Update thirdparty/meshoptimizer to v0.20

Note: this change completely overwrites the meshoptimizer library source
(from git SHA c21d3be6ddf627f8ca852ba4b6db9903b0557858)
without including any patches; a distance error metric patch is still
needed and will be reapplied in the next commit.

The changes elsewhere are due to a signature change for
meshopt_simplifyWithAttributes.
This commit is contained in:
Arseny Kapoulkine 2023-11-02 14:03:02 -07:00
parent b733901e9e
commit c5f73a1783
10 changed files with 631 additions and 418 deletions

View File

@ -460,12 +460,13 @@ void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_spli
(const uint32_t *)merged_indices_ptr, index_count,
merged_vertices_f32.ptr(), merged_vertex_count,
sizeof(float) * 3, // Vertex stride
merged_normals_f32.ptr(),
sizeof(float) * 3, // Attribute stride
normal_weights.ptr(), 3,
index_target,
max_mesh_error,
simplify_options,
&mesh_error,
merged_normals_f32.ptr(),
normal_weights.ptr(), 3);
&mesh_error);
if (new_index_count < last_index_count * 1.5f) {
index_target = index_target * 1.5f;

View File

@ -86,7 +86,7 @@ public:
static OptimizeVertexCacheFunc optimize_vertex_cache_func;
typedef size_t (*SimplifyFunc)(unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float *r_error);
static SimplifyFunc simplify_func;
typedef size_t (*SimplifyWithAttribFunc)(unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, unsigned int options, float *result_error, const float *attributes, const float *attribute_weights, size_t attribute_count);
typedef size_t (*SimplifyWithAttribFunc)(unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_data, size_t vertex_count, size_t vertex_stride, const float *attributes, size_t attribute_stride, const float *attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float *result_error);
static SimplifyWithAttribFunc simplify_with_attrib_func;
typedef float (*SimplifyScaleFunc)(const float *vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
static SimplifyScaleFunc simplify_scale_func;

View File

@ -13,7 +13,7 @@ namespace meshopt
const unsigned char kIndexHeader = 0xe0;
const unsigned char kSequenceHeader = 0xd0;
static int gEncodeIndexVersion = 0;
static int gEncodeIndexVersion = 1;
typedef unsigned int VertexFifo[16];
typedef unsigned int EdgeFifo[16][2];

View File

@ -157,7 +157,7 @@ static T* hashLookup(T* table, size_t buckets, const Hash& hash, const T& key, c
}
assert(false && "Hash table is full"); // unreachable
return 0;
return NULL;
}
static void buildPositionRemap(unsigned int* remap, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
@ -178,6 +178,22 @@ static void buildPositionRemap(unsigned int* remap, const float* vertex_position
remap[index] = *entry;
}
allocator.deallocate(vertex_table);
}
template <size_t BlockSize>
static void remapVertices(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap)
{
size_t block_size = BlockSize == 0 ? vertex_size : BlockSize;
assert(block_size == vertex_size);
for (size_t i = 0; i < vertex_count; ++i)
if (remap[i] != ~0u)
{
assert(remap[i] < vertex_count);
memcpy(static_cast<unsigned char*>(destination) + remap[i] * block_size, static_cast<const unsigned char*>(vertices) + i * block_size, block_size);
}
}
} // namespace meshopt
@ -288,6 +304,8 @@ size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigne
void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap)
{
using namespace meshopt;
assert(vertex_size > 0 && vertex_size <= 256);
meshopt_Allocator allocator;
@ -300,14 +318,23 @@ void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t v
vertices = vertices_copy;
}
for (size_t i = 0; i < vertex_count; ++i)
// specialize the loop for common vertex sizes to ensure memcpy is compiled as an inlined intrinsic
switch (vertex_size)
{
if (remap[i] != ~0u)
{
assert(remap[i] < vertex_count);
case 4:
return remapVertices<4>(destination, vertices, vertex_count, vertex_size, remap);
memcpy(static_cast<unsigned char*>(destination) + remap[i] * vertex_size, static_cast<const unsigned char*>(vertices) + i * vertex_size, vertex_size);
}
case 8:
return remapVertices<8>(destination, vertices, vertex_count, vertex_size, remap);
case 12:
return remapVertices<12>(destination, vertices, vertex_count, vertex_size, remap);
case 16:
return remapVertices<16>(destination, vertices, vertex_count, vertex_size, remap);
default:
return remapVertices<0>(destination, vertices, vertex_count, vertex_size, remap);
}
}

View File

@ -1,7 +1,7 @@
/**
* meshoptimizer - version 0.18
* meshoptimizer - version 0.20
*
* Copyright (C) 2016-2022, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Copyright (C) 2016-2023, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at https://github.com/zeux/meshoptimizer
*
* This library is distributed under the MIT License. See notice at the end of this file.
@ -12,7 +12,7 @@
#include <stddef.h>
/* Version macro; major * 1000 + minor * 10 + patch */
#define MESHOPTIMIZER_VERSION 180 /* 0.18 */
#define MESHOPTIMIZER_VERSION 200 /* 0.20 */
/* If no API is defined, assume default */
#ifndef MESHOPTIMIZER_API
@ -67,6 +67,7 @@ MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination,
*
* destination must contain enough space for the resulting remap table (vertex_count elements)
* indices can be NULL if the input is unindexed
* stream_count must be <= 16
*/
MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
@ -103,6 +104,7 @@ MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destinati
* Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
*
* destination must contain enough space for the resulting index buffer (index_count elements)
* stream_count must be <= 16
*/
MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
@ -304,13 +306,22 @@ MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t cou
* Input data must contain 4 floats for every quaternion (count*4 total).
*
* meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24).
* Mantissa is shared between all components of a given vector as defined by stride; stride must be divisible by 4.
* Exponent can be shared between all components of a given vector as defined by stride or all values of a given component; stride must be divisible by 4.
* Input data must contain stride/4 floats for every vector (count*stride/4 total).
* When individual (scalar) encoding is desired, simply pass stride=4 and adjust count accordingly.
*/
enum meshopt_EncodeExpMode
{
/* When encoding exponents, use separate values for each component (maximum quality) */
meshopt_EncodeExpSeparate,
/* When encoding exponents, use shared value for all components of each vector (better compression) */
meshopt_EncodeExpSharedVector,
/* When encoding exponents, use shared value for each component of all vectors (best compression) */
meshopt_EncodeExpSharedComponent,
};
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data, enum meshopt_EncodeExpMode mode);
/**
* Simplification options
@ -321,11 +332,6 @@ enum
meshopt_SimplifyLockBorder = 1 << 0,
};
/**
* Experimental: Mesh simplifier with attribute metric; attributes follow xyz position data atm (vertex data must contain 3 + attribute_count floats per vertex)
*/
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error, const float* attributes, const float* attribute_weights, size_t attribute_count);
/**
* Mesh simplifier
* Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible
@ -343,6 +349,18 @@ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* d
*/
MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error);
/**
* Experimental: Mesh simplifier with attribute metric
* The algorithm ehnahces meshopt_simplify by incorporating attribute values into the error metric used to prioritize simplification order; see meshopt_simplify documentation for details.
* Note that the number of attributes affects memory requirements and running time; this algorithm requires ~1.5x more memory and time compared to meshopt_simplify when using 4 scalar attributes.
*
* vertex_attributes should have attribute_count floats for each vertex
* attribute_weights should have attribute_count floats in total; the weights determine relative priority of attributes between each other and wrt position. The recommended weight range is [1e-3..1e-1], assuming attribute data is in [0..1] range.
* attribute_count must be <= 16
* TODO target_error/result_error currently use combined distance+attribute error; this may change in the future
*/
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* result_error);
/**
* Experimental: Mesh simplifier (sloppy)
* Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance
@ -367,8 +385,9 @@ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destinati
*
* destination must contain enough space for the target index buffer (target_vertex_count elements)
* vertex_positions should have float3 position in the first 12 bytes of each vertex
* vertex_colors should can be NULL; when it's not NULL, it should have float3 color in the first 12 bytes of each vertex
*/
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count);
/**
* Returns the error scaling factor used by the simplifier to convert between absolute and relative extents
@ -497,7 +516,7 @@ struct meshopt_Bounds
* For backface culling with orthographic projection, use the following formula to reject backfacing clusters:
* dot(view, cone_axis) >= cone_cutoff
*
* For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff:
* For perspective projection, you can use the formula that needs cone apex in addition to axis & cutoff:
* dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff
*
* Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead:
@ -506,7 +525,8 @@ struct meshopt_Bounds
* dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius
*
* The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere
* to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable.
* to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable (for derivation see
* Real-Time Rendering 4th Edition, section 19.3).
*
* vertex_positions should have float3 position in the first 12 bytes of each vertex
* index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size)
@ -515,13 +535,14 @@ MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsig
MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
* Experimental: Spatial sorter
* Spatial sorter
* Generates a remap table that can be used to reorder points for spatial locality.
* Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer.
*
* destination must contain enough space for the resulting remap table (vertex_count elements)
* vertex_positions should have float3 position in the first 12 bytes of each vertex
*/
MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
MESHOPTIMIZER_API void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
* Experimental: Spatial sorter
@ -561,19 +582,25 @@ inline int meshopt_quantizeUnorm(float v, int N);
inline int meshopt_quantizeSnorm(float v, int N);
/**
* Quantize a float into half-precision floating point value
* Quantize a float into half-precision (as defined by IEEE-754 fp16) floating point value
* Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
* Representable magnitude range: [6e-5; 65504]
* Maximum relative reconstruction error: 5e-4
*/
inline unsigned short meshopt_quantizeHalf(float v);
MESHOPTIMIZER_API unsigned short meshopt_quantizeHalf(float v);
/**
* Quantize a float into a floating point value with a limited number of significant mantissa bits
* Quantize a float into a floating point value with a limited number of significant mantissa bits, preserving the IEEE-754 fp32 binary representation
* Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
* Assumes N is in a valid mantissa precision range, which is 1..23
*/
inline float meshopt_quantizeFloat(float v, int N);
MESHOPTIMIZER_API float meshopt_quantizeFloat(float v, int N);
/**
* Reverse quantization of a half-precision (as defined by IEEE-754 fp16) floating point value
* Preserves Inf/NaN, flushes denormals to zero
*/
MESHOPTIMIZER_API float meshopt_dequantizeHalf(unsigned short h);
#endif
/**
@ -620,9 +647,11 @@ inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_s
template <typename T>
inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
template <typename T>
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = 0);
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
template <typename T>
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0);
inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
template <typename T>
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = NULL);
template <typename T>
inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index);
template <typename T>
@ -666,50 +695,6 @@ inline int meshopt_quantizeSnorm(float v, int N)
return int(v * scale + round);
}
inline unsigned short meshopt_quantizeHalf(float v)
{
union { float f; unsigned int ui; } u = {v};
unsigned int ui = u.ui;
int s = (ui >> 16) & 0x8000;
int em = ui & 0x7fffffff;
/* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */
int h = (em - (112 << 23) + (1 << 12)) >> 13;
/* underflow: flush to zero; 113 encodes exponent -14 */
h = (em < (113 << 23)) ? 0 : h;
/* overflow: infinity; 143 encodes exponent 16 */
h = (em >= (143 << 23)) ? 0x7c00 : h;
/* NaN; note that we convert all types of NaN to qNaN */
h = (em > (255 << 23)) ? 0x7e00 : h;
return (unsigned short)(s | h);
}
inline float meshopt_quantizeFloat(float v, int N)
{
union { float f; unsigned int ui; } u = {v};
unsigned int ui = u.ui;
const int mask = (1 << (23 - N)) - 1;
const int round = (1 << (23 - N)) >> 1;
int e = ui & 0x7f800000;
unsigned int rui = (ui + round) & ~mask;
/* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */
ui = e == 0x7f800000 ? ui : rui;
/* flush denormals to zero */
ui = e == 0 ? 0 : ui;
u.ui = ui;
return u.f;
}
#endif
/* Internal implementation helpers */
@ -746,6 +731,13 @@ public:
return result;
}
void deallocate(void* ptr)
{
assert(count > 0 && blocks[count - 1] == ptr);
Storage::deallocate(ptr);
count--;
}
private:
void* blocks[24];
size_t count;
@ -770,7 +762,7 @@ struct meshopt_IndexAdapter<T, false>
meshopt_IndexAdapter(T* result_, const T* input, size_t count_)
: result(result_)
, data(0)
, data(NULL)
, count(count_)
{
size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int);
@ -810,33 +802,33 @@ struct meshopt_IndexAdapter<T, true>
template <typename T>
inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
{
meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size);
return meshopt_generateVertexRemap(destination, indices ? in.data : NULL, index_count, vertices, vertex_count, vertex_size);
}
template <typename T>
inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
{
meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count);
return meshopt_generateVertexRemapMulti(destination, indices ? in.data : NULL, index_count, vertex_count, streams, stream_count);
}
template <typename T>
inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap)
{
meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap);
meshopt_remapIndexBuffer(out.data, indices ? in.data : NULL, index_count, remap);
}
template <typename T>
inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride);
}
@ -844,8 +836,8 @@ inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices,
template <typename T>
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count);
}
@ -853,8 +845,8 @@ inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indi
template <typename T>
inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count * 2);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count * 2);
meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
@ -862,8 +854,8 @@ inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indice
template <typename T>
inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count * 4);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count * 4);
meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
@ -871,8 +863,8 @@ inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* ind
template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count);
}
@ -880,8 +872,8 @@ inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t
template <typename T>
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count);
}
@ -889,8 +881,8 @@ inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, s
template <typename T>
inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size);
}
@ -898,8 +890,8 @@ inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, si
template <typename T>
inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold);
}
@ -907,7 +899,7 @@ inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t in
template <typename T>
inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count);
}
@ -923,7 +915,7 @@ inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t
template <typename T>
inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count);
}
@ -940,7 +932,7 @@ inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const u
template <typename T>
inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count);
}
@ -957,17 +949,26 @@ inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const
template <typename T>
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, options, result_error);
}
template <typename T>
inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* result_error)
{
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
return meshopt_simplifyWithAttributes(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_attributes, vertex_attributes_stride, attribute_weights, attribute_count, target_index_count, target_error, options, result_error);
}
template <typename T>
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error);
}
@ -975,8 +976,8 @@ inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t in
template <typename T>
inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, (index_count / 3) * 5);
return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index));
}
@ -984,8 +985,8 @@ inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_co
template <typename T>
inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, (index_count - 2) * 3);
return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index));
}
@ -993,7 +994,7 @@ inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_
template <typename T>
inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size);
}
@ -1001,7 +1002,7 @@ inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices
template <typename T>
inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
@ -1009,7 +1010,7 @@ inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size
template <typename T>
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size);
}
@ -1017,7 +1018,7 @@ inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices
template <typename T>
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
}
@ -1025,7 +1026,7 @@ inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* mes
template <typename T>
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles);
}
@ -1033,7 +1034,7 @@ inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int*
template <typename T>
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
@ -1041,15 +1042,15 @@ inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t inde
template <typename T>
inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count);
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
meshopt_IndexAdapter<T> out(destination, NULL, index_count);
meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
#endif
/**
* Copyright (c) 2016-2022 Arseny Kapoulkine
* Copyright (c) 2016-2023 Arseny Kapoulkine
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation

View File

@ -0,0 +1,70 @@
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
unsigned short meshopt_quantizeHalf(float v)
{
union { float f; unsigned int ui; } u = {v};
unsigned int ui = u.ui;
int s = (ui >> 16) & 0x8000;
int em = ui & 0x7fffffff;
// bias exponent and round to nearest; 112 is relative exponent bias (127-15)
int h = (em - (112 << 23) + (1 << 12)) >> 13;
// underflow: flush to zero; 113 encodes exponent -14
h = (em < (113 << 23)) ? 0 : h;
// overflow: infinity; 143 encodes exponent 16
h = (em >= (143 << 23)) ? 0x7c00 : h;
// NaN; note that we convert all types of NaN to qNaN
h = (em > (255 << 23)) ? 0x7e00 : h;
return (unsigned short)(s | h);
}
float meshopt_quantizeFloat(float v, int N)
{
assert(N >= 0 && N <= 23);
union { float f; unsigned int ui; } u = {v};
unsigned int ui = u.ui;
const int mask = (1 << (23 - N)) - 1;
const int round = (1 << (23 - N)) >> 1;
int e = ui & 0x7f800000;
unsigned int rui = (ui + round) & ~mask;
// round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0
ui = e == 0x7f800000 ? ui : rui;
// flush denormals to zero
ui = e == 0 ? 0 : ui;
u.ui = ui;
return u.f;
}
float meshopt_dequantizeHalf(unsigned short h)
{
unsigned int s = unsigned(h & 0x8000) << 16;
int em = h & 0x7fff;
// bias exponent and pad mantissa with 0; 112 is relative exponent bias (127-15)
int r = (em + (112 << 10)) << 13;
// denormal: flush to zero
r = (em < (1 << 10)) ? 0 : r;
// infinity/NaN; note that we preserve NaN payload as a byproduct of unifying inf/nan cases
// 112 is an exponent bias fixup; since we already applied it once, applying it twice converts 31 to 255
r += (em >= (31 << 10)) ? (112 << 23) : 0;
union { float f; unsigned int ui; } u;
u.ui = s | r;
return u.f;
}

View File

@ -20,14 +20,13 @@
#define TRACESTATS(i) (void)0
#endif
#define ATTRIBUTES 3
// This work is based on:
// Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
// Michael Garland. Quadric-based polygonal surface simplification. 1999
// Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
// Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
// Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019
// Hugues Hoppe. New Quadric Metric for Simplifying Meshes with Appearance Attributes. 1999
namespace meshopt
{
@ -39,31 +38,31 @@ struct EdgeAdjacency
unsigned int prev;
};
unsigned int* counts;
unsigned int* offsets;
Edge* data;
};
static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
{
adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count + 1);
adjacency.data = allocator.allocate<EdgeAdjacency::Edge>(index_count);
}
static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap)
{
size_t face_count = index_count / 3;
unsigned int* offsets = adjacency.offsets + 1;
EdgeAdjacency::Edge* data = adjacency.data;
// fill edge counts
memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
memset(offsets, 0, vertex_count * sizeof(unsigned int));
for (size_t i = 0; i < index_count; ++i)
{
unsigned int v = remap ? remap[indices[i]] : indices[i];
assert(v < vertex_count);
adjacency.counts[v]++;
offsets[v]++;
}
// fill offset table
@ -71,8 +70,9 @@ static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* in
for (size_t i = 0; i < vertex_count; ++i)
{
adjacency.offsets[i] = offset;
offset += adjacency.counts[i];
unsigned int count = offsets[i];
offsets[i] = offset;
offset += count;
}
assert(offset == index_count);
@ -89,26 +89,22 @@ static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* in
c = remap[c];
}
adjacency.data[adjacency.offsets[a]].next = b;
adjacency.data[adjacency.offsets[a]].prev = c;
adjacency.offsets[a]++;
data[offsets[a]].next = b;
data[offsets[a]].prev = c;
offsets[a]++;
adjacency.data[adjacency.offsets[b]].next = c;
adjacency.data[adjacency.offsets[b]].prev = a;
adjacency.offsets[b]++;
data[offsets[b]].next = c;
data[offsets[b]].prev = a;
offsets[b]++;
adjacency.data[adjacency.offsets[c]].next = a;
adjacency.data[adjacency.offsets[c]].prev = b;
adjacency.offsets[c]++;
data[offsets[c]].next = a;
data[offsets[c]].prev = b;
offsets[c]++;
}
// fix offsets that have been disturbed by the previous pass
for (size_t i = 0; i < vertex_count; ++i)
{
assert(adjacency.offsets[i] >= adjacency.counts[i]);
adjacency.offsets[i] -= adjacency.counts[i];
}
// finalize offsets
adjacency.offsets[0] = 0;
assert(adjacency.offsets[vertex_count] == index_count);
}
struct PositionHasher
@ -168,7 +164,7 @@ static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key,
}
assert(false && "Hash table is full"); // unreachable
return 0;
return NULL;
}
static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
@ -205,6 +201,8 @@ static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const f
wedge[i] = wedge[r];
wedge[r] = unsigned(i);
}
allocator.deallocate(table);
}
enum VertexKind
@ -244,7 +242,7 @@ const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
{
unsigned int count = adjacency.counts[a];
unsigned int count = adjacency.offsets[a + 1] - adjacency.offsets[a];
const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a];
for (size_t i = 0; i < count; ++i)
@ -269,7 +267,7 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
{
unsigned int vertex = unsigned(i);
unsigned int count = adjacency.counts[vertex];
unsigned int count = adjacency.offsets[vertex + 1] - adjacency.offsets[vertex];
const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex];
for (size_t j = 0; j < count; ++j)
@ -378,10 +376,6 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
struct Vector3
{
float x, y, z;
#if ATTRIBUTES
float a[ATTRIBUTES];
#endif
};
static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
@ -432,19 +426,43 @@ static float rescalePositions(Vector3* result, const float* vertex_positions_dat
return extent;
}
static void rescaleAttributes(float* result, const float* vertex_attributes_data, size_t vertex_count, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count)
{
size_t vertex_attributes_stride_float = vertex_attributes_stride / sizeof(float);
for (size_t i = 0; i < vertex_count; ++i)
{
for (size_t k = 0; k < attribute_count; ++k)
{
float a = vertex_attributes_data[i * vertex_attributes_stride_float + k];
result[i * attribute_count + k] = a * attribute_weights[k];
}
}
}
static const size_t kMaxAttributes = 16;
struct Quadric
{
// a00*x^2 + a11*y^2 + a22*z^2 + 2*(a10*xy + a20*xz + a21*yz) + b0*x + b1*y + b2*z + c
float a00, a11, a22;
float a10, a20, a21;
float b0, b1, b2, c;
float w;
};
#if ATTRIBUTES
float gx[ATTRIBUTES];
float gy[ATTRIBUTES];
float gz[ATTRIBUTES];
float gw[ATTRIBUTES];
#endif
struct QuadricGrad
{
// gx*x + gy*y + gz*z + gw
float gx, gy, gz, gw;
};
struct Reservoir
{
float x, y, z;
float r, g, b;
float w;
};
struct Collapse
@ -458,7 +476,6 @@ struct Collapse
float error;
unsigned int errorui;
};
float distance_error;
};
static float normalize(Vector3& v)
@ -488,16 +505,17 @@ static void quadricAdd(Quadric& Q, const Quadric& R)
Q.b2 += R.b2;
Q.c += R.c;
Q.w += R.w;
}
#if ATTRIBUTES
for (int k = 0; k < ATTRIBUTES; ++k)
static void quadricAdd(QuadricGrad* G, const QuadricGrad* R, size_t attribute_count)
{
for (size_t k = 0; k < attribute_count; ++k)
{
Q.gx[k] += R.gx[k];
Q.gy[k] += R.gy[k];
Q.gz[k] += R.gz[k];
Q.gw[k] += R.gw[k];
G[k].gx += R[k].gx;
G[k].gy += R[k].gy;
G[k].gz += R[k].gz;
G[k].gw += R[k].gw;
}
#endif
}
static float quadricError(const Quadric& Q, const Vector3& v)
@ -523,23 +541,12 @@ static float quadricError(const Quadric& Q, const Vector3& v)
r += ry * v.y;
r += rz * v.z;
#if ATTRIBUTES
// see quadricUpdateAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr
for (int k = 0; k < ATTRIBUTES; ++k)
{
float a = v.a[k];
r += a * a * Q.w;
r -= 2 * a * (v.x * Q.gx[k] + v.y * Q.gy[k] + v.z * Q.gz[k] + Q.gw[k]);
}
#endif
float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
return fabsf(r) * s;
}
static float quadricErrorNoAttributes(const Quadric& Q, const Vector3& v)
static float quadricError(const Quadric& Q, const QuadricGrad* G, size_t attribute_count, const Vector3& v, const float* va)
{
float rx = Q.b0;
float ry = Q.b1;
@ -562,7 +569,18 @@ static float quadricErrorNoAttributes(const Quadric& Q, const Vector3& v)
r += ry * v.y;
r += rz * v.z;
float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
// see quadricFromAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr
for (size_t k = 0; k < attribute_count; ++k)
{
float a = va[k];
float g = v.x * G[k].gx + v.y * G[k].gy + v.z * G[k].gz + G[k].gw;
r += a * a * Q.w;
r -= 2 * a * g;
}
// TODO: weight normalization is breaking attribute error somehow
float s = 1;// Q.w == 0.f ? 0.f : 1.f / Q.w;
return fabsf(r) * s;
}
@ -585,29 +603,6 @@ static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, flo
Q.b2 = c * dw;
Q.c = d * dw;
Q.w = w;
#if ATTRIBUTES
memset(Q.gx, 0, sizeof(Q.gx));
memset(Q.gy, 0, sizeof(Q.gy));
memset(Q.gz, 0, sizeof(Q.gz));
memset(Q.gw, 0, sizeof(Q.gw));
#endif
}
static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w)
{
// we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric
Q.a00 = w;
Q.a11 = w;
Q.a22 = w;
Q.a10 = 0.f;
Q.a20 = 0.f;
Q.a21 = 0.f;
Q.b0 = -2.f * x * w;
Q.b1 = -2.f * y * w;
Q.b2 = -2.f * z * w;
Q.c = (x * x + y * y + z * z) * w;
Q.w = w;
}
static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
@ -644,8 +639,7 @@ static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3
quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight);
}
#if ATTRIBUTES
static void quadricUpdateAttributes(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float w)
static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0, const Vector3& p1, const Vector3& p2, const float* va0, const float* va1, const float* va2, size_t attribute_count)
{
// for each attribute we want to encode the following function into the quadric:
// (eval(pos) - attr)^2
@ -655,6 +649,11 @@ static void quadricUpdateAttributes(Quadric& Q, const Vector3& p0, const Vector3
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
// weight is scaled linearly with edge length
Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
float area = sqrtf(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z);
float w = sqrtf(area); // TODO this needs more experimentation
// we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows:
// v = (d11 * d20 - d01 * d21) / denom
// w = (d00 * d21 - d01 * d20) / denom
@ -677,9 +676,13 @@ static void quadricUpdateAttributes(Quadric& Q, const Vector3& p0, const Vector3
float gz1 = (d11 * v0.z - d01 * v1.z) * denomr;
float gz2 = (d00 * v1.z - d01 * v0.z) * denomr;
for (int k = 0; k < ATTRIBUTES; ++k)
memset(&Q, 0, sizeof(Quadric));
Q.w = w;
for (size_t k = 0; k < attribute_count; ++k)
{
float a0 = p0.a[k], a1 = p1.a[k], a2 = p2.a[k];
float a0 = va0[k], a1 = va1[k], a2 = va2[k];
// compute gradient of eval(pos) for x/y/z/w
// the formulas below are obtained by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w
@ -705,24 +708,14 @@ static void quadricUpdateAttributes(Quadric& Q, const Vector3& p0, const Vector3
Q.c += w * (gw * gw);
// the only remaining sum components are ones that depend on attr; these will be addded during error evaluation, see quadricError
Q.gx[k] = w * gx;
Q.gy[k] = w * gy;
Q.gz[k] = w * gz;
Q.gw[k] = w * gw;
#if TRACE > 2
printf("attr%d: %e %e %e\n",
k,
(gx * p0.x + gy * p0.y + gz * p0.z + gw - a0),
(gx * p1.x + gy * p1.y + gz * p1.z + gw - a1),
(gx * p2.x + gy * p2.y + gz * p2.z + gw - a2)
);
#endif
G[k].gx = w * gx;
G[k].gy = w * gy;
G[k].gz = w * gz;
G[k].gw = w * gw;
}
}
#endif
static void fillFaceQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
static void fillFaceQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
{
for (size_t i = 0; i < index_count; i += 3)
{
@ -732,24 +725,18 @@ static void fillFaceQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
quadricAdd(vertex_no_attrib_quadrics[remap[i0]], Q);
quadricAdd(vertex_no_attrib_quadrics[remap[i1]], Q);
quadricAdd(vertex_no_attrib_quadrics[remap[i2]], Q);
#if ATTRIBUTES
quadricUpdateAttributes(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], Q.w);
#endif
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
quadricAdd(vertex_quadrics[remap[i2]], Q);
}
}
static void fillEdgeQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
{
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
static const int next[4] = {1, 2, 0, 1};
for (int e = 0; e < 3; ++e)
{
@ -775,7 +762,7 @@ static void fillEdgeQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib
if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
continue;
unsigned int i2 = indices[i + next[next[e]]];
unsigned int i2 = indices[i + next[e + 1]];
// we try hard to maintain border edge geometry; seam edges can move more freely
// due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
@ -789,13 +776,33 @@ static void fillEdgeQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
quadricAdd(vertex_no_attrib_quadrics[remap[i0]], Q);
quadricAdd(vertex_no_attrib_quadrics[remap[i1]], Q);
}
}
}
static void fillAttributeQuadrics(Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const float* vertex_attributes, size_t attribute_count, const unsigned int* remap)
{
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int i0 = indices[i + 0];
unsigned int i1 = indices[i + 1];
unsigned int i2 = indices[i + 2];
Quadric QA;
QuadricGrad G[kMaxAttributes];
quadricFromAttributes(QA, G, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], &vertex_attributes[i0 * attribute_count], &vertex_attributes[i1 * attribute_count], &vertex_attributes[i2 * attribute_count], attribute_count);
// TODO: This blends together attribute weights across attribute discontinuities, which is probably not a great idea
quadricAdd(attribute_quadrics[remap[i0]], QA);
quadricAdd(attribute_quadrics[remap[i1]], QA);
quadricAdd(attribute_quadrics[remap[i2]], QA);
quadricAdd(&attribute_gradients[remap[i0] * attribute_count], G, attribute_count);
quadricAdd(&attribute_gradients[remap[i1] * attribute_count], G, attribute_count);
quadricAdd(&attribute_gradients[remap[i2] * attribute_count], G, attribute_count);
}
}
// does triangle ABC flip when C is replaced with D?
static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d)
{
@ -806,7 +813,7 @@ static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c
Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x};
Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x};
return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z < 0;
return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z <= 0;
}
static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1)
@ -818,16 +825,15 @@ static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vert
const Vector3& v1 = vertex_positions[i1];
const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]];
size_t count = adjacency.counts[i0];
size_t count = adjacency.offsets[i0 + 1] - adjacency.offsets[i0];
for (size_t i = 0; i < count; ++i)
{
unsigned int a = collapse_remap[edges[i].next];
unsigned int b = collapse_remap[edges[i].prev];
// skip triangles that get collapsed
// note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0
if (a == i1 || b == i1)
// skip triangles that will get collapsed by i0->i1 collapse or already got collapsed previously
if (a == i1 || b == i1 || a == b)
continue;
// early-out when at least one triangle flips due to a collapse
@ -838,7 +844,25 @@ static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vert
return false;
}
static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
static size_t boundEdgeCollapses(const EdgeAdjacency& adjacency, size_t vertex_count, size_t index_count, unsigned char* vertex_kind)
{
size_t dual_count = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned char k = vertex_kind[i];
unsigned int e = adjacency.offsets[i + 1] - adjacency.offsets[i];
dual_count += (k == Kind_Manifold || k == Kind_Seam) ? e : 0;
}
assert(dual_count <= index_count);
// pad capacity by 3 so that we can check for overflow once per triangle instead of once per edge
return (index_count - dual_count / 2) + 3;
}
static size_t pickEdgeCollapses(Collapse* collapses, size_t collapse_capacity, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
{
size_t collapse_count = 0;
@ -846,6 +870,10 @@ static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices
{
static const int next[3] = {1, 2, 0};
// this should never happen as boundEdgeCollapses should give an upper bound for the collapse count, but in an unlikely event it does we can just drop extra collapses
if (collapse_count + 3 > collapse_capacity)
break;
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
@ -896,7 +924,7 @@ static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices
return collapse_count;
}
static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const Quadric* vertex_no_attrib_quadrics, const unsigned int* remap)
static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const float* vertex_attributes, const Quadric* vertex_quadrics, const Quadric* attribute_quadrics, const QuadricGrad* attribute_gradients, size_t attribute_count, const unsigned int* remap)
{
for (size_t i = 0; i < collapse_count; ++i)
{
@ -910,78 +938,22 @@ static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const
unsigned int j0 = c.bidi ? i1 : i0;
unsigned int j1 = c.bidi ? i0 : i1;
const Quadric& qi = vertex_quadrics[remap[i0]];
const Quadric& qj = vertex_quadrics[remap[j0]];
float ei = quadricError(vertex_quadrics[remap[i0]], vertex_positions[i1]);
float ej = quadricError(vertex_quadrics[remap[j0]], vertex_positions[j1]);
float ei = quadricError(qi, vertex_positions[i1]);
float ej = quadricError(qj, vertex_positions[j1]);
const Quadric& naqi = vertex_no_attrib_quadrics[remap[i0]];
const Quadric& naqj = vertex_no_attrib_quadrics[remap[j0]];
if (attribute_count)
{
ei += quadricError(attribute_quadrics[remap[i0]], &attribute_gradients[remap[i0] * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]);
ej += quadricError(attribute_quadrics[remap[j0]], &attribute_gradients[remap[j0] * attribute_count], attribute_count, vertex_positions[j1], &vertex_attributes[j1 * attribute_count]);
}
// pick edge direction with minimal error
c.v0 = ei <= ej ? i0 : j0;
c.v1 = ei <= ej ? i1 : j1;
c.error = ei <= ej ? ei : ej;
c.distance_error = ei <= ej ? quadricErrorNoAttributes(naqi, vertex_positions[i1]) : quadricErrorNoAttributes(naqj, vertex_positions[j1]);
}
}
#if TRACE > 1
static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind)
{
size_t ckinds[Kind_Count][Kind_Count] = {};
float cerrors[Kind_Count][Kind_Count] = {};
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
cerrors[k0][k1] = FLT_MAX;
for (size_t i = 0; i < collapse_count; ++i)
{
unsigned int i0 = collapses[i].v0;
unsigned int i1 = collapses[i].v1;
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
ckinds[k0][k1]++;
cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1];
}
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (ckinds[k0][k1])
printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), ckinds[k0][k1] ? sqrtf(cerrors[k0][k1]) : 0.f);
}
static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind)
{
size_t locked_collapses[Kind_Count][Kind_Count] = {};
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0];
}
}
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (locked_collapses[k0][k1])
printf("locked collapses %d -> %d: %d\n", k0, k1, int(locked_collapses[k0][k1]));
}
#endif
static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
{
const int sort_bits = 11;
@ -1020,7 +992,7 @@ static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapse
}
}
static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, size_t attribute_count, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
{
size_t edge_collapses = 0;
size_t triangle_collapses = 0;
@ -1082,7 +1054,12 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
assert(collapse_remap[r1] == r1);
quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
quadricAdd(vertex_no_attrib_quadrics[r1], vertex_no_attrib_quadrics[r0]);
if (attribute_count)
{
quadricAdd(attribute_quadrics[r1], attribute_quadrics[r0]);
quadricAdd(&attribute_gradients[r1 * attribute_count], &attribute_gradients[r0 * attribute_count], attribute_count);
}
if (vertex_kind[i0] == Kind_Complex)
{
@ -1120,7 +1097,7 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
edge_collapses++;
result_error = result_error < c.distance_error ? c.distance_error : result_error;
result_error = result_error < c.error ? c.error : result_error;
}
#if TRACE
@ -1346,17 +1323,41 @@ static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices
}
}
static void fillCellQuadrics(Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count, const unsigned int* vertex_cells)
static void fillCellReservoirs(Reservoir* cell_reservoirs, size_t cell_count, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, size_t vertex_count, const unsigned int* vertex_cells)
{
static const float dummy_color[] = { 0.f, 0.f, 0.f };
size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float);
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int c = vertex_cells[i];
unsigned int cell = vertex_cells[i];
const Vector3& v = vertex_positions[i];
Reservoir& r = cell_reservoirs[cell];
Quadric Q;
quadricFromPoint(Q, v.x, v.y, v.z, 1.f);
const float* color = vertex_colors ? &vertex_colors[i * vertex_colors_stride_float] : dummy_color;
quadricAdd(cell_quadrics[c], Q);
r.x += v.x;
r.y += v.y;
r.z += v.z;
r.r += color[0];
r.g += color[1];
r.b += color[2];
r.w += 1.f;
}
for (size_t i = 0; i < cell_count; ++i)
{
Reservoir& r = cell_reservoirs[i];
float iw = r.w == 0.f ? 0.f : 1.f / r.w;
r.x *= iw;
r.y *= iw;
r.z *= iw;
r.r *= iw;
r.g *= iw;
r.b *= iw;
}
}
@ -1377,6 +1378,34 @@ static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t c
}
}
static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Reservoir* cell_reservoirs, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t vertex_count)
{
static const float dummy_color[] = { 0.f, 0.f, 0.f };
size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float);
memset(cell_remap, -1, cell_count * sizeof(unsigned int));
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int cell = vertex_cells[i];
const Vector3& v = vertex_positions[i];
const Reservoir& r = cell_reservoirs[cell];
const float* color = vertex_colors ? &vertex_colors[i * vertex_colors_stride_float] : dummy_color;
float pos_error = (v.x - r.x) * (v.x - r.x) + (v.y - r.y) * (v.y - r.y) + (v.z - r.z) * (v.z - r.z);
float col_error = (color[0] - r.r) * (color[0] - r.r) + (color[1] - r.g) * (color[1] - r.g) + (color[2] - r.b) * (color[2] - r.b);
float error = pos_error + color_weight * col_error;
if (cell_remap[cell] == ~0u || cell_errors[cell] > error)
{
cell_remap[cell] = unsigned(i);
cell_errors[cell] = error;
}
}
}
static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap)
{
TriangleHasher hasher = {destination};
@ -1434,26 +1463,23 @@ static float interpolate(float y, float x0, float y0, float x1, float y1, float
#ifndef NDEBUG
// Note: this is only exposed for debug visualization purposes; do *not* use these in debug builds
MESHOPTIMIZER_API unsigned char* meshopt_simplifyDebugKind = 0;
MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoop = 0;
MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoopBack = 0;
MESHOPTIMIZER_API unsigned char* meshopt_simplifyDebugKind = NULL;
MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoop = NULL;
MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoopBack = NULL;
#endif
size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
return meshopt_simplifyWithAttributes(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, target_index_count, target_error, options, out_result_error, 0, 0, 0);
}
size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error, const float* attributes, const float* attribute_weights, size_t attribute_count)
size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(vertex_stride >= 12 && vertex_stride <= 256);
assert(vertex_stride % sizeof(float) == 0);
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_index_count <= index_count);
assert((options & ~(meshopt_SimplifyLockBorder)) == 0);
assert(attribute_count <= ATTRIBUTES);
assert(vertex_attributes_stride >= attribute_count * sizeof(float) && vertex_attributes_stride <= 256);
assert(vertex_attributes_stride % sizeof(float) == 0);
assert(attribute_count <= kMaxAttributes);
meshopt_Allocator allocator;
@ -1467,7 +1493,7 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
// build position remap that maps each vertex to the one with identical position
unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count);
buildPositionRemap(remap, wedge, vertex_data, vertex_count, vertex_stride, allocator);
buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, allocator);
// classify vertices; vertex kind determines collapse rules, see kCanCollapse
unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count);
@ -1491,29 +1517,36 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
#endif
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
rescalePositions(vertex_positions, vertex_data, vertex_count, vertex_stride);
rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
#if ATTRIBUTES
for (size_t i = 0; i < vertex_count; ++i)
float* vertex_attributes = NULL;
if (attribute_count)
{
memset(vertex_positions[i].a, 0, sizeof(vertex_positions[i].a));
for (size_t k = 0; k < attribute_count; ++k)
{
float a = attributes[i * attribute_count + k];
vertex_positions[i].a[k] = a * attribute_weights[k];
}
vertex_attributes = allocator.allocate<float>(vertex_count * attribute_count);
rescaleAttributes(vertex_attributes, vertex_attributes_data, vertex_count, vertex_attributes_stride, attribute_weights, attribute_count);
}
#endif
Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric));
Quadric* vertex_no_attrib_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(vertex_no_attrib_quadrics, 0, vertex_count * sizeof(Quadric));
fillFaceQuadrics(vertex_quadrics, vertex_no_attrib_quadrics, indices, index_count, vertex_positions, remap);
fillEdgeQuadrics(vertex_quadrics, vertex_no_attrib_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
Quadric* attribute_quadrics = NULL;
QuadricGrad* attribute_gradients = NULL;
if (attribute_count)
{
attribute_quadrics = allocator.allocate<Quadric>(vertex_count);
memset(attribute_quadrics, 0, vertex_count * sizeof(Quadric));
attribute_gradients = allocator.allocate<QuadricGrad>(vertex_count * attribute_count);
memset(attribute_gradients, 0, vertex_count * attribute_count * sizeof(QuadricGrad));
}
fillFaceQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap);
fillEdgeQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
if (attribute_count)
fillAttributeQuadrics(attribute_quadrics, attribute_gradients, indices, index_count, vertex_positions, vertex_attributes, attribute_count, remap);
if (result != indices)
memcpy(result, indices, index_count * sizeof(unsigned int));
@ -1522,8 +1555,10 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
size_t pass_count = 0;
#endif
Collapse* edge_collapses = allocator.allocate<Collapse>(index_count);
unsigned int* collapse_order = allocator.allocate<unsigned int>(index_count);
size_t collapse_capacity = boundEdgeCollapses(adjacency, vertex_count, index_count, vertex_kind);
Collapse* edge_collapses = allocator.allocate<Collapse>(collapse_capacity);
unsigned int* collapse_order = allocator.allocate<unsigned int>(collapse_capacity);
unsigned int* collapse_remap = allocator.allocate<unsigned int>(vertex_count);
unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count);
@ -1538,17 +1573,14 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
// note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap);
size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop);
size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, collapse_capacity, result, result_count, remap, vertex_kind, loop);
assert(edge_collapse_count <= collapse_capacity);
// no edges can be collapsed any more due to topology restrictions
if (edge_collapse_count == 0)
break;
rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, vertex_no_attrib_quadrics, remap);
#if TRACE > 1
dumpEdgeCollapses(edge_collapses, edge_collapse_count, vertex_kind);
#endif
rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_attributes, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, remap);
sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
@ -1563,7 +1595,7 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
printf("pass %d: ", int(pass_count++));
#endif
size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, vertex_no_attrib_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
// no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
if (collapses == 0)
@ -1582,10 +1614,6 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
printf("result: %d triangles, error: %e; total %d passes\n", int(result_count), sqrtf(result_error), int(pass_count));
#endif
#if TRACE > 1
dumpLockedCollapses(result, result_count, vertex_kind);
#endif
#ifndef NDEBUG
if (meshopt_simplifyDebugKind)
memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count);
@ -1599,13 +1627,21 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
// result_error is quadratic; we need to remap it back to linear
if (out_result_error)
{
*out_result_error = sqrtf(result_error);
}
return result_count;
}
size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, NULL, 0, NULL, 0, target_index_count, target_error, options, out_result_error);
}
size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, vertex_attributes_data, vertex_attributes_stride, attribute_weights, attribute_count, target_index_count, target_error, options, out_result_error);
}
size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
{
using namespace meshopt;
@ -1738,12 +1774,15 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
return write;
}
size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count)
size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count)
{
using namespace meshopt;
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(vertex_colors_stride == 0 || (vertex_colors_stride >= 12 && vertex_colors_stride <= 256));
assert(vertex_colors_stride % sizeof(float) == 0);
assert(vertex_colors == NULL || vertex_colors_stride != 0);
assert(target_vertex_count <= vertex_count);
size_t target_cell_count = target_vertex_count;
@ -1827,24 +1866,30 @@ size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_pos
computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
// build a quadric for each target cell
Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
// accumulate points into a reservoir for each target cell
Reservoir* cell_reservoirs = allocator.allocate<Reservoir>(cell_count);
memset(cell_reservoirs, 0, cell_count * sizeof(Reservoir));
fillCellQuadrics(cell_quadrics, vertex_positions, vertex_count, vertex_cells);
fillCellReservoirs(cell_reservoirs, cell_count, vertex_positions, vertex_colors, vertex_colors_stride, vertex_count, vertex_cells);
// for each target cell, find the vertex with the minimal error
unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
float* cell_errors = allocator.allocate<float>(cell_count);
fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_reservoirs, vertex_positions, vertex_colors, vertex_colors_stride, color_weight * color_weight, vertex_count);
// copy results to the output
assert(cell_count <= target_vertex_count);
memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count);
#if TRACE
printf("result: %d cells\n", int(cell_count));
// compute error
float result_error = 0.f;
for (size_t i = 0; i < cell_count; ++i)
result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error;
printf("result: %d cells, %e error\n", int(cell_count), sqrtf(result_error));
#endif
return cell_count;

View File

@ -221,9 +221,9 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
triangle_scores[i] = vertex_scores[a] + vertex_scores[b] + vertex_scores[c];
}
unsigned int cache_holder[2 * (kCacheSizeMax + 3)];
unsigned int cache_holder[2 * (kCacheSizeMax + 4)];
unsigned int* cache = cache_holder;
unsigned int* cache_new = cache_holder + kCacheSizeMax + 3;
unsigned int* cache_new = cache_holder + kCacheSizeMax + 4;
size_t cache_count = 0;
unsigned int current_triangle = 0;
@ -260,10 +260,8 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
{
unsigned int index = cache[i];
if (index != a && index != b && index != c)
{
cache_new[cache_write++] = index;
}
cache_new[cache_write] = index;
cache_write += (index != a && index != b && index != c);
}
unsigned int* cache_temp = cache;
@ -305,6 +303,10 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
{
unsigned int index = cache[i];
// no need to update scores if we are never going to use this vertex
if (adjacency.counts[index] == 0)
continue;
int cache_position = i >= cache_size ? -1 : int(i);
// update vertex score
@ -325,11 +327,8 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
float tri_score = triangle_scores[tri] + score_diff;
assert(tri_score > 0);
if (best_score < tri_score)
{
best_triangle = tri;
best_score = tri_score;
}
best_triangle = best_score < tri_score ? tri : best_triangle;
best_score = best_score < tri_score ? tri_score : best_score;
triangle_scores[tri] = tri_score;
}

View File

@ -44,6 +44,10 @@
// When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD
#if defined(__wasm_simd128__)
#define SIMD_WASM
// Prevent compiling other variant when wasm simd compilation is active
#undef SIMD_NEON
#undef SIMD_SSE
#undef SIMD_AVX
#endif
#ifndef SIMD_TARGET
@ -83,19 +87,17 @@
#endif
#ifdef SIMD_WASM
#undef __DEPRECATED
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#include <wasm_simd128.h>
#endif
#ifdef SIMD_WASM
#define wasmx_splat_v32x4(v, i) wasm_v32x4_shuffle(v, v, i, i, i, i)
#define wasmx_unpacklo_v8x16(a, b) wasm_v8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
#define wasmx_unpackhi_v8x16(a, b) wasm_v8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)
#define wasmx_unpacklo_v16x8(a, b) wasm_v16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11)
#define wasmx_unpackhi_v16x8(a, b) wasm_v16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15)
#define wasmx_unpacklo_v64x2(a, b) wasm_v64x2_shuffle(a, b, 0, 2)
#define wasmx_unpackhi_v64x2(a, b) wasm_v64x2_shuffle(a, b, 1, 3)
#define wasmx_splat_v32x4(v, i) wasm_i32x4_shuffle(v, v, i, i, i, i)
#define wasmx_unpacklo_v8x16(a, b) wasm_i8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
#define wasmx_unpackhi_v8x16(a, b) wasm_i8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)
#define wasmx_unpacklo_v16x8(a, b) wasm_i16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11)
#define wasmx_unpackhi_v16x8(a, b) wasm_i16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15)
#define wasmx_unpacklo_v64x2(a, b) wasm_i64x2_shuffle(a, b, 0, 2)
#define wasmx_unpackhi_v64x2(a, b) wasm_i64x2_shuffle(a, b, 1, 3)
#endif
namespace meshopt
@ -218,7 +220,7 @@ static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end,
size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
if (size_t(data_end - data) < header_size)
return 0;
return NULL;
data += header_size;
@ -227,7 +229,7 @@ static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end,
for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
{
if (size_t(data_end - data) < kByteGroupDecodeLimit)
return 0;
return NULL;
int best_bits = 8;
size_t best_size = encodeBytesGroupMeasure(buffer + i, 8);
@ -286,7 +288,7 @@ static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data
data = encodeBytes(data, data_end, buffer, (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1));
if (!data)
return 0;
return NULL;
}
memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size);
@ -294,7 +296,7 @@ static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data
return data;
}
#if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX))
#if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX) && !defined(SIMD_WASM))
static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bitslog2)
{
#define READ() byte = *data++
@ -354,14 +356,14 @@ static const unsigned char* decodeBytes(const unsigned char* data, const unsigne
size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
if (size_t(data_end - data) < header_size)
return 0;
return NULL;
data += header_size;
for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
{
if (size_t(data_end - data) < kByteGroupDecodeLimit)
return 0;
return NULL;
size_t header_offset = i / kByteGroupSize;
@ -386,7 +388,7 @@ static const unsigned char* decodeVertexBlock(const unsigned char* data, const u
{
data = decodeBytes(data, data_end, buffer, vertex_count_aligned);
if (!data)
return 0;
return NULL;
size_t vertex_offset = k;
@ -757,7 +759,7 @@ static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]);
v128_t sm1off = wasm_v128_load(&kDecodeBytesGroupCount[mask0]);
sm1off = wasm_v8x16_shuffle(sm1off, sm1off, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
sm1off = wasm_i8x16_shuffle(sm1off, sm1off, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
v128_t sm1r = wasm_i8x16_add(sm1, sm1off);
@ -777,9 +779,6 @@ static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1
SIMD_TARGET
static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
{
unsigned char byte, enc, encv;
const unsigned char* data_var;
switch (bitslog2)
{
case 0:
@ -807,7 +806,7 @@ static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsi
v128_t shuf = decodeShuffleMask(mask0, mask1);
v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask);
v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask);
wasm_v128_store(buffer, result);
@ -829,7 +828,7 @@ static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsi
v128_t shuf = decodeShuffleMask(mask0, mask1);
v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask);
v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask);
wasm_v128_store(buffer, result);
@ -939,7 +938,7 @@ static const unsigned char* decodeBytesSimd(const unsigned char* data, const uns
size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
if (size_t(data_end - data) < header_size)
return 0;
return NULL;
data += header_size;
@ -961,7 +960,7 @@ static const unsigned char* decodeBytesSimd(const unsigned char* data, const uns
for (; i < buffer_size; i += kByteGroupSize)
{
if (size_t(data_end - data) < kByteGroupDecodeLimit)
return 0;
return NULL;
size_t header_offset = i / kByteGroupSize;
@ -989,7 +988,7 @@ static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, con
{
data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned);
if (!data)
return 0;
return NULL;
}
#if defined(SIMD_SSE) || defined(SIMD_AVX)
@ -1183,7 +1182,7 @@ int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t ve
assert(vertex_size > 0 && vertex_size <= 256);
assert(vertex_size % 4 == 0);
const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256]) = 0;
const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256]) = NULL;
#if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock;

View File

@ -30,6 +30,9 @@
// When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD
#if defined(__wasm_simd128__)
#define SIMD_WASM
// Prevent compiling other variant when wasm simd compilation is active
#undef SIMD_NEON
#undef SIMD_SSE
#endif
#endif // !MESHOPTIMIZER_NO_SIMD
@ -63,6 +66,10 @@
#define wasmx_unziphi_v32x4(a, b) wasm_v32x4_shuffle(a, b, 1, 3, 5, 7)
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
namespace meshopt
{
@ -185,9 +192,7 @@ inline uint64_t rotateleft64(uint64_t v, int x)
{
#if defined(_MSC_VER) && !defined(__clang__)
return _rotl64(v, x);
// Apple's Clang 8 is actually vanilla Clang 3.9, there we need to look for
// version 11 instead: https://en.wikipedia.org/wiki/Xcode#Toolchain_versions
#elif defined(__clang__) && ((!defined(__apple_build_version__) && __clang_major__ >= 8) || __clang_major__ >= 11)
#elif defined(__clang__) && __has_builtin(__builtin_rotateleft64)
return __builtin_rotateleft64(v, x);
#else
return (v << (x & 63)) | (v >> ((64 - x) & 63));
@ -791,6 +796,33 @@ static void decodeFilterExpSimd(unsigned int* data, size_t count)
}
#endif
// optimized variant of frexp
inline int optlog2(float v)
{
union
{
float f;
unsigned int ui;
} u;
u.f = v;
// +1 accounts for implicit 1. in mantissa; denormalized numbers will end up clamped to min_exp by calling code
return u.ui == 0 ? 0 : int((u.ui >> 23) & 0xff) - 127 + 1;
}
// optimized variant of ldexp
inline float optexp2(int e)
{
union
{
float f;
unsigned int ui;
} u;
u.ui = unsigned(e + 127) << 23;
return u.f;
}
} // namespace meshopt
void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride)
@ -918,39 +950,78 @@ void meshopt_encodeFilterQuat(void* destination_, size_t count, size_t stride, i
}
}
void meshopt_encodeFilterExp(void* destination_, size_t count, size_t stride, int bits, const float* data)
void meshopt_encodeFilterExp(void* destination_, size_t count, size_t stride, int bits, const float* data, enum meshopt_EncodeExpMode mode)
{
assert(stride > 0 && stride % 4 == 0);
using namespace meshopt;
assert(stride > 0 && stride % 4 == 0 && stride <= 256);
assert(bits >= 1 && bits <= 24);
unsigned int* destination = static_cast<unsigned int*>(destination_);
size_t stride_float = stride / sizeof(float);
int component_exp[64];
assert(stride_float <= sizeof(component_exp) / sizeof(int));
const int min_exp = -100;
if (mode == meshopt_EncodeExpSharedComponent)
{
for (size_t j = 0; j < stride_float; ++j)
component_exp[j] = min_exp;
for (size_t i = 0; i < count; ++i)
{
const float* v = &data[i * stride_float];
// use maximum exponent to encode values; this guarantees that mantissa is [-1, 1]
for (size_t j = 0; j < stride_float; ++j)
{
int e = optlog2(v[j]);
component_exp[j] = (component_exp[j] < e) ? e : component_exp[j];
}
}
}
for (size_t i = 0; i < count; ++i)
{
const float* v = &data[i * stride_float];
unsigned int* d = &destination[i * stride_float];
// use maximum exponent to encode values; this guarantees that mantissa is [-1, 1]
int exp = -100;
int vector_exp = min_exp;
for (size_t j = 0; j < stride_float; ++j)
if (mode == meshopt_EncodeExpSharedVector)
{
int e;
frexp(v[j], &e);
// use maximum exponent to encode values; this guarantees that mantissa is [-1, 1]
for (size_t j = 0; j < stride_float; ++j)
{
int e = optlog2(v[j]);
exp = (exp < e) ? e : exp;
vector_exp = (vector_exp < e) ? e : vector_exp;
}
}
else if (mode == meshopt_EncodeExpSeparate)
{
for (size_t j = 0; j < stride_float; ++j)
{
int e = optlog2(v[j]);
component_exp[j] = (min_exp < e) ? e : min_exp;
}
}
// note that we additionally scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude)
exp -= (bits - 1);
// compute renormalized rounded mantissa for each component
int mmask = (1 << 24) - 1;
for (size_t j = 0; j < stride_float; ++j)
{
int m = int(ldexp(v[j], -exp) + (v[j] >= 0 ? 0.5f : -0.5f));
int exp = (mode == meshopt_EncodeExpSharedVector) ? vector_exp : component_exp[j];
// note that we additionally scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude)
exp -= (bits - 1);
// compute renormalized rounded mantissa for each component
int mmask = (1 << 24) - 1;
int m = int(v[j] * optexp2(-exp) + (v[j] >= 0 ? 0.5f : -0.5f));
d[j] = (m & mmask) | (unsigned(exp) << 24);
}