diff --git a/main/input_default.cpp b/main/input_default.cpp index 0af8fc9589a..e9d1cf53a8d 100644 --- a/main/input_default.cpp +++ b/main/input_default.cpp @@ -440,12 +440,27 @@ void InputDefault::warp_mouse_pos(const Vector2 &p_to) { Point2i InputDefault::warp_mouse_motion(const InputEventMouseMotion &p_motion, const Rect2 &p_rect) { - const Point2i rel_warped(Math::fmod(p_motion.relative_x, p_rect.size.x), Math::fmod(p_motion.relative_y, p_rect.size.y)); + // The relative distance reported for the next event after a warp is in the boundaries of the + // size of the rect on that axis, but it may be greater, in which case there's not problem as fmod() + // will warp it, but if the pointer has moved in the opposite direction between the pointer relocation + // and the subsequent event, the reported relative distance will be less than the size of the rect + // and thus fmod() will be disabled for handling the situation. + // And due to this mouse warping mechanism being stateless, we need to apply some heuristics to + // detect the warp: if the relative distance is greater than the half of the size of the relevant rect + // (checked per each axis), it will be considered as the consequence of a former pointer warp. + + const Point2i rel_sgn(p_motion.relative_x >= 0.0f ? 1 : -1, p_motion.relative_y >= 0.0 ? 1 : -1); + const Size2i warp_margin = p_rect.size * 0.5f; + const Point2i rel_warped( + Math::fmod(p_motion.relative_x + rel_sgn.x * warp_margin.x, p_rect.size.x) - rel_sgn.x * warp_margin.x, + Math::fmod(p_motion.relative_y + rel_sgn.y * warp_margin.y, p_rect.size.y) - rel_sgn.y * warp_margin.y); + const Point2i pos_local = Point2i(p_motion.global_x, p_motion.global_y) - p_rect.pos; const Point2i pos_warped(Math::fposmod(pos_local.x, p_rect.size.x), Math::fposmod(pos_local.y, p_rect.size.y)); if (pos_warped != pos_local) { OS::get_singleton()->warp_mouse_pos(pos_warped + p_rect.pos); } + return rel_warped; }