jpgd: Upgrade to upstream 2.00, fuzzed with zzuf and afl

(cherry picked from commit c842ddcf76)
This commit is contained in:
Rémi Verschelde 2020-04-21 11:30:48 +02:00
parent 4b33388e5c
commit c7ad8f539b
4 changed files with 3898 additions and 3324 deletions

View File

@ -144,12 +144,12 @@ the GLES version Godot targets.
## jpeg-compressor
- Upstream: https://github.com/richgel999/jpeg-compressor
- Version: 1.04
- Version: 2.00 (1eb17d558b9d3b7442d256642a5745974e9eeb1e, 2020)
- License: Public domain
Files extracted from upstream source:
- `jpgd.{c,h}`
- `jpgd*.{c,h}`
## libogg

File diff suppressed because it is too large Load Diff

View File

@ -1,318 +1,350 @@
// jpgd.h - C++ class for JPEG decompression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// Richard Geldreich <richgel99@gmail.com>
// See jpgd.cpp for license (Public Domain or Apache 2.0).
#ifndef JPEG_DECODER_H
#define JPEG_DECODER_H
#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
#include <assert.h>
#include <stdint.h>
#ifdef _MSC_VER
#define JPGD_NORETURN __declspec(noreturn)
#define JPGD_NORETURN __declspec(noreturn)
#elif defined(__GNUC__)
#define JPGD_NORETURN __attribute__ ((noreturn))
#define JPGD_NORETURN __attribute__ ((noreturn))
#else
#define JPGD_NORETURN
#define JPGD_NORETURN
#endif
#define JPGD_HUFF_TREE_MAX_LENGTH 512
#define JPGD_HUFF_CODE_SIZE_MAX_LENGTH 256
namespace jpgd
{
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef unsigned int uint;
typedef signed int int32;
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef unsigned int uint;
typedef signed int int32;
// Loads a JPEG image from a memory buffer or a file.
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
// On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
// Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
// Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps);
unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps);
// Loads a JPEG image from a memory buffer or a file.
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
// On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
// Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
// Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
unsigned char* decompress_jpeg_image_from_memory(const unsigned char* pSrc_data, int src_data_size, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags = 0);
unsigned char* decompress_jpeg_image_from_file(const char* pSrc_filename, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags = 0);
// Success/failure error codes.
enum jpgd_status
{
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM
};
// Success/failure error codes.
enum jpgd_status
{
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER,
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM, JPGD_TOO_MANY_SCANS
};
// Input stream interface.
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
class jpeg_decoder_stream
{
public:
jpeg_decoder_stream() { }
virtual ~jpeg_decoder_stream() { }
// Input stream interface.
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
class jpeg_decoder_stream
{
public:
jpeg_decoder_stream() { }
virtual ~jpeg_decoder_stream() { }
// The read() method is called when the internal input buffer is empty.
// Parameters:
// pBuf - input buffer
// max_bytes_to_read - maximum bytes that can be written to pBuf
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
// Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
};
// The read() method is called when the internal input buffer is empty.
// Parameters:
// pBuf - input buffer
// max_bytes_to_read - maximum bytes that can be written to pBuf
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
// Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
virtual int read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag) = 0;
};
// stdio FILE stream class.
class jpeg_decoder_file_stream : public jpeg_decoder_stream
{
jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
jpeg_decoder_file_stream &operator =(const jpeg_decoder_file_stream &);
// stdio FILE stream class.
class jpeg_decoder_file_stream : public jpeg_decoder_stream
{
jpeg_decoder_file_stream(const jpeg_decoder_file_stream&);
jpeg_decoder_file_stream& operator =(const jpeg_decoder_file_stream&);
FILE *m_pFile;
bool m_eof_flag, m_error_flag;
FILE* m_pFile;
bool m_eof_flag, m_error_flag;
public:
jpeg_decoder_file_stream();
virtual ~jpeg_decoder_file_stream();
public:
jpeg_decoder_file_stream();
virtual ~jpeg_decoder_file_stream();
bool open(const char *Pfilename);
void close();
bool open(const char* Pfilename);
void close();
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
virtual int read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag);
};
// Memory stream class.
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
{
const uint8 *m_pSrc_data;
uint m_ofs, m_size;
// Memory stream class.
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
{
const uint8* m_pSrc_data;
uint m_ofs, m_size;
public:
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
jpeg_decoder_mem_stream(const uint8 *pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
public:
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
jpeg_decoder_mem_stream(const uint8* pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
virtual ~jpeg_decoder_mem_stream() { }
virtual ~jpeg_decoder_mem_stream() { }
bool open(const uint8 *pSrc_data, uint size);
void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
bool open(const uint8* pSrc_data, uint size);
void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};
virtual int read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag);
};
// Loads JPEG file from a jpeg_decoder_stream.
unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps);
// Loads JPEG file from a jpeg_decoder_stream.
unsigned char* decompress_jpeg_image_from_stream(jpeg_decoder_stream* pStream, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags = 0);
enum
{
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384
};
enum
{
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 16384, JPGD_MAX_HEIGHT = 32768, JPGD_MAX_WIDTH = 32768
};
typedef int16 jpgd_quant_t;
typedef int16 jpgd_block_t;
typedef int16 jpgd_quant_t;
typedef int16 jpgd_block_coeff_t;
class jpeg_decoder
{
public:
// Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
jpeg_decoder(jpeg_decoder_stream *pStream);
class jpeg_decoder
{
public:
enum
{
cFlagBoxChromaFiltering = 1,
cFlagDisableSIMD = 2
};
~jpeg_decoder();
// Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
jpeg_decoder(jpeg_decoder_stream* pStream, uint32_t flags = 0);
// Call this method after constructing the object to begin decompression.
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
int begin_decoding();
~jpeg_decoder();
// Returns the next scan line.
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
// Returns JPGD_SUCCESS if a scan line has been returned.
// Returns JPGD_DONE if all scan lines have been returned.
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
int decode(const void** pScan_line, uint* pScan_line_len);
// Call this method after constructing the object to begin decompression.
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
inline jpgd_status get_error_code() const { return m_error_code; }
int begin_decoding();
inline int get_width() const { return m_image_x_size; }
inline int get_height() const { return m_image_y_size; }
// Returns the next scan line.
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
// Returns JPGD_SUCCESS if a scan line has been returned.
// Returns JPGD_DONE if all scan lines have been returned.
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
int decode(const void** pScan_line, uint* pScan_line_len);
inline int get_num_components() const { return m_comps_in_frame; }
inline jpgd_status get_error_code() const { return m_error_code; }
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
inline int get_width() const { return m_image_x_size; }
inline int get_height() const { return m_image_y_size; }
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
inline int get_total_bytes_read() const { return m_total_bytes_read; }
inline int get_num_components() const { return m_comps_in_frame; }
private:
jpeg_decoder(const jpeg_decoder &);
jpeg_decoder &operator =(const jpeg_decoder &);
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
inline int get_total_bytes_read() const { return m_total_bytes_read; }
struct huff_tables
{
bool ac_table;
uint look_up[256];
uint look_up2[256];
uint8 code_size[256];
uint tree[512];
};
private:
jpeg_decoder(const jpeg_decoder&);
jpeg_decoder& operator =(const jpeg_decoder&);
struct coeff_buf
{
uint8 *pData;
int block_num_x, block_num_y;
int block_len_x, block_len_y;
int block_size;
};
typedef void (*pDecode_block_func)(jpeg_decoder*, int, int, int);
struct mem_block
{
mem_block *m_pNext;
size_t m_used_count;
size_t m_size;
char m_data[1];
};
struct huff_tables
{
bool ac_table;
uint look_up[256];
uint look_up2[256];
uint8 code_size[JPGD_HUFF_CODE_SIZE_MAX_LENGTH];
uint tree[JPGD_HUFF_TREE_MAX_LENGTH];
};
jmp_buf m_jmp_state;
mem_block *m_pMem_blocks;
int m_image_x_size;
int m_image_y_size;
jpeg_decoder_stream *m_pStream;
int m_progressive_flag;
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
int m_comps_in_frame; // # of components in frame
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
int m_comps_in_scan; // # of components in scan
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
int m_spectral_start; // spectral selection start
int m_spectral_end; // spectral selection end
int m_successive_low; // successive approximation low
int m_successive_high; // successive approximation high
int m_max_mcu_x_size; // MCU's max. X size in pixels
int m_max_mcu_y_size; // MCU's max. Y size in pixels
int m_blocks_per_mcu;
int m_max_blocks_per_row;
int m_mcus_per_row, m_mcus_per_col;
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
int m_total_lines_left; // total # lines left in image
int m_mcu_lines_left; // total # lines left in this MCU
int m_real_dest_bytes_per_scan_line;
int m_dest_bytes_per_scan_line; // rounded up
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
int m_eob_run;
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
uint8* m_pIn_buf_ofs;
int m_in_buf_left;
int m_tem_flag;
bool m_eof_flag;
uint8 m_in_buf_pad_start[128];
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
uint8 m_in_buf_pad_end[128];
int m_bits_left;
uint m_bit_buf;
int m_restart_interval;
int m_restarts_left;
int m_next_restart_num;
int m_max_mcus_per_row;
int m_max_blocks_per_mcu;
int m_expanded_blocks_per_mcu;
int m_expanded_blocks_per_row;
int m_expanded_blocks_per_component;
bool m_freq_domain_chroma_upsample;
int m_max_mcus_per_col;
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
jpgd_block_t* m_pMCU_coefficients;
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
uint8* m_pSample_buf;
int m_crr[256];
int m_cbb[256];
int m_crg[256];
int m_cbg[256];
uint8* m_pScan_line_0;
uint8* m_pScan_line_1;
jpgd_status m_error_code;
bool m_ready_flag;
int m_total_bytes_read;
struct coeff_buf
{
uint8* pData;
int block_num_x, block_num_y;
int block_len_x, block_len_y;
int block_size;
};
void free_all_blocks();
JPGD_NORETURN void stop_decoding(jpgd_status status);
void *alloc(size_t n, bool zero = false);
void word_clear(void *p, uint16 c, uint n);
void prep_in_buffer();
void read_dht_marker();
void read_dqt_marker();
void read_sof_marker();
void skip_variable_marker();
void read_dri_marker();
void read_sos_marker();
int next_marker();
int process_markers();
void locate_soi_marker();
void locate_sof_marker();
int locate_sos_marker();
void init(jpeg_decoder_stream * pStream);
void create_look_ups();
void fix_in_buffer();
void transform_mcu(int mcu_row);
void transform_mcu_expand(int mcu_row);
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
inline jpgd_block_t *coeff_buf_getp(coeff_buf *cb, int block_x, int block_y);
void load_next_row();
void decode_next_row();
void make_huff_table(int index, huff_tables *pH);
void check_quant_tables();
void check_huff_tables();
void calc_mcu_block_order();
int init_scan();
void init_frame();
void process_restart();
void decode_scan(pDecode_block_func decode_block_func);
void init_progressive();
void init_sequential();
void decode_start();
void decode_init(jpeg_decoder_stream * pStream);
void H2V2Convert();
void H2V1Convert();
void H1V2Convert();
void H1V1Convert();
void gray_convert();
void expanded_convert();
void find_eoi();
inline uint get_char();
inline uint get_char(bool *pPadding_flag);
inline void stuff_char(uint8 q);
inline uint8 get_octet();
inline uint get_bits(int num_bits);
inline uint get_bits_no_markers(int numbits);
inline int huff_decode(huff_tables *pH);
inline int huff_decode(huff_tables *pH, int& extrabits);
static inline uint8 clamp(int i);
static void decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
static void decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
};
struct mem_block
{
mem_block* m_pNext;
size_t m_used_count;
size_t m_size;
char m_data[1];
};
jmp_buf m_jmp_state;
uint32_t m_flags;
mem_block* m_pMem_blocks;
int m_image_x_size;
int m_image_y_size;
jpeg_decoder_stream* m_pStream;
int m_progressive_flag;
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
int m_comps_in_frame; // # of components in frame
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
int m_comps_in_scan; // # of components in scan
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
int m_spectral_start; // spectral selection start
int m_spectral_end; // spectral selection end
int m_successive_low; // successive approximation low
int m_successive_high; // successive approximation high
int m_max_mcu_x_size; // MCU's max. X size in pixels
int m_max_mcu_y_size; // MCU's max. Y size in pixels
int m_blocks_per_mcu;
int m_max_blocks_per_row;
int m_mcus_per_row, m_mcus_per_col;
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
int m_total_lines_left; // total # lines left in image
int m_mcu_lines_left; // total # lines left in this MCU
int m_num_buffered_scanlines;
int m_real_dest_bytes_per_scan_line;
int m_dest_bytes_per_scan_line; // rounded up
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
int m_eob_run;
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
uint8* m_pIn_buf_ofs;
int m_in_buf_left;
int m_tem_flag;
uint8 m_in_buf_pad_start[64];
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
uint8 m_in_buf_pad_end[64];
int m_bits_left;
uint m_bit_buf;
int m_restart_interval;
int m_restarts_left;
int m_next_restart_num;
int m_max_mcus_per_row;
int m_max_blocks_per_mcu;
int m_max_mcus_per_col;
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
jpgd_block_coeff_t* m_pMCU_coefficients;
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
uint8* m_pSample_buf;
uint8* m_pSample_buf_prev;
int m_crr[256];
int m_cbb[256];
int m_crg[256];
int m_cbg[256];
uint8* m_pScan_line_0;
uint8* m_pScan_line_1;
jpgd_status m_error_code;
int m_total_bytes_read;
bool m_ready_flag;
bool m_eof_flag;
bool m_sample_buf_prev_valid;
bool m_has_sse2;
inline int check_sample_buf_ofs(int ofs) const { assert(ofs >= 0); assert(ofs < m_max_blocks_per_row * 64); return ofs; }
void free_all_blocks();
JPGD_NORETURN void stop_decoding(jpgd_status status);
void* alloc(size_t n, bool zero = false);
void* alloc_aligned(size_t nSize, uint32_t align = 16, bool zero = false);
void word_clear(void* p, uint16 c, uint n);
void prep_in_buffer();
void read_dht_marker();
void read_dqt_marker();
void read_sof_marker();
void skip_variable_marker();
void read_dri_marker();
void read_sos_marker();
int next_marker();
int process_markers();
void locate_soi_marker();
void locate_sof_marker();
int locate_sos_marker();
void init(jpeg_decoder_stream* pStream, uint32_t flags);
void create_look_ups();
void fix_in_buffer();
void transform_mcu(int mcu_row);
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
inline jpgd_block_coeff_t* coeff_buf_getp(coeff_buf* cb, int block_x, int block_y);
void load_next_row();
void decode_next_row();
void make_huff_table(int index, huff_tables* pH);
void check_quant_tables();
void check_huff_tables();
bool calc_mcu_block_order();
int init_scan();
void init_frame();
void process_restart();
void decode_scan(pDecode_block_func decode_block_func);
void init_progressive();
void init_sequential();
void decode_start();
void decode_init(jpeg_decoder_stream* pStream, uint32_t flags);
void H2V2Convert();
uint32_t H2V2ConvertFiltered();
void H2V1Convert();
void H2V1ConvertFiltered();
void H1V2Convert();
void H1V2ConvertFiltered();
void H1V1Convert();
void gray_convert();
void find_eoi();
inline uint get_char();
inline uint get_char(bool* pPadding_flag);
inline void stuff_char(uint8 q);
inline uint8 get_octet();
inline uint get_bits(int num_bits);
inline uint get_bits_no_markers(int numbits);
inline int huff_decode(huff_tables* pH);
inline int huff_decode(huff_tables* pH, int& extrabits);
// Clamps a value between 0-255.
static inline uint8 clamp(int i)
{
if (static_cast<uint>(i) > 255)
i = (((~i) >> 31) & 0xFF);
return static_cast<uint8>(i);
}
int decode_next_mcu_row();
static void decode_block_dc_first(jpeg_decoder* pD, int component_id, int block_x, int block_y);
static void decode_block_dc_refine(jpeg_decoder* pD, int component_id, int block_x, int block_y);
static void decode_block_ac_first(jpeg_decoder* pD, int component_id, int block_x, int block_y);
static void decode_block_ac_refine(jpeg_decoder* pD, int component_id, int block_x, int block_y);
};
} // namespace jpgd

462
thirdparty/jpeg-compressor/jpgd_idct.h vendored Normal file
View File

@ -0,0 +1,462 @@
// Copyright 2009 Intel Corporation
// All Rights Reserved
//
// Permission is granted to use, copy, distribute and prepare derivative works of this
// software for any purpose and without fee, provided, that the above copyright notice
// and this statement appear in all copies. Intel makes no representations about the
// suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS IS."
// INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY,
// INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE,
// INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not
// assume any responsibility for any errors which may appear in this software nor any
// responsibility to update it.
//
// From:
// https://software.intel.com/sites/default/files/m/d/4/1/d/8/UsingIntelAVXToImplementIDCT-r1_5.pdf
// https://software.intel.com/file/29048
//
// Requires SSE
//
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <immintrin.h>
#ifdef _MSC_VER
#define JPGD_SIMD_ALIGN(type, name) __declspec(align(16)) type name
#else
#define JPGD_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif
#define BITS_INV_ACC 4
#define SHIFT_INV_ROW 16 - BITS_INV_ACC
#define SHIFT_INV_COL 1 + BITS_INV_ACC
const short IRND_INV_ROW = 1024 * (6 - BITS_INV_ACC); //1 << (SHIFT_INV_ROW-1)
const short IRND_INV_COL = 16 * (BITS_INV_ACC - 3); // 1 << (SHIFT_INV_COL-1)
const short IRND_INV_CORR = IRND_INV_COL - 1; // correction -1.0 and round
JPGD_SIMD_ALIGN(short, shortM128_one_corr[8]) = {1, 1, 1, 1, 1, 1, 1, 1};
JPGD_SIMD_ALIGN(short, shortM128_round_inv_row[8]) = {IRND_INV_ROW, 0, IRND_INV_ROW, 0, IRND_INV_ROW, 0, IRND_INV_ROW, 0};
JPGD_SIMD_ALIGN(short, shortM128_round_inv_col[8]) = {IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL};
JPGD_SIMD_ALIGN(short, shortM128_round_inv_corr[8])= {IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR};
JPGD_SIMD_ALIGN(short, shortM128_tg_1_16[8]) = {13036, 13036, 13036, 13036, 13036, 13036, 13036, 13036}; // tg * (2<<16) + 0.5
JPGD_SIMD_ALIGN(short, shortM128_tg_2_16[8]) = {27146, 27146, 27146, 27146, 27146, 27146, 27146, 27146}; // tg * (2<<16) + 0.5
JPGD_SIMD_ALIGN(short, shortM128_tg_3_16[8]) = {-21746, -21746, -21746, -21746, -21746, -21746, -21746, -21746}; // tg * (2<<16) + 0.5
JPGD_SIMD_ALIGN(short, shortM128_cos_4_16[8]) = {-19195, -19195, -19195, -19195, -19195, -19195, -19195, -19195};// cos * (2<<16) + 0.5
//-----------------------------------------------------------------------------
// Table for rows 0,4 - constants are multiplied on cos_4_16
// w15 w14 w11 w10 w07 w06 w03 w02
// w29 w28 w25 w24 w21 w20 w17 w16
// w31 w30 w27 w26 w23 w22 w19 w18
//movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_04[]) = {
16384, 21407, 16384, 8867,
16384, -8867, 16384, -21407, // w13 w12 w09 w08
16384, 8867, -16384, -21407, // w07 w06 w03 w02
-16384, 21407, 16384, -8867, // w15 w14 w11 w10
22725, 19266, 19266, -4520, // w21 w20 w17 w16
12873, -22725, 4520, -12873, // w29 w28 w25 w24
12873, 4520, -22725, -12873, // w23 w22 w19 w18
4520, 19266, 19266, -22725}; // w31 w30 w27 w26
// Table for rows 1,7 - constants are multiplied on cos_1_16
//movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_17[]) = {
22725, 29692, 22725, 12299,
22725, -12299, 22725, -29692, // w13 w12 w09 w08
22725, 12299, -22725, -29692, // w07 w06 w03 w02
-22725, 29692, 22725, -12299, // w15 w14 w11 w10
31521, 26722, 26722, -6270, // w21 w20 w17 w16
17855, -31521, 6270, -17855, // w29 w28 w25 w24
17855, 6270, -31521, -17855, // w23 w22 w19 w18
6270, 26722, 26722, -31521}; // w31 w30 w27 w26
// Table for rows 2,6 - constants are multiplied on cos_2_16
//movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_26[]) = {
21407, 27969, 21407, 11585,
21407, -11585, 21407, -27969, // w13 w12 w09 w08
21407, 11585, -21407, -27969, // w07 w06 w03 w02
-21407, 27969, 21407, -11585, // w15 w14 w11 w10
29692, 25172, 25172, -5906, // w21 w20 w17 w16
16819, -29692, 5906, -16819, // w29 w28 w25 w24
16819, 5906, -29692, -16819, // w23 w22 w19 w18
5906, 25172, 25172, -29692}; // w31 w30 w27 w26
// Table for rows 3,5 - constants are multiplied on cos_3_16
//movq -> w05 w04 w01 w00
JPGD_SIMD_ALIGN(short, shortM128_tab_i_35[]) = {
19266, 25172, 19266, 10426,
19266, -10426, 19266, -25172, // w13 w12 w09 w08
19266, 10426, -19266, -25172, // w07 w06 w03 w02
-19266, 25172, 19266, -10426, // w15 w14 w11 w10
26722, 22654, 22654, -5315, // w21 w20 w17 w16
15137, -26722, 5315, -15137, // w29 w28 w25 w24
15137, 5315, -26722, -15137, // w23 w22 w19 w18
5315, 22654, 22654, -26722}; // w31 w30 w27 w26
JPGD_SIMD_ALIGN(short, shortM128_128[8]) = { 128, 128, 128, 128, 128, 128, 128, 128 };
void idctSSEShortU8(const short *pInput, uint8_t * pOutputUB)
{
__m128i r_xmm0, r_xmm4;
__m128i r_xmm1, r_xmm2, r_xmm3, r_xmm5, r_xmm6, r_xmm7;
__m128i row0, row1, row2, row3, row4, row5, row6, row7;
short * pTab_i_04 = shortM128_tab_i_04;
short * pTab_i_26 = shortM128_tab_i_26;
//Get pointers for this input and output
pTab_i_04 = shortM128_tab_i_04;
pTab_i_26 = shortM128_tab_i_26;
//Row 1 and Row 3
r_xmm0 = _mm_load_si128((__m128i *) pInput);
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[2*8]));
// *** Work on the data in xmm0
//low shuffle mask = 0xd8 = 11 01 10 00
//get short 2 and short 0 into ls 32-bits
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
// copy short 2 and short 0 to all locations
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
// add to those copies
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
// shuffle mask = 0x55 = 01 01 01 01
// copy short 3 and short 1 to all locations
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
// high shuffle mask = 0xd8 = 11 01 10 00
// get short 6 and short 4 into bit positions 64-95
// get short 7 and short 5 into bit positions 96-127
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
// add to short 3 and short 1
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
// shuffle mask = 0xaa = 10 10 10 10
// copy short 6 and short 4 to all locations
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
// shuffle mask = 0xaa = 11 11 11 11
// copy short 7 and short 5 to all locations
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
// add to short 6 and short 4
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
// *** Work on the data in xmm4
// high shuffle mask = 0xd8 11 01 10 00
// get short 6 and short 4 into bit positions 64-95
// get short 7 and short 5 into bit positions 96-127
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
// (xmm0 short 2 and short 0 plus pSi) + some constants
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &shortM128_tab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &shortM128_tab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &shortM128_tab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &shortM128_tab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row0 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row2 = _mm_packs_epi32(r_xmm4, r_xmm6);
//Row 5 and row 7
r_xmm0 = _mm_load_si128((__m128i *) (&pInput[4*8]));
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[6*8]));
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &shortM128_tab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &shortM128_tab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &shortM128_tab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &shortM128_tab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row4 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row6 = _mm_packs_epi32(r_xmm4, r_xmm6);
//Row 4 and row 2
pTab_i_04 = shortM128_tab_i_35;
pTab_i_26 = shortM128_tab_i_17;
r_xmm0 = _mm_load_si128((__m128i *) (&pInput[3*8]));
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[1*8]));
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &pTab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &pTab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &pTab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &pTab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row3 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row1 = _mm_packs_epi32(r_xmm4, r_xmm6);
//Row 6 and row 8
r_xmm0 = _mm_load_si128((__m128i *) (&pInput[5*8]));
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[7*8]));
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &pTab_i_26[0]));
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
r_xmm2 = r_xmm1;
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &pTab_i_26[8]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &pTab_i_26[16]));
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &pTab_i_26[24]));
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
r_xmm6 = r_xmm5;
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
row5 = _mm_packs_epi32(r_xmm0, r_xmm2);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
row7 = _mm_packs_epi32(r_xmm4, r_xmm6);
r_xmm1 = _mm_load_si128((__m128i *) shortM128_tg_3_16);
r_xmm2 = row5;
r_xmm3 = row3;
r_xmm0 = _mm_mulhi_epi16(row5, r_xmm1);
r_xmm1 = _mm_mulhi_epi16(r_xmm1, r_xmm3);
r_xmm5 = _mm_load_si128((__m128i *) shortM128_tg_1_16);
r_xmm6 = row7;
r_xmm4 = _mm_mulhi_epi16(row7, r_xmm5);
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm2);
r_xmm5 = _mm_mulhi_epi16(r_xmm5, row1);
r_xmm1 = _mm_adds_epi16(r_xmm1, r_xmm3);
r_xmm7 = row6;
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm3);
r_xmm3 = _mm_load_si128((__m128i *) shortM128_tg_2_16);
r_xmm2 = _mm_subs_epi16(r_xmm2, r_xmm1);
r_xmm7 = _mm_mulhi_epi16(r_xmm7, r_xmm3);
r_xmm1 = r_xmm0;
r_xmm3 = _mm_mulhi_epi16(r_xmm3, row2);
r_xmm5 = _mm_subs_epi16(r_xmm5, r_xmm6);
r_xmm4 = _mm_adds_epi16(r_xmm4, row1);
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm4);
r_xmm0 = _mm_adds_epi16(r_xmm0, *((__m128i *) shortM128_one_corr));
r_xmm4 = _mm_subs_epi16(r_xmm4, r_xmm1);
r_xmm6 = r_xmm5;
r_xmm5 = _mm_subs_epi16(r_xmm5, r_xmm2);
r_xmm5 = _mm_adds_epi16(r_xmm5, *((__m128i *) shortM128_one_corr));
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm2);
//Intermediate results, needed later
__m128i temp3, temp7;
temp7 = r_xmm0;
r_xmm1 = r_xmm4;
r_xmm0 = _mm_load_si128((__m128i *) shortM128_cos_4_16);
r_xmm4 = _mm_adds_epi16(r_xmm4, r_xmm5);
r_xmm2 = _mm_load_si128((__m128i *) shortM128_cos_4_16);
r_xmm2 = _mm_mulhi_epi16(r_xmm2, r_xmm4);
//Intermediate results, needed later
temp3 = r_xmm6;
r_xmm1 = _mm_subs_epi16(r_xmm1, r_xmm5);
r_xmm7 = _mm_adds_epi16(r_xmm7, row2);
r_xmm3 = _mm_subs_epi16(r_xmm3, row6);
r_xmm6 = row0;
r_xmm0 = _mm_mulhi_epi16(r_xmm0, r_xmm1);
r_xmm5 = row4;
r_xmm5 = _mm_adds_epi16(r_xmm5, r_xmm6);
r_xmm6 = _mm_subs_epi16(r_xmm6, row4);
r_xmm4 = _mm_adds_epi16(r_xmm4, r_xmm2);
r_xmm4 = _mm_or_si128(r_xmm4, *((__m128i *) shortM128_one_corr));
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm1);
r_xmm0 = _mm_or_si128(r_xmm0, *((__m128i *) shortM128_one_corr));
r_xmm2 = r_xmm5;
r_xmm5 = _mm_adds_epi16(r_xmm5, r_xmm7);
r_xmm1 = r_xmm6;
r_xmm5 = _mm_adds_epi16(r_xmm5, *((__m128i *) shortM128_round_inv_col));
r_xmm2 = _mm_subs_epi16(r_xmm2, r_xmm7);
r_xmm7 = temp7;
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm3);
r_xmm6 = _mm_adds_epi16(r_xmm6, *((__m128i *) shortM128_round_inv_col));
r_xmm7 = _mm_adds_epi16(r_xmm7, r_xmm5);
r_xmm7 = _mm_srai_epi16(r_xmm7, SHIFT_INV_COL);
r_xmm1 = _mm_subs_epi16(r_xmm1, r_xmm3);
r_xmm1 = _mm_adds_epi16(r_xmm1, *((__m128i *) shortM128_round_inv_corr));
r_xmm3 = r_xmm6;
r_xmm2 = _mm_adds_epi16(r_xmm2, *((__m128i *) shortM128_round_inv_corr));
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm4);
//Store results for row 0
//_mm_store_si128((__m128i *) pOutput, r_xmm7);
__m128i r0 = r_xmm7;
r_xmm6 = _mm_srai_epi16(r_xmm6, SHIFT_INV_COL);
r_xmm7 = r_xmm1;
r_xmm1 = _mm_adds_epi16(r_xmm1, r_xmm0);
//Store results for row 1
//_mm_store_si128((__m128i *) (&pOutput[1*8]), r_xmm6);
__m128i r1 = r_xmm6;
r_xmm1 = _mm_srai_epi16(r_xmm1, SHIFT_INV_COL);
r_xmm6 = temp3;
r_xmm7 = _mm_subs_epi16(r_xmm7, r_xmm0);
r_xmm7 = _mm_srai_epi16(r_xmm7, SHIFT_INV_COL);
//Store results for row 2
//_mm_store_si128((__m128i *) (&pOutput[2*8]), r_xmm1);
__m128i r2 = r_xmm1;
r_xmm5 = _mm_subs_epi16(r_xmm5, temp7);
r_xmm5 = _mm_srai_epi16(r_xmm5, SHIFT_INV_COL);
//Store results for row 7
//_mm_store_si128((__m128i *) (&pOutput[7*8]), r_xmm5);
__m128i r7 = r_xmm5;
r_xmm3 = _mm_subs_epi16(r_xmm3, r_xmm4);
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm2);
r_xmm2 = _mm_subs_epi16(r_xmm2, temp3);
r_xmm6 = _mm_srai_epi16(r_xmm6, SHIFT_INV_COL);
r_xmm2 = _mm_srai_epi16(r_xmm2, SHIFT_INV_COL);
//Store results for row 3
//_mm_store_si128((__m128i *) (&pOutput[3*8]), r_xmm6);
__m128i r3 = r_xmm6;
r_xmm3 = _mm_srai_epi16(r_xmm3, SHIFT_INV_COL);
//Store results for rows 4, 5, and 6
//_mm_store_si128((__m128i *) (&pOutput[4*8]), r_xmm2);
//_mm_store_si128((__m128i *) (&pOutput[5*8]), r_xmm7);
//_mm_store_si128((__m128i *) (&pOutput[6*8]), r_xmm3);
__m128i r4 = r_xmm2;
__m128i r5 = r_xmm7;
__m128i r6 = r_xmm3;
r0 = _mm_add_epi16(*(const __m128i *)shortM128_128, r0);
r1 = _mm_add_epi16(*(const __m128i *)shortM128_128, r1);
r2 = _mm_add_epi16(*(const __m128i *)shortM128_128, r2);
r3 = _mm_add_epi16(*(const __m128i *)shortM128_128, r3);
r4 = _mm_add_epi16(*(const __m128i *)shortM128_128, r4);
r5 = _mm_add_epi16(*(const __m128i *)shortM128_128, r5);
r6 = _mm_add_epi16(*(const __m128i *)shortM128_128, r6);
r7 = _mm_add_epi16(*(const __m128i *)shortM128_128, r7);
((__m128i *)pOutputUB)[0] = _mm_packus_epi16(r0, r1);
((__m128i *)pOutputUB)[1] = _mm_packus_epi16(r2, r3);
((__m128i *)pOutputUB)[2] = _mm_packus_epi16(r4, r5);
((__m128i *)pOutputUB)[3] = _mm_packus_epi16(r6, r7);
}