pattern matcher: Implemented transformations

This commit is contained in:
Karroffel 2016-10-05 18:48:38 +02:00 committed by karroffel
parent f8a7c46273
commit d445f0639f
3 changed files with 393 additions and 35 deletions

View File

@ -980,7 +980,7 @@ int GDCompiler::_parse_expression(CodeGen& codegen,const GDParser::Node *p_expre
} break;
//TYPE_TYPE,
default: {
ERR_EXPLAIN("Bug in bytecode compiler, unexpected node in parse tree while parsing expression.");
ERR_FAIL_V(-1); //unreachable code
} break;
@ -1019,7 +1019,13 @@ Error GDCompiler::_parse_block(CodeGen& codegen,const GDParser::BlockNode *p_blo
switch(cf->cf_type) {
case GDParser::ControlFlowNode::CF_MATCH: {
Error err = _parse_block(codegen,cf->match->compiled_block,p_stack_level,p_break_addr,p_continue_addr);
if (err)
return err;
} break;
case GDParser::ControlFlowNode::CF_IF: {
#ifdef DEBUG_ENABLED

View File

@ -1570,24 +1570,18 @@ bool GDParser::_recover_from_completion() {
GDParser::PatternNode *GDParser::_parse_pattern(bool p_static)
{
PatternNode *pattern = memnew(PatternNode);
PatternNode *pattern = alloc_node<PatternNode>();
GDTokenizer::Token token = tokenizer->get_token();
if (error_set)
return NULL;
if (token == GDTokenizer::TK_EOF) {
return NULL;
}
switch (token) {
// all the constants like strings and numbers
case GDTokenizer::TK_CONSTANT: {
Node *value = _parse_and_reduce_expression(pattern, p_static);
if (value->type != GDParser::Node::TYPE_CONSTANT) {
_set_error("Not a constant expression");
return NULL;
}
pattern->pt_type = GDParser::PatternNode::PT_CONSTANT;
pattern->constant = static_cast<ConstantNode*>(value);
} break;
case GDTokenizer::TK_BRACKET_OPEN: {
tokenizer->advance();
pattern->pt_type = GDParser::PatternNode::PT_ARRAY;
@ -1601,7 +1595,9 @@ GDParser::PatternNode *GDParser::_parse_pattern(bool p_static)
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) {
// match everything
tokenizer->advance(2);
pattern->pt_type = GDParser::PatternNode::PT_IGNORE_REST;
PatternNode *sub_pattern = alloc_node<PatternNode>();
sub_pattern->pt_type = GDParser::PatternNode::PT_IGNORE_REST;
pattern->array.push_back(sub_pattern);
if (tokenizer->get_token() == GDTokenizer::TK_COMMA && tokenizer->get_token(1) == GDTokenizer::TK_BRACKET_CLOSE) {
tokenizer->advance(2);
break;
@ -1634,7 +1630,8 @@ GDParser::PatternNode *GDParser::_parse_pattern(bool p_static)
}
} break;
case GDTokenizer::TK_IDENTIFIER: {
case GDTokenizer::TK_PR_VAR: {
tokenizer->advance();
pattern->pt_type = GDParser::PatternNode::PT_BIND;
pattern->bind = tokenizer->get_token_identifier();
tokenizer->advance();
@ -1642,7 +1639,7 @@ GDParser::PatternNode *GDParser::_parse_pattern(bool p_static)
case GDTokenizer::TK_CURLY_BRACKET_OPEN: {
tokenizer->advance();
pattern->pt_type = GDParser::PatternNode::PT_DICITIONARY;
pattern->pt_type = GDParser::PatternNode::PT_DICTIONARY;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
@ -1653,7 +1650,9 @@ GDParser::PatternNode *GDParser::_parse_pattern(bool p_static)
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) {
// match everything
tokenizer->advance(2);
pattern->pt_type = GDParser::PatternNode::PT_IGNORE_REST;
PatternNode *sub_pattern = alloc_node<PatternNode>();
sub_pattern->pt_type = PatternNode::PT_IGNORE_REST;
pattern->array.push_back(sub_pattern);
if (tokenizer->get_token() == GDTokenizer::TK_COMMA && tokenizer->get_token(1) == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
tokenizer->advance(2);
break;
@ -1706,15 +1705,24 @@ GDParser::PatternNode *GDParser::_parse_pattern(bool p_static)
} break;
default: {
_set_error("Not a valid pattern");
return NULL;
}
Node *value = _parse_and_reduce_expression(pattern, p_static);
if (error_set) {
return NULL;
}
if (value->type == Node::TYPE_IDENTIFIER && static_cast<IdentifierNode*>(value)->name == "_") {
// wildcard pattern
pattern->pt_type = PatternNode::PT_WILDCARD;
break;
}
pattern->pt_type = PatternNode::PT_CONSTANT;
pattern->constant = value;
} break;
}
return pattern;
}
void GDParser::_parse_pattern_block(Vector<PatternBranchNode*> &p_block, bool p_static)
void GDParser::_parse_pattern_block(BlockNode *p_block, Vector<PatternBranchNode*> &p_branches, bool p_static)
{
int indent_level = tab_level.back()->get();
@ -1734,7 +1742,7 @@ void GDParser::_parse_pattern_block(Vector<PatternBranchNode*> &p_block, bool p_
pending_newline=-1;
}
PatternBranchNode *branch = memnew(PatternBranchNode);
PatternBranchNode *branch = alloc_node<PatternBranchNode>();
branch->pattern = _parse_pattern(p_static);
if (!branch->pattern) {
@ -1746,14 +1754,326 @@ void GDParser::_parse_pattern_block(Vector<PatternBranchNode*> &p_block, bool p_
return;
}
branch->body = memnew(BlockNode);
branch->body = alloc_node<BlockNode>();
branch->body->parent_block = p_block;
p_block->sub_blocks.push_back(branch->body);
current_block = branch->body;
_parse_block(branch->body, p_static);
p_block.push_back(branch);
current_block = p_block;
p_branches.push_back(branch);
}
}
void GDParser::_generate_array_pattern(PatternNode *p_array_pattern, Node *p_value_to_match, Node *&p_resulting_node, Map<StringName, Node*> &p_bindings)
{
bool open_ended = false;
if (p_array_pattern->array.size() > 0) {
if (p_array_pattern->array[p_array_pattern->array.size() - 1]->pt_type == PatternNode::PT_IGNORE_REST) {
open_ended = true;
}
}
// check length
// typeof(value_to_match) == TYPE_ARRAY && value_to_match.size() >= length
// typeof(value_to_match) == TYPE_ARRAY && value_to_match.size() == length
{
// typecheck
BuiltInFunctionNode *typeof_node = alloc_node<BuiltInFunctionNode>();
typeof_node->function = GDFunctions::TYPE_OF;
OperatorNode *typeof_match_value = alloc_node<OperatorNode>();
typeof_match_value->op = OperatorNode::OP_CALL;
typeof_match_value->arguments.push_back(typeof_node);
typeof_match_value->arguments.push_back(p_value_to_match);
IdentifierNode *typeof_array = alloc_node<IdentifierNode>();
typeof_array->name = "TYPE_ARRAY";
OperatorNode *type_comp = alloc_node<OperatorNode>();
type_comp->op = OperatorNode::OP_EQUAL;
type_comp->arguments.push_back(typeof_match_value);
type_comp->arguments.push_back(typeof_array);
ConstantNode *length = alloc_node<ConstantNode>();
length->value = Variant(open_ended ? p_array_pattern->array.size() - 1 : p_array_pattern->array.size());
OperatorNode *call = alloc_node<OperatorNode>();
call->op = OperatorNode::OP_CALL;
call->arguments.push_back(p_value_to_match);
IdentifierNode *size = alloc_node<IdentifierNode>();
size->name = "size";
call->arguments.push_back(size);
OperatorNode *length_comparison = alloc_node<OperatorNode>();
length_comparison->op = open_ended ? OperatorNode::OP_GREATER_EQUAL : OperatorNode::OP_EQUAL;
length_comparison->arguments.push_back(call);
length_comparison->arguments.push_back(length);
OperatorNode *type_and_length_comparison = alloc_node<OperatorNode>();
type_and_length_comparison->op = OperatorNode::OP_AND;
type_and_length_comparison->arguments.push_back(type_comp);
type_and_length_comparison->arguments.push_back(length_comparison);
p_resulting_node = type_and_length_comparison;
}
for (int i = 0; i < p_array_pattern->array.size(); i++) {
PatternNode *pattern = p_array_pattern->array[i];
Node *condition = NULL;
ConstantNode *index = alloc_node<ConstantNode>();
index->value = Variant(i);
OperatorNode *indexed_value = alloc_node<OperatorNode>();
indexed_value->op = OperatorNode::OP_INDEX;
indexed_value->arguments.push_back(p_value_to_match);
indexed_value->arguments.push_back(index);
_generate_pattern(pattern, indexed_value, condition, p_bindings);
OperatorNode *and_node = alloc_node<OperatorNode>();
and_node->op = OperatorNode::OP_AND;
and_node->arguments.push_back(p_resulting_node);
and_node->arguments.push_back(condition);
p_resulting_node = and_node;
}
}
void GDParser::_generate_bind_pattern(PatternNode *p_bind_pattern, Node *p_value_to_match, Map<StringName, Node*> &p_bindings)
{
p_bindings[p_bind_pattern->bind] = p_value_to_match;
}
void GDParser::_generate_constant_pattern(PatternNode *p_constant_pattern, Node *p_value_to_match, Node *&p_resulting_node)
{
BuiltInFunctionNode *typeof_node = alloc_node<BuiltInFunctionNode>();
typeof_node->function = GDFunctions::TYPE_OF;
OperatorNode *typeof_match_value = alloc_node<OperatorNode>();
typeof_match_value->op = OperatorNode::OP_CALL;
typeof_match_value->arguments.push_back(typeof_node);
typeof_match_value->arguments.push_back(p_value_to_match);
OperatorNode *typeof_pattern_value = alloc_node<OperatorNode>();
typeof_pattern_value->op = OperatorNode::OP_CALL;
typeof_pattern_value->arguments.push_back(typeof_node);
typeof_pattern_value->arguments.push_back(p_constant_pattern->constant);
OperatorNode *type_comp = alloc_node<OperatorNode>();
type_comp->op = OperatorNode::OP_EQUAL;
type_comp->arguments.push_back(typeof_match_value);
type_comp->arguments.push_back(typeof_pattern_value);
OperatorNode *value_comp = alloc_node<OperatorNode>();
value_comp->op = OperatorNode::OP_EQUAL;
value_comp->arguments.push_back(p_constant_pattern->constant);
value_comp->arguments.push_back(p_value_to_match);
OperatorNode *comparison = alloc_node<OperatorNode>();
comparison->op = OperatorNode::OP_AND;
comparison->arguments.push_back(type_comp);
comparison->arguments.push_back(value_comp);
p_resulting_node = comparison;
}
void GDParser::_generate_dict_pattern(PatternNode *p_dict_pattern, Node *p_value_to_match, Node *&p_resulting_node, Map<StringName, Node*> &p_bindings)
{
bool open_ended = false;
if (p_dict_pattern->array.size() > 0) {
open_ended = true;
print_line("open dictionary");
}
// check length
// typeof(value_to_match) == TYPE_DICTIONARY && value_to_match.size() >= length
// typeof(value_to_match) == TYPE_DICTIONARY && value_to_match.size() == length
{
// typecheck
BuiltInFunctionNode *typeof_node = alloc_node<BuiltInFunctionNode>();
typeof_node->function = GDFunctions::TYPE_OF;
OperatorNode *typeof_match_value = alloc_node<OperatorNode>();
typeof_match_value->op = OperatorNode::OP_CALL;
typeof_match_value->arguments.push_back(typeof_node);
typeof_match_value->arguments.push_back(p_value_to_match);
IdentifierNode *typeof_dictionary = alloc_node<IdentifierNode>();
typeof_dictionary->name = "TYPE_DICTIONARY";
OperatorNode *type_comp = alloc_node<OperatorNode>();
type_comp->op = OperatorNode::OP_EQUAL;
type_comp->arguments.push_back(typeof_match_value);
type_comp->arguments.push_back(typeof_dictionary);
ConstantNode *length = alloc_node<ConstantNode>();
length->value = Variant(open_ended ? p_dict_pattern->dictionary.size() - 1 : p_dict_pattern->dictionary.size());
OperatorNode *call = alloc_node<OperatorNode>();
call->op = OperatorNode::OP_CALL;
call->arguments.push_back(p_value_to_match);
IdentifierNode *size = alloc_node<IdentifierNode>();
size->name = "size";
call->arguments.push_back(size);
OperatorNode *length_comparison = alloc_node<OperatorNode>();
length_comparison->op = open_ended ? OperatorNode::OP_GREATER_EQUAL : OperatorNode::OP_EQUAL;
length_comparison->arguments.push_back(call);
length_comparison->arguments.push_back(length);
OperatorNode *type_and_length_comparison = alloc_node<OperatorNode>();
type_and_length_comparison->op = OperatorNode::OP_AND;
type_and_length_comparison->arguments.push_back(type_comp);
type_and_length_comparison->arguments.push_back(length_comparison);
p_resulting_node = type_and_length_comparison;
}
for (Map<ConstantNode*, PatternNode*>::Element *e = p_dict_pattern->dictionary.front(); e; e = e->next()) {
Node *condition = NULL;
// chech for has, then for pattern
IdentifierNode *has = alloc_node<IdentifierNode>();
has->name = "has";
OperatorNode *has_call = alloc_node<OperatorNode>();
has_call->op = OperatorNode::OP_CALL;
has_call->arguments.push_back(p_value_to_match);
has_call->arguments.push_back(has);
has_call->arguments.push_back(e->key());
if (e->value()) {
OperatorNode *indexed_value = alloc_node<OperatorNode>();
indexed_value->op = OperatorNode::OP_INDEX;
indexed_value->arguments.push_back(p_value_to_match);
indexed_value->arguments.push_back(e->key());
_generate_pattern(e->value(), indexed_value, condition, p_bindings);
OperatorNode *has_and_pattern = alloc_node<OperatorNode>();
has_and_pattern->op = OperatorNode::OP_AND;
has_and_pattern->arguments.push_back(has_call);
has_and_pattern->arguments.push_back(condition);
condition = has_and_pattern;
} else {
condition = has_call;
}
OperatorNode *and_node = alloc_node<OperatorNode>();
and_node->op = OperatorNode::OP_AND;
and_node->arguments.push_back(p_resulting_node);
and_node->arguments.push_back(condition);
p_resulting_node = and_node;
}
}
void GDParser::_generate_pattern(PatternNode *p_pattern, Node *p_node_to_match, Node *&p_resulting_node, Map<StringName, Node*> &p_bindings)
{
switch (p_pattern->pt_type) {
case PatternNode::PT_CONSTANT: {
_generate_constant_pattern(p_pattern, p_node_to_match, p_resulting_node);
} break;
case PatternNode::PT_BIND: {
_generate_bind_pattern(p_pattern, p_node_to_match, p_bindings);
ConstantNode *true_value = alloc_node<ConstantNode>();
true_value->value = Variant(true);
p_resulting_node = true_value;
} break;
case PatternNode::PT_ARRAY: {
_generate_array_pattern(p_pattern, p_node_to_match, p_resulting_node, p_bindings);
} break;
case PatternNode::PT_DICTIONARY: {
_generate_dict_pattern(p_pattern, p_node_to_match, p_resulting_node, p_bindings);
} break;
case PatternNode::PT_WILDCARD: {
// simply generate a `true`
ConstantNode *true_value = alloc_node<ConstantNode>();
true_value->value = Variant(true);
p_resulting_node = true_value;
} break;
default: {
} break;
}
}
void GDParser::_transform_match_statment(BlockNode *p_block, MatchNode *p_match_statement)
{
LocalVarNode *val_to_match = alloc_node<LocalVarNode>();
val_to_match->name = "#match_value"; // use a name that can't be referenced in GDscript
val_to_match->assign = p_match_statement->val_to_match;
p_block->statements.push_back(val_to_match);
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name=val_to_match->name;
OperatorNode *op = alloc_node<OperatorNode>();
op->op=OperatorNode::OP_ASSIGN;
op->arguments.push_back(id);
op->arguments.push_back(val_to_match->assign);
p_block->statements.push_back(op);
for (int i = 0; i < p_match_statement->branches.size(); i++) {
PatternBranchNode *branch = p_match_statement->branches[i];
Map<StringName, Node*> bindings;
Node *resulting_node;
_generate_pattern(branch->pattern, id, resulting_node, bindings);
// TEMP: if's for testing
ControlFlowNode *cf_if = alloc_node<ControlFlowNode>();
cf_if->cf_type = ControlFlowNode::CF_IF;
cf_if->arguments.push_back(resulting_node);
cf_if->body = branch->body;
p_block->statements.push_back(cf_if);
}
}
void GDParser::_parse_block(BlockNode *p_block,bool p_static) {
int indent_level = tab_level.back()->get();
@ -2161,8 +2481,7 @@ void GDParser::_parse_block(BlockNode *p_block,bool p_static) {
tokenizer->advance();
ControlFlowNode *match_node = memnew(ControlFlowNode);
match_node->cf_type = ControlFlowNode::CF_MATCH;
MatchNode *match_node = alloc_node<MatchNode>();
Node *val_to_match = _parse_and_reduce_expression(p_block, p_static);
@ -2173,16 +2492,32 @@ void GDParser::_parse_block(BlockNode *p_block,bool p_static) {
return;
}
match_node->arguments.push_back(val_to_match);
match_node->val_to_match = val_to_match;
if (!_enter_indent_block()) {
_set_error("Expected indented pattern matching block after 'match'");
return;
}
_parse_pattern_block(match_node->branches, p_static);
p_block->statements.push_back(match_node);
BlockNode *compiled_branches = alloc_node<BlockNode>();
compiled_branches->parent_block = p_block;
compiled_branches->parent_class = p_block->parent_class;
p_block->sub_blocks.push_back(compiled_branches);
_parse_pattern_block(compiled_branches, match_node->branches, p_static);
_transform_match_statment(compiled_branches, match_node);
match_node->compiled_block = compiled_branches;
ControlFlowNode *match_cf_node = alloc_node<ControlFlowNode>();
match_cf_node->cf_type = ControlFlowNode::CF_MATCH;
match_cf_node->match = match_node;
p_block->statements.push_back(match_cf_node);
_end_statement();
} break;
case GDTokenizer::TK_PR_ASSERT: {

View File

@ -264,14 +264,15 @@ public:
enum PatternType {
PT_CONSTANT,
PT_BIND,
PT_DICITIONARY,
PT_DICTIONARY,
PT_ARRAY,
PT_IGNORE_REST
PT_IGNORE_REST,
PT_WILDCARD
};
PatternType pt_type;
ConstantNode *constant;
Node *constant;
StringName bind;
Map<ConstantNode*, PatternNode*> dictionary;
Vector<PatternNode*> array;
@ -282,6 +283,13 @@ public:
PatternNode *pattern;
BlockNode *body;
};
struct MatchNode : public Node {
Node *val_to_match;
Vector<PatternBranchNode*> branches;
BlockNode *compiled_block;
};
struct ControlFlowNode : public Node {
enum CFType {
@ -299,7 +307,8 @@ public:
Vector<Node*> arguments;
BlockNode *body;
BlockNode *body_else;
Vector<PatternBranchNode*> branches;
MatchNode *match;
ControlFlowNode *_else; //used for if
ControlFlowNode() { type=TYPE_CONTROL_FLOW; cf_type=CF_IF; body=NULL; body_else=NULL;}
@ -479,9 +488,17 @@ private:
// TODO
void _parse_pattern_block(Vector<PatternBranchNode*> &p_block, bool p_static);
void _parse_pattern_block(BlockNode *p_block, Vector<PatternBranchNode*> &p_branches, bool p_static);
PatternNode *_parse_pattern(bool p_static);
void _transform_match_statment(BlockNode *p_block, MatchNode *p_match_statement);
void _generate_pattern(PatternNode *p_pattern, Node *p_node_to_match, Node *&p_resulting_node, Map<StringName, Node*> &p_bindings);
void _generate_array_pattern(PatternNode *p_array_pattern, Node *p_value_to_match, Node *&p_resulting_node, Map<StringName, Node*> &p_bindings);
void _generate_bind_pattern(PatternNode *p_bind_pattern, Node *p_value_to_match, Map<StringName, Node*> &p_bindings);
void _generate_constant_pattern(PatternNode *p_constant_pattern, Node *p_value_to_match, Node *&p_resulting_node);
void _generate_dict_pattern(PatternNode *p_dict_pattern, Node *p_value_to_match, Node *&p_resulting_node, Map<StringName, Node*> &p_bindings);
void _parse_block(BlockNode *p_block,bool p_static);