIGHT_DIRECTIONAL && property.name == "light_size") {
property.usage = 0;
}
if (get_light_type() != RS::LIGHT_DIRECTIONAL && property.name == "light_angular_distance") {
property.usage = 0;
}
}
void Light3D::_bind_methods() {
@ -251,6 +259,8 @@ void Light3D::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "light_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_color", "get_color");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "light_energy", PROPERTY_HINT_RANGE, "0,16,0.01,or_greater"), "set_param", "get_param", PARAM_ENERGY);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "light_indirect_energy", PROPERTY_HINT_RANGE, "0,16,0.01,or_greater"), "set_param", "get_param", PARAM_INDIRECT_ENERGY);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "light_size", PROPERTY_HINT_RANGE, "0,64,0.01,or_greater"), "set_param", "get_param", PARAM_SIZE);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "light_angular_distance", PROPERTY_HINT_RANGE, "0,90,0.01"), "set_param", "get_param", PARAM_SIZE);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "light_negative"), "set_negative", "is_negative");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "light_specular", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param", "get_param", PARAM_SPECULAR);
ADD_PROPERTY(PropertyInfo(Variant::INT, "light_bake_mode", PROPERTY_HINT_ENUM, "Disable,Indirect,All"), "set_bake_mode", "get_bake_mode");
@ -315,6 +325,7 @@ Light3D::Light3D(RenderingServer::LightType p_type) {
set_param(PARAM_INDIRECT_ENERGY, 1);
set_param(PARAM_SPECULAR, 0.5);
set_param(PARAM_RANGE, 5);
set_param(PARAM_SIZE, 0);
set_param(PARAM_ATTENUATION, 1);
set_param(PARAM_SPOT_ANGLE, 45);
set_param(PARAM_SPOT_ATTENUATION, 1);

View File

@ -46,6 +46,7 @@ public:
PARAM_INDIRECT_ENERGY = RS::LIGHT_PARAM_INDIRECT_ENERGY,
PARAM_SPECULAR = RS::LIGHT_PARAM_SPECULAR,
PARAM_RANGE = RS::LIGHT_PARAM_RANGE,
PARAM_SIZE = RS::LIGHT_PARAM_SIZE,
PARAM_ATTENUATION = RS::LIGHT_PARAM_ATTENUATION,
PARAM_SPOT_ANGLE = RS::LIGHT_PARAM_SPOT_ANGLE,
PARAM_SPOT_ATTENUATION = RS::LIGHT_PARAM_SPOT_ATTENUATION,

View File

@ -231,7 +231,7 @@ public:
virtual RID light_instance_create(RID p_light) = 0;
virtual void light_instance_set_transform(RID p_light_instance, const Transform &p_transform) = 0;
virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0) = 0;
virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) = 0;
virtual void light_instance_mark_visible(RID p_light_instance) = 0;
virtual bool light_instances_can_render_shadow_cube() const {
return true;

View File

@ -965,6 +965,7 @@ void RasterizerSceneHighEndRD::_setup_environment(RID p_environment, const Camer
scene_state.ubo.shadow_filter_mode = shadow_filter_get();
scene_state.ubo.pancake_shadows = p_pancake_shadows;
scene_state.ubo.shadow_blocker_count = 16;
scene_state.ubo.screen_pixel_size[0] = p_screen_pixel_size.x;
scene_state.ubo.screen_pixel_size[1] = p_screen_pixel_size.y;
@ -1484,6 +1485,10 @@ void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_lig
light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
light_data.mask = storage->light_get_cull_mask(base);
float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
Color shadow_col = storage->light_get_shadow_color(base).to_linear();
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
@ -1551,12 +1556,44 @@ void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_lig
light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
light_data.shadow_transmittance_z_scale[j] = light_instance_get_shadow_range(li, j);
light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
store_camera(shadow_mtx, light_data.shadow_matrices[j]);
Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j);
uv_scale *= atlas_rect.size; //adapt to atlas size
switch (j) {
case 0: {
light_data.uv_scale1[0] = uv_scale.x;
light_data.uv_scale1[1] = uv_scale.y;
} break;
case 1: {
light_data.uv_scale2[0] = uv_scale.x;
light_data.uv_scale2[1] = uv_scale.y;
} break;
case 2: {
light_data.uv_scale3[0] = uv_scale.x;
light_data.uv_scale3[1] = uv_scale.y;
} break;
case 3: {
light_data.uv_scale4[0] = uv_scale.x;
light_data.uv_scale4[1] = uv_scale.y;
} break;
}
}
float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
light_data.fade_to = -light_data.shadow_split_offsets[3];
float softshadow_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
if (softshadow_angle > 0.0) {
// I know tan(0) is 0, but let's not risk it with numerical precision.
// technically this will keep expanding until reaching the sun, but all we care
// is expand until we reach the radius of the near plane (there can't be more occluders than that)
light_data.softshadow_angle = Math::tan(Math::deg2rad(softshadow_angle));
} else {
light_data.softshadow_angle = 0;
}
}
// Copy to SkyDirectionalLightData
@ -1619,6 +1656,10 @@ void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_lig
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = size;
light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION));
float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle)));
@ -1646,6 +1687,7 @@ void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_lig
shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas);
light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
} else { //omni
light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas);
@ -1656,18 +1698,31 @@ void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_lig
Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas);
light_data.atlas_rect[0] = rect.position.x;
light_data.atlas_rect[1] = rect.position.y;
light_data.atlas_rect[2] = rect.size.width;
light_data.atlas_rect[3] = rect.size.height;
if (type == RS::LIGHT_OMNI) {
light_data.atlas_rect[0] = rect.position.x;
light_data.atlas_rect[1] = rect.position.y;
light_data.atlas_rect[2] = rect.size.width;
light_data.atlas_rect[3] = rect.size.height * 0.5;
light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
Transform proj = (p_camera_inverse_transform * light_transform).inverse();
store_transform(proj, light_data.shadow_matrix);
if (size > 0.0) {
light_data.soft_shadow_size = size;
} else {
light_data.soft_shadow_size = 0.0;
}
} else if (type == RS::LIGHT_SPOT) {
//used for clamping in this light type
light_data.atlas_rect[2] += light_data.atlas_rect[0];
light_data.atlas_rect[3] += light_data.atlas_rect[1];
Transform modelview = (p_camera_inverse_transform * light_transform).inverse();
CameraMatrix bias;
bias.set_light_bias();
@ -1676,6 +1731,14 @@ void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_lig
CameraMatrix shadow_mtx = rectm * bias * light_instance_get_shadow_camera(li, 0) * modelview;
store_camera(shadow_mtx, light_data.shadow_matrix);
if (size > 0.0) {
CameraMatrix cm = light_instance_get_shadow_camera(li, 0);
float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
} else {
light_data.soft_shadow_size = 0.0;
}
}
} else {
light_data.shadow_color_enabled[3] = 0;

View File

@ -254,17 +254,19 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
float position[3];
float inv_radius;
float direction[3];
float size;
uint16_t attenuation_energy[2]; //16 bits attenuation, then energy
uint8_t color_specular[4]; //rgb color, a specular (8 bit unorm)
uint16_t cone_attenuation_angle[2]; // attenuation and angle, (16bit float)
uint32_t mask;
uint8_t shadow_color_enabled[4]; //shadow rgb color, a>0.5 enabled (8bit unorm)
float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv
float shadow_matrix[16];
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
uint32_t pad;
float soft_shadow_size;
uint32_t mask;
uint32_t pad[3];
};
struct DirectionalLightData {
@ -272,9 +274,11 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
float direction[3];
float energy;
float color[3];
float size;
float specular;
uint32_t mask;
uint32_t pad[3];
float softshadow_angle;
uint32_t pad[1];
uint32_t blend_splits;
uint32_t shadow_enabled;
float fade_from;
@ -283,12 +287,17 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
float shadow_normal_bias[4];
float shadow_transmittance_bias[4];
float shadow_transmittance_z_scale[4];
float shadow_range_begin[4];
float shadow_split_offsets[4];
float shadow_matrices[4][16];
float shadow_color1[4];
float shadow_color2[4];
float shadow_color3[4];
float shadow_color4[4];
float uv_scale1[2];
float uv_scale2[2];
float uv_scale3[2];
float uv_scale4[2];
};
struct GIProbeData {
@ -343,6 +352,9 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
uint32_t pancake_shadows;
uint32_t shadow_filter_mode;
uint32_t shadow_blocker_count;
uint32_t shadow_pad[3];
float ambient_light_color_energy[4];
float ambient_color_sky_mix;

View File

@ -2032,7 +2032,7 @@ void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const
light_instance->transform = p_transform;
}
void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale) {
void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
@ -2048,7 +2048,9 @@ void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance
light_instance->shadow_transform[p_pass].farplane = p_far;
light_instance->shadow_transform[p_pass].split = p_split;
light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
}
void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) {

View File

@ -573,7 +573,9 @@ private:
float split;
float bias_scale;
float shadow_texel_size;
float range_begin;
Rect2 atlas_rect;
Vector2 uv_scale;
};
RS::LightType light_type = RS::LIGHT_DIRECTIONAL;
@ -883,7 +885,7 @@ public:
RID light_instance_create(RID p_light);
void light_instance_set_transform(RID p_light_instance, const Transform &p_transform);
void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0);
void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2());
void light_instance_mark_visible(RID p_light_instance);
_FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) {
@ -967,6 +969,17 @@ public:
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].farplane;
}
_FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].range_begin;
}
_FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].uv_scale;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) {

View File

@ -3104,6 +3104,7 @@ RID RasterizerStorageRD::light_create(RS::LightType p_type) {
light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5;
light.param[RS::LIGHT_PARAM_RANGE] = 1.0;
light.param[RS::LIGHT_PARAM_SIZE] = 0.0;
light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45;
light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;

View File

@ -441,7 +441,7 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, vec3(metallic));
}
void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
@ -481,7 +481,7 @@ LIGHT_SHADER_CODE
/* clang-format on */
#else
float NdotL = dot(N, L);
float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
@ -491,11 +491,11 @@ LIGHT_SHADER_CODE
#endif
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
float cNdotH = max(dot(N, H), 0.0);
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
float cLdotH = max(dot(L, H), 0.0);
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
@ -613,7 +613,7 @@ LIGHT_SHADER_CODE
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = max(0.0, dot(R, V));
float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
@ -686,6 +686,24 @@ LIGHT_SHADER_CODE
#ifndef USE_NO_SHADOWS
const vec2 shadow_poisson_disk[16] = vec2[](
vec2(-0.94201624, -0.39906216),
vec2(0.94558609, -0.76890725),
vec2(-0.094184101, -0.92938870),
vec2(0.34495938, 0.29387760),
vec2(-0.91588581, 0.45771432),
vec2(-0.81544232, -0.87912464),
vec2(-0.38277543, 0.27676845),
vec2(0.97484398, 0.75648379),
vec2(0.44323325, -0.97511554),
vec2(0.53742981, -0.47373420),
vec2(-0.26496911, -0.41893023),
vec2(0.79197514, 0.19090188),
vec2(-0.24188840, 0.99706507),
vec2(-0.81409955, 0.91437590),
vec2(0.19984126, 0.78641367),
vec2(0.14383161, -0.14100790));
float sample_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
vec2 pos = coord.xy;
@ -725,6 +743,51 @@ float sample_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
return 0;
}
float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 poisson_rotate;
{
float r = dot(vec2(gl_FragCoord.xy), vec2(131.234, 583.123));
float sr = sin(r);
float cr = cos(r);
poisson_rotate = mat2(vec2(cr, -sr), vec2(sr, cr));
}
for (uint i = 0; i < scene_data.shadow_blocker_count; i++) {
vec2 suv = pssm_coord.xy + (poisson_rotate * shadow_poisson_disk[i]) * tex_scale;
float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < pssm_coord.z) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
tex_scale *= penumbra;
float s = 0.0;
for (uint i = 0; i < scene_data.shadow_blocker_count; i++) {
vec2 suv = pssm_coord.xy + (poisson_rotate * shadow_poisson_disk[i]) * tex_scale;
s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
}
return s / float(scene_data.shadow_blocker_count);
} else {
//no blockers found, so no shadow
return 1.0;
}
}
#endif //USE_NO_SHADOWS
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
@ -760,6 +823,13 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
vec3 shadow_attenuation = vec3(1.0);
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
color_specular.rgb *= attenuation_energy.y;
float size_A = 0.0;
if (lights.data[idx].size > 0.0) {
float t = lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth; //no transmittance by default
@ -773,7 +843,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
vec4 v = vec4(vertex, 1.0);
vec4 splane = (lights.data[idx].shadow_matrix * v);
float shadow_len = length(splane.xyz);
float shadow_len = length(splane.xyz); //need to remember shadow len from here
{
vec3 nofs = normal_interp * lights.data[idx].shadow_normal_bias / lights.data[idx].inv_radius;
@ -782,27 +852,127 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
splane = (lights.data[idx].shadow_matrix * v);
}
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = lights.data[idx].atlas_rect;
float shadow;
if (splane.z >= 0.0) {
if (lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
splane.z += 1.0;
//find blocker
clamp_rect.y += clamp_rect.w;
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 poisson_rotate;
{
float r = dot(vec2(gl_FragCoord.xy), vec2(131.234, 583.123));
float sr = sin(r);
float cr = cos(r);
poisson_rotate = mat2(vec2(cr, -sr), vec2(sr, cr));
}
vec3 normal = normalize(splane.xyz);
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
float z_norm = shadow_len * lights.data[idx].inv_radius;
tangent *= lights.data[idx].soft_shadow_size;
bitangent *= lights.data[idx].soft_shadow_size;
for (uint i = 0; i < scene_data.shadow_blocker_count; i++) {
vec2 poisson = (poisson_rotate * shadow_poisson_disk[i]);
vec3 pos = splane.xyz + tangent * poisson.x + bitangent * poisson.y;
pos = normalize(pos);
vec4 uv_rect = lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
uv_rect.y += uv_rect.w;
} else {
pos.z = 1.0 - pos.z;
}
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
if (d < z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (z_norm - blocker_average) / blocker_average;
tangent *= penumbra;
bitangent *= penumbra;
z_norm -= lights.data[idx].inv_radius * lights.data[idx].shadow_bias;
shadow = 0.0;
for (uint i = 0; i < scene_data.shadow_blocker_count; i++) {
vec2 poisson = (poisson_rotate * shadow_poisson_disk[i]);
vec3 pos = splane.xyz + tangent * poisson.x + bitangent * poisson.y;
pos = normalize(pos);
vec4 uv_rect = lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
uv_rect.y += uv_rect.w;
} else {
pos.z = 1.0 - pos.z;
}
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
}
shadow /= float(scene_data.shadow_blocker_count);
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
splane.z = 1.0 - splane.z;
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = lights.data[idx].atlas_rect;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = (shadow_len - lights.data[idx].shadow_bias) * lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane);
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = (shadow_len - lights.data[idx].shadow_bias) * lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
float shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane);
#ifdef LIGHT_TRANSMITTANCE_USED
{
@ -836,7 +1006,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
}
#endif //USE_NO_SHADOWS
light_compute(normal, normalize(light_rel_vec), eye_vec, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@ -903,6 +1073,13 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
color_specular.rgb *= attenuation_energy.y;
float size_A = 0.0;
if (lights.data[idx].size > 0.0) {
float t = lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
/*
if (lights.data[idx].atlas_rect!=vec4(0.0)) {
//use projector texture
@ -920,22 +1097,82 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
v.xyz -= spot_dir * lights.data[idx].shadow_bias;
float depth_bias_scale = 1.0 / (max(0.0001, dot(spot_dir, -light_rel_vec) * lights.data[idx].inv_radius)); //the closer to the light origin, the more you have to offset to reach 1px in the map
float z_norm = dot(spot_dir, -light_rel_vec) * lights.data[idx].inv_radius;
float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * lights.data[idx].shadow_normal_bias * depth_bias_scale;
normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
v.xyz += normal_bias;
//adjust with bias
z_norm = dot(spot_dir, v.xyz - lights.data[idx].position) * lights.data[idx].inv_radius;
float shadow;
vec4 splane = (lights.data[idx].shadow_matrix * v);
splane /= splane.w;
splane.z = dot(spot_dir, v.xyz - lights.data[idx].position) * lights.data[idx].inv_radius;
float shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane);
if (lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 poisson_rotate;
{
float r = dot(vec2(gl_FragCoord.xy), vec2(131.234, 583.123));
float sr = sin(r);
float cr = cos(r);
poisson_rotate = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float uv_size = lights.data[idx].soft_shadow_size * z_norm;
for (uint i = 0; i < scene_data.shadow_blocker_count; i++) {
vec2 suv = splane.xy + (poisson_rotate * shadow_poisson_disk[i]) * uv_size;
suv = clamp(suv, lights.data[idx].atlas_rect.xy, lights.data[idx].atlas_rect.zw);
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (z_norm - blocker_average) / blocker_average;
uv_size *= penumbra;
shadow = 0.0;
for (uint i = 0; i < scene_data.shadow_blocker_count; i++) {
vec2 suv = splane.xy + (poisson_rotate * shadow_poisson_disk[i]) * uv_size;
suv = clamp(suv, lights.data[idx].atlas_rect.xy, lights.data[idx].atlas_rect.zw);
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
}
shadow /= float(scene_data.shadow_blocker_count);
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
//hard shadow
splane.z = z_norm;
shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane);
}
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
#ifdef LIGHT_TRANSMITTANCE_USED
{
splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
vec4 splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
splane /= splane.w;
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
@ -950,7 +1187,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 a
#endif //USE_NO_SHADOWS
light_compute(normal, normalize(light_rel_vec), eye_vec, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@ -1636,13 +1873,28 @@ FRAGMENT_SHADER_CODE
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
float shadow = 0.0;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color1.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
@ -1663,6 +1915,18 @@ FRAGMENT_SHADER_CODE
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color2.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
@ -1684,6 +1948,18 @@ FRAGMENT_SHADER_CODE
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color3.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
@ -1706,7 +1982,20 @@ FRAGMENT_SHADER_CODE
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color4.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
@ -1722,40 +2011,72 @@ FRAGMENT_SHADER_CODE
#endif
}
pssm_coord /= pssm_coord.w;
float shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
if (directional_lights.data[i].blend_splits) {
vec3 shadow_color_blend = vec3(0.0);
float pssm_blend;
float shadow2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow2 = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow2 = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale);
} else {
shadow2 = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
pssm_coord /= pssm_coord.w;
pssm_blend = sqrt(pssm_blend);
float shadow2 = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord);
shadow = mix(shadow, shadow2, pssm_blend);
shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
}
@ -1767,7 +2088,7 @@ FRAGMENT_SHADER_CODE
#undef BIAS_FUNC
}
light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].size, directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif

View File

@ -47,6 +47,11 @@ layout(set = 0, binding = 3, std140) uniform SceneData {
bool pancake_shadows;
uint shadow_filter_mode;
uint shadow_blocker_count;
uint shadow_pad0;
uint shadow_pad1;
uint shadow_pad2;
vec4 ambient_light_color_energy;
float ambient_color_sky_mix;
@ -141,17 +146,19 @@ struct LightData { //this structure needs to be as packed as possible
vec3 position;
float inv_radius;
vec3 direction;
float size;
uint attenuation_energy; //attenuation
uint color_specular; //rgb color, a specular (8 bit unorm)
uint cone_attenuation_angle; // attenuation and angle, (16bit float)
uint mask;
uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm)
vec4 atlas_rect; // used for spot
mat4 shadow_matrix;
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
uint pad;
float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle
uint mask;
uint pad[3];
};
layout(set = 0, binding = 5, std430) buffer Lights {
@ -180,11 +187,11 @@ struct DirectionalLightData {
vec3 direction;
float energy;
vec3 color;
float size;
float specular;
uint mask;
uint pad0;
float softshadow_angle;
uint pad1;
uint pad2;
bool blend_splits;
bool shadow_enabled;
float fade_from;
@ -193,6 +200,7 @@ struct DirectionalLightData {
vec4 shadow_normal_bias;
vec4 shadow_transmittance_bias;
vec4 shadow_transmittance_z_scale;
vec4 shadow_range_begin;
vec4 shadow_split_offsets;
mat4 shadow_matrix1;
mat4 shadow_matrix2;
@ -202,6 +210,10 @@ struct DirectionalLightData {
vec4 shadow_color2;
vec4 shadow_color3;
vec4 shadow_color4;
vec2 uv_scale1;
vec2 uv_scale2;
vec2 uv_scale3;
vec2 uv_scale4;
};
layout(set = 0, binding = 7, std140) uniform DirectionalLights {

View File

@ -1499,7 +1499,9 @@ bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, c
if (j == 0 || d_z > z_max)
z_max = d_z;
}
real_t radius = 0;
real_t soft_shadow_expand = 0;
Vector3 center;
{
@ -1528,12 +1530,30 @@ bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, c
bias_scale = radius / first_radius;
}
x_max_cam = x_vec.dot(center) + radius;
x_min_cam = x_vec.dot(center) - radius;
y_max_cam = y_vec.dot(center) + radius;
y_min_cam = y_vec.dot(center) - radius;
z_min_cam = z_vec.dot(center) - radius;
{
float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE);
if (soft_shadow_angle > 0.0 && pancake_size > 0.0) {
float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam;
soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range;
x_max += soft_shadow_expand;
y_max += soft_shadow_expand;
x_min -= soft_shadow_expand;
y_min -= soft_shadow_expand;
}
}
x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand;
x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand;
y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand;
y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand;
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) {
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
//at the cost of some wasted resolution. Still the quality increase is very well worth it
@ -1588,8 +1608,9 @@ bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, c
}
}
if (cull_max > z_max)
if (cull_max > z_max) {
z_max = cull_max;
}
if (pancake_size > 0) {
z_max = z_vec.dot(center) + radius + pancake_size;
@ -1677,11 +1698,19 @@ bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, c
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam));
Transform ortho_transform;
ortho_transform.basis = transform.basis;
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale);
{
Vector3 max_in_view = p_cam_transform.affine_inverse().xform(z_vec * cull_max);
Vector3 dir_in_view = p_cam_transform.xform_inv(z_vec).normalized();
cull_max = dir_in_view.dot(max_in_view);
}
RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale, z_max, uv_scale);
}
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);

View File

@ -382,6 +382,7 @@ public:
LIGHT_PARAM_INDIRECT_ENERGY,
LIGHT_PARAM_SPECULAR,
LIGHT_PARAM_RANGE,
LIGHT_PARAM_SIZE,
LIGHT_PARAM_ATTENUATION,
LIGHT_PARAM_SPOT_ANGLE,
LIGHT_PARAM_SPOT_ATTENUATION,