Add cubic_interpolate_in_time_variant() to Animation
This commit is contained in:
parent
13a0d6e9b2
commit
e538ce3851
|
@ -2394,79 +2394,7 @@ Quaternion Animation::_cubic_interpolate_in_time(const Quaternion &p_pre_a, cons
|
|||
}
|
||||
|
||||
Variant Animation::_cubic_interpolate_in_time(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
|
||||
Variant::Type type_a = p_a.get_type();
|
||||
Variant::Type type_b = p_b.get_type();
|
||||
Variant::Type type_pa = p_pre_a.get_type();
|
||||
Variant::Type type_pb = p_post_b.get_type();
|
||||
|
||||
//make int and real play along
|
||||
|
||||
uint32_t vformat = 1 << type_a;
|
||||
vformat |= 1 << type_b;
|
||||
vformat |= 1 << type_pa;
|
||||
vformat |= 1 << type_pb;
|
||||
|
||||
if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) {
|
||||
//mix of real and int
|
||||
real_t a = p_a;
|
||||
real_t b = p_b;
|
||||
real_t pa = p_pre_a;
|
||||
real_t pb = p_post_b;
|
||||
|
||||
return Math::cubic_interpolate_in_time(a, b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
} else if ((vformat & (vformat - 1))) {
|
||||
return p_a; //can't interpolate, mix of types
|
||||
}
|
||||
|
||||
switch (type_a) {
|
||||
case Variant::VECTOR2: {
|
||||
Vector2 a = p_a;
|
||||
Vector2 b = p_b;
|
||||
Vector2 pa = p_pre_a;
|
||||
Vector2 pb = p_post_b;
|
||||
|
||||
return a.cubic_interpolate_in_time(b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
}
|
||||
case Variant::RECT2: {
|
||||
Rect2 a = p_a;
|
||||
Rect2 b = p_b;
|
||||
Rect2 pa = p_pre_a;
|
||||
Rect2 pb = p_post_b;
|
||||
|
||||
return Rect2(
|
||||
a.position.cubic_interpolate_in_time(b.position, pa.position, pb.position, p_c, p_b_t, p_pre_a_t, p_post_b_t),
|
||||
a.size.cubic_interpolate_in_time(b.size, pa.size, pb.size, p_c, p_b_t, p_pre_a_t, p_post_b_t));
|
||||
}
|
||||
case Variant::VECTOR3: {
|
||||
Vector3 a = p_a;
|
||||
Vector3 b = p_b;
|
||||
Vector3 pa = p_pre_a;
|
||||
Vector3 pb = p_post_b;
|
||||
|
||||
return a.cubic_interpolate_in_time(b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
}
|
||||
case Variant::QUATERNION: {
|
||||
Quaternion a = p_a;
|
||||
Quaternion b = p_b;
|
||||
Quaternion pa = p_pre_a;
|
||||
Quaternion pb = p_post_b;
|
||||
|
||||
return a.spherical_cubic_interpolate_in_time(b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
}
|
||||
case Variant::AABB: {
|
||||
AABB a = p_a;
|
||||
AABB b = p_b;
|
||||
AABB pa = p_pre_a;
|
||||
AABB pb = p_post_b;
|
||||
|
||||
return AABB(
|
||||
a.position.cubic_interpolate_in_time(b.position, pa.position, pb.position, p_c, p_b_t, p_pre_a_t, p_post_b_t),
|
||||
a.size.cubic_interpolate_in_time(b.size, pa.size, pb.size, p_c, p_b_t, p_pre_a_t, p_post_b_t));
|
||||
}
|
||||
default: {
|
||||
return _interpolate(p_a, p_b, p_c);
|
||||
}
|
||||
}
|
||||
return cubic_interpolate_in_time_variant(p_pre_a, p_a, p_b, p_post_b, p_c, p_pre_a_t, p_b_t, p_post_b_t);
|
||||
}
|
||||
|
||||
real_t Animation::_cubic_interpolate_in_time(const real_t &p_pre_a, const real_t &p_a, const real_t &p_b, const real_t &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const {
|
||||
|
@ -2489,7 +2417,7 @@ Variant Animation::_cubic_interpolate_angle_in_time(const Variant &p_pre_a, cons
|
|||
real_t pb = p_post_b;
|
||||
return Math::fposmod((float)Math::cubic_interpolate_angle_in_time(a, b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t), (float)Math_TAU);
|
||||
}
|
||||
return _interpolate(p_a, p_b, p_c);
|
||||
return _cubic_interpolate_in_time(p_pre_a, p_a, p_b, p_post_b, p_c, p_pre_a_t, p_b_t, p_post_b_t);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
|
@ -5972,8 +5900,7 @@ Variant Animation::interpolate_variant(const Variant &a, const Variant &b, float
|
|||
return Variant();
|
||||
} break;
|
||||
case Variant::FLOAT: {
|
||||
const double va = a.operator double();
|
||||
return va + ((b.operator double()) - va) * c;
|
||||
return Math::lerp(a.operator double(), b.operator double(), (double)c);
|
||||
} break;
|
||||
case Variant::VECTOR2: {
|
||||
return (a.operator Vector2()).lerp(b.operator Vector2(), c);
|
||||
|
@ -5992,7 +5919,7 @@ Variant Animation::interpolate_variant(const Variant &a, const Variant &b, float
|
|||
case Variant::PLANE: {
|
||||
const Plane pa = a.operator Plane();
|
||||
const Plane pb = b.operator Plane();
|
||||
return Plane(pa.normal.lerp(pb.normal, c), pa.d + (pb.d - pa.d) * c);
|
||||
return Plane(pa.normal.lerp(pb.normal, c), Math::lerp((double)pa.d, (double)pb.d, (double)c));
|
||||
} break;
|
||||
case Variant::COLOR: {
|
||||
return (a.operator Color()).lerp(b.operator Color(), c);
|
||||
|
@ -6102,6 +6029,194 @@ Variant Animation::interpolate_variant(const Variant &a, const Variant &b, float
|
|||
return c < 0.5 ? a : b;
|
||||
}
|
||||
|
||||
Variant Animation::cubic_interpolate_in_time_variant(const Variant &pre_a, const Variant &a, const Variant &b, const Variant &post_b, float c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t, bool p_snap_array_element) {
|
||||
if (pre_a.get_type() != a.get_type() || pre_a.get_type() != b.get_type() || pre_a.get_type() != post_b.get_type()) {
|
||||
if (pre_a.is_num() && a.is_num() && b.is_num() && post_b.is_num()) {
|
||||
return cubic_interpolate_in_time_variant(cast_to_blendwise(pre_a), cast_to_blendwise(a), cast_to_blendwise(b), cast_to_blendwise(post_b), c, p_pre_a_t, p_b_t, p_post_b_t, p_snap_array_element);
|
||||
} else if (!a.is_array()) {
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
switch (a.get_type()) {
|
||||
case Variant::NIL: {
|
||||
return Variant();
|
||||
} break;
|
||||
case Variant::FLOAT: {
|
||||
return Math::cubic_interpolate_in_time(a.operator double(), b.operator double(), pre_a.operator double(), post_b.operator double(), (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t);
|
||||
} break;
|
||||
case Variant::VECTOR2: {
|
||||
return (a.operator Vector2()).cubic_interpolate_in_time(b.operator Vector2(), pre_a.operator Vector2(), post_b.operator Vector2(), c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
} break;
|
||||
case Variant::RECT2: {
|
||||
const Rect2 rpa = pre_a.operator Rect2();
|
||||
const Rect2 ra = a.operator Rect2();
|
||||
const Rect2 rb = b.operator Rect2();
|
||||
const Rect2 rpb = post_b.operator Rect2();
|
||||
return Rect2(
|
||||
ra.position.cubic_interpolate_in_time(rb.position, rpa.position, rpb.position, c, p_b_t, p_pre_a_t, p_post_b_t),
|
||||
ra.size.cubic_interpolate_in_time(rb.size, rpa.size, rpb.size, c, p_b_t, p_pre_a_t, p_post_b_t));
|
||||
} break;
|
||||
case Variant::VECTOR3: {
|
||||
return (a.operator Vector3()).cubic_interpolate_in_time(b.operator Vector3(), pre_a.operator Vector3(), post_b.operator Vector3(), c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
} break;
|
||||
case Variant::VECTOR4: {
|
||||
return (a.operator Vector4()).cubic_interpolate_in_time(b.operator Vector4(), pre_a.operator Vector4(), post_b.operator Vector4(), c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
} break;
|
||||
case Variant::PLANE: {
|
||||
const Plane ppa = pre_a.operator Plane();
|
||||
const Plane pa = a.operator Plane();
|
||||
const Plane pb = b.operator Plane();
|
||||
const Plane ppb = post_b.operator Plane();
|
||||
return Plane(
|
||||
pa.normal.cubic_interpolate_in_time(pb.normal, ppa.normal, ppb.normal, c, p_b_t, p_pre_a_t, p_post_b_t),
|
||||
Math::cubic_interpolate_in_time((double)pa.d, (double)pb.d, (double)ppa.d, (double)ppb.d, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t));
|
||||
} break;
|
||||
case Variant::COLOR: {
|
||||
const Color cpa = pre_a.operator Color();
|
||||
const Color ca = a.operator Color();
|
||||
const Color cb = b.operator Color();
|
||||
const Color cpb = post_b.operator Color();
|
||||
return Color(
|
||||
Math::cubic_interpolate_in_time((double)ca.r, (double)cb.r, (double)cpa.r, (double)cpb.r, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t),
|
||||
Math::cubic_interpolate_in_time((double)ca.g, (double)cb.g, (double)cpa.g, (double)cpb.g, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t),
|
||||
Math::cubic_interpolate_in_time((double)ca.b, (double)cb.b, (double)cpa.b, (double)cpb.b, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t),
|
||||
Math::cubic_interpolate_in_time((double)ca.a, (double)cb.a, (double)cpa.a, (double)cpb.a, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t));
|
||||
} break;
|
||||
case Variant::AABB: {
|
||||
const ::AABB apa = pre_a.operator ::AABB();
|
||||
const ::AABB aa = a.operator ::AABB();
|
||||
const ::AABB ab = b.operator ::AABB();
|
||||
const ::AABB apb = post_b.operator ::AABB();
|
||||
return AABB(
|
||||
aa.position.cubic_interpolate_in_time(ab.position, apa.position, apb.position, c, p_b_t, p_pre_a_t, p_post_b_t),
|
||||
aa.size.cubic_interpolate_in_time(ab.size, apa.size, apb.size, c, p_b_t, p_pre_a_t, p_post_b_t));
|
||||
} break;
|
||||
case Variant::BASIS: {
|
||||
const Basis bpa = pre_a.operator Basis();
|
||||
const Basis ba = a.operator Basis();
|
||||
const Basis bb = b.operator Basis();
|
||||
const Basis bpb = post_b.operator Basis();
|
||||
return Basis(
|
||||
ba.rows[0].cubic_interpolate_in_time(bb.rows[0], bpa.rows[0], bpb.rows[0], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ba.rows[1].cubic_interpolate_in_time(bb.rows[1], bpa.rows[1], bpb.rows[1], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ba.rows[2].cubic_interpolate_in_time(bb.rows[2], bpa.rows[2], bpb.rows[2], c, p_pre_a_t, p_b_t, p_post_b_t));
|
||||
} break;
|
||||
case Variant::QUATERNION: {
|
||||
return (a.operator Quaternion()).spherical_cubic_interpolate_in_time(b.operator Quaternion(), pre_a.operator Quaternion(), post_b.operator Quaternion(), c, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
} break;
|
||||
case Variant::TRANSFORM2D: {
|
||||
const Transform2D tpa = pre_a.operator Transform2D();
|
||||
const Transform2D ta = a.operator Transform2D();
|
||||
const Transform2D tb = b.operator Transform2D();
|
||||
const Transform2D tpb = post_b.operator Transform2D();
|
||||
// TODO: May cause unintended skew, we needs spherical_cubic_interpolate_in_time() for angle and Transform2D::cubic_interpolate_with().
|
||||
return Transform2D(
|
||||
ta[0].cubic_interpolate_in_time(tb[0], tpa[0], tpb[0], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ta[1].cubic_interpolate_in_time(tb[1], tpa[1], tpb[1], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ta[2].cubic_interpolate_in_time(tb[2], tpa[2], tpb[2], c, p_pre_a_t, p_b_t, p_post_b_t));
|
||||
} break;
|
||||
case Variant::TRANSFORM3D: {
|
||||
const Transform3D tpa = pre_a.operator Transform3D();
|
||||
const Transform3D ta = a.operator Transform3D();
|
||||
const Transform3D tb = b.operator Transform3D();
|
||||
const Transform3D tpb = post_b.operator Transform3D();
|
||||
// TODO: May cause unintended skew, we needs Transform3D::cubic_interpolate_with().
|
||||
return Transform3D(
|
||||
ta.basis.rows[0].cubic_interpolate_in_time(tb.basis.rows[0], tpa.basis.rows[0], tpb.basis.rows[0], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ta.basis.rows[1].cubic_interpolate_in_time(tb.basis.rows[1], tpa.basis.rows[1], tpb.basis.rows[1], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ta.basis.rows[2].cubic_interpolate_in_time(tb.basis.rows[2], tpa.basis.rows[2], tpb.basis.rows[2], c, p_pre_a_t, p_b_t, p_post_b_t),
|
||||
ta.origin.cubic_interpolate_in_time(tb.origin, tpa.origin, tpb.origin, c, p_pre_a_t, p_b_t, p_post_b_t));
|
||||
} break;
|
||||
case Variant::BOOL:
|
||||
case Variant::INT:
|
||||
case Variant::RECT2I:
|
||||
case Variant::VECTOR2I:
|
||||
case Variant::VECTOR3I:
|
||||
case Variant::VECTOR4I:
|
||||
case Variant::PACKED_INT32_ARRAY:
|
||||
case Variant::PACKED_INT64_ARRAY: {
|
||||
// Fallback the interpolatable value which needs casting.
|
||||
return cast_from_blendwise(cubic_interpolate_in_time_variant(cast_to_blendwise(pre_a), cast_to_blendwise(a), cast_to_blendwise(b), cast_to_blendwise(post_b), c, p_pre_a_t, p_b_t, p_post_b_t, p_snap_array_element), a.get_type());
|
||||
} break;
|
||||
case Variant::STRING:
|
||||
case Variant::STRING_NAME: {
|
||||
// TODO:
|
||||
// String interpolation works on both the character array size and the character code, to apply cubic interpolation neatly,
|
||||
// we need to figure out how to interpolate well in cases where there are fewer than 4 keys. So, for now, fallback to linear interpolation.
|
||||
return interpolate_variant(a, b, c);
|
||||
} break;
|
||||
case Variant::PACKED_BYTE_ARRAY: {
|
||||
// Skip.
|
||||
} break;
|
||||
default: {
|
||||
if (a.is_array()) {
|
||||
const Array arr_pa = pre_a.operator Array();
|
||||
const Array arr_a = a.operator Array();
|
||||
const Array arr_b = b.operator Array();
|
||||
const Array arr_pb = post_b.operator Array();
|
||||
|
||||
int min_size = arr_a.size();
|
||||
int max_size = arr_b.size();
|
||||
bool is_a_larger = inform_variant_array(min_size, max_size);
|
||||
|
||||
Array result;
|
||||
result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant());
|
||||
result.resize(min_size);
|
||||
|
||||
if (min_size == 0 && max_size == 0) {
|
||||
return result;
|
||||
}
|
||||
|
||||
Variant vz;
|
||||
if (is_a_larger) {
|
||||
vz = arr_a[0];
|
||||
} else {
|
||||
vz = arr_b[0];
|
||||
}
|
||||
vz.zero();
|
||||
Variant pre_last = arr_pa.size() ? arr_pa[arr_pa.size() - 1] : vz;
|
||||
Variant post_last = arr_pb.size() ? arr_pb[arr_pb.size() - 1] : vz;
|
||||
|
||||
int i = 0;
|
||||
for (; i < min_size; i++) {
|
||||
result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], arr_a[i], arr_b[i], i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t);
|
||||
}
|
||||
if (min_size != max_size) {
|
||||
// Process with last element of the lesser array.
|
||||
// This is pretty funny and bizarre, but artists like to use it for polygon animation.
|
||||
Variant lesser_last = vz;
|
||||
if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) {
|
||||
result.resize(max_size);
|
||||
if (p_snap_array_element) {
|
||||
c = 0;
|
||||
}
|
||||
if (i > 0) {
|
||||
lesser_last = arr_b[i - 1];
|
||||
}
|
||||
for (; i < max_size; i++) {
|
||||
result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], arr_a[i], lesser_last, i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t);
|
||||
}
|
||||
} else if (!is_a_larger && !Math::is_zero_approx(c)) {
|
||||
result.resize(max_size);
|
||||
if (p_snap_array_element) {
|
||||
c = 1;
|
||||
}
|
||||
if (i > 0) {
|
||||
lesser_last = arr_a[i - 1];
|
||||
}
|
||||
for (; i < max_size; i++) {
|
||||
result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], lesser_last, arr_b[i], i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t);
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
} break;
|
||||
}
|
||||
return c < 0.5 ? a : b;
|
||||
}
|
||||
|
||||
bool Animation::inform_variant_array(int &r_min, int &r_max) {
|
||||
if (r_min <= r_max) {
|
||||
return false;
|
||||
|
|
|
@ -502,6 +502,7 @@ public:
|
|||
static Variant subtract_variant(const Variant &a, const Variant &b);
|
||||
static Variant blend_variant(const Variant &a, const Variant &b, float c);
|
||||
static Variant interpolate_variant(const Variant &a, const Variant &b, float c, bool p_snap_array_element = false);
|
||||
static Variant cubic_interpolate_in_time_variant(const Variant &pre_a, const Variant &a, const Variant &b, const Variant &post_b, float c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t, bool p_snap_array_element = false);
|
||||
|
||||
Animation();
|
||||
~Animation();
|
||||
|
|
Loading…
Reference in New Issue