diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/AABB.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/AABB.cs
index 6a4f7855517..3aecce50f54 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/AABB.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/AABB.cs
@@ -14,6 +14,10 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// Axis-Aligned Bounding Box. AABB consists of a position, a size, and
+ /// several utility functions. It is typically used for fast overlap tests.
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct AABB : IEquatable
@@ -21,24 +25,55 @@ namespace Godot
private Vector3 _position;
private Vector3 _size;
+ ///
+ /// Beginning corner. Typically has values lower than End.
+ ///
+ /// Directly uses a private field.
public Vector3 Position
{
get { return _position; }
set { _position = value; }
}
+ ///
+ /// Size from Position to End. Typically all components are positive.
+ /// If the size is negative, you can use to fix it.
+ ///
+ /// Directly uses a private field.
public Vector3 Size
{
get { return _size; }
set { _size = value; }
}
+ ///
+ /// Ending corner. This is calculated as plus
+ /// . Setting this value will change the size.
+ ///
+ /// Getting is equivalent to `value = Position + Size`, setting is equivalent to `Size = value - Position`.
public Vector3 End
{
get { return _position + _size; }
set { _size = value - _position; }
}
+ ///
+ /// Returns an AABB with equivalent position and size, modified so that
+ /// the most-negative corner is the origin and the size is positive.
+ ///
+ /// The modified AABB.
+ public AABB Abs()
+ {
+ Vector3 end = End;
+ Vector3 topLeft = new Vector3(Mathf.Min(_position.x, end.x), Mathf.Min(_position.y, end.y), Mathf.Min(_position.z, end.z));
+ return new AABB(topLeft, _size.Abs());
+ }
+
+ ///
+ /// Returns true if this AABB completely encloses another one.
+ ///
+ /// The other AABB that may be enclosed.
+ /// A bool for whether or not this AABB encloses `b`.
public bool Encloses(AABB with)
{
Vector3 src_min = _position;
@@ -54,33 +89,59 @@ namespace Godot
src_max.z > dst_max.z;
}
+ ///
+ /// Returns this AABB expanded to include a given point.
+ ///
+ /// The point to include.
+ /// The expanded AABB.
public AABB Expand(Vector3 point)
{
Vector3 begin = _position;
Vector3 end = _position + _size;
if (point.x < begin.x)
+ {
begin.x = point.x;
+ }
if (point.y < begin.y)
+ {
begin.y = point.y;
+ }
if (point.z < begin.z)
+ {
begin.z = point.z;
+ }
if (point.x > end.x)
+ {
end.x = point.x;
+ }
if (point.y > end.y)
+ {
end.y = point.y;
+ }
if (point.z > end.z)
+ {
end.z = point.z;
+ }
return new AABB(begin, end - begin);
}
+ ///
+ /// Returns the area of the AABB.
+ ///
+ /// The area.
public real_t GetArea()
{
return _size.x * _size.y * _size.z;
}
+ ///
+ /// Gets the position of one of the 8 endpoints of the AABB.
+ ///
+ /// Which endpoint to get.
+ /// An endpoint of the AABB.
public Vector3 GetEndpoint(int idx)
{
switch (idx)
@@ -106,6 +167,10 @@ namespace Godot
}
}
+ ///
+ /// Returns the normalized longest axis of the AABB.
+ ///
+ /// A vector representing the normalized longest axis of the AABB.
public Vector3 GetLongestAxis()
{
var axis = new Vector3(1f, 0f, 0f);
@@ -125,6 +190,10 @@ namespace Godot
return axis;
}
+ ///
+ /// Returns the index of the longest axis of the AABB.
+ ///
+ /// A index for which axis is longest.
public Vector3.Axis GetLongestAxisIndex()
{
var axis = Vector3.Axis.X;
@@ -144,6 +213,10 @@ namespace Godot
return axis;
}
+ ///
+ /// Returns the scalar length of the longest axis of the AABB.
+ ///
+ /// The scalar length of the longest axis of the AABB.
public real_t GetLongestAxisSize()
{
real_t max_size = _size.x;
@@ -157,6 +230,10 @@ namespace Godot
return max_size;
}
+ ///
+ /// Returns the normalized shortest axis of the AABB.
+ ///
+ /// A vector representing the normalized shortest axis of the AABB.
public Vector3 GetShortestAxis()
{
var axis = new Vector3(1f, 0f, 0f);
@@ -176,6 +253,10 @@ namespace Godot
return axis;
}
+ ///
+ /// Returns the index of the shortest axis of the AABB.
+ ///
+ /// A index for which axis is shortest.
public Vector3.Axis GetShortestAxisIndex()
{
var axis = Vector3.Axis.X;
@@ -195,6 +276,10 @@ namespace Godot
return axis;
}
+ ///
+ /// Returns the scalar length of the shortest axis of the AABB.
+ ///
+ /// The scalar length of the shortest axis of the AABB.
public real_t GetShortestAxisSize()
{
real_t max_size = _size.x;
@@ -208,6 +293,12 @@ namespace Godot
return max_size;
}
+ ///
+ /// Returns the support point in a given direction.
+ /// This is useful for collision detection algorithms.
+ ///
+ /// The direction to find support for.
+ /// A vector representing the support.
public Vector3 GetSupport(Vector3 dir)
{
Vector3 half_extents = _size * 0.5f;
@@ -219,6 +310,11 @@ namespace Godot
dir.z > 0f ? -half_extents.z : half_extents.z);
}
+ ///
+ /// Returns a copy of the AABB grown a given amount of units towards all the sides.
+ ///
+ /// The amount to grow by.
+ /// The grown AABB.
public AABB Grow(real_t by)
{
var res = this;
@@ -233,16 +329,29 @@ namespace Godot
return res;
}
+ ///
+ /// Returns true if the AABB is flat or empty, or false otherwise.
+ ///
+ /// A bool for whether or not the AABB has area.
public bool HasNoArea()
{
return _size.x <= 0f || _size.y <= 0f || _size.z <= 0f;
}
+ ///
+ /// Returns true if the AABB has no surface (no size), or false otherwise.
+ ///
+ /// A bool for whether or not the AABB has area.
public bool HasNoSurface()
{
return _size.x <= 0f && _size.y <= 0f && _size.z <= 0f;
}
+ ///
+ /// Returns true if the AABB contains a point, or false otherwise.
+ ///
+ /// The point to check.
+ /// A bool for whether or not the AABB contains `point`.
public bool HasPoint(Vector3 point)
{
if (point.x < _position.x)
@@ -261,6 +370,11 @@ namespace Godot
return true;
}
+ ///
+ /// Returns the intersection of this AABB and `b`.
+ ///
+ /// The other AABB.
+ /// The clipped AABB.
public AABB Intersection(AABB with)
{
Vector3 src_min = _position;
@@ -297,24 +411,57 @@ namespace Godot
return new AABB(min, max - min);
}
- public bool Intersects(AABB with)
+ ///
+ /// Returns true if the AABB overlaps with `b`
+ /// (i.e. they have at least one point in common).
+ ///
+ /// If `includeBorders` is true, they will also be considered overlapping
+ /// if their borders touch, even without intersection.
+ ///
+ /// The other AABB to check for intersections with.
+ /// Whether or not to consider borders.
+ /// A bool for whether or not they are intersecting.
+ public bool Intersects(AABB with, bool includeBorders = false)
{
- if (_position.x >= with._position.x + with._size.x)
- return false;
- if (_position.x + _size.x <= with._position.x)
- return false;
- if (_position.y >= with._position.y + with._size.y)
- return false;
- if (_position.y + _size.y <= with._position.y)
- return false;
- if (_position.z >= with._position.z + with._size.z)
- return false;
- if (_position.z + _size.z <= with._position.z)
- return false;
+ if (includeBorders)
+ {
+ if (_position.x > with._position.x + with._size.x)
+ return false;
+ if (_position.x + _size.x < with._position.x)
+ return false;
+ if (_position.y > with._position.y + with._size.y)
+ return false;
+ if (_position.y + _size.y < with._position.y)
+ return false;
+ if (_position.z > with._position.z + with._size.z)
+ return false;
+ if (_position.z + _size.z < with._position.z)
+ return false;
+ }
+ else
+ {
+ if (_position.x >= with._position.x + with._size.x)
+ return false;
+ if (_position.x + _size.x <= with._position.x)
+ return false;
+ if (_position.y >= with._position.y + with._size.y)
+ return false;
+ if (_position.y + _size.y <= with._position.y)
+ return false;
+ if (_position.z >= with._position.z + with._size.z)
+ return false;
+ if (_position.z + _size.z <= with._position.z)
+ return false;
+ }
return true;
}
+ ///
+ /// Returns true if the AABB is on both sides of `plane`.
+ ///
+ /// The plane to check for intersection.
+ /// A bool for whether or not the AABB intersects the plane.
public bool IntersectsPlane(Plane plane)
{
Vector3[] points =
@@ -335,14 +482,24 @@ namespace Godot
for (int i = 0; i < 8; i++)
{
if (plane.DistanceTo(points[i]) > 0)
+ {
over = true;
+ }
else
+ {
under = true;
+ }
}
return under && over;
}
+ ///
+ /// Returns true if the AABB intersects the line segment between `from` and `to`.
+ ///
+ /// The start of the line segment.
+ /// The end of the line segment.
+ /// A bool for whether or not the AABB intersects the line segment.
public bool IntersectsSegment(Vector3 from, Vector3 to)
{
real_t min = 0f;
@@ -359,7 +516,9 @@ namespace Godot
if (segFrom < segTo)
{
if (segFrom > boxEnd || segTo < boxBegin)
+ {
return false;
+ }
real_t length = segTo - segFrom;
cmin = segFrom < boxBegin ? (boxBegin - segFrom) / length : 0f;
@@ -368,7 +527,9 @@ namespace Godot
else
{
if (segTo > boxEnd || segFrom < boxBegin)
+ {
return false;
+ }
real_t length = segTo - segFrom;
cmin = segFrom > boxEnd ? (boxEnd - segFrom) / length : 0f;
@@ -381,14 +542,23 @@ namespace Godot
}
if (cmax < max)
+ {
max = cmax;
+ }
if (max < min)
+ {
return false;
+ }
}
return true;
}
+ ///
+ /// Returns a larger AABB that contains this AABB and `b`.
+ ///
+ /// The other AABB.
+ /// The merged AABB.
public AABB Merge(AABB with)
{
Vector3 beg1 = _position;
@@ -411,22 +581,52 @@ namespace Godot
return new AABB(min, max - min);
}
- // Constructors
+ ///
+ /// Constructs an AABB from a position and size.
+ ///
+ /// The position.
+ /// The size, typically positive.
public AABB(Vector3 position, Vector3 size)
{
_position = position;
_size = size;
}
+
+ ///
+ /// Constructs an AABB from a position, width, height, and depth.
+ ///
+ /// The position.
+ /// The width, typically positive.
+ /// The height, typically positive.
+ /// The depth, typically positive.
public AABB(Vector3 position, real_t width, real_t height, real_t depth)
{
_position = position;
_size = new Vector3(width, height, depth);
}
+
+ ///
+ /// Constructs an AABB from x, y, z, and size.
+ ///
+ /// The position's X coordinate.
+ /// The position's Y coordinate.
+ /// The position's Z coordinate.
+ /// The size, typically positive.
public AABB(real_t x, real_t y, real_t z, Vector3 size)
{
_position = new Vector3(x, y, z);
_size = size;
}
+
+ ///
+ /// Constructs an AABB from x, y, z, width, height, and depth.
+ ///
+ /// The position's X coordinate.
+ /// The position's Y coordinate.
+ /// The position's Z coordinate.
+ /// The width, typically positive.
+ /// The height, typically positive.
+ /// The depth, typically positive.
public AABB(real_t x, real_t y, real_t z, real_t width, real_t height, real_t depth)
{
_position = new Vector3(x, y, z);
@@ -458,6 +658,12 @@ namespace Godot
return _position == other._position && _size == other._size;
}
+ ///
+ /// Returns true if this AABB and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other AABB to compare.
+ /// Whether or not the AABBs are approximately equal.
public bool IsEqualApprox(AABB other)
{
return _position.IsEqualApprox(other._position) && _size.IsEqualApprox(other._size);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
index 55408fecb8a..bbc4dfdfeb6 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
@@ -8,6 +8,20 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// 3×3 matrix used for 3D rotation and scale.
+ /// Almost always used as an orthogonal basis for a Transform.
+ ///
+ /// Contains 3 vector fields X, Y and Z as its columns, which are typically
+ /// interpreted as the local basis vectors of a 3D transformation. For such use,
+ /// it is composed of a scaling and a rotation matrix, in that order (M = R.S).
+ ///
+ /// Can also be accessed as array of 3D vectors. These vectors are normally
+ /// orthogonal to each other, but are not necessarily normalized (due to scaling).
+ ///
+ /// For more information, read this documentation article:
+ /// https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Basis : IEquatable
@@ -15,9 +29,9 @@ namespace Godot
// NOTE: x, y and z are public-only. Use Column0, Column1 and Column2 internally.
///
- /// Returns the basis matrix’s x vector.
- /// This is equivalent to .
+ /// The basis matrix's X vector (column 0).
///
+ /// Equivalent to and array index `[0]`.
public Vector3 x
{
get => Column0;
@@ -25,9 +39,9 @@ namespace Godot
}
///
- /// Returns the basis matrix’s y vector.
- /// This is equivalent to .
+ /// The basis matrix's Y vector (column 1).
///
+ /// Equivalent to and array index `[1]`.
public Vector3 y
{
get => Column1;
@@ -35,19 +49,40 @@ namespace Godot
}
///
- /// Returns the basis matrix’s z vector.
- /// This is equivalent to .
+ /// The basis matrix's Z vector (column 2).
///
+ /// Equivalent to and array index `[2]`.
public Vector3 z
{
get => Column2;
set => Column2 = value;
}
+ ///
+ /// Row 0 of the basis matrix. Shows which vectors contribute
+ /// to the X direction. Rows are not very useful for user code,
+ /// but are more efficient for some internal calculations.
+ ///
public Vector3 Row0;
+
+ ///
+ /// Row 1 of the basis matrix. Shows which vectors contribute
+ /// to the Y direction. Rows are not very useful for user code,
+ /// but are more efficient for some internal calculations.
+ ///
public Vector3 Row1;
+
+ ///
+ /// Row 2 of the basis matrix. Shows which vectors contribute
+ /// to the Z direction. Rows are not very useful for user code,
+ /// but are more efficient for some internal calculations.
+ ///
public Vector3 Row2;
+ ///
+ /// Column 0 of the basis matrix (the X vector).
+ ///
+ /// Equivalent to and array index `[0]`.
public Vector3 Column0
{
get => new Vector3(Row0.x, Row1.x, Row2.x);
@@ -58,6 +93,11 @@ namespace Godot
this.Row2.x = value.z;
}
}
+
+ ///
+ /// Column 1 of the basis matrix (the Y vector).
+ ///
+ /// Equivalent to and array index `[1]`.
public Vector3 Column1
{
get => new Vector3(Row0.y, Row1.y, Row2.y);
@@ -68,6 +108,11 @@ namespace Godot
this.Row2.y = value.z;
}
}
+
+ ///
+ /// Column 2 of the basis matrix (the Z vector).
+ ///
+ /// Equivalent to and array index `[2]`.
public Vector3 Column2
{
get => new Vector3(Row0.z, Row1.z, Row2.z);
@@ -79,6 +124,10 @@ namespace Godot
}
}
+ ///
+ /// The scale of this basis.
+ ///
+ /// Equivalent to the lengths of each column vector, but negative if the determinant is negative.
public Vector3 Scale
{
get
@@ -86,11 +135,18 @@ namespace Godot
real_t detSign = Mathf.Sign(Determinant());
return detSign * new Vector3
(
- new Vector3(this.Row0[0], this.Row1[0], this.Row2[0]).Length(),
- new Vector3(this.Row0[1], this.Row1[1], this.Row2[1]).Length(),
- new Vector3(this.Row0[2], this.Row1[2], this.Row2[2]).Length()
+ Column0.Length(),
+ Column1.Length(),
+ Column2.Length()
);
}
+ set
+ {
+ value /= Scale; // Value becomes what's called "delta_scale" in core.
+ Column0 *= value.x;
+ Column1 *= value.y;
+ Column2 *= value.z;
+ }
}
///
@@ -157,8 +213,9 @@ namespace Godot
real_t det = orthonormalizedBasis.Determinant();
if (det < 0)
{
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- orthonormalizedBasis = orthonormalizedBasis.Scaled(Vector3.NegOne);
+ // Ensure that the determinant is 1, such that result is a proper
+ // rotation matrix which can be represented by Euler angles.
+ orthonormalizedBasis = orthonormalizedBasis.Scaled(-Vector3.One);
}
return orthonormalizedBasis.Quat();
@@ -182,6 +239,15 @@ namespace Godot
Row2 = new Vector3(0, 0, diagonal.z);
}
+ ///
+ /// Returns the determinant of the basis matrix. If the basis is
+ /// uniformly scaled, its determinant is the square of the scale.
+ ///
+ /// A negative determinant means the basis has a negative scale.
+ /// A zero determinant means the basis isn't invertible,
+ /// and is usually considered invalid.
+ ///
+ /// The determinant of the basis matrix.
public real_t Determinant()
{
real_t cofac00 = Row1[1] * Row2[2] - Row1[2] * Row2[1];
@@ -191,6 +257,16 @@ namespace Godot
return Row0[0] * cofac00 + Row0[1] * cofac10 + Row0[2] * cofac20;
}
+ ///
+ /// Returns the basis's rotation in the form of Euler angles
+ /// (in the YXZ convention: when *decomposing*, first Z, then X, and Y last).
+ /// The returned vector contains the rotation angles in
+ /// the format (X angle, Y angle, Z angle).
+ ///
+ /// Consider using the method instead, which
+ /// returns a quaternion instead of Euler angles.
+ ///
+ /// A Vector3 representing the basis rotation in Euler angles.
public Vector3 GetEuler()
{
Basis m = Orthonormalized();
@@ -223,6 +299,12 @@ namespace Godot
return euler;
}
+ ///
+ /// Get rows by index. Rows are not very useful for user code,
+ /// but are more efficient for some internal calculations.
+ ///
+ /// Which row.
+ /// One of `Row0`, `Row1`, or `Row2`.
public Vector3 GetRow(int index)
{
switch (index)
@@ -238,6 +320,12 @@ namespace Godot
}
}
+ ///
+ /// Sets rows by index. Rows are not very useful for user code,
+ /// but are more efficient for some internal calculations.
+ ///
+ /// Which row.
+ /// The vector to set the row to.
public void SetRow(int index, Vector3 value)
{
switch (index)
@@ -256,22 +344,49 @@ namespace Godot
}
}
+ ///
+ /// Deprecated, please use the array operator instead.
+ ///
+ /// Which column.
+ /// One of `Column0`, `Column1`, or `Column2`.
+ [Obsolete("GetColumn is deprecated. Use the array operator instead.")]
public Vector3 GetColumn(int index)
{
return this[index];
}
+ ///
+ /// Deprecated, please use the array operator instead.
+ ///
+ /// Which column.
+ /// The vector to set the column to.
+ [Obsolete("SetColumn is deprecated. Use the array operator instead.")]
public void SetColumn(int index, Vector3 value)
{
this[index] = value;
}
- [Obsolete("GetAxis is deprecated. Use GetColumn instead.")]
+ ///
+ /// Deprecated, please use the array operator instead.
+ ///
+ /// Which column.
+ /// One of `Column0`, `Column1`, or `Column2`.
+ [Obsolete("GetAxis is deprecated. Use the array operator instead.")]
public Vector3 GetAxis(int axis)
{
return new Vector3(this.Row0[axis], this.Row1[axis], this.Row2[axis]);
}
+ ///
+ /// This function considers a discretization of rotations into
+ /// 24 points on unit sphere, lying along the vectors (x, y, z) with
+ /// each component being either -1, 0, or 1, and returns the index
+ /// of the point best representing the orientation of the object.
+ /// It is mainly used by the editor.
+ ///
+ /// For further details, refer to the Godot source code.
+ ///
+ /// The orthogonal index.
public int GetOrthogonalIndex()
{
var orth = this;
@@ -285,11 +400,17 @@ namespace Godot
real_t v = row[j];
if (v > 0.5f)
+ {
v = 1.0f;
+ }
else if (v < -0.5f)
+ {
v = -1.0f;
+ }
else
+ {
v = 0f;
+ }
row[j] = v;
@@ -300,12 +421,18 @@ namespace Godot
for (int i = 0; i < 24; i++)
{
if (orth == _orthoBases[i])
+ {
return i;
+ }
}
return 0;
}
+ ///
+ /// Returns the inverse of the matrix.
+ ///
+ /// The inverse matrix.
public Basis Inverse()
{
real_t cofac00 = Row1[1] * Row2[2] - Row1[2] * Row2[1];
@@ -315,7 +442,9 @@ namespace Godot
real_t det = Row0[0] * cofac00 + Row0[1] * cofac10 + Row0[2] * cofac20;
if (det == 0)
+ {
throw new InvalidOperationException("Matrix determinant is zero and cannot be inverted.");
+ }
real_t detInv = 1.0f / det;
@@ -334,11 +463,17 @@ namespace Godot
);
}
+ ///
+ /// Returns the orthonormalized version of the basis matrix (useful to
+ /// call occasionally to avoid rounding errors for orthogonal matrices).
+ /// This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
+ ///
+ /// An orthonormalized basis matrix.
public Basis Orthonormalized()
{
- Vector3 column0 = GetColumn(0);
- Vector3 column1 = GetColumn(1);
- Vector3 column2 = GetColumn(2);
+ Vector3 column0 = this[0];
+ Vector3 column1 = this[1];
+ Vector3 column2 = this[2];
column0.Normalize();
column1 = column1 - column0 * column0.Dot(column1);
@@ -349,48 +484,86 @@ namespace Godot
return new Basis(column0, column1, column2);
}
+ ///
+ /// Introduce an additional rotation around the given `axis`
+ /// by `phi` (in radians). The axis must be a normalized vector.
+ ///
+ /// The axis to rotate around. Must be normalized.
+ /// The angle to rotate, in radians.
+ /// The rotated basis matrix.
public Basis Rotated(Vector3 axis, real_t phi)
{
return new Basis(axis, phi) * this;
}
+ ///
+ /// Introduce an additional scaling specified by the given 3D scaling factor.
+ ///
+ /// The scale to introduce.
+ /// The scaled basis matrix.
public Basis Scaled(Vector3 scale)
{
- var b = this;
+ Basis b = this;
b.Row0 *= scale.x;
b.Row1 *= scale.y;
b.Row2 *= scale.z;
return b;
}
- public Basis Slerp(Basis target, real_t t)
+ ///
+ /// Assuming that the matrix is a proper rotation matrix, slerp performs
+ /// a spherical-linear interpolation with another rotation matrix.
+ ///
+ /// The destination basis for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting basis matrix of the interpolation.
+ public Basis Slerp(Basis target, real_t weight)
{
- var from = new Quat(this);
- var to = new Quat(target);
+ Quat from = new Quat(this);
+ Quat to = new Quat(target);
- var b = new Basis(from.Slerp(to, t));
- b.Row0 *= Mathf.Lerp(Row0.Length(), target.Row0.Length(), t);
- b.Row1 *= Mathf.Lerp(Row1.Length(), target.Row1.Length(), t);
- b.Row2 *= Mathf.Lerp(Row2.Length(), target.Row2.Length(), t);
+ Basis b = new Basis(from.Slerp(to, weight));
+ b.Row0 *= Mathf.Lerp(Row0.Length(), target.Row0.Length(), weight);
+ b.Row1 *= Mathf.Lerp(Row1.Length(), target.Row1.Length(), weight);
+ b.Row2 *= Mathf.Lerp(Row2.Length(), target.Row2.Length(), weight);
return b;
}
+ ///
+ /// Transposed dot product with the X axis of the matrix.
+ ///
+ /// A vector to calculate the dot product with.
+ /// The resulting dot product.
public real_t Tdotx(Vector3 with)
{
return this.Row0[0] * with[0] + this.Row1[0] * with[1] + this.Row2[0] * with[2];
}
+ ///
+ /// Transposed dot product with the Y axis of the matrix.
+ ///
+ /// A vector to calculate the dot product with.
+ /// The resulting dot product.
public real_t Tdoty(Vector3 with)
{
return this.Row0[1] * with[0] + this.Row1[1] * with[1] + this.Row2[1] * with[2];
}
+ ///
+ /// Transposed dot product with the Z axis of the matrix.
+ ///
+ /// A vector to calculate the dot product with.
+ /// The resulting dot product.
public real_t Tdotz(Vector3 with)
{
return this.Row0[2] * with[0] + this.Row1[2] * with[1] + this.Row2[2] * with[2];
}
+ ///
+ /// Returns the transposed version of the basis matrix.
+ ///
+ /// The transposed basis matrix.
public Basis Transposed()
{
var tr = this;
@@ -410,6 +583,11 @@ namespace Godot
return tr;
}
+ ///
+ /// Returns a vector transformed (multiplied) by the basis matrix.
+ ///
+ /// A vector to transform.
+ /// The transfomed vector.
public Vector3 Xform(Vector3 v)
{
return new Vector3
@@ -420,6 +598,14 @@ namespace Godot
);
}
+ ///
+ /// Returns a vector transformed (multiplied) by the transposed basis matrix.
+ ///
+ /// Note: This results in a multiplication by the inverse of the
+ /// basis matrix only if it represents a rotation-reflection.
+ ///
+ /// A vector to inversely transform.
+ /// The inversely transfomed vector.
public Vector3 XformInv(Vector3 v)
{
return new Vector3
@@ -430,6 +616,12 @@ namespace Godot
);
}
+ ///
+ /// Returns the basis's rotation in the form of a quaternion.
+ /// See if you need Euler angles, but keep in
+ /// mind that quaternions should generally be preferred to Euler angles.
+ ///
+ /// A representing the basis's rotation.
public Quat Quat()
{
real_t trace = Row0[0] + Row1[1] + Row2[2];
@@ -514,11 +706,33 @@ namespace Godot
private static readonly Basis _flipY = new Basis(1, 0, 0, 0, -1, 0, 0, 0, 1);
private static readonly Basis _flipZ = new Basis(1, 0, 0, 0, 1, 0, 0, 0, -1);
+ ///
+ /// The identity basis, with no rotation or scaling applied.
+ /// This is used as a replacement for `Basis()` in GDScript.
+ /// Do not use `new Basis()` with no arguments in C#, because it sets all values to zero.
+ ///
+ /// Equivalent to `new Basis(Vector3.Right, Vector3.Up, Vector3.Back)`.
public static Basis Identity { get { return _identity; } }
+ ///
+ /// The basis that will flip something along the X axis when used in a transformation.
+ ///
+ /// Equivalent to `new Basis(Vector3.Left, Vector3.Up, Vector3.Back)`.
public static Basis FlipX { get { return _flipX; } }
+ ///
+ /// The basis that will flip something along the Y axis when used in a transformation.
+ ///
+ /// Equivalent to `new Basis(Vector3.Right, Vector3.Down, Vector3.Back)`.
public static Basis FlipY { get { return _flipY; } }
+ ///
+ /// The basis that will flip something along the Z axis when used in a transformation.
+ ///
+ /// Equivalent to `new Basis(Vector3.Right, Vector3.Up, Vector3.Forward)`.
public static Basis FlipZ { get { return _flipZ; } }
+ ///
+ /// Constructs a pure rotation basis matrix from the given quaternion.
+ ///
+ /// The quaternion to create the basis from.
public Basis(Quat quat)
{
real_t s = 2.0f / quat.LengthSquared;
@@ -541,26 +755,41 @@ namespace Godot
Row2 = new Vector3(xz - wy, yz + wx, 1.0f - (xx + yy));
}
- public Basis(Vector3 euler)
+ ///
+ /// Constructs a pure rotation basis matrix from the given Euler angles
+ /// (in the YXZ convention: when *composing*, first Y, then X, and Z last),
+ /// given in the vector format as (X angle, Y angle, Z angle).
+ ///
+ /// Consider using the constructor instead, which
+ /// uses a quaternion instead of Euler angles.
+ ///
+ /// The Euler angles to create the basis from.
+ public Basis(Vector3 eulerYXZ)
{
real_t c;
real_t s;
- c = Mathf.Cos(euler.x);
- s = Mathf.Sin(euler.x);
+ c = Mathf.Cos(eulerYXZ.x);
+ s = Mathf.Sin(eulerYXZ.x);
var xmat = new Basis(1, 0, 0, 0, c, -s, 0, s, c);
- c = Mathf.Cos(euler.y);
- s = Mathf.Sin(euler.y);
+ c = Mathf.Cos(eulerYXZ.y);
+ s = Mathf.Sin(eulerYXZ.y);
var ymat = new Basis(c, 0, s, 0, 1, 0, -s, 0, c);
- c = Mathf.Cos(euler.z);
- s = Mathf.Sin(euler.z);
+ c = Mathf.Cos(eulerYXZ.z);
+ s = Mathf.Sin(eulerYXZ.z);
var zmat = new Basis(c, -s, 0, s, c, 0, 0, 0, 1);
this = ymat * xmat * zmat;
}
+ ///
+ /// Constructs a pure rotation basis matrix, rotated around the given `axis`
+ /// by `phi` (in radians). The axis must be a normalized vector.
+ ///
+ /// The axis to rotate around. Must be normalized.
+ /// The angle to rotate, in radians.
public Basis(Vector3 axis, real_t phi)
{
Vector3 axisSq = new Vector3(axis.x * axis.x, axis.y * axis.y, axis.z * axis.z);
@@ -588,6 +817,12 @@ namespace Godot
Row2.y = xyzt + zyxs;
}
+ ///
+ /// Constructs a basis matrix from 3 axis vectors (matrix columns).
+ ///
+ /// The X vector, or Column0.
+ /// The Y vector, or Column1.
+ /// The Z vector, or Column2.
public Basis(Vector3 column0, Vector3 column1, Vector3 column2)
{
Row0 = new Vector3(column0.x, column1.x, column2.x);
@@ -643,6 +878,12 @@ namespace Godot
return Row0.Equals(other.Row0) && Row1.Equals(other.Row1) && Row2.Equals(other.Row2);
}
+ ///
+ /// Returns true if this basis and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other basis to compare.
+ /// Whether or not the matrices are approximately equal.
public bool IsEqualApprox(Basis other)
{
return Row0.IsEqualApprox(other.Row0) && Row1.IsEqualApprox(other.Row1) && Row2.IsEqualApprox(other.Row2);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Color.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Color.cs
index 0462ef11259..59b67e3315d 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Color.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Color.cs
@@ -3,15 +3,44 @@ using System.Runtime.InteropServices;
namespace Godot
{
+ ///
+ /// A color represented by red, green, blue, and alpha (RGBA) components.
+ /// The alpha component is often used for transparency.
+ /// Values are in floating-point and usually range from 0 to 1.
+ /// Some properties (such as CanvasItem.modulate) may accept values
+ /// greater than 1 (overbright or HDR colors).
+ ///
+ /// If you want to supply values in a range of 0 to 255, you should use
+ /// and the `r8`/`g8`/`b8`/`a8` properties.
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Color : IEquatable
{
+ ///
+ /// The color's red component, typically on the range of 0 to 1.
+ ///
public float r;
+
+ ///
+ /// The color's green component, typically on the range of 0 to 1.
+ ///
public float g;
+
+ ///
+ /// The color's blue component, typically on the range of 0 to 1.
+ ///
public float b;
+
+ ///
+ /// The color's alpha (transparency) component, typically on the range of 0 to 1.
+ ///
public float a;
+ ///
+ /// Wrapper for that uses the range 0 to 255 instead of 0 to 1.
+ ///
+ /// Getting is equivalent to multiplying by 255 and rounding. Setting is equivalent to dividing by 255.
public int r8
{
get
@@ -24,6 +53,10 @@ namespace Godot
}
}
+ ///
+ /// Wrapper for that uses the range 0 to 255 instead of 0 to 1.
+ ///
+ /// Getting is equivalent to multiplying by 255 and rounding. Setting is equivalent to dividing by 255.
public int g8
{
get
@@ -36,6 +69,10 @@ namespace Godot
}
}
+ ///
+ /// Wrapper for that uses the range 0 to 255 instead of 0 to 1.
+ ///
+ /// Getting is equivalent to multiplying by 255 and rounding. Setting is equivalent to dividing by 255.
public int b8
{
get
@@ -48,6 +85,10 @@ namespace Godot
}
}
+ ///
+ /// Wrapper for that uses the range 0 to 255 instead of 0 to 1.
+ ///
+ /// Getting is equivalent to multiplying by 255 and rounding. Setting is equivalent to dividing by 255.
public int a8
{
get
@@ -60,6 +101,10 @@ namespace Godot
}
}
+ ///
+ /// The HSV hue of this color, on the range 0 to 1.
+ ///
+ /// Getting is a long process, refer to the source code for details. Setting uses .
public float h
{
get
@@ -70,21 +115,31 @@ namespace Godot
float delta = max - min;
if (delta == 0)
+ {
return 0;
+ }
float h;
if (r == max)
+ {
h = (g - b) / delta; // Between yellow & magenta
+ }
else if (g == max)
+ {
h = 2 + (b - r) / delta; // Between cyan & yellow
+ }
else
+ {
h = 4 + (r - g) / delta; // Between magenta & cyan
+ }
h /= 6.0f;
if (h < 0)
+ {
h += 1.0f;
+ }
return h;
}
@@ -94,6 +149,10 @@ namespace Godot
}
}
+ ///
+ /// The HSV saturation of this color, on the range 0 to 1.
+ ///
+ /// Getting is equivalent to the ratio between the min and max RGB value. Setting uses .
public float s
{
get
@@ -103,7 +162,7 @@ namespace Godot
float delta = max - min;
- return max != 0 ? delta / max : 0;
+ return max == 0 ? 0 : delta / max;
}
set
{
@@ -111,6 +170,10 @@ namespace Godot
}
}
+ ///
+ /// The HSV value (brightness) of this color, on the range 0 to 1.
+ ///
+ /// Getting is equivalent to using `Max()` on the RGB components. Setting uses .
public float v
{
get
@@ -123,6 +186,14 @@ namespace Godot
}
}
+ ///
+ /// Returns a color according to the standardized name, with the
+ /// specified alpha value. Supported color names are the same as
+ /// the constants defined in .
+ ///
+ /// The name of the color.
+ /// The alpha (transparency) component represented on the range of 0 to 1. Default: 1.
+ /// The constructed color.
public static Color ColorN(string name, float alpha = 1f)
{
name = name.Replace(" ", String.Empty);
@@ -142,6 +213,10 @@ namespace Godot
return color;
}
+ ///
+ /// Access color components using their index.
+ ///
+ /// `[0]` is equivalent to `.r`, `[1]` is equivalent to `.g`, `[2]` is equivalent to `.b`, `[3]` is equivalent to `.a`.
public float this[int index]
{
get
@@ -182,6 +257,13 @@ namespace Godot
}
}
+ ///
+ /// Converts a color to HSV values. This is equivalent to using each of
+ /// the `h`/`s`/`v` properties, but much more efficient.
+ ///
+ /// Output parameter for the HSV hue.
+ /// Output parameter for the HSV saturation.
+ /// Output parameter for the HSV value.
public void ToHsv(out float hue, out float saturation, out float value)
{
float max = (float)Mathf.Max(r, Mathf.Max(g, b));
@@ -212,6 +294,16 @@ namespace Godot
value = max;
}
+ ///
+ /// Constructs a color from an HSV profile, with values on the
+ /// range of 0 to 1. This is equivalent to using each of
+ /// the `h`/`s`/`v` properties, but much more efficient.
+ ///
+ /// The HSV hue, typically on the range of 0 to 1.
+ /// The HSV saturation, typically on the range of 0 to 1.
+ /// The HSV value (brightness), typically on the range of 0 to 1.
+ /// The alpha (transparency) value, typically on the range of 0 to 1.
+ /// The constructed color.
public static Color FromHsv(float hue, float saturation, float value, float alpha = 1.0f)
{
if (saturation == 0)
@@ -249,6 +341,13 @@ namespace Godot
}
}
+ ///
+ /// Returns a new color resulting from blending this color over another.
+ /// If the color is opaque, the result is also opaque.
+ /// The second color may have a range of alpha values.
+ ///
+ /// The color to blend over.
+ /// This color blended over `over`.
public Color Blend(Color over)
{
Color res;
@@ -268,6 +367,10 @@ namespace Godot
return res;
}
+ ///
+ /// Returns the most contrasting color.
+ ///
+ /// The most contrasting color
public Color Contrasted()
{
return new Color(
@@ -278,6 +381,12 @@ namespace Godot
);
}
+ ///
+ /// Returns a new color resulting from making this color darker
+ /// by the specified ratio (on the range of 0 to 1).
+ ///
+ /// The ratio to darken by.
+ /// The darkened color.
public Color Darkened(float amount)
{
Color res = this;
@@ -287,6 +396,10 @@ namespace Godot
return res;
}
+ ///
+ /// Returns the inverted color: `(1 - r, 1 - g, 1 - b, a)`.
+ ///
+ /// The inverted color.
public Color Inverted()
{
return new Color(
@@ -297,6 +410,12 @@ namespace Godot
);
}
+ ///
+ /// Returns a new color resulting from making this color lighter
+ /// by the specified ratio (on the range of 0 to 1).
+ ///
+ /// The ratio to lighten by.
+ /// The darkened color.
public Color Lightened(float amount)
{
Color res = this;
@@ -306,18 +425,48 @@ namespace Godot
return res;
}
- public Color LinearInterpolate(Color c, float t)
+ ///
+ /// Returns the result of the linear interpolation between
+ /// this color and `to` by amount `weight`.
+ ///
+ /// The destination color for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting color of the interpolation.
+ public Color LinearInterpolate(Color to, float weight)
{
- var res = this;
-
- res.r += t * (c.r - r);
- res.g += t * (c.g - g);
- res.b += t * (c.b - b);
- res.a += t * (c.a - a);
-
- return res;
+ return new Color
+ (
+ Mathf.Lerp(r, to.r, weight),
+ Mathf.Lerp(g, to.g, weight),
+ Mathf.Lerp(b, to.b, weight),
+ Mathf.Lerp(a, to.a, weight)
+ );
}
+ ///
+ /// Returns the result of the linear interpolation between
+ /// this color and `to` by color amount `weight`.
+ ///
+ /// The destination color for interpolation.
+ /// A color with components on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting color of the interpolation.
+ public Color LinearInterpolate(Color to, Color weight)
+ {
+ return new Color
+ (
+ Mathf.Lerp(r, to.r, weight.r),
+ Mathf.Lerp(g, to.g, weight.g),
+ Mathf.Lerp(b, to.b, weight.b),
+ Mathf.Lerp(a, to.a, weight.a)
+ );
+ }
+
+ ///
+ /// Returns the color's 32-bit integer in ABGR format
+ /// (each byte represents a component of the ABGR profile).
+ /// ABGR is the reversed version of the default format.
+ ///
+ /// An int representing this color in ABGR32 format.
public int ToAbgr32()
{
int c = (byte)Math.Round(a * 255);
@@ -331,6 +480,12 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the color's 64-bit integer in ABGR format
+ /// (each byte represents a component of the ABGR profile).
+ /// ABGR is the reversed version of the default format.
+ ///
+ /// An int representing this color in ABGR64 format.
public long ToAbgr64()
{
long c = (ushort)Math.Round(a * 65535);
@@ -344,6 +499,12 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the color's 32-bit integer in ARGB format
+ /// (each byte represents a component of the ARGB profile).
+ /// ARGB is more compatible with DirectX, but not used much in Godot.
+ ///
+ /// An int representing this color in ARGB32 format.
public int ToArgb32()
{
int c = (byte)Math.Round(a * 255);
@@ -357,6 +518,12 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the color's 64-bit integer in ARGB format
+ /// (each word represents a component of the ARGB profile).
+ /// ARGB is more compatible with DirectX, but not used much in Godot.
+ ///
+ /// A long representing this color in ARGB64 format.
public long ToArgb64()
{
long c = (ushort)Math.Round(a * 65535);
@@ -370,6 +537,12 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the color's 32-bit integer in RGBA format
+ /// (each byte represents a component of the RGBA profile).
+ /// RGBA is Godot's default and recommended format.
+ ///
+ /// An int representing this color in RGBA32 format.
public int ToRgba32()
{
int c = (byte)Math.Round(r * 255);
@@ -383,6 +556,12 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the color's 64-bit integer in RGBA format
+ /// (each word represents a component of the RGBA profile).
+ /// RGBA is Godot's default and recommended format.
+ ///
+ /// A long representing this color in RGBA64 format.
public long ToRgba64()
{
long c = (ushort)Math.Round(r * 65535);
@@ -396,6 +575,11 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the color's HTML hexadecimal color string in RGBA format.
+ ///
+ /// Whether or not to include alpha. If false, the color is RGB instead of RGBA.
+ /// A string for the HTML hexadecimal representation of this color.
public string ToHtml(bool includeAlpha = true)
{
var txt = string.Empty;
@@ -410,7 +594,13 @@ namespace Godot
return txt;
}
- // Constructors
+ ///
+ /// Constructs a color from RGBA values on the range of 0 to 1.
+ ///
+ /// The color's red component, typically on the range of 0 to 1.
+ /// The color's green component, typically on the range of 0 to 1.
+ /// The color's blue component, typically on the range of 0 to 1.
+ /// The color's alpha (transparency) value, typically on the range of 0 to 1. Default: 1.
public Color(float r, float g, float b, float a = 1.0f)
{
this.r = r;
@@ -419,6 +609,24 @@ namespace Godot
this.a = a;
}
+ ///
+ /// Constructs a color from an existing color and an alpha value.
+ ///
+ /// The color to construct from. Only its RGB values are used.
+ /// The color's alpha (transparency) value, typically on the range of 0 to 1. Default: 1.
+ public Color(Color c, float a = 1.0f)
+ {
+ r = c.r;
+ g = c.g;
+ b = c.b;
+ this.a = a;
+ }
+
+ ///
+ /// Constructs a color from a 32-bit integer
+ /// (each byte represents a component of the RGBA profile).
+ ///
+ /// The int representing the color.
public Color(int rgba)
{
a = (rgba & 0xFF) / 255.0f;
@@ -430,6 +638,11 @@ namespace Godot
r = (rgba & 0xFF) / 255.0f;
}
+ ///
+ /// Constructs a color from a 64-bit integer
+ /// (each word represents a component of the RGBA profile).
+ ///
+ /// The long representing the color.
public Color(long rgba)
{
a = (rgba & 0xFFFF) / 65535.0f;
@@ -470,9 +683,13 @@ namespace Godot
}
if (i == 0)
+ {
ig += v * 16;
+ }
else
+ {
ig += v;
+ }
}
return ig;
@@ -490,9 +707,13 @@ namespace Godot
int lv = v & 0xF;
if (lv < 10)
+ {
c = (char)('0' + lv);
+ }
else
+ {
c = (char)('a' + lv - 10);
+ }
v >>= 4;
ret = c + ret;
@@ -504,10 +725,14 @@ namespace Godot
internal static bool HtmlIsValid(string color)
{
if (color.Length == 0)
+ {
return false;
+ }
if (color[0] == '#')
+ {
color = color.Substring(1, color.Length - 1);
+ }
bool alpha;
@@ -526,7 +751,9 @@ namespace Godot
if (alpha)
{
if (ParseCol8(color, 0) < 0)
+ {
return false;
+ }
}
int from = alpha ? 2 : 0;
@@ -541,11 +768,24 @@ namespace Godot
return true;
}
+ ///
+ /// Returns a color constructed from integer red, green, blue, and alpha channels.
+ /// Each channel should have 8 bits of information ranging from 0 to 255.
+ ///
+ /// The red component represented on the range of 0 to 255.
+ /// The green component represented on the range of 0 to 255.
+ /// The blue component represented on the range of 0 to 255.
+ /// The alpha (transparency) component represented on the range of 0 to 255.
+ /// The constructed color.
public static Color Color8(byte r8, byte g8, byte b8, byte a8 = 255)
{
return new Color(r8 / 255f, g8 / 255f, b8 / 255f, a8 / 255f);
}
+ ///
+ /// Constructs a color from the HTML hexadecimal color string in RGBA format.
+ ///
+ /// A string for the HTML hexadecimal representation of this color.
public Color(string rgba)
{
if (rgba.Length == 0)
@@ -690,13 +930,13 @@ namespace Godot
if (Mathf.IsEqualApprox(left.g, right.g))
{
if (Mathf.IsEqualApprox(left.b, right.b))
+ {
return left.a < right.a;
+ }
return left.b < right.b;
}
-
return left.g < right.g;
}
-
return left.r < right.r;
}
@@ -707,13 +947,13 @@ namespace Godot
if (Mathf.IsEqualApprox(left.g, right.g))
{
if (Mathf.IsEqualApprox(left.b, right.b))
+ {
return left.a > right.a;
+ }
return left.b > right.b;
}
-
return left.g > right.g;
}
-
return left.r > right.r;
}
@@ -732,6 +972,12 @@ namespace Godot
return r == other.r && g == other.g && b == other.b && a == other.a;
}
+ ///
+ /// Returns true if this color and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other color to compare.
+ /// Whether or not the colors are approximately equal.
public bool IsEqualApprox(Color other)
{
return Mathf.IsEqualApprox(r, other.r) && Mathf.IsEqualApprox(g, other.g) && Mathf.IsEqualApprox(b, other.b) && Mathf.IsEqualApprox(a, other.a);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Colors.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Colors.cs
index f41f5e9fc84..d05a0414aa5 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Colors.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Colors.cs
@@ -3,6 +3,10 @@ using System.Collections.Generic;
namespace Godot
{
+ ///
+ /// This class contains color constants created from standardized color names.
+ /// The standardized color set is based on the X11 and .NET color names.
+ ///
public static class Colors
{
// Color names and values are derived from core/color_names.inc
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
index 4f7aa99df86..6eecc262d6c 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Mathf.cs
@@ -11,79 +11,185 @@ namespace Godot
{
// Define constants with Decimal precision and cast down to double or float.
+ ///
+ /// The circle constant, the circumference of the unit circle in radians.
+ ///
public const real_t Tau = (real_t) 6.2831853071795864769252867666M; // 6.2831855f and 6.28318530717959
+
+ ///
+ /// Constant that represents how many times the diameter of a circle
+ /// fits around its perimeter. This is equivalent to `Mathf.Tau / 2`.
+ ///
public const real_t Pi = (real_t) 3.1415926535897932384626433833M; // 3.1415927f and 3.14159265358979
+
+ ///
+ /// Positive infinity. For negative infinity, use `-Mathf.Inf`.
+ ///
public const real_t Inf = real_t.PositiveInfinity;
+
+ ///
+ /// "Not a Number", an invalid value. `NaN` has special properties, including
+ /// that it is not equal to itself. It is output by some invalid operations,
+ /// such as dividing zero by zero.
+ ///
public const real_t NaN = real_t.NaN;
private const real_t Deg2RadConst = (real_t) 0.0174532925199432957692369077M; // 0.0174532924f and 0.0174532925199433
private const real_t Rad2DegConst = (real_t) 57.295779513082320876798154814M; // 57.29578f and 57.2957795130823
+ ///
+ /// Returns the absolute value of `s` (i.e. positive value).
+ ///
+ /// The input number.
+ /// The absolute value of `s`.
public static int Abs(int s)
{
return Math.Abs(s);
}
+ ///
+ /// Returns the absolute value of `s` (i.e. positive value).
+ ///
+ /// The input number.
+ /// The absolute value of `s`.
public static real_t Abs(real_t s)
{
return Math.Abs(s);
}
+ ///
+ /// Returns the arc cosine of `s` in radians. Use to get the angle of cosine s.
+ ///
+ /// The input cosine value. Must be on the range of -1.0 to 1.0.
+ /// An angle that would result in the given cosine value. On the range `0` to `Tau/2`.
public static real_t Acos(real_t s)
{
return (real_t)Math.Acos(s);
}
+ ///
+ /// Returns the arc sine of `s` in radians. Use to get the angle of sine s.
+ ///
+ /// The input sine value. Must be on the range of -1.0 to 1.0.
+ /// An angle that would result in the given sine value. On the range `-Tau/4` to `Tau/4`.
public static real_t Asin(real_t s)
{
return (real_t)Math.Asin(s);
}
+ ///
+ /// Returns the arc tangent of `s` in radians. Use to get the angle of tangent s.
+ ///
+ /// The method cannot know in which quadrant the angle should fall.
+ /// See if you have both `y` and `x`.
+ ///
+ /// The input tangent value.
+ /// An angle that would result in the given tangent value. On the range `-Tau/4` to `Tau/4`.
public static real_t Atan(real_t s)
{
return (real_t)Math.Atan(s);
}
+ ///
+ /// Returns the arc tangent of `y` and `x` in radians. Use to get the angle
+ /// of the tangent of `y/x`. To compute the value, the method takes into
+ /// account the sign of both arguments in order to determine the quadrant.
+ ///
+ /// Important note: The Y coordinate comes first, by convention.
+ ///
+ /// The Y coordinate of the point to find the angle to.
+ /// The X coordinate of the point to find the angle to.
+ /// An angle that would result in the given tangent value. On the range `-Tau/2` to `Tau/2`.
public static real_t Atan2(real_t y, real_t x)
{
return (real_t)Math.Atan2(y, x);
}
+ ///
+ /// Converts a 2D point expressed in the cartesian coordinate
+ /// system (X and Y axis) to the polar coordinate system
+ /// (a distance from the origin and an angle).
+ ///
+ /// The input X coordinate.
+ /// The input Y coordinate.
+ /// A with X representing the distance and Y representing the angle.
public static Vector2 Cartesian2Polar(real_t x, real_t y)
{
return new Vector2(Sqrt(x * x + y * y), Atan2(y, x));
}
+ ///
+ /// Rounds `s` upward (towards positive infinity).
+ ///
+ /// The number to ceil.
+ /// The smallest whole number that is not less than `s`.
public static real_t Ceil(real_t s)
{
return (real_t)Math.Ceiling(s);
}
+ ///
+ /// Clamps a `value` so that it is not less than `min` and not more than `max`.
+ ///
+ /// The value to clamp.
+ /// The minimum allowed value.
+ /// The maximum allowed value.
+ /// The clamped value.
public static int Clamp(int value, int min, int max)
{
return value < min ? min : value > max ? max : value;
}
+ ///
+ /// Clamps a `value` so that it is not less than `min` and not more than `max`.
+ ///
+ /// The value to clamp.
+ /// The minimum allowed value.
+ /// The maximum allowed value.
+ /// The clamped value.
public static real_t Clamp(real_t value, real_t min, real_t max)
{
return value < min ? min : value > max ? max : value;
}
+ ///
+ /// Returns the cosine of angle `s` in radians.
+ ///
+ /// The angle in radians.
+ /// The cosine of that angle.
public static real_t Cos(real_t s)
{
return (real_t)Math.Cos(s);
}
+ ///
+ /// Returns the hyperbolic cosine of angle `s` in radians.
+ ///
+ /// The angle in radians.
+ /// The hyperbolic cosine of that angle.
public static real_t Cosh(real_t s)
{
return (real_t)Math.Cosh(s);
}
+ ///
+ /// Converts an angle expressed in degrees to radians.
+ ///
+ /// An angle expressed in degrees.
+ /// The same angle expressed in radians.
public static real_t Deg2Rad(real_t deg)
{
return deg * Deg2RadConst;
}
+ ///
+ /// Easing function, based on exponent. The curve values are:
+ /// `0` is constant, `1` is linear, `0` to `1` is ease-in, `1` or more is ease-out.
+ /// Negative values are in-out/out-in.
+ ///
+ /// The value to ease.
+ /// `0` is constant, `1` is linear, `0` to `1` is ease-in, `1` or more is ease-out.
+ /// The eased value.
public static real_t Ease(real_t s, real_t curve)
{
if (s < 0f)
@@ -118,21 +224,47 @@ namespace Godot
return 0f;
}
+ ///
+ /// The natural exponential function. It raises the mathematical
+ /// constant `e` to the power of `s` and returns it.
+ ///
+ /// The exponent to raise `e` to.
+ /// `e` raised to the power of `s`.
public static real_t Exp(real_t s)
{
return (real_t)Math.Exp(s);
}
+ ///
+ /// Rounds `s` downward (towards negative infinity).
+ ///
+ /// The number to floor.
+ /// The largest whole number that is not more than `s`.
public static real_t Floor(real_t s)
{
return (real_t)Math.Floor(s);
}
+ ///
+ /// Returns a normalized value considering the given range.
+ /// This is the opposite of .
+ ///
+ /// The interpolated value.
+ /// The destination value for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting value of the inverse interpolation.
public static real_t InverseLerp(real_t from, real_t to, real_t weight)
{
return (weight - from) / (to - from);
}
+ ///
+ /// Returns true if `a` and `b` are approximately equal to each other.
+ /// The comparison is done using a tolerance calculation with .
+ ///
+ /// One of the values.
+ /// The other value.
+ /// A bool for whether or not the two values are approximately equal.
public static bool IsEqualApprox(real_t a, real_t b)
{
// Check for exact equality first, required to handle "infinity" values.
@@ -149,26 +281,62 @@ namespace Godot
return Abs(a - b) < tolerance;
}
+ ///
+ /// Returns whether `s` is an infinity value (either positive infinity or negative infinity).
+ ///
+ /// The value to check.
+ /// A bool for whether or not the value is an infinity value.
public static bool IsInf(real_t s)
{
return real_t.IsInfinity(s);
}
+ ///
+ /// Returns whether `s` is a `NaN` ("Not a Number" or invalid) value.
+ ///
+ /// The value to check.
+ /// A bool for whether or not the value is a `NaN` value.
public static bool IsNaN(real_t s)
{
return real_t.IsNaN(s);
}
+ ///
+ /// Returns true if `s` is approximately zero.
+ /// The comparison is done using a tolerance calculation with .
+ ///
+ /// This method is faster than using with one value as zero.
+ ///
+ /// The value to check.
+ /// A bool for whether or not the value is nearly zero.
public static bool IsZeroApprox(real_t s)
{
return Abs(s) < Epsilon;
}
+ ///
+ /// Linearly interpolates between two values by a normalized value.
+ /// This is the opposite .
+ ///
+ /// The start value for interpolation.
+ /// The destination value for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting value of the interpolation.
public static real_t Lerp(real_t from, real_t to, real_t weight)
{
return from + (to - from) * weight;
}
+ ///
+ /// Linearly interpolates between two angles (in radians) by a normalized value.
+ ///
+ /// Similar to ,
+ /// but interpolates correctly when the angles wrap around .
+ ///
+ /// The start angle for interpolation.
+ /// The destination angle for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting angle of the interpolation.
public static real_t LerpAngle(real_t from, real_t to, real_t weight)
{
real_t difference = (to - from) % Mathf.Tau;
@@ -176,36 +344,81 @@ namespace Godot
return from + distance * weight;
}
+ ///
+ /// Natural logarithm. The amount of time needed to reach a certain level of continuous growth.
+ ///
+ /// Note: This is not the same as the "log" function on most calculators, which uses a base 10 logarithm.
+ ///
+ /// The input value.
+ /// The natural log of `s`.
public static real_t Log(real_t s)
{
return (real_t)Math.Log(s);
}
+ ///
+ /// Returns the maximum of two values.
+ ///
+ /// One of the values.
+ /// The other value.
+ /// Whichever of the two values is higher.
public static int Max(int a, int b)
{
return a > b ? a : b;
}
+ ///
+ /// Returns the maximum of two values.
+ ///
+ /// One of the values.
+ /// The other value.
+ /// Whichever of the two values is higher.
public static real_t Max(real_t a, real_t b)
{
return a > b ? a : b;
}
+ ///
+ /// Returns the minimum of two values.
+ ///
+ /// One of the values.
+ /// The other value.
+ /// Whichever of the two values is lower.
public static int Min(int a, int b)
{
return a < b ? a : b;
}
+ ///
+ /// Returns the minimum of two values.
+ ///
+ /// One of the values.
+ /// The other value.
+ /// Whichever of the two values is lower.
public static real_t Min(real_t a, real_t b)
{
return a < b ? a : b;
}
+ ///
+ /// Moves `from` toward `to` by the `delta` value.
+ ///
+ /// Use a negative delta value to move away.
+ ///
+ /// The start value.
+ /// The value to move towards.
+ /// The amount to move by.
+ /// The value after moving.
public static real_t MoveToward(real_t from, real_t to, real_t delta)
{
return Abs(to - from) <= delta ? to : from + Sign(to - from) * delta;
}
+ ///
+ /// Returns the nearest larger power of 2 for the integer `value`.
+ ///
+ /// The input value.
+ /// The nearest larger power of 2.
public static int NearestPo2(int value)
{
value--;
@@ -218,14 +431,25 @@ namespace Godot
return value;
}
+ ///
+ /// Converts a 2D point expressed in the polar coordinate
+ /// system (a distance from the origin `r` and an angle `th`)
+ /// to the cartesian coordinate system (X and Y axis).
+ ///
+ /// The distance from the origin.
+ /// The angle of the point.
+ /// A representing the cartesian coordinate.
public static Vector2 Polar2Cartesian(real_t r, real_t th)
{
return new Vector2(r * Cos(th), r * Sin(th));
}
///
- /// Performs a canonical Modulus operation, where the output is on the range [0, b).
+ /// Performs a canonical Modulus operation, where the output is on the range `[0, b)`.
///
+ /// The dividend, the primary input.
+ /// The divisor. The output is on the range `[0, b)`.
+ /// The resulting output.
public static int PosMod(int a, int b)
{
int c = a % b;
@@ -237,8 +461,11 @@ namespace Godot
}
///
- /// Performs a canonical Modulus operation, where the output is on the range [0, b).
+ /// Performs a canonical Modulus operation, where the output is on the range `[0, b)`.
///
+ /// The dividend, the primary input.
+ /// The divisor. The output is on the range `[0, b)`.
+ /// The resulting output.
public static real_t PosMod(real_t a, real_t b)
{
real_t c = a % b;
@@ -249,43 +476,89 @@ namespace Godot
return c;
}
+ ///
+ /// Returns the result of `x` raised to the power of `y`.
+ ///
+ /// The base.
+ /// The exponent.
+ /// `x` raised to the power of `y`.
public static real_t Pow(real_t x, real_t y)
{
return (real_t)Math.Pow(x, y);
}
+ ///
+ /// Converts an angle expressed in radians to degrees.
+ ///
+ /// An angle expressed in radians.
+ /// The same angle expressed in degrees.
public static real_t Rad2Deg(real_t rad)
{
return rad * Rad2DegConst;
}
+ ///
+ /// Rounds `s` to the nearest whole number,
+ /// with halfway cases rounded towards the nearest multiple of two.
+ ///
+ /// The number to round.
+ /// The rounded number.
public static real_t Round(real_t s)
{
return (real_t)Math.Round(s);
}
+ ///
+ /// Returns the sign of `s`: `-1` or `1`. Returns `0` if `s` is `0`.
+ ///
+ /// The input number.
+ /// One of three possible values: `1`, `-1`, or `0`.
public static int Sign(int s)
{
if (s == 0) return 0;
return s < 0 ? -1 : 1;
}
+ ///
+ /// Returns the sign of `s`: `-1` or `1`. Returns `0` if `s` is `0`.
+ ///
+ /// The input number.
+ /// One of three possible values: `1`, `-1`, or `0`.
public static int Sign(real_t s)
{
if (s == 0) return 0;
return s < 0 ? -1 : 1;
}
+ ///
+ /// Returns the sine of angle `s` in radians.
+ ///
+ /// The angle in radians.
+ /// The sine of that angle.
public static real_t Sin(real_t s)
{
return (real_t)Math.Sin(s);
}
+ ///
+ /// Returns the hyperbolic sine of angle `s` in radians.
+ ///
+ /// The angle in radians.
+ /// The hyperbolic sine of that angle.
public static real_t Sinh(real_t s)
{
return (real_t)Math.Sinh(s);
}
+ ///
+ /// Returns a number smoothly interpolated between `from` and `to`,
+ /// based on the `weight`. Similar to ,
+ /// but interpolates faster at the beginning and slower at the end.
+ ///
+ /// The start value for interpolation.
+ /// The destination value for interpolation.
+ /// A value representing the amount of interpolation.
+ /// The resulting value of the interpolation.
public static real_t SmoothStep(real_t from, real_t to, real_t weight)
{
if (IsEqualApprox(from, to))
@@ -296,11 +569,25 @@ namespace Godot
return x * x * (3 - 2 * x);
}
+ ///
+ /// Returns the square root of `s`, where `s` is a non-negative number.
+ ///
+ /// If you need negative inputs, use `System.Numerics.Complex`.
+ ///
+ /// The input number. Must not be negative.
+ /// The square root of `s`.
public static real_t Sqrt(real_t s)
{
return (real_t)Math.Sqrt(s);
}
+ ///
+ /// Returns the position of the first non-zero digit, after the
+ /// decimal point. Note that the maximum return value is 10,
+ /// which is a design decision in the implementation.
+ ///
+ /// The input value.
+ /// The position of the first non-zero digit.
public static int StepDecimals(real_t step)
{
double[] sd = new double[] {
@@ -326,32 +613,68 @@ namespace Godot
return 0;
}
+ ///
+ /// Snaps float value `s` to a given `step`.
+ /// This can also be used to round a floating point
+ /// number to an arbitrary number of decimals.
+ ///
+ /// The value to stepify.
+ /// The step size to snap to.
+ ///
public static real_t Stepify(real_t s, real_t step)
{
if (step != 0f)
{
- s = Floor(s / step + 0.5f) * step;
+ return Floor(s / step + 0.5f) * step;
}
return s;
}
+ ///
+ /// Returns the tangent of angle `s` in radians.
+ ///
+ /// The angle in radians.
+ /// The tangent of that angle.
public static real_t Tan(real_t s)
{
return (real_t)Math.Tan(s);
}
+ ///
+ /// Returns the hyperbolic tangent of angle `s` in radians.
+ ///
+ /// The angle in radians.
+ /// The hyperbolic tangent of that angle.
public static real_t Tanh(real_t s)
{
return (real_t)Math.Tanh(s);
}
+ ///
+ /// Wraps `value` between `min` and `max`. Usable for creating loop-alike
+ /// behavior or infinite surfaces. If `min` is `0`, this is equivalent
+ /// to , so prefer using that instead.
+ ///
+ /// The value to wrap.
+ /// The minimum allowed value and lower bound of the range.
+ /// The maximum allowed value and upper bound of the range.
+ /// The wrapped value.
public static int Wrap(int value, int min, int max)
{
int range = max - min;
return range == 0 ? min : min + ((value - min) % range + range) % range;
}
+ ///
+ /// Wraps `value` between `min` and `max`. Usable for creating loop-alike
+ /// behavior or infinite surfaces. If `min` is `0`, this is equivalent
+ /// to , so prefer using that instead.
+ ///
+ /// The value to wrap.
+ /// The minimum allowed value and lower bound of the range.
+ /// The maximum allowed value and upper bound of the range.
+ /// The wrapped value.
public static real_t Wrap(real_t value, real_t min, real_t max)
{
real_t range = max - min;
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs
index 1b7fd4906f6..c2f4701b5fa 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/MathfEx.cs
@@ -12,40 +12,89 @@ namespace Godot
{
// Define constants with Decimal precision and cast down to double or float.
+ ///
+ /// The natural number `e`.
+ ///
public const real_t E = (real_t) 2.7182818284590452353602874714M; // 2.7182817f and 2.718281828459045
+
+ ///
+ /// The square root of 2.
+ ///
public const real_t Sqrt2 = (real_t) 1.4142135623730950488016887242M; // 1.4142136f and 1.414213562373095
+ ///
+ /// A very small number used for float comparison with error tolerance.
+ /// 1e-06 with single-precision floats, but 1e-14 if `REAL_T_IS_DOUBLE`.
+ ///
#if REAL_T_IS_DOUBLE
public const real_t Epsilon = 1e-14; // Epsilon size should depend on the precision used.
#else
public const real_t Epsilon = 1e-06f;
#endif
+ ///
+ /// Returns the amount of digits after the decimal place.
+ ///
+ /// The input value.
+ /// The amount of digits.
public static int DecimalCount(real_t s)
{
return DecimalCount((decimal)s);
}
+ ///
+ /// Returns the amount of digits after the decimal place.
+ ///
+ /// The input value.
+ /// The amount of digits.
public static int DecimalCount(decimal s)
{
return BitConverter.GetBytes(decimal.GetBits(s)[3])[2];
}
+ ///
+ /// Rounds `s` upward (towards positive infinity).
+ ///
+ /// This is the same as , but returns an `int`.
+ ///
+ /// The number to ceil.
+ /// The smallest whole number that is not less than `s`.
public static int CeilToInt(real_t s)
{
return (int)Math.Ceiling(s);
}
+ ///
+ /// Rounds `s` downward (towards negative infinity).
+ ///
+ /// This is the same as , but returns an `int`.
+ ///
+ /// The number to floor.
+ /// The largest whole number that is not more than `s`.
public static int FloorToInt(real_t s)
{
return (int)Math.Floor(s);
}
+ ///
+ ///
+ ///
+ ///
+ ///
public static int RoundToInt(real_t s)
{
return (int)Math.Round(s);
}
+ ///
+ /// Returns true if `a` and `b` are approximately equal to each other.
+ /// The comparison is done using the provided tolerance value.
+ /// If you want the tolerance to be calculated for you, use .
+ ///
+ /// One of the values.
+ /// The other value.
+ /// The pre-calculated tolerance value.
+ /// A bool for whether or not the two values are equal.
public static bool IsEqualApprox(real_t a, real_t b, real_t tolerance)
{
// Check for exact equality first, required to handle "infinity" values.
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Plane.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Plane.cs
index 885845e3a46..cc273c906b1 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Plane.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Plane.cs
@@ -8,18 +8,33 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// Plane represents a normalized plane equation.
+ /// "Over" or "Above" the plane is considered the side of
+ /// the plane towards where the normal is pointing.
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Plane : IEquatable
{
private Vector3 _normal;
+ ///
+ /// The normal of the plane, which must be normalized.
+ /// In the scalar equation of the plane `ax + by + cz = d`, this is
+ /// the vector `(a, b, c)`, where `d` is the property.
+ ///
+ /// Equivalent to `x`, `y`, and `z`.
public Vector3 Normal
{
get { return _normal; }
set { _normal = value; }
}
+ ///
+ /// The X component of the plane's normal vector.
+ ///
+ /// Equivalent to 's X value.
public real_t x
{
get
@@ -32,6 +47,10 @@ namespace Godot
}
}
+ ///
+ /// The Y component of the plane's normal vector.
+ ///
+ /// Equivalent to 's Y value.
public real_t y
{
get
@@ -44,6 +63,10 @@ namespace Godot
}
}
+ ///
+ /// The Z component of the plane's normal vector.
+ ///
+ /// Equivalent to 's Z value.
public real_t z
{
get
@@ -56,38 +79,82 @@ namespace Godot
}
}
+ ///
+ /// The distance from the origin to the plane (in the direction of
+ /// ). This value is typically non-negative.
+ /// In the scalar equation of the plane `ax + by + cz = d`,
+ /// this is `d`, while the `(a, b, c)` coordinates are represented
+ /// by the property.
+ ///
+ /// The plane's distance from the origin.
public real_t D { get; set; }
+ ///
+ /// The center of the plane, the point where the normal line intersects the plane.
+ ///
+ /// Equivalent to multiplied by `D`.
public Vector3 Center
{
get
{
return _normal * D;
}
+ set
+ {
+ _normal = value.Normalized();
+ D = value.Length();
+ }
}
+ ///
+ /// Returns the shortest distance from this plane to the position `point`.
+ ///
+ /// The position to use for the calcualtion.
+ /// The shortest distance.
public real_t DistanceTo(Vector3 point)
{
return _normal.Dot(point) - D;
}
+ ///
+ /// The center of the plane, the point where the normal line intersects the plane.
+ /// Deprecated, use the Center property instead.
+ ///
+ /// Equivalent to multiplied by `D`.
+ [Obsolete("GetAnyPoint is deprecated. Use the Center property instead.")]
public Vector3 GetAnyPoint()
{
return _normal * D;
}
+ ///
+ /// Returns true if point is inside the plane.
+ /// Comparison uses a custom minimum epsilon threshold.
+ ///
+ /// The point to check.
+ /// The tolerance threshold.
+ /// A bool for whether or not the plane has the point.
public bool HasPoint(Vector3 point, real_t epsilon = Mathf.Epsilon)
{
real_t dist = _normal.Dot(point) - D;
return Mathf.Abs(dist) <= epsilon;
}
+ ///
+ /// Returns the intersection point of the three planes: `b`, `c`,
+ /// and this plane. If no intersection is found, `null` is returned.
+ ///
+ /// One of the three planes to use in the calculation.
+ /// One of the three planes to use in the calculation.
+ /// The intersection, or `null` if none is found.
public Vector3? Intersect3(Plane b, Plane c)
{
real_t denom = _normal.Cross(b._normal).Dot(c._normal);
if (Mathf.IsZeroApprox(denom))
+ {
return null;
+ }
Vector3 result = b._normal.Cross(c._normal) * D +
c._normal.Cross(_normal) * b.D +
@@ -96,54 +163,94 @@ namespace Godot
return result / denom;
}
+ ///
+ /// Returns the intersection point of a ray consisting of the
+ /// position `from` and the direction normal `dir` with this plane.
+ /// If no intersection is found, `null` is returned.
+ ///
+ /// The start of the ray.
+ /// The direction of the ray, normalized.
+ /// The intersection, or `null` if none is found.
public Vector3? IntersectRay(Vector3 from, Vector3 dir)
{
real_t den = _normal.Dot(dir);
if (Mathf.IsZeroApprox(den))
+ {
return null;
+ }
real_t dist = (_normal.Dot(from) - D) / den;
// This is a ray, before the emitting pos (from) does not exist
if (dist > Mathf.Epsilon)
+ {
return null;
+ }
return from + dir * -dist;
}
+ ///
+ /// Returns the intersection point of a line segment from
+ /// position `begin` to position `end` with this plane.
+ /// If no intersection is found, `null` is returned.
+ ///
+ /// The start of the line segment.
+ /// The end of the line segment.
+ /// The intersection, or `null` if none is found.
public Vector3? IntersectSegment(Vector3 begin, Vector3 end)
{
Vector3 segment = begin - end;
real_t den = _normal.Dot(segment);
if (Mathf.IsZeroApprox(den))
+ {
return null;
+ }
real_t dist = (_normal.Dot(begin) - D) / den;
// Only allow dist to be in the range of 0 to 1, with tolerance.
if (dist < -Mathf.Epsilon || dist > 1.0f + Mathf.Epsilon)
+ {
return null;
+ }
return begin + segment * -dist;
}
+ ///
+ /// Returns true if `point` is located above the plane.
+ ///
+ /// The point to check.
+ /// A bool for whether or not the point is above the plane.
public bool IsPointOver(Vector3 point)
{
return _normal.Dot(point) > D;
}
+ ///
+ /// Returns the plane scaled to unit length.
+ ///
+ /// A normalized version of the plane.
public Plane Normalized()
{
real_t len = _normal.Length();
if (len == 0)
+ {
return new Plane(0, 0, 0, 0);
+ }
return new Plane(_normal / len, D / len);
}
+ ///
+ /// Returns the orthogonal projection of `point` into the plane.
+ ///
+ /// The point to project.
+ /// The projected point.
public Vector3 Project(Vector3 point)
{
return point - _normal * DistanceTo(point);
@@ -154,22 +261,56 @@ namespace Godot
private static readonly Plane _planeXZ = new Plane(0, 1, 0, 0);
private static readonly Plane _planeXY = new Plane(0, 0, 1, 0);
+ ///
+ /// A plane that extends in the Y and Z axes (normal vector points +X).
+ ///
+ /// Equivalent to `new Plane(1, 0, 0, 0)`.
public static Plane PlaneYZ { get { return _planeYZ; } }
+
+ ///
+ /// A plane that extends in the X and Z axes (normal vector points +Y).
+ ///
+ /// Equivalent to `new Plane(0, 1, 0, 0)`.
public static Plane PlaneXZ { get { return _planeXZ; } }
+
+ ///
+ /// A plane that extends in the X and Y axes (normal vector points +Z).
+ ///
+ /// Equivalent to `new Plane(0, 0, 1, 0)`.
public static Plane PlaneXY { get { return _planeXY; } }
- // Constructors
+ ///
+ /// Constructs a plane from four values. `a`, `b` and `c` become the
+ /// components of the resulting plane's vector.
+ /// `d` becomes the plane's distance from the origin.
+ ///
+ /// The X component of the plane's normal vector.
+ /// The Y component of the plane's normal vector.
+ /// The Z component of the plane's normal vector.
+ /// The plane's distance from the origin. This value is typically non-negative.
public Plane(real_t a, real_t b, real_t c, real_t d)
{
_normal = new Vector3(a, b, c);
this.D = d;
}
+
+ ///
+ /// Constructs a plane from a normal vector and the plane's distance to the origin.
+ ///
+ /// The normal of the plane, must be normalized.
+ /// The plane's distance from the origin. This value is typically non-negative.
public Plane(Vector3 normal, real_t d)
{
this._normal = normal;
this.D = d;
}
+ ///
+ /// Constructs a plane from the three points, given in clockwise order.
+ ///
+ /// The first point.
+ /// The second point.
+ /// The third point.
public Plane(Vector3 v1, Vector3 v2, Vector3 v3)
{
_normal = (v1 - v3).Cross(v1 - v2);
@@ -207,6 +348,12 @@ namespace Godot
return _normal == other._normal && D == other.D;
}
+ ///
+ /// Returns true if this plane and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other plane to compare.
+ /// Whether or not the planes are approximately equal.
public bool IsEqualApprox(Plane other)
{
return _normal.IsEqualApprox(other._normal) && Mathf.IsEqualApprox(D, other.D);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quat.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quat.cs
index 6702634c510..902c6b4662a 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quat.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quat.cs
@@ -8,15 +8,51 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// A unit quaternion used for representing 3D rotations.
+ /// Quaternions need to be normalized to be used for rotation.
+ ///
+ /// It is similar to Basis, which implements matrix representation of
+ /// rotations, and can be parametrized using both an axis-angle pair
+ /// or Euler angles. Basis stores rotation, scale, and shearing,
+ /// while Quat only stores rotation.
+ ///
+ /// Due to its compactness and the way it is stored in memory, certain
+ /// operations (obtaining axis-angle and performing SLERP, in particular)
+ /// are more efficient and robust against floating-point errors.
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Quat : IEquatable
{
+ ///
+ /// X component of the quaternion (imaginary `i` axis part).
+ /// Quaternion components should usually not be manipulated directly.
+ ///
public real_t x;
+
+ ///
+ /// Y component of the quaternion (imaginary `j` axis part).
+ /// Quaternion components should usually not be manipulated directly.
+ ///
public real_t y;
+
+ ///
+ /// Z component of the quaternion (imaginary `k` axis part).
+ /// Quaternion components should usually not be manipulated directly.
+ ///
public real_t z;
+
+ ///
+ /// W component of the quaternion (real part).
+ /// Quaternion components should usually not be manipulated directly.
+ ///
public real_t w;
+ ///
+ /// Access quaternion components using their index.
+ ///
+ /// `[0]` is equivalent to `.x`, `[1]` is equivalent to `.y`, `[2]` is equivalent to `.z`, `[3]` is equivalent to `.w`.
public real_t this[int index]
{
get
@@ -57,16 +93,35 @@ namespace Godot
}
}
+ ///
+ /// Returns the length (magnitude) of the quaternion.
+ ///
+ /// Equivalent to `Mathf.Sqrt(LengthSquared)`.
public real_t Length
{
get { return Mathf.Sqrt(LengthSquared); }
}
+ ///
+ /// Returns the squared length (squared magnitude) of the quaternion.
+ /// This method runs faster than , so prefer it if
+ /// you need to compare quaternions or need the squared length for some formula.
+ ///
+ /// Equivalent to `Dot(this)`.
public real_t LengthSquared
{
get { return Dot(this); }
}
+ ///
+ /// Performs a cubic spherical interpolation between quaternions `preA`,
+ /// this vector, `b`, and `postB`, by the given amount `t`.
+ ///
+ /// The destination quaternion.
+ /// A quaternion before this quaternion.
+ /// A quaternion after `b`.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The interpolated quaternion.
public Quat CubicSlerp(Quat b, Quat preA, Quat postB, real_t t)
{
real_t t2 = (1.0f - t) * t * 2f;
@@ -75,30 +130,63 @@ namespace Godot
return sp.Slerpni(sq, t2);
}
+ ///
+ /// Returns the dot product of two quaternions.
+ ///
+ /// The other quaternion.
+ /// The dot product.
public real_t Dot(Quat b)
{
return x * b.x + y * b.y + z * b.z + w * b.w;
}
+ ///
+ /// Returns Euler angles (in the YXZ convention: when decomposing,
+ /// first Z, then X, and Y last) corresponding to the rotation
+ /// represented by the unit quaternion. Returned vector contains
+ /// the rotation angles in the format (X angle, Y angle, Z angle).
+ ///
+ /// The Euler angle representation of this quaternion.
public Vector3 GetEuler()
{
#if DEBUG
if (!IsNormalized())
+ {
throw new InvalidOperationException("Quat is not normalized");
+ }
#endif
var basis = new Basis(this);
return basis.GetEuler();
}
+ ///
+ /// Returns the inverse of the quaternion.
+ ///
+ /// The inverse quaternion.
public Quat Inverse()
{
#if DEBUG
if (!IsNormalized())
+ {
throw new InvalidOperationException("Quat is not normalized");
+ }
#endif
return new Quat(-x, -y, -z, w);
}
+ ///
+ /// Returns whether the quaternion is normalized or not.
+ ///
+ /// A bool for whether the quaternion is normalized or not.
+ public bool IsNormalized()
+ {
+ return Mathf.Abs(LengthSquared - 1) <= Mathf.Epsilon;
+ }
+
+ ///
+ /// Returns a copy of the quaternion, normalized to unit length.
+ ///
+ /// The normalized quaternion.
public Quat Normalized()
{
return this / Length;
@@ -131,56 +219,69 @@ namespace Godot
this = new Quat(eulerYXZ);
}
- public Quat Slerp(Quat b, real_t t)
+ ///
+ /// Returns the result of the spherical linear interpolation between
+ /// this quaternion and `to` by amount `weight`.
+ ///
+ /// Note: Both quaternions must be normalized.
+ ///
+ /// The destination quaternion for interpolation. Must be normalized.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting quaternion of the interpolation.
+ public Quat Slerp(Quat to, real_t weight)
{
#if DEBUG
if (!IsNormalized())
+ {
throw new InvalidOperationException("Quat is not normalized");
- if (!b.IsNormalized())
- throw new ArgumentException("Argument is not normalized", nameof(b));
+ }
+ if (!to.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(to));
+ }
#endif
- // Calculate cosine
- real_t cosom = x * b.x + y * b.y + z * b.z + w * b.w;
+ // Calculate cosine.
+ real_t cosom = x * to.x + y * to.y + z * to.z + w * to.w;
var to1 = new Quat();
- // Adjust signs if necessary
+ // Adjust signs if necessary.
if (cosom < 0.0)
{
cosom = -cosom;
- to1.x = -b.x;
- to1.y = -b.y;
- to1.z = -b.z;
- to1.w = -b.w;
+ to1.x = -to.x;
+ to1.y = -to.y;
+ to1.z = -to.z;
+ to1.w = -to.w;
}
else
{
- to1.x = b.x;
- to1.y = b.y;
- to1.z = b.z;
- to1.w = b.w;
+ to1.x = to.x;
+ to1.y = to.y;
+ to1.z = to.z;
+ to1.w = to.w;
}
real_t sinom, scale0, scale1;
- // Calculate coefficients
+ // Calculate coefficients.
if (1.0 - cosom > Mathf.Epsilon)
{
- // Standard case (Slerp)
+ // Standard case (Slerp).
real_t omega = Mathf.Acos(cosom);
sinom = Mathf.Sin(omega);
- scale0 = Mathf.Sin((1.0f - t) * omega) / sinom;
- scale1 = Mathf.Sin(t * omega) / sinom;
+ scale0 = Mathf.Sin((1.0f - weight) * omega) / sinom;
+ scale1 = Mathf.Sin(weight * omega) / sinom;
}
else
{
- // Quaternions are very close so we can do a linear interpolation
- scale0 = 1.0f - t;
- scale1 = t;
+ // Quaternions are very close so we can do a linear interpolation.
+ scale0 = 1.0f - weight;
+ scale1 = weight;
}
- // Calculate final values
+ // Calculate final values.
return new Quat
(
scale0 * x + scale1 * to1.x,
@@ -190,9 +291,17 @@ namespace Godot
);
}
- public Quat Slerpni(Quat b, real_t t)
+ ///
+ /// Returns the result of the spherical linear interpolation between
+ /// this quaternion and `to` by amount `weight`, but without
+ /// checking if the rotation path is not bigger than 90 degrees.
+ ///
+ /// The destination quaternion for interpolation. Must be normalized.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting quaternion of the interpolation.
+ public Quat Slerpni(Quat to, real_t weight)
{
- real_t dot = Dot(b);
+ real_t dot = Dot(to);
if (Mathf.Abs(dot) > 0.9999f)
{
@@ -201,33 +310,54 @@ namespace Godot
real_t theta = Mathf.Acos(dot);
real_t sinT = 1.0f / Mathf.Sin(theta);
- real_t newFactor = Mathf.Sin(t * theta) * sinT;
- real_t invFactor = Mathf.Sin((1.0f - t) * theta) * sinT;
+ real_t newFactor = Mathf.Sin(weight * theta) * sinT;
+ real_t invFactor = Mathf.Sin((1.0f - weight) * theta) * sinT;
return new Quat
(
- invFactor * x + newFactor * b.x,
- invFactor * y + newFactor * b.y,
- invFactor * z + newFactor * b.z,
- invFactor * w + newFactor * b.w
+ invFactor * x + newFactor * to.x,
+ invFactor * y + newFactor * to.y,
+ invFactor * z + newFactor * to.z,
+ invFactor * w + newFactor * to.w
);
}
+ ///
+ /// Returns a vector transformed (multiplied) by this quaternion.
+ ///
+ /// A vector to transform.
+ /// The transfomed vector.
public Vector3 Xform(Vector3 v)
{
#if DEBUG
if (!IsNormalized())
+ {
throw new InvalidOperationException("Quat is not normalized");
+ }
#endif
var u = new Vector3(x, y, z);
Vector3 uv = u.Cross(v);
return v + ((uv * w) + u.Cross(uv)) * 2;
}
- // Static Readonly Properties
- public static Quat Identity { get; } = new Quat(0f, 0f, 0f, 1f);
+ // Constants
+ private static readonly Quat _identity = new Quat(0, 0, 0, 1);
- // Constructors
+ ///
+ /// The identity quaternion, representing no rotation.
+ /// Equivalent to an identity matrix. If a vector is transformed by
+ /// an identity quaternion, it will not change.
+ ///
+ /// Equivalent to `new Quat(0, 0, 0, 1)`.
+ public static Quat Identity { get { return _identity; } }
+
+ ///
+ /// Constructs a quaternion defined by the given values.
+ ///
+ /// X component of the quaternion (imaginary `i` axis part).
+ /// Y component of the quaternion (imaginary `j` axis part).
+ /// Z component of the quaternion (imaginary `k` axis part).
+ /// W component of the quaternion (real part).
public Quat(real_t x, real_t y, real_t z, real_t w)
{
this.x = x;
@@ -236,21 +366,31 @@ namespace Godot
this.w = w;
}
- public bool IsNormalized()
- {
- return Mathf.Abs(LengthSquared - 1) <= Mathf.Epsilon;
- }
-
+ ///
+ /// Constructs a quaternion from the given quaternion.
+ ///
+ /// The existing quaternion.
public Quat(Quat q)
{
this = q;
}
+ ///
+ /// Constructs a quaternion from the given .
+ ///
+ /// The basis to construct from.
public Quat(Basis basis)
{
this = basis.Quat();
}
+ ///
+ /// Constructs a quaternion that will perform a rotation specified by
+ /// Euler angles (in the YXZ convention: when decomposing,
+ /// first Z, then X, and Y last),
+ /// given in the vector format as (X angle, Y angle, Z angle).
+ ///
+ ///
public Quat(Vector3 eulerYXZ)
{
real_t half_a1 = eulerYXZ.y * 0.5f;
@@ -274,11 +414,19 @@ namespace Godot
w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
}
+ ///
+ /// Constructs a quaternion that will rotate around the given axis
+ /// by the specified angle. The axis must be a normalized vector.
+ ///
+ /// The axis to rotate around. Must be normalized.
+ /// The angle to rotate, in radians.
public Quat(Vector3 axis, real_t angle)
{
#if DEBUG
if (!axis.IsNormalized())
+ {
throw new ArgumentException("Argument is not normalized", nameof(axis));
+ }
#endif
real_t d = axis.Length();
@@ -391,6 +539,12 @@ namespace Godot
return x == other.x && y == other.y && z == other.z && w == other.w;
}
+ ///
+ /// Returns true if this quaternion and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other quaternion to compare.
+ /// Whether or not the quaternions are approximately equal.
public bool IsEqualApprox(Quat other)
{
return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z) && Mathf.IsEqualApprox(w, other.w);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Rect2.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Rect2.cs
index 1098ffe4e5f..f7703c77cc4 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Rect2.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Rect2.cs
@@ -8,6 +8,10 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// 2D axis-aligned bounding box. Rect2 consists of a position, a size, and
+ /// several utility functions. It is typically used for fast overlap tests.
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Rect2 : IEquatable
@@ -15,29 +19,52 @@ namespace Godot
private Vector2 _position;
private Vector2 _size;
+ ///
+ /// Beginning corner. Typically has values lower than End.
+ ///
+ /// Directly uses a private field.
public Vector2 Position
{
get { return _position; }
set { _position = value; }
}
+ ///
+ /// Size from Position to End. Typically all components are positive.
+ /// If the size is negative, you can use to fix it.
+ ///
+ /// Directly uses a private field.
public Vector2 Size
{
get { return _size; }
set { _size = value; }
}
+ ///
+ /// Ending corner. This is calculated as plus
+ /// . Setting this value will change the size.
+ ///
+ /// Getting is equivalent to `value = Position + Size`, setting is equivalent to `Size = value - Position`.
public Vector2 End
{
get { return _position + _size; }
set { _size = value - _position; }
}
+ ///
+ /// The area of this rect.
+ ///
+ /// Equivalent to .
public real_t Area
{
get { return GetArea(); }
}
+ ///
+ /// Returns a Rect2 with equivalent position and size, modified so that
+ /// the top-left corner is the origin and width and height are positive.
+ ///
+ /// The modified rect.
public Rect2 Abs()
{
Vector2 end = End;
@@ -45,12 +72,19 @@ namespace Godot
return new Rect2(topLeft, _size.Abs());
}
+ ///
+ /// Returns the intersection of this Rect2 and `b`.
+ ///
+ /// The other rect.
+ /// The clipped rect.
public Rect2 Clip(Rect2 b)
{
var newRect = b;
if (!Intersects(newRect))
+ {
return new Rect2();
+ }
newRect._position.x = Mathf.Max(b._position.x, _position.x);
newRect._position.y = Mathf.Max(b._position.y, _position.y);
@@ -64,6 +98,11 @@ namespace Godot
return newRect;
}
+ ///
+ /// Returns true if this Rect2 completely encloses another one.
+ ///
+ /// The other rect that may be enclosed.
+ /// A bool for whether or not this rect encloses `b`.
public bool Encloses(Rect2 b)
{
return b._position.x >= _position.x && b._position.y >= _position.y &&
@@ -71,6 +110,11 @@ namespace Godot
b._position.y + b._size.y < _position.y + _size.y;
}
+ ///
+ /// Returns this Rect2 expanded to include a given point.
+ ///
+ /// The point to include.
+ /// The expanded rect.
public Rect2 Expand(Vector2 to)
{
var expanded = this;
@@ -79,14 +123,22 @@ namespace Godot
Vector2 end = expanded._position + expanded._size;
if (to.x < begin.x)
+ {
begin.x = to.x;
+ }
if (to.y < begin.y)
+ {
begin.y = to.y;
+ }
if (to.x > end.x)
+ {
end.x = to.x;
+ }
if (to.y > end.y)
+ {
end.y = to.y;
+ }
expanded._position = begin;
expanded._size = end - begin;
@@ -94,11 +146,20 @@ namespace Godot
return expanded;
}
+ ///
+ /// Returns the area of the Rect2.
+ ///
+ /// The area.
public real_t GetArea()
{
return _size.x * _size.y;
}
+ ///
+ /// Returns a copy of the Rect2 grown a given amount of units towards all the sides.
+ ///
+ /// The amount to grow by.
+ /// The grown rect.
public Rect2 Grow(real_t by)
{
var g = this;
@@ -111,6 +172,14 @@ namespace Godot
return g;
}
+ ///
+ /// Returns a copy of the Rect2 grown a given amount of units towards each direction individually.
+ ///
+ /// The amount to grow by on the left.
+ /// The amount to grow by on the top.
+ /// The amount to grow by on the right.
+ /// The amount to grow by on the bottom.
+ /// The grown rect.
public Rect2 GrowIndividual(real_t left, real_t top, real_t right, real_t bottom)
{
var g = this;
@@ -123,6 +192,12 @@ namespace Godot
return g;
}
+ ///
+ /// Returns a copy of the Rect2 grown a given amount of units towards the direction.
+ ///
+ /// The direction to grow in.
+ /// The amount to grow by.
+ /// The grown rect.
public Rect2 GrowMargin(Margin margin, real_t by)
{
var g = this;
@@ -135,11 +210,20 @@ namespace Godot
return g;
}
+ ///
+ /// Returns true if the Rect2 is flat or empty, or false otherwise.
+ ///
+ /// A bool for whether or not the rect has area.
public bool HasNoArea()
{
return _size.x <= 0 || _size.y <= 0;
}
+ ///
+ /// Returns true if the Rect2 contains a point, or false otherwise.
+ ///
+ /// The point to check.
+ /// A bool for whether or not the rect contains `point`.
public bool HasPoint(Vector2 point)
{
if (point.x < _position.x)
@@ -155,20 +239,65 @@ namespace Godot
return true;
}
- public bool Intersects(Rect2 b)
+ ///
+ /// Returns true if the Rect2 overlaps with `b`
+ /// (i.e. they have at least one point in common).
+ ///
+ /// If `includeBorders` is true, they will also be considered overlapping
+ /// if their borders touch, even without intersection.
+ ///
+ /// The other rect to check for intersections with.
+ /// Whether or not to consider borders.
+ /// A bool for whether or not they are intersecting.
+ public bool Intersects(Rect2 b, bool includeBorders = false)
{
- if (_position.x >= b._position.x + b._size.x)
- return false;
- if (_position.x + _size.x <= b._position.x)
- return false;
- if (_position.y >= b._position.y + b._size.y)
- return false;
- if (_position.y + _size.y <= b._position.y)
- return false;
+ if (includeBorders)
+ {
+ if (_position.x > b._position.x + b._size.x)
+ {
+ return false;
+ }
+ if (_position.x + _size.x < b._position.x)
+ {
+ return false;
+ }
+ if (_position.y > b._position.y + b._size.y)
+ {
+ return false;
+ }
+ if (_position.y + _size.y < b._position.y)
+ {
+ return false;
+ }
+ }
+ else
+ {
+ if (_position.x >= b._position.x + b._size.x)
+ {
+ return false;
+ }
+ if (_position.x + _size.x <= b._position.x)
+ {
+ return false;
+ }
+ if (_position.y >= b._position.y + b._size.y)
+ {
+ return false;
+ }
+ if (_position.y + _size.y <= b._position.y)
+ {
+ return false;
+ }
+ }
return true;
}
+ ///
+ /// Returns a larger Rect2 that contains this Rect2 and `b`.
+ ///
+ /// The other rect.
+ /// The merged rect.
public Rect2 Merge(Rect2 b)
{
Rect2 newRect;
@@ -179,27 +308,53 @@ namespace Godot
newRect._size.x = Mathf.Max(b._position.x + b._size.x, _position.x + _size.x);
newRect._size.y = Mathf.Max(b._position.y + b._size.y, _position.y + _size.y);
- newRect._size = newRect._size - newRect._position; // Make relative again
+ newRect._size -= newRect._position; // Make relative again
return newRect;
}
- // Constructors
+ ///
+ /// Constructs a Rect2 from a position and size.
+ ///
+ /// The position.
+ /// The size.
public Rect2(Vector2 position, Vector2 size)
{
_position = position;
_size = size;
}
+
+ ///
+ /// Constructs a Rect2 from a position, width, and height.
+ ///
+ /// The position.
+ /// The width.
+ /// The height.
public Rect2(Vector2 position, real_t width, real_t height)
{
_position = position;
_size = new Vector2(width, height);
}
+
+ ///
+ /// Constructs a Rect2 from x, y, and size.
+ ///
+ /// The position's X coordinate.
+ /// The position's Y coordinate.
+ /// The size.
public Rect2(real_t x, real_t y, Vector2 size)
{
_position = new Vector2(x, y);
_size = size;
}
+
+ ///
+ /// Constructs a Rect2 from x, y, width, and height.
+ ///
+ /// The position's X coordinate.
+ /// The position's Y coordinate.
+ /// The width.
+ /// The height.
public Rect2(real_t x, real_t y, real_t width, real_t height)
{
_position = new Vector2(x, y);
@@ -231,6 +386,12 @@ namespace Godot
return _position.Equals(other._position) && _size.Equals(other._size);
}
+ ///
+ /// Returns true if this rect and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other rect to compare.
+ /// Whether or not the rects are approximately equal.
public bool IsEqualApprox(Rect2 other)
{
return _position.IsEqualApprox(other._position) && _size.IsEqualApprox(other.Size);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform.cs
index aa8815d1aa4..b176111d6ad 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform.cs
@@ -8,11 +8,28 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// 3×4 matrix (3 rows, 4 columns) used for 3D linear transformations.
+ /// It can represent transformations such as translation, rotation, or scaling.
+ /// It consists of a (first 3 columns) and a
+ /// for the origin (last column).
+ ///
+ /// For more information, read this documentation article:
+ /// https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Transform : IEquatable
{
+ ///
+ /// The of this transform. Contains the X, Y, and Z basis
+ /// vectors (columns 0 to 2) and is responsible for rotation and scale.
+ ///
public Basis basis;
+
+ ///
+ /// The origin vector (column 3, the fourth column). Equivalent to array index `[3]`.
+ ///
public Vector3 origin;
///
@@ -85,13 +102,24 @@ namespace Godot
}
}
+ ///
+ /// Returns the inverse of the transform, under the assumption that
+ /// the transformation is composed of rotation, scaling, and translation.
+ ///
+ /// The inverse transformation matrix.
public Transform AffineInverse()
{
Basis basisInv = basis.Inverse();
return new Transform(basisInv, basisInv.Xform(-origin));
}
- public Transform InterpolateWith(Transform transform, real_t c)
+ ///
+ /// Interpolates this transform to the other `transform` by `weight`.
+ ///
+ /// The other transform.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The interpolated transform.
+ public Transform InterpolateWith(Transform transform, real_t weight)
{
/* not sure if very "efficient" but good enough? */
@@ -104,18 +132,37 @@ namespace Godot
Vector3 destinationLocation = transform.origin;
var interpolated = new Transform();
- interpolated.basis.SetQuatScale(sourceRotation.Slerp(destinationRotation, c).Normalized(), sourceScale.LinearInterpolate(destinationScale, c));
- interpolated.origin = sourceLocation.LinearInterpolate(destinationLocation, c);
+ interpolated.basis.SetQuatScale(sourceRotation.Slerp(destinationRotation, weight).Normalized(), sourceScale.LinearInterpolate(destinationScale, weight));
+ interpolated.origin = sourceLocation.LinearInterpolate(destinationLocation, weight);
return interpolated;
}
+ ///
+ /// Returns the inverse of the transform, under the assumption that
+ /// the transformation is composed of rotation and translation
+ /// (no scaling, use for transforms with scaling).
+ ///
+ /// The inverse matrix.
public Transform Inverse()
{
Basis basisTr = basis.Transposed();
return new Transform(basisTr, basisTr.Xform(-origin));
}
+ ///
+ /// Returns a copy of the transform rotated such that its
+ /// -Z axis (forward) points towards the target position.
+ ///
+ /// The transform will first be rotated around the given up vector,
+ /// and then fully aligned to the target by a further rotation around
+ /// an axis perpendicular to both the target and up vectors.
+ ///
+ /// Operations take place in global space.
+ ///
+ /// The object to look at.
+ /// The relative up direction
+ /// The resulting transform.
public Transform LookingAt(Vector3 target, Vector3 up)
{
var t = this;
@@ -123,16 +170,33 @@ namespace Godot
return t;
}
+ ///
+ /// Returns the transform with the basis orthogonal (90 degrees),
+ /// and normalized axis vectors (scale of 1 or -1).
+ ///
+ /// The orthonormalized transform.
public Transform Orthonormalized()
{
return new Transform(basis.Orthonormalized(), origin);
}
+ ///
+ /// Rotates the transform around the given `axis` by `phi` (in radians),
+ /// using matrix multiplication. The axis must be a normalized vector.
+ ///
+ /// The axis to rotate around. Must be normalized.
+ /// The angle to rotate, in radians.
+ /// The rotated transformation matrix.
public Transform Rotated(Vector3 axis, real_t phi)
{
return new Transform(new Basis(axis, phi), new Vector3()) * this;
}
+ ///
+ /// Scales the transform by the given 3D scaling factor, using matrix multiplication.
+ ///
+ /// The scale to introduce.
+ /// The scaled transformation matrix.
public Transform Scaled(Vector3 scale)
{
return new Transform(basis.Scaled(scale), origin * scale);
@@ -161,16 +225,30 @@ namespace Godot
origin = eye;
}
- public Transform Translated(Vector3 ofs)
+ ///
+ /// Translates the transform by the given `offset`,
+ /// relative to the transform's basis vectors.
+ ///
+ /// Unlike and ,
+ /// this does not use matrix multiplication.
+ ///
+ /// The offset to translate by.
+ /// The translated matrix.
+ public Transform Translated(Vector3 offset)
{
return new Transform(basis, new Vector3
(
- origin[0] += basis.Row0.Dot(ofs),
- origin[1] += basis.Row1.Dot(ofs),
- origin[2] += basis.Row2.Dot(ofs)
+ origin[0] += basis.Row0.Dot(offset),
+ origin[1] += basis.Row1.Dot(offset),
+ origin[2] += basis.Row2.Dot(offset)
));
}
+ ///
+ /// Returns a vector transformed (multiplied) by this transformation matrix.
+ ///
+ /// A vector to transform.
+ /// The transfomed vector.
public Vector3 Xform(Vector3 v)
{
return new Vector3
@@ -181,6 +259,14 @@ namespace Godot
);
}
+ ///
+ /// Returns a vector transformed (multiplied) by the transposed transformation matrix.
+ ///
+ /// Note: This results in a multiplication by the inverse of the
+ /// transformation matrix only if it represents a rotation-reflection.
+ ///
+ /// A vector to inversely transform.
+ /// The inversely transfomed vector.
public Vector3 XformInv(Vector3 v)
{
Vector3 vInv = v - origin;
@@ -199,24 +285,58 @@ namespace Godot
private static readonly Transform _flipY = new Transform(new Basis(1, 0, 0, 0, -1, 0, 0, 0, 1), Vector3.Zero);
private static readonly Transform _flipZ = new Transform(new Basis(1, 0, 0, 0, 1, 0, 0, 0, -1), Vector3.Zero);
+ ///
+ /// The identity transform, with no translation, rotation, or scaling applied.
+ /// This is used as a replacement for `Transform()` in GDScript.
+ /// Do not use `new Transform()` with no arguments in C#, because it sets all values to zero.
+ ///
+ /// Equivalent to `new Transform(Vector3.Right, Vector3.Up, Vector3.Back, Vector3.Zero)`.
public static Transform Identity { get { return _identity; } }
+ ///
+ /// The transform that will flip something along the X axis.
+ ///
+ /// Equivalent to `new Transform(Vector3.Left, Vector3.Up, Vector3.Back, Vector3.Zero)`.
public static Transform FlipX { get { return _flipX; } }
+ ///
+ /// The transform that will flip something along the Y axis.
+ ///
+ /// Equivalent to `new Transform(Vector3.Right, Vector3.Down, Vector3.Back, Vector3.Zero)`.
public static Transform FlipY { get { return _flipY; } }
+ ///
+ /// The transform that will flip something along the Z axis.
+ ///
+ /// Equivalent to `new Transform(Vector3.Right, Vector3.Up, Vector3.Forward, Vector3.Zero)`.
public static Transform FlipZ { get { return _flipZ; } }
- // Constructors
+ ///
+ /// Constructs a transformation matrix from 4 vectors (matrix columns).
+ ///
+ /// The X vector, or column index 0.
+ /// The Y vector, or column index 1.
+ /// The Z vector, or column index 2.
+ /// The origin vector, or column index 3.
public Transform(Vector3 column0, Vector3 column1, Vector3 column2, Vector3 origin)
{
basis = new Basis(column0, column1, column2);
this.origin = origin;
}
+ ///
+ /// Constructs a transformation matrix from the given quaternion and origin vector.
+ ///
+ /// The to create the basis from.
+ /// The origin vector, or column index 3.
public Transform(Quat quat, Vector3 origin)
{
basis = new Basis(quat);
this.origin = origin;
}
+ ///
+ /// Constructs a transformation matrix from the given basis and origin vector.
+ ///
+ /// The to create the basis from.
+ /// The origin vector, or column index 3.
public Transform(Basis basis, Vector3 origin)
{
this.basis = basis;
@@ -255,6 +375,12 @@ namespace Godot
return basis.Equals(other.basis) && origin.Equals(other.origin);
}
+ ///
+ /// Returns true if this transform and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other transform to compare.
+ /// Whether or not the matrices are approximately equal.
public bool IsEqualApprox(Transform other)
{
return basis.IsEqualApprox(other.basis) && origin.IsEqualApprox(other.origin);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs
index e72a44809a7..4e069c2f4be 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs
@@ -8,25 +8,44 @@ using real_t = System.Single;
namespace Godot
{
+ ///
+ /// 2×3 matrix (2 rows, 3 columns) used for 2D linear transformations.
+ /// It can represent transformations such as translation, rotation, or scaling.
+ /// It consists of a three values: x, y, and the origin.
+ ///
+ /// For more information, read this documentation article:
+ /// https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html
+ ///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Transform2D : IEquatable
{
+ ///
+ /// The basis matrix's X vector (column 0). Equivalent to array index `[0]`.
+ ///
+ ///
public Vector2 x;
+
+ ///
+ /// The basis matrix's Y vector (column 1). Equivalent to array index `[1]`.
+ ///
public Vector2 y;
+
+ ///
+ /// The origin vector (column 2, the third column). Equivalent to array index `[2]`.
+ /// The origin vector represents translation.
+ ///
public Vector2 origin;
+ ///
+ /// The rotation of this transformation matrix.
+ ///
+ /// Getting is equivalent to calling with the values of .
public real_t Rotation
{
get
{
- real_t det = BasisDeterminant();
- Transform2D t = Orthonormalized();
- if (det < 0)
- {
- t.ScaleBasis(new Vector2(1, -1));
- }
- return Mathf.Atan2(t.x.y, t.x.x);
+ return Mathf.Atan2(x.y, x.x);
}
set
{
@@ -38,6 +57,10 @@ namespace Godot
}
}
+ ///
+ /// The scale of this transformation matrix.
+ ///
+ /// Equivalent to the lengths of each column vector, but Y is negative if the determinant is negative.
public Vector2 Scale
{
get
@@ -47,8 +70,7 @@ namespace Godot
}
set
{
- x = x.Normalized();
- y = y.Normalized();
+ value /= Scale; // Value becomes what's called "delta_scale" in core.
x *= value.x;
y *= value.y;
}
@@ -112,6 +134,11 @@ namespace Godot
}
}
+ ///
+ /// Returns the inverse of the transform, under the assumption that
+ /// the transformation is composed of rotation, scaling, and translation.
+ ///
+ /// The inverse transformation matrix.
public Transform2D AffineInverse()
{
real_t det = BasisDeterminant();
@@ -135,28 +162,58 @@ namespace Godot
return inv;
}
+ ///
+ /// Returns the determinant of the basis matrix. If the basis is
+ /// uniformly scaled, its determinant is the square of the scale.
+ ///
+ /// A negative determinant means the Y scale is negative.
+ /// A zero determinant means the basis isn't invertible,
+ /// and is usually considered invalid.
+ ///
+ /// The determinant of the basis matrix.
private real_t BasisDeterminant()
{
return x.x * y.y - x.y * y.x;
}
+ ///
+ /// Returns a vector transformed (multiplied) by the basis matrix.
+ /// This method does not account for translation (the origin vector).
+ ///
+ /// A vector to transform.
+ /// The transfomed vector.
public Vector2 BasisXform(Vector2 v)
{
return new Vector2(Tdotx(v), Tdoty(v));
}
+ ///
+ /// Returns a vector transformed (multiplied) by the inverse basis matrix.
+ /// This method does not account for translation (the origin vector).
+ ///
+ /// Note: This results in a multiplication by the inverse of the
+ /// basis matrix only if it represents a rotation-reflection.
+ ///
+ /// A vector to inversely transform.
+ /// The inversely transfomed vector.
public Vector2 BasisXformInv(Vector2 v)
{
return new Vector2(x.Dot(v), y.Dot(v));
}
- public Transform2D InterpolateWith(Transform2D m, real_t c)
+ ///
+ /// Interpolates this transform to the other `transform` by `weight`.
+ ///
+ /// The other transform.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The interpolated transform.
+ public Transform2D InterpolateWith(Transform2D transform, real_t weight)
{
real_t r1 = Rotation;
- real_t r2 = m.Rotation;
+ real_t r2 = transform.Rotation;
Vector2 s1 = Scale;
- Vector2 s2 = m.Scale;
+ Vector2 s2 = transform.Scale;
// Slerp rotation
var v1 = new Vector2(Mathf.Cos(r1), Mathf.Sin(r1));
@@ -172,28 +229,34 @@ namespace Godot
if (dot > 0.9995f)
{
// Linearly interpolate to avoid numerical precision issues
- v = v1.LinearInterpolate(v2, c).Normalized();
+ v = v1.LinearInterpolate(v2, weight).Normalized();
}
else
{
- real_t angle = c * Mathf.Acos(dot);
+ real_t angle = weight * Mathf.Acos(dot);
Vector2 v3 = (v2 - v1 * dot).Normalized();
v = v1 * Mathf.Cos(angle) + v3 * Mathf.Sin(angle);
}
// Extract parameters
Vector2 p1 = origin;
- Vector2 p2 = m.origin;
+ Vector2 p2 = transform.origin;
// Construct matrix
- var res = new Transform2D(Mathf.Atan2(v.y, v.x), p1.LinearInterpolate(p2, c));
- Vector2 scale = s1.LinearInterpolate(s2, c);
+ var res = new Transform2D(Mathf.Atan2(v.y, v.x), p1.LinearInterpolate(p2, weight));
+ Vector2 scale = s1.LinearInterpolate(s2, weight);
res.x *= scale;
res.y *= scale;
return res;
}
+ ///
+ /// Returns the inverse of the transform, under the assumption that
+ /// the transformation is composed of rotation and translation
+ /// (no scaling, use for transforms with scaling).
+ ///
+ /// The inverse matrix.
public Transform2D Inverse()
{
var inv = this;
@@ -208,6 +271,11 @@ namespace Godot
return inv;
}
+ ///
+ /// Returns the transform with the basis orthogonal (90 degrees),
+ /// and normalized axis vectors (scale of 1 or -1).
+ ///
+ /// The orthonormalized transform.
public Transform2D Orthonormalized()
{
var on = this;
@@ -225,11 +293,21 @@ namespace Godot
return on;
}
+ ///
+ /// Rotates the transform by `phi` (in radians), using matrix multiplication.
+ ///
+ /// The angle to rotate, in radians.
+ /// The rotated transformation matrix.
public Transform2D Rotated(real_t phi)
{
return this * new Transform2D(phi, new Vector2());
}
+ ///
+ /// Scales the transform by the given scaling factor, using matrix multiplication.
+ ///
+ /// The scale to introduce.
+ /// The scaled transformation matrix.
public Transform2D Scaled(Vector2 scale)
{
var copy = this;
@@ -257,6 +335,15 @@ namespace Godot
return this[0, 1] * with[0] + this[1, 1] * with[1];
}
+ ///
+ /// Translates the transform by the given `offset`,
+ /// relative to the transform's basis vectors.
+ ///
+ /// Unlike and ,
+ /// this does not use matrix multiplication.
+ ///
+ /// The offset to translate by.
+ /// The translated matrix.
public Transform2D Translated(Vector2 offset)
{
var copy = this;
@@ -264,11 +351,21 @@ namespace Godot
return copy;
}
+ ///
+ /// Returns a vector transformed (multiplied) by this transformation matrix.
+ ///
+ /// A vector to transform.
+ /// The transfomed vector.
public Vector2 Xform(Vector2 v)
{
return new Vector2(Tdotx(v), Tdoty(v)) + origin;
}
+ ///
+ /// Returns a vector transformed (multiplied) by the inverse transformation matrix.
+ ///
+ /// A vector to inversely transform.
+ /// The inversely transfomed vector.
public Vector2 XformInv(Vector2 v)
{
Vector2 vInv = v - origin;
@@ -280,11 +377,30 @@ namespace Godot
private static readonly Transform2D _flipX = new Transform2D(-1, 0, 0, 1, 0, 0);
private static readonly Transform2D _flipY = new Transform2D(1, 0, 0, -1, 0, 0);
- public static Transform2D Identity => _identity;
- public static Transform2D FlipX => _flipX;
- public static Transform2D FlipY => _flipY;
+ ///
+ /// The identity transform, with no translation, rotation, or scaling applied.
+ /// This is used as a replacement for `Transform2D()` in GDScript.
+ /// Do not use `new Transform2D()` with no arguments in C#, because it sets all values to zero.
+ ///
+ /// Equivalent to `new Transform2D(Vector2.Right, Vector2.Down, Vector2.Zero)`.
+ public static Transform2D Identity { get { return _identity; } }
+ ///
+ /// The transform that will flip something along the X axis.
+ ///
+ /// Equivalent to `new Transform2D(Vector2.Left, Vector2.Down, Vector2.Zero)`.
+ public static Transform2D FlipX { get { return _flipX; } }
+ ///
+ /// The transform that will flip something along the Y axis.
+ ///
+ /// Equivalent to `new Transform2D(Vector2.Right, Vector2.Up, Vector2.Zero)`.
+ public static Transform2D FlipY { get { return _flipY; } }
- // Constructors
+ ///
+ /// Constructs a transformation matrix from 3 vectors (matrix columns).
+ ///
+ /// The X vector, or column index 0.
+ /// The Y vector, or column index 1.
+ /// The origin vector, or column index 2.
public Transform2D(Vector2 xAxis, Vector2 yAxis, Vector2 originPos)
{
x = xAxis;
@@ -292,7 +408,16 @@ namespace Godot
origin = originPos;
}
- // Arguments are named such that xy is equal to calling x.y
+ ///
+ /// Constructs a transformation matrix from the given components.
+ /// Arguments are named such that xy is equal to calling x.y
+ ///
+ /// The X component of the X column vector, accessed via `t.x.x` or `[0][0]`
+ /// The Y component of the X column vector, accessed via `t.x.y` or `[0][1]`
+ /// The X component of the Y column vector, accessed via `t.y.x` or `[1][0]`
+ /// The Y component of the Y column vector, accessed via `t.y.y` or `[1][1]`
+ /// The X component of the origin vector, accessed via `t.origin.x` or `[2][0]`
+ /// The Y component of the origin vector, accessed via `t.origin.y` or `[2][1]`
public Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy)
{
x = new Vector2(xx, xy);
@@ -300,6 +425,11 @@ namespace Godot
origin = new Vector2(ox, oy);
}
+ ///
+ /// Constructs a transformation matrix from a rotation value and origin vector.
+ ///
+ /// The rotation of the new transform, in radians.
+ /// The origin vector, or column index 2.
public Transform2D(real_t rot, Vector2 pos)
{
x.x = y.y = Mathf.Cos(rot);
@@ -345,6 +475,12 @@ namespace Godot
return x.Equals(other.x) && y.Equals(other.y) && origin.Equals(other.origin);
}
+ ///
+ /// Returns true if this transform and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other transform to compare.
+ /// Whether or not the matrices are approximately equal.
public bool IsEqualApprox(Transform2D other)
{
return x.IsEqualApprox(other.x) && y.IsEqualApprox(other.y) && origin.IsEqualApprox(other.origin);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs
index f92453f546c..5e64f01d04e 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector2.cs
@@ -21,15 +21,29 @@ namespace Godot
[StructLayout(LayoutKind.Sequential)]
public struct Vector2 : IEquatable
{
+ ///
+ /// Enumerated index values for the axes.
+ /// Returned by and .
+ ///
public enum Axis
{
X = 0,
Y
}
+ ///
+ /// The vector's X component. Also accessible by using the index position `[0]`.
+ ///
public real_t x;
+ ///
+ /// The vector's Y component. Also accessible by using the index position `[1]`.
+ ///
public real_t y;
+ ///
+ /// Access vector components using their index.
+ ///
+ /// `[0]` is equivalent to `.x`, `[1]` is equivalent to `.y`.
public real_t this[int index]
{
get
@@ -76,46 +90,80 @@ namespace Godot
}
}
- public real_t Cross(Vector2 b)
- {
- return x * b.y - y * b.x;
- }
-
+ ///
+ /// Returns a new vector with all components in absolute values (i.e. positive).
+ ///
+ /// A vector with called on each component.
public Vector2 Abs()
{
return new Vector2(Mathf.Abs(x), Mathf.Abs(y));
}
+ ///
+ /// Returns this vector's angle with respect to the X axis, or (1, 0) vector, in radians.
+ ///
+ /// Equivalent to the result of when
+ /// called with the vector's `y` and `x` as parameters: `Mathf.Atan2(v.y, v.x)`.
+ ///
+ /// The angle of this vector, in radians.
public real_t Angle()
{
return Mathf.Atan2(y, x);
}
+ ///
+ /// Returns the angle to the given vector, in radians.
+ ///
+ /// The other vector to compare this vector to.
+ /// The angle between the two vectors, in radians.
public real_t AngleTo(Vector2 to)
{
return Mathf.Atan2(Cross(to), Dot(to));
}
+ ///
+ /// Returns the angle between the line connecting the two points and the X axis, in radians.
+ ///
+ /// The other vector to compare this vector to.
+ /// The angle between the two vectors, in radians.
public real_t AngleToPoint(Vector2 to)
{
return Mathf.Atan2(y - to.y, x - to.x);
}
+ ///
+ /// Returns the aspect ratio of this vector, the ratio of `x` to `y`.
+ ///
+ /// The `x` component divided by the `y` component.
public real_t Aspect()
{
return x / y;
}
- public Vector2 Bounce(Vector2 n)
+ ///
+ /// Returns the vector "bounced off" from a plane defined by the given normal.
+ ///
+ /// The normal vector defining the plane to bounce off. Must be normalized.
+ /// The bounced vector.
+ public Vector2 Bounce(Vector2 normal)
{
- return -Reflect(n);
+ return -Reflect(normal);
}
+ ///
+ /// Returns a new vector with all components rounded up (towards positive infinity).
+ ///
+ /// A vector with called on each component.
public Vector2 Ceil()
{
return new Vector2(Mathf.Ceil(x), Mathf.Ceil(y));
}
+ ///
+ /// Returns the vector with a maximum length by limiting its length to `length`.
+ ///
+ /// The length to limit to.
+ /// The vector with its length limited.
public Vector2 Clamped(real_t length)
{
var v = this;
@@ -130,12 +178,30 @@ namespace Godot
return v;
}
+ ///
+ /// Returns the cross product of this vector and `b`.
+ ///
+ /// The other vector.
+ /// The cross product value.
+ public real_t Cross(Vector2 b)
+ {
+ return x * b.y - y * b.x;
+ }
+
+ ///
+ /// Performs a cubic interpolation between vectors `preA`, this vector, `b`, and `postB`, by the given amount `t`.
+ ///
+ /// The destination vector.
+ /// A vector before this vector.
+ /// A vector after `b`.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The interpolated vector.
public Vector2 CubicInterpolate(Vector2 b, Vector2 preA, Vector2 postB, real_t t)
{
- var p0 = preA;
- var p1 = this;
- var p2 = b;
- var p3 = postB;
+ Vector2 p0 = preA;
+ Vector2 p1 = this;
+ Vector2 p2 = b;
+ Vector2 p3 = postB;
real_t t2 = t * t;
real_t t3 = t2 * t;
@@ -146,56 +212,153 @@ namespace Godot
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
+ ///
+ /// Returns the normalized vector pointing from this vector to `b`.
+ ///
+ /// The other vector to point towards.
+ /// The direction from this vector to `b`.
public Vector2 DirectionTo(Vector2 b)
{
return new Vector2(b.x - x, b.y - y).Normalized();
}
+ ///
+ /// Returns the squared distance between this vector and `to`.
+ /// This method runs faster than , so prefer it if
+ /// you need to compare vectors or need the squared distance for some formula.
+ ///
+ /// The other vector to use.
+ /// The squared distance between the two vectors.
public real_t DistanceSquaredTo(Vector2 to)
{
return (x - to.x) * (x - to.x) + (y - to.y) * (y - to.y);
}
+ ///
+ /// Returns the distance between this vector and `to`.
+ ///
+ /// The other vector to use.
+ /// The distance between the two vectors.
public real_t DistanceTo(Vector2 to)
{
return Mathf.Sqrt((x - to.x) * (x - to.x) + (y - to.y) * (y - to.y));
}
+ ///
+ /// Returns the dot product of this vector and `with`.
+ ///
+ /// The other vector to use.
+ /// The dot product of the two vectors.
public real_t Dot(Vector2 with)
{
return x * with.x + y * with.y;
}
+ ///
+ /// Returns a new vector with all components rounded down (towards negative infinity).
+ ///
+ /// A vector with called on each component.
public Vector2 Floor()
{
return new Vector2(Mathf.Floor(x), Mathf.Floor(y));
}
+ ///
+ /// Returns the inverse of this vector. This is the same as `new Vector2(1 / v.x, 1 / v.y)`.
+ ///
+ /// The inverse of this vector.
+ public Vector2 Inverse()
+ {
+ return new Vector2(1 / x, 1 / y);
+ }
+
+ ///
+ /// Returns true if the vector is normalized, and false otherwise.
+ ///
+ /// A bool indicating whether or not the vector is normalized.
public bool IsNormalized()
{
return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon;
}
+ ///
+ /// Returns the length (magnitude) of this vector.
+ ///
+ /// The length of this vector.
public real_t Length()
{
return Mathf.Sqrt(x * x + y * y);
}
+ ///
+ /// Returns the squared length (squared magnitude) of this vector.
+ /// This method runs faster than , so prefer it if
+ /// you need to compare vectors or need the squared length for some formula.
+ ///
+ /// The squared length of this vector.
public real_t LengthSquared()
{
return x * x + y * y;
}
- public Vector2 LinearInterpolate(Vector2 b, real_t t)
+ ///
+ /// Returns the result of the linear interpolation between
+ /// this vector and `to` by amount `weight`.
+ ///
+ /// The destination vector for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting vector of the interpolation.
+ public Vector2 LinearInterpolate(Vector2 to, real_t weight)
{
- var res = this;
-
- res.x += t * (b.x - x);
- res.y += t * (b.y - y);
-
- return res;
+ return new Vector2
+ (
+ Mathf.Lerp(x, to.x, weight),
+ Mathf.Lerp(y, to.y, weight)
+ );
}
+ ///
+ /// Returns the result of the linear interpolation between
+ /// this vector and `to` by the vector amount `weight`.
+ ///
+ /// The destination vector for interpolation.
+ /// A vector with components on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting vector of the interpolation.
+ public Vector2 LinearInterpolate(Vector2 to, Vector2 weight)
+ {
+ return new Vector2
+ (
+ Mathf.Lerp(x, to.x, weight.x),
+ Mathf.Lerp(y, to.y, weight.y)
+ );
+ }
+
+ ///
+ /// Returns the axis of the vector's largest value. See .
+ /// If both components are equal, this method returns .
+ ///
+ /// The index of the largest axis.
+ public Axis MaxAxis()
+ {
+ return x < y ? Axis.Y : Axis.X;
+ }
+
+ ///
+ /// Returns the axis of the vector's smallest value. See .
+ /// If both components are equal, this method returns .
+ ///
+ /// The index of the smallest axis.
+ public Axis MinAxis()
+ {
+ return x < y ? Axis.X : Axis.Y;
+ }
+
+ ///
+ /// Moves this vector toward `to` by the fixed `delta` amount.
+ ///
+ /// The vector to move towards.
+ /// The amount to move towards by.
+ /// The resulting vector.
public Vector2 MoveToward(Vector2 to, real_t delta)
{
var v = this;
@@ -204,6 +367,10 @@ namespace Godot
return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta;
}
+ ///
+ /// Returns the vector scaled to unit length. Equivalent to `v / v.Length()`.
+ ///
+ /// A normalized version of the vector.
public Vector2 Normalized()
{
var v = this;
@@ -211,6 +378,21 @@ namespace Godot
return v;
}
+ ///
+ /// Returns a perpendicular vector rotated 90 degrees counter-clockwise
+ /// compared to the original, with the same length.
+ ///
+ /// The perpendicular vector.
+ public Vector2 Perpendicular()
+ {
+ return new Vector2(y, -x);
+ }
+
+ ///
+ /// Returns a vector composed of the of this vector's components and `mod`.
+ ///
+ /// A value representing the divisor of the operation.
+ /// A vector with each component by `mod`.
public Vector2 PosMod(real_t mod)
{
Vector2 v;
@@ -219,6 +401,11 @@ namespace Godot
return v;
}
+ ///
+ /// Returns a vector composed of the of this vector's components and `modv`'s components.
+ ///
+ /// A vector representing the divisors of the operation.
+ /// A vector with each component by `modv`'s components.
public Vector2 PosMod(Vector2 modv)
{
Vector2 v;
@@ -227,22 +414,48 @@ namespace Godot
return v;
}
+ ///
+ /// Returns this vector projected onto another vector.
+ ///
+ /// The vector to project onto.
+ /// The projected vector.
public Vector2 Project(Vector2 onNormal)
{
return onNormal * (Dot(onNormal) / onNormal.LengthSquared());
}
- public Vector2 Reflect(Vector2 n)
+ ///
+ /// Returns this vector reflected from a plane defined by the given `normal`.
+ ///
+ /// The normal vector defining the plane to reflect from. Must be normalized.
+ /// The reflected vector.
+ public Vector2 Reflect(Vector2 normal)
{
- return 2.0f * n * Dot(n) - this;
+#if DEBUG
+ if (!normal.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(normal));
+ }
+#endif
+ return 2 * Dot(normal) * normal - this;
}
+ ///
+ /// Rotates this vector by `phi` radians.
+ ///
+ /// The angle to rotate by, in radians.
+ /// The rotated vector.
public Vector2 Rotated(real_t phi)
{
real_t rads = Angle() + phi;
return new Vector2(Mathf.Cos(rads), Mathf.Sin(rads)) * Length();
}
+ ///
+ /// Returns this vector with all components rounded to the nearest integer,
+ /// with halfway cases rounded towards the nearest multiple of two.
+ ///
+ /// The rounded vector.
public Vector2 Round()
{
return new Vector2(Mathf.Round(x), Mathf.Round(y));
@@ -261,6 +474,12 @@ namespace Godot
y = v.y;
}
+ ///
+ /// Returns a vector with each component set to one or negative one, depending
+ /// on the signs of this vector's components, or zero if the component is zero,
+ /// by calling on each component.
+ ///
+ /// A vector with all components as either `1`, `-1`, or `0`.
public Vector2 Sign()
{
Vector2 v;
@@ -269,22 +488,57 @@ namespace Godot
return v;
}
- public Vector2 Slerp(Vector2 b, real_t t)
+ ///
+ /// Returns the result of the spherical linear interpolation between
+ /// this vector and `to` by amount `weight`.
+ ///
+ /// Note: Both vectors must be normalized.
+ ///
+ /// The destination vector for interpolation. Must be normalized.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting vector of the interpolation.
+ public Vector2 Slerp(Vector2 to, real_t weight)
{
- real_t theta = AngleTo(b);
- return Rotated(theta * t);
+#if DEBUG
+ if (!IsNormalized())
+ {
+ throw new InvalidOperationException("Vector2.Slerp: From vector is not normalized.");
+ }
+ if (!to.IsNormalized())
+ {
+ throw new InvalidOperationException("Vector2.Slerp: `to` is not normalized.");
+ }
+#endif
+ return Rotated(AngleTo(to) * weight);
}
- public Vector2 Slide(Vector2 n)
+ ///
+ /// Returns this vector slid along a plane defined by the given normal.
+ ///
+ /// The normal vector defining the plane to slide on.
+ /// The slid vector.
+ public Vector2 Slide(Vector2 normal)
{
- return this - n * Dot(n);
+ return this - normal * Dot(normal);
}
- public Vector2 Snapped(Vector2 by)
+ ///
+ /// Returns this vector with each component snapped to the nearest multiple of `step`.
+ /// This can also be used to round to an arbitrary number of decimals.
+ ///
+ /// A vector value representing the step size to snap to.
+ /// The snapped vector.
+ public Vector2 Snapped(Vector2 step)
{
- return new Vector2(Mathf.Stepify(x, by.x), Mathf.Stepify(y, by.y));
+ return new Vector2(Mathf.Stepify(x, step.x), Mathf.Stepify(y, step.y));
}
+ ///
+ /// Returns a perpendicular vector rotated 90 degrees counter-clockwise
+ /// compared to the original, with the same length.
+ /// Deprecated, will be replaced by in 4.0.
+ ///
+ /// The perpendicular vector.
public Vector2 Tangent()
{
return new Vector2(y, -x);
@@ -301,22 +555,63 @@ namespace Godot
private static readonly Vector2 _right = new Vector2(1, 0);
private static readonly Vector2 _left = new Vector2(-1, 0);
+ ///
+ /// Zero vector, a vector with all components set to `0`.
+ ///
+ /// Equivalent to `new Vector2(0, 0)`
public static Vector2 Zero { get { return _zero; } }
+ ///
+ /// Deprecated, please use a negative sign with instead.
+ ///
+ /// Equivalent to `new Vector2(-1, -1)`
public static Vector2 NegOne { get { return _negOne; } }
+ ///
+ /// One vector, a vector with all components set to `1`.
+ ///
+ /// Equivalent to `new Vector2(1, 1)`
public static Vector2 One { get { return _one; } }
+ ///
+ /// Infinity vector, a vector with all components set to `Mathf.Inf`.
+ ///
+ /// Equivalent to `new Vector2(Mathf.Inf, Mathf.Inf)`
public static Vector2 Inf { get { return _inf; } }
+ ///
+ /// Up unit vector. Y is down in 2D, so this vector points -Y.
+ ///
+ /// Equivalent to `new Vector2(0, -1)`
public static Vector2 Up { get { return _up; } }
+ ///
+ /// Down unit vector. Y is down in 2D, so this vector points +Y.
+ ///
+ /// Equivalent to `new Vector2(0, 1)`
public static Vector2 Down { get { return _down; } }
+ ///
+ /// Right unit vector. Represents the direction of right.
+ ///
+ /// Equivalent to `new Vector2(1, 0)`
public static Vector2 Right { get { return _right; } }
+ ///
+ /// Left unit vector. Represents the direction of left.
+ ///
+ /// Equivalent to `new Vector2(-1, 0)`
public static Vector2 Left { get { return _left; } }
- // Constructors
+ ///
+ /// Constructs a new with the given components.
+ ///
+ /// The vector's X component.
+ /// The vector's Y component.
public Vector2(real_t x, real_t y)
{
this.x = x;
this.y = y;
}
+
+ ///
+ /// Constructs a new from an existing .
+ ///
+ /// The existing .
public Vector2(Vector2 v)
{
x = v.x;
@@ -365,18 +660,18 @@ namespace Godot
return left;
}
- public static Vector2 operator /(Vector2 vec, real_t scale)
+ public static Vector2 operator /(Vector2 vec, real_t divisor)
{
- vec.x /= scale;
- vec.y /= scale;
+ vec.x /= divisor;
+ vec.y /= divisor;
return vec;
}
- public static Vector2 operator /(Vector2 left, Vector2 right)
+ public static Vector2 operator /(Vector2 vec, Vector2 divisorv)
{
- left.x /= right.x;
- left.y /= right.y;
- return left;
+ vec.x /= divisorv.x;
+ vec.y /= divisorv.y;
+ return vec;
}
public static Vector2 operator %(Vector2 vec, real_t divisor)
@@ -458,6 +753,12 @@ namespace Godot
return x == other.x && y == other.y;
}
+ ///
+ /// Returns true if this vector and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other vector to compare.
+ /// Whether or not the vectors are approximately equal.
public bool IsEqualApprox(Vector2 other)
{
return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y);
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
index fded34002df..fe36ac81d1c 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
@@ -21,6 +21,10 @@ namespace Godot
[StructLayout(LayoutKind.Sequential)]
public struct Vector3 : IEquatable
{
+ ///
+ /// Enumerated index values for the axes.
+ /// Returned by and .
+ ///
public enum Axis
{
X = 0,
@@ -28,10 +32,23 @@ namespace Godot
Z
}
+ ///
+ /// The vector's X component. Also accessible by using the index position `[0]`.
+ ///
public real_t x;
+ ///
+ /// The vector's Y component. Also accessible by using the index position `[1]`.
+ ///
public real_t y;
+ ///
+ /// The vector's Z component. Also accessible by using the index position `[2]`.
+ ///
public real_t z;
+ ///
+ /// Access vector components using their index.
+ ///
+ /// `[0]` is equivalent to `.x`, `[1]` is equivalent to `.y`, `[2]` is equivalent to `.z`.
public real_t this[int index]
{
get
@@ -84,26 +101,49 @@ namespace Godot
}
}
+ ///
+ /// Returns a new vector with all components in absolute values (i.e. positive).
+ ///
+ /// A vector with called on each component.
public Vector3 Abs()
{
return new Vector3(Mathf.Abs(x), Mathf.Abs(y), Mathf.Abs(z));
}
+ ///
+ /// Returns the minimum angle to the given vector, in radians.
+ ///
+ /// The other vector to compare this vector to.
+ /// The angle between the two vectors, in radians.
public real_t AngleTo(Vector3 to)
{
return Mathf.Atan2(Cross(to).Length(), Dot(to));
}
- public Vector3 Bounce(Vector3 n)
+ ///
+ /// Returns this vector "bounced off" from a plane defined by the given normal.
+ ///
+ /// The normal vector defining the plane to bounce off. Must be normalized.
+ /// The bounced vector.
+ public Vector3 Bounce(Vector3 normal)
{
- return -Reflect(n);
+ return -Reflect(normal);
}
+ ///
+ /// Returns a new vector with all components rounded up (towards positive infinity).
+ ///
+ /// A vector with called on each component.
public Vector3 Ceil()
{
return new Vector3(Mathf.Ceil(x), Mathf.Ceil(y), Mathf.Ceil(z));
}
+ ///
+ /// Returns the cross product of this vector and `b`.
+ ///
+ /// The other vector.
+ /// The cross product vector.
public Vector3 Cross(Vector3 b)
{
return new Vector3
@@ -114,12 +154,21 @@ namespace Godot
);
}
+ ///
+ /// Performs a cubic interpolation between vectors `preA`, this vector,
+ /// `b`, and `postB`, by the given amount `t`.
+ ///
+ /// The destination vector.
+ /// A vector before this vector.
+ /// A vector after `b`.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The interpolated vector.
public Vector3 CubicInterpolate(Vector3 b, Vector3 preA, Vector3 postB, real_t t)
{
- var p0 = preA;
- var p1 = this;
- var p2 = b;
- var p3 = postB;
+ Vector3 p0 = preA;
+ Vector3 p1 = this;
+ Vector3 p2 = b;
+ Vector3 p3 = postB;
real_t t2 = t * t;
real_t t3 = t2 * t;
@@ -131,41 +180,79 @@ namespace Godot
);
}
+ ///
+ /// Returns the normalized vector pointing from this vector to `b`.
+ ///
+ /// The other vector to point towards.
+ /// The direction from this vector to `b`.
public Vector3 DirectionTo(Vector3 b)
{
return new Vector3(b.x - x, b.y - y, b.z - z).Normalized();
}
+ ///
+ /// Returns the squared distance between this vector and `b`.
+ /// This method runs faster than , so prefer it if
+ /// you need to compare vectors or need the squared distance for some formula.
+ ///
+ /// The other vector to use.
+ /// The squared distance between the two vectors.
public real_t DistanceSquaredTo(Vector3 b)
{
return (b - this).LengthSquared();
}
+ ///
+ /// Returns the distance between this vector and `b`.
+ ///
+ /// The other vector to use.
+ /// The distance between the two vectors.
public real_t DistanceTo(Vector3 b)
{
return (b - this).Length();
}
+ ///
+ /// Returns the dot product of this vector and `b`.
+ ///
+ /// The other vector to use.
+ /// The dot product of the two vectors.
public real_t Dot(Vector3 b)
{
return x * b.x + y * b.y + z * b.z;
}
+ ///
+ /// Returns a new vector with all components rounded down (towards negative infinity).
+ ///
+ /// A vector with called on each component.
public Vector3 Floor()
{
return new Vector3(Mathf.Floor(x), Mathf.Floor(y), Mathf.Floor(z));
}
+ ///
+ /// Returns the inverse of this vector. This is the same as `new Vector3(1 / v.x, 1 / v.y, 1 / v.z)`.
+ ///
+ /// The inverse of this vector.
public Vector3 Inverse()
{
- return new Vector3(1.0f / x, 1.0f / y, 1.0f / z);
+ return new Vector3(1 / x, 1 / y, 1 / z);
}
+ ///
+ /// Returns true if the vector is normalized, and false otherwise.
+ ///
+ /// A bool indicating whether or not the vector is normalized.
public bool IsNormalized()
{
return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon;
}
+ ///
+ /// Returns the length (magnitude) of this vector.
+ ///
+ /// The length of this vector.
public real_t Length()
{
real_t x2 = x * x;
@@ -175,6 +262,12 @@ namespace Godot
return Mathf.Sqrt(x2 + y2 + z2);
}
+ ///
+ /// Returns the squared length (squared magnitude) of this vector.
+ /// This method runs faster than , so prefer it if
+ /// you need to compare vectors or need the squared length for some formula.
+ ///
+ /// The squared length of this vector.
public real_t LengthSquared()
{
real_t x2 = x * x;
@@ -184,16 +277,66 @@ namespace Godot
return x2 + y2 + z2;
}
- public Vector3 LinearInterpolate(Vector3 b, real_t t)
+ ///
+ /// Returns the result of the linear interpolation between
+ /// this vector and `to` by amount `weight`.
+ ///
+ /// The destination vector for interpolation.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting vector of the interpolation.
+ public Vector3 LinearInterpolate(Vector3 to, real_t weight)
{
return new Vector3
(
- x + t * (b.x - x),
- y + t * (b.y - y),
- z + t * (b.z - z)
+ Mathf.Lerp(x, to.x, weight),
+ Mathf.Lerp(y, to.y, weight),
+ Mathf.Lerp(z, to.z, weight)
);
}
+ ///
+ /// Returns the result of the linear interpolation between
+ /// this vector and `to` by the vector amount `weight`.
+ ///
+ /// The destination vector for interpolation.
+ /// A vector with components on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting vector of the interpolation.
+ public Vector3 LinearInterpolate(Vector3 to, Vector3 weight)
+ {
+ return new Vector3
+ (
+ Mathf.Lerp(x, to.x, weight.x),
+ Mathf.Lerp(y, to.y, weight.y),
+ Mathf.Lerp(z, to.z, weight.z)
+ );
+ }
+
+ ///
+ /// Returns the axis of the vector's largest value. See .
+ /// If all components are equal, this method returns .
+ ///
+ /// The index of the largest axis.
+ public Axis MaxAxis()
+ {
+ return x < y ? (y < z ? Axis.Z : Axis.Y) : (x < z ? Axis.Z : Axis.X);
+ }
+
+ ///
+ /// Returns the axis of the vector's smallest value. See .
+ /// If all components are equal, this method returns .
+ ///
+ /// The index of the smallest axis.
+ public Axis MinAxis()
+ {
+ return x < y ? (x < z ? Axis.X : Axis.Z) : (y < z ? Axis.Y : Axis.Z);
+ }
+
+ ///
+ /// Moves this vector toward `to` by the fixed `delta` amount.
+ ///
+ /// The vector to move towards.
+ /// The amount to move towards by.
+ /// The resulting vector.
public Vector3 MoveToward(Vector3 to, real_t delta)
{
var v = this;
@@ -202,16 +345,10 @@ namespace Godot
return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta;
}
- public Axis MaxAxis()
- {
- return x < y ? (y < z ? Axis.Z : Axis.Y) : (x < z ? Axis.Z : Axis.X);
- }
-
- public Axis MinAxis()
- {
- return x < y ? (x < z ? Axis.X : Axis.Z) : (y < z ? Axis.Y : Axis.Z);
- }
-
+ ///
+ /// Returns the vector scaled to unit length. Equivalent to `v / v.Length()`.
+ ///
+ /// A normalized version of the vector.
public Vector3 Normalized()
{
var v = this;
@@ -219,6 +356,11 @@ namespace Godot
return v;
}
+ ///
+ /// Returns the outer product with `b`.
+ ///
+ /// The other vector.
+ /// A representing the outer product matrix.
public Basis Outer(Vector3 b)
{
return new Basis(
@@ -228,6 +370,11 @@ namespace Godot
);
}
+ ///
+ /// Returns a vector composed of the of this vector's components and `mod`.
+ ///
+ /// A value representing the divisor of the operation.
+ /// A vector with each component by `mod`.
public Vector3 PosMod(real_t mod)
{
Vector3 v;
@@ -237,6 +384,11 @@ namespace Godot
return v;
}
+ ///
+ /// Returns a vector composed of the of this vector's components and `modv`'s components.
+ ///
+ /// A vector representing the divisors of the operation.
+ /// A vector with each component by `modv`'s components.
public Vector3 PosMod(Vector3 modv)
{
Vector3 v;
@@ -246,30 +398,60 @@ namespace Godot
return v;
}
+ ///
+ /// Returns this vector projected onto another vector `b`.
+ ///
+ /// The vector to project onto.
+ /// The projected vector.
public Vector3 Project(Vector3 onNormal)
{
return onNormal * (Dot(onNormal) / onNormal.LengthSquared());
}
- public Vector3 Reflect(Vector3 n)
+ ///
+ /// Returns this vector reflected from a plane defined by the given `normal`.
+ ///
+ /// The normal vector defining the plane to reflect from. Must be normalized.
+ /// The reflected vector.
+ public Vector3 Reflect(Vector3 normal)
{
#if DEBUG
- if (!n.IsNormalized())
- throw new ArgumentException("Argument is not normalized", nameof(n));
+ if (!normal.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(normal));
+ }
#endif
- return 2.0f * n * Dot(n) - this;
+ return 2.0f * Dot(normal) * normal - this;
}
+ ///
+ /// Rotates this vector around a given `axis` vector by `phi` radians.
+ /// The `axis` vector must be a normalized vector.
+ ///
+ /// The vector to rotate around. Must be normalized.
+ /// The angle to rotate by, in radians.
+ /// The rotated vector.
+ public Vector3 Rotated(Vector3 axis, real_t phi)
+ {
+#if DEBUG
+ if (!axis.IsNormalized())
+ {
+ throw new ArgumentException("Argument is not normalized", nameof(axis));
+ }
+#endif
+ return new Basis(axis, phi).Xform(this);
+ }
+
+ ///
+ /// Returns this vector with all components rounded to the nearest integer,
+ /// with halfway cases rounded towards the nearest multiple of two.
+ ///
+ /// The rounded vector.
public Vector3 Round()
{
return new Vector3(Mathf.Round(x), Mathf.Round(y), Mathf.Round(z));
}
- public Vector3 Rotated(Vector3 axis, real_t phi)
- {
- return new Basis(axis, phi).Xform(this);
- }
-
[Obsolete("Set is deprecated. Use the Vector3(" + nameof(real_t) + ", " + nameof(real_t) + ", " + nameof(real_t) + ") constructor instead.", error: true)]
public void Set(real_t x, real_t y, real_t z)
{
@@ -285,6 +467,12 @@ namespace Godot
z = v.z;
}
+ ///
+ /// Returns a vector with each component set to one or negative one, depending
+ /// on the signs of this vector's components, or zero if the component is zero,
+ /// by calling on each component.
+ ///
+ /// A vector with all components as either `1`, `-1`, or `0`.
public Vector3 Sign()
{
Vector3 v;
@@ -294,37 +482,70 @@ namespace Godot
return v;
}
- public Vector3 Slerp(Vector3 b, real_t t)
+ ///
+ /// Returns the result of the spherical linear interpolation between
+ /// this vector and `to` by amount `weight`.
+ ///
+ /// Note: Both vectors must be normalized.
+ ///
+ /// The destination vector for interpolation. Must be normalized.
+ /// A value on the range of 0.0 to 1.0, representing the amount of interpolation.
+ /// The resulting vector of the interpolation.
+ public Vector3 Slerp(Vector3 to, real_t weight)
{
#if DEBUG
if (!IsNormalized())
- throw new InvalidOperationException("Vector3 is not normalized");
+ {
+ throw new InvalidOperationException("Vector3.Slerp: From vector is not normalized.");
+ }
+ if (!to.IsNormalized())
+ {
+ throw new InvalidOperationException("Vector3.Slerp: `to` is not normalized.");
+ }
#endif
- real_t theta = AngleTo(b);
- return Rotated(Cross(b), theta * t);
+ real_t theta = AngleTo(to);
+ return Rotated(Cross(to), theta * weight);
}
- public Vector3 Slide(Vector3 n)
+ ///
+ /// Returns this vector slid along a plane defined by the given normal.
+ ///
+ /// The normal vector defining the plane to slide on.
+ /// The slid vector.
+ public Vector3 Slide(Vector3 normal)
{
- return this - n * Dot(n);
+ return this - normal * Dot(normal);
}
- public Vector3 Snapped(Vector3 by)
+ ///
+ /// Returns this vector with each component snapped to the nearest multiple of `step`.
+ /// This can also be used to round to an arbitrary number of decimals.
+ ///
+ /// A vector value representing the step size to snap to.
+ /// The snapped vector.
+ public Vector3 Snapped(Vector3 step)
{
return new Vector3
(
- Mathf.Stepify(x, by.x),
- Mathf.Stepify(y, by.y),
- Mathf.Stepify(z, by.z)
+ Mathf.Stepify(x, step.x),
+ Mathf.Stepify(y, step.y),
+ Mathf.Stepify(z, step.z)
);
}
+ ///
+ /// Returns a diagonal matrix with the vector as main diagonal.
+ ///
+ /// This is equivalent to a Basis with no rotation or shearing and
+ /// this vector's components set as the scale.
+ ///
+ /// A Basis with the vector as its main diagonal.
public Basis ToDiagonalMatrix()
{
return new Basis(
- x, 0f, 0f,
- 0f, y, 0f,
- 0f, 0f, z
+ x, 0, 0,
+ 0, y, 0,
+ 0, 0, z
);
}
@@ -341,25 +562,79 @@ namespace Godot
private static readonly Vector3 _forward = new Vector3(0, 0, -1);
private static readonly Vector3 _back = new Vector3(0, 0, 1);
+ ///
+ /// Zero vector, a vector with all components set to `0`.
+ ///
+ /// Equivalent to `new Vector3(0, 0, 0)`
public static Vector3 Zero { get { return _zero; } }
+ ///
+ /// One vector, a vector with all components set to `1`.
+ ///
+ /// Equivalent to `new Vector3(1, 1, 1)`
public static Vector3 One { get { return _one; } }
+ ///
+ /// Deprecated, please use a negative sign with instead.
+ ///
+ /// Equivalent to `new Vector3(-1, -1, -1)`
public static Vector3 NegOne { get { return _negOne; } }
+ ///
+ /// Infinity vector, a vector with all components set to `Mathf.Inf`.
+ ///
+ /// Equivalent to `new Vector3(Mathf.Inf, Mathf.Inf, Mathf.Inf)`
public static Vector3 Inf { get { return _inf; } }
+ ///
+ /// Up unit vector.
+ ///
+ /// Equivalent to `new Vector3(0, 1, 0)`
public static Vector3 Up { get { return _up; } }
+ ///
+ /// Down unit vector.
+ ///
+ /// Equivalent to `new Vector3(0, -1, 0)`
public static Vector3 Down { get { return _down; } }
+ ///
+ /// Right unit vector. Represents the local direction of right,
+ /// and the global direction of east.
+ ///
+ /// Equivalent to `new Vector3(1, 0, 0)`
public static Vector3 Right { get { return _right; } }
+ ///
+ /// Left unit vector. Represents the local direction of left,
+ /// and the global direction of west.
+ ///
+ /// Equivalent to `new Vector3(-1, 0, 0)`
public static Vector3 Left { get { return _left; } }
+ ///
+ /// Forward unit vector. Represents the local direction of forward,
+ /// and the global direction of north.
+ ///
+ /// Equivalent to `new Vector3(0, 0, -1)`
public static Vector3 Forward { get { return _forward; } }
+ ///
+ /// Back unit vector. Represents the local direction of back,
+ /// and the global direction of south.
+ ///
+ /// Equivalent to `new Vector3(0, 0, 1)`
public static Vector3 Back { get { return _back; } }
- // Constructors
+ ///
+ /// Constructs a new with the given components.
+ ///
+ /// The vector's X component.
+ /// The vector's Y component.
+ /// The vector's Z component.
public Vector3(real_t x, real_t y, real_t z)
{
this.x = x;
this.y = y;
this.z = z;
}
+
+ ///
+ /// Constructs a new from an existing .
+ ///
+ /// The existing .
public Vector3(Vector3 v)
{
x = v.x;
@@ -415,20 +690,20 @@ namespace Godot
return left;
}
- public static Vector3 operator /(Vector3 vec, real_t scale)
+ public static Vector3 operator /(Vector3 vec, real_t divisor)
{
- vec.x /= scale;
- vec.y /= scale;
- vec.z /= scale;
+ vec.x /= divisor;
+ vec.y /= divisor;
+ vec.z /= divisor;
return vec;
}
- public static Vector3 operator /(Vector3 left, Vector3 right)
+ public static Vector3 operator /(Vector3 vec, Vector3 divisorv)
{
- left.x /= right.x;
- left.y /= right.y;
- left.z /= right.z;
- return left;
+ vec.x /= divisorv.x;
+ vec.y /= divisorv.y;
+ vec.z /= divisorv.z;
+ return vec;
}
public static Vector3 operator %(Vector3 vec, real_t divisor)
@@ -520,6 +795,12 @@ namespace Godot
return x == other.x && y == other.y && z == other.z;
}
+ ///
+ /// Returns true if this vector and `other` are approximately equal, by running
+ /// on each component.
+ ///
+ /// The other vector to compare.
+ /// Whether or not the vectors are approximately equal.
public bool IsEqualApprox(Vector3 other)
{
return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z);