Use constexpr in the conditions with template parameters and sizeofs to suppress C4127 warnings.

This commit is contained in:
bruvzg 2022-09-29 09:18:07 +03:00
parent f8745f2f71
commit ea1848ce0a
No known key found for this signature in database
GPG Key ID: 7960FCF39844EC38
15 changed files with 76 additions and 76 deletions

View File

@ -559,7 +559,7 @@ static void gdnative_string_new_with_utf32_chars(GDNativeStringPtr r_dest, const
static void gdnative_string_new_with_wide_chars(GDNativeStringPtr r_dest, const wchar_t *p_contents) {
String *dest = (String *)r_dest;
if (sizeof(wchar_t) == 2) {
if constexpr (sizeof(wchar_t) == 2) {
// wchar_t is 16 bit, parse.
memnew_placement(dest, String);
dest->parse_utf16((const char16_t *)p_contents);
@ -596,7 +596,7 @@ static void gdnative_string_new_with_utf32_chars_and_len(GDNativeStringPtr r_des
static void gdnative_string_new_with_wide_chars_and_len(GDNativeStringPtr r_dest, const wchar_t *p_contents, const GDNativeInt p_size) {
String *dest = (String *)r_dest;
if (sizeof(wchar_t) == 2) {
if constexpr (sizeof(wchar_t) == 2) {
// wchar_t is 16 bit, parse.
memnew_placement(dest, String);
dest->parse_utf16((const char16_t *)p_contents, p_size);
@ -655,7 +655,7 @@ static GDNativeInt gdnative_string_to_utf32_chars(const GDNativeStringPtr p_self
return len;
}
static GDNativeInt gdnative_string_to_wide_chars(const GDNativeStringPtr p_self, wchar_t *r_text, GDNativeInt p_max_write_length) {
if (sizeof(wchar_t) == 4) {
if constexpr (sizeof(wchar_t) == 4) {
return gdnative_string_to_utf32_chars(p_self, (char32_t *)r_text, p_max_write_length);
} else {
return gdnative_string_to_utf16_chars(p_self, (char16_t *)r_text, p_max_write_length);

View File

@ -548,7 +548,7 @@ void FileAccess::store_64(uint64_t p_dest) {
}
void FileAccess::store_real(real_t p_real) {
if (sizeof(real_t) == 4) {
if constexpr (sizeof(real_t) == 4) {
store_float(p_real);
} else {
store_double(p_real);

View File

@ -444,7 +444,7 @@ static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p
uint8_t rgba[4] = { 0, 0, 0, 255 };
if (read_gray) {
if constexpr (read_gray) {
rgba[0] = rofs[0];
rgba[1] = rofs[0];
rgba[2] = rofs[0];
@ -454,11 +454,11 @@ static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p
}
}
if (read_alpha || write_alpha) {
if constexpr (read_alpha || write_alpha) {
rgba[3] = read_alpha ? rofs[read_bytes] : 255;
}
if (write_gray) {
if constexpr (write_gray) {
//TODO: not correct grayscale, should use fixed point version of actual weights
wofs[0] = uint8_t((uint16_t(rgba[0]) + uint16_t(rgba[1]) + uint16_t(rgba[2])) / 3);
} else {
@ -467,7 +467,7 @@ static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p
}
}
if (write_alpha) {
if constexpr (write_alpha) {
wofs[write_bytes] = rgba[3];
}
}
@ -640,7 +640,7 @@ static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_
double xfac = (double)width / p_dst_width;
double yfac = (double)height / p_dst_height;
// coordinates of source points and coefficients
double ox, oy, dx, dy, k1, k2;
double ox, oy, dx, dy;
int ox1, oy1, ox2, oy2;
// destination pixel values
// width and height decreased by 1
@ -671,7 +671,7 @@ static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_
for (int n = -1; n < 3; n++) {
// get Y coefficient
k1 = _bicubic_interp_kernel(dy - (double)n);
[[maybe_unused]] double k1 = _bicubic_interp_kernel(dy - (double)n);
oy2 = oy1 + n;
if (oy2 < 0) {
@ -683,7 +683,7 @@ static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_
for (int m = -1; m < 3; m++) {
// get X coefficient
k2 = k1 * _bicubic_interp_kernel((double)m - dx);
[[maybe_unused]] double k2 = k1 * _bicubic_interp_kernel((double)m - dx);
ox2 = ox1 + m;
if (ox2 < 0) {
@ -697,7 +697,7 @@ static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_
const T *__restrict p = ((T *)p_src) + (oy2 * p_src_width + ox2) * CC;
for (int i = 0; i < CC; i++) {
if (sizeof(T) == 2) { //half float
if constexpr (sizeof(T) == 2) { //half float
color[i] = Math::half_to_float(p[i]);
} else {
color[i] += p[i] * k2;
@ -707,9 +707,9 @@ static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_
}
for (int i = 0; i < CC; i++) {
if (sizeof(T) == 1) { //byte
if constexpr (sizeof(T) == 1) { //byte
dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255);
} else if (sizeof(T) == 2) { //half float
} else if constexpr (sizeof(T) == 2) { //half float
dst[i] = Math::make_half_float(color[i]);
} else {
dst[i] = color[i];
@ -758,7 +758,7 @@ static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict
src_xofs_right *= CC;
for (uint32_t l = 0; l < CC; l++) {
if (sizeof(T) == 1) { //uint8
if constexpr (sizeof(T) == 1) { //uint8
uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS;
uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS;
uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS;
@ -769,7 +769,7 @@ static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict
uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS);
interp >>= FRAC_BITS;
p_dst[i * p_dst_width * CC + j * CC + l] = uint8_t(interp);
} else if (sizeof(T) == 2) { //half float
} else if constexpr (sizeof(T) == 2) { //half float
float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
@ -786,7 +786,7 @@ static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict
float interp = interp_up + ((interp_down - interp_up) * yofs_frac);
dst[i * p_dst_width * CC + j * CC + l] = Math::make_half_float(interp);
} else if (sizeof(T) == 4) { //float
} else if constexpr (sizeof(T) == 4) { //float
float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS);
float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS);
@ -877,7 +877,7 @@ static void _scale_lanczos(const uint8_t *__restrict p_src, uint8_t *__restrict
const T *__restrict src_data = ((const T *)p_src) + (buffer_y * src_width + target_x) * CC;
for (uint32_t i = 0; i < CC; i++) {
if (sizeof(T) == 2) { //half float
if constexpr (sizeof(T) == 2) { //half float
pixel[i] += Math::half_to_float(src_data[i]) * lanczos_val;
} else {
pixel[i] += src_data[i] * lanczos_val;
@ -934,9 +934,9 @@ static void _scale_lanczos(const uint8_t *__restrict p_src, uint8_t *__restrict
for (uint32_t i = 0; i < CC; i++) {
pixel[i] /= weight;
if (sizeof(T) == 1) { //byte
if constexpr (sizeof(T) == 1) { //byte
dst_data[i] = CLAMP(Math::fast_ftoi(pixel[i]), 0, 255);
} else if (sizeof(T) == 2) { //half float
} else if constexpr (sizeof(T) == 2) { //half float
dst_data[i] = Math::make_half_float(pixel[i]);
} else { // float
dst_data[i] = pixel[i];

View File

@ -107,7 +107,7 @@ void ResourceLoaderBinary::_advance_padding(uint32_t p_len) {
static Error read_reals(real_t *dst, Ref<FileAccess> &f, size_t count) {
if (f->real_is_double) {
if (sizeof(real_t) == 8) {
if constexpr (sizeof(real_t) == 8) {
// Ideal case with double-precision
f->get_buffer((uint8_t *)dst, count * sizeof(double));
#ifdef BIG_ENDIAN_ENABLED
@ -118,7 +118,7 @@ static Error read_reals(real_t *dst, Ref<FileAccess> &f, size_t count) {
}
}
#endif
} else if (sizeof(real_t) == 4) {
} else if constexpr (sizeof(real_t) == 4) {
// May be slower, but this is for compatibility. Eventually the data should be converted.
for (size_t i = 0; i < count; ++i) {
dst[i] = f->get_double();
@ -127,7 +127,7 @@ static Error read_reals(real_t *dst, Ref<FileAccess> &f, size_t count) {
ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "real_t size is neither 4 nor 8!");
}
} else {
if (sizeof(real_t) == 4) {
if constexpr (sizeof(real_t) == 4) {
// Ideal case with float-precision
f->get_buffer((uint8_t *)dst, count * sizeof(float));
#ifdef BIG_ENDIAN_ENABLED
@ -138,7 +138,7 @@ static Error read_reals(real_t *dst, Ref<FileAccess> &f, size_t count) {
}
}
#endif
} else if (sizeof(real_t) == 8) {
} else if constexpr (sizeof(real_t) == 8) {
for (size_t i = 0; i < count; ++i) {
dst[i] = f->get_float();
}

View File

@ -13,7 +13,7 @@ void _split_inform_references(uint32_t p_node_id) {
void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) {
// special case for low leaf sizes .. should static compile out
if (MAX_ITEMS < 4) {
if constexpr (MAX_ITEMS < 4) {
uint32_t ind = group_a[0];
// add to b
@ -34,7 +34,7 @@ void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, u
order[POINT::AXIS_COUNT - 1] = size.max_axis_index();
static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size");
if (POINT::AXIS_COUNT == 3) {
if constexpr (POINT::AXIS_COUNT == 3) {
order[1] = 3 - (order[0] + order[2]);
}

View File

@ -68,7 +68,7 @@ public:
CRASH_COND_MSG(!data, "Out of memory");
}
if (!std::is_trivially_constructible<T>::value && !force_trivial) {
if constexpr (!std::is_trivially_constructible<T>::value && !force_trivial) {
memnew_placement(&data[count++], T(p_elem));
} else {
data[count++] = p_elem;
@ -81,7 +81,7 @@ public:
for (U i = p_index; i < count; i++) {
data[i] = data[i + 1];
}
if (!std::is_trivially_destructible<T>::value && !force_trivial) {
if constexpr (!std::is_trivially_destructible<T>::value && !force_trivial) {
data[count].~T();
}
}
@ -94,7 +94,7 @@ public:
if (count > p_index) {
data[p_index] = data[count];
}
if (!std::is_trivially_destructible<T>::value && !force_trivial) {
if constexpr (!std::is_trivially_destructible<T>::value && !force_trivial) {
data[count].~T();
}
}
@ -135,7 +135,7 @@ public:
_FORCE_INLINE_ U size() const { return count; }
void resize(U p_size) {
if (p_size < count) {
if (!std::is_trivially_destructible<T>::value && !force_trivial) {
if constexpr (!std::is_trivially_destructible<T>::value && !force_trivial) {
for (U i = p_size; i < count; i++) {
data[i].~T();
}
@ -152,7 +152,7 @@ public:
data = (T *)memrealloc(data, capacity * sizeof(T));
CRASH_COND_MSG(!data, "Out of memory");
}
if (!std::is_trivially_constructible<T>::value && !force_trivial) {
if constexpr (!std::is_trivially_constructible<T>::value && !force_trivial) {
for (U i = count; i < p_size; i++) {
memnew_placement(&data[i], T);
}

View File

@ -112,7 +112,7 @@ public:
list.resize(r_id + 1);
static_assert((!zero_on_first_request) || (__is_pod(T)), "zero_on_first_request requires trivial type");
if (zero_on_first_request && __is_pod(T)) {
if constexpr (zero_on_first_request && __is_pod(T)) {
list[r_id] = {};
}

View File

@ -276,7 +276,7 @@ inline String enum_qualified_name_to_class_info_name(const String &p_qualified_n
template <typename T>
inline StringName __constant_get_enum_name(T param, const String &p_constant) {
if (GetTypeInfo<T>::VARIANT_TYPE == Variant::NIL) {
if constexpr (GetTypeInfo<T>::VARIANT_TYPE == Variant::NIL) {
ERR_PRINT("Missing VARIANT_ENUM_CAST for constant's enum: " + p_constant);
}
return GetTypeInfo<T>::get_class_info().class_name;

View File

@ -2043,7 +2043,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
} break;
}
if (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2);
GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id;
if (p_render_data->environment.is_valid()) {
@ -2074,7 +2074,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
GLES3::SceneMaterialData *material_data;
void *mesh_surface;
if (p_pass_mode == PASS_MODE_SHADOW) {
if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
shader = surf->shader_shadow;
material_data = surf->material_shadow;
mesh_surface = surf->surface_shadow;
@ -2088,7 +2088,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
continue;
}
if (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
if (scene_state.current_depth_test != shader->depth_test) {
if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) {
glDisable(GL_DEPTH_TEST);
@ -2115,9 +2115,9 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
scene_state.current_depth_draw = shader->depth_draw;
}
if (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT || p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT || p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
GLES3::SceneShaderData::BlendMode desired_blend_mode;
if (p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
if constexpr (p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD;
} else {
desired_blend_mode = shader->blend_mode;
@ -2241,9 +2241,9 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
if (prev_shader != shader || prev_variant != instance_variant) {
material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant);
float opaque_prepass_threshold = 0.0;
if (p_pass_mode == PASS_MODE_DEPTH) {
if constexpr (p_pass_mode == PASS_MODE_DEPTH) {
opaque_prepass_threshold = 0.99;
} else if (p_pass_mode == PASS_MODE_SHADOW) {
} else if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
opaque_prepass_threshold = 0.1;
}

View File

@ -180,7 +180,7 @@ void AudioStreamPlaybackWAV::do_resample(const Depth *p_src, AudioFrame *p_dst,
final_r = p_src[pos + 1];
}
if (sizeof(Depth) == 1) { /* conditions will not exist anymore when compiled! */
if constexpr (sizeof(Depth) == 1) { /* conditions will not exist anymore when compiled! */
final <<= 8;
if (is_stereo) {
final_r <<= 8;
@ -194,7 +194,7 @@ void AudioStreamPlaybackWAV::do_resample(const Depth *p_src, AudioFrame *p_dst,
next = p_src[pos + 1];
}
if (sizeof(Depth) == 1) {
if constexpr (sizeof(Depth) == 1) {
next <<= 8;
if (is_stereo) {
next_r <<= 8;

View File

@ -57,14 +57,14 @@ uint32_t AudioRBResampler::_resample(AudioFrame *p_dest, int p_todo, int32_t p_i
uint32_t pos_next = (pos + 1) & rb_mask;
// since this is a template with a known compile time value (C), conditionals go away when compiling.
if (C == 1) {
if constexpr (C == 1) {
float v0 = rb[pos];
float v0n = rb[pos_next];
v0 += (v0n - v0) * frac;
p_dest[i] = AudioFrame(v0, v0);
}
if (C == 2) {
if constexpr (C == 2) {
float v0 = rb[(pos << 1) + 0];
float v1 = rb[(pos << 1) + 1];
float v0n = rb[(pos_next << 1) + 0];
@ -76,7 +76,7 @@ uint32_t AudioRBResampler::_resample(AudioFrame *p_dest, int p_todo, int32_t p_i
}
// This will probably never be used, but added anyway
if (C == 4) {
if constexpr (C == 4) {
float v0 = rb[(pos << 2) + 0];
float v1 = rb[(pos << 2) + 1];
float v0n = rb[(pos_next << 2) + 0];
@ -86,7 +86,7 @@ uint32_t AudioRBResampler::_resample(AudioFrame *p_dest, int p_todo, int32_t p_i
p_dest[i] = AudioFrame(v0, v1);
}
if (C == 6) {
if constexpr (C == 6) {
float v0 = rb[(pos * 6) + 0];
float v1 = rb[(pos * 6) + 1];
float v0n = rb[(pos_next * 6) + 0];

View File

@ -36,13 +36,13 @@ void AudioEffectFilterInstance::_process_filter(const AudioFrame *p_src_frames,
for (int i = 0; i < p_frame_count; i++) {
float f = p_src_frames[i].l;
filter_process[0][0].process_one(f);
if (S > 1) {
if constexpr (S > 1) {
filter_process[0][1].process_one(f);
}
if (S > 2) {
if constexpr (S > 2) {
filter_process[0][2].process_one(f);
}
if (S > 3) {
if constexpr (S > 3) {
filter_process[0][3].process_one(f);
}
@ -52,13 +52,13 @@ void AudioEffectFilterInstance::_process_filter(const AudioFrame *p_src_frames,
for (int i = 0; i < p_frame_count; i++) {
float f = p_src_frames[i].r;
filter_process[1][0].process_one(f);
if (S > 1) {
if constexpr (S > 1) {
filter_process[1][1].process_one(f);
}
if (S > 2) {
if constexpr (S > 2) {
filter_process[1][2].process_one(f);
}
if (S > 3) {
if constexpr (S > 3) {
filter_process[1][3].process_one(f);
}

View File

@ -108,7 +108,7 @@ bool AudioStreamGeneratorPlayback::push_buffer(const PackedVector2Array &p_frame
}
const Vector2 *r = p_frames.ptr();
if (sizeof(real_t) == 4) {
if constexpr (sizeof(real_t) == 4) {
//write directly
buffer.write((const AudioFrame *)r, to_write);
} else {

View File

@ -498,7 +498,7 @@ static void _collision_segment_rectangle(const GodotShape2D *p_a, const Transfor
return;
}
if (castA) {
if constexpr (castA) {
if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a + p_motion_a))) {
return;
}
@ -507,7 +507,7 @@ static void _collision_segment_rectangle(const GodotShape2D *p_a, const Transfor
}
}
if (castB) {
if constexpr (castB) {
if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a - p_motion_b))) {
return;
}
@ -516,7 +516,7 @@ static void _collision_segment_rectangle(const GodotShape2D *p_a, const Transfor
}
}
if (castA && castB) {
if constexpr (castA && castB) {
if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a - p_motion_b + p_motion_a))) {
return;
}
@ -665,21 +665,21 @@ static void _collision_circle_rectangle(const GodotShape2D *p_a, const Transform
}
}
if (castA) {
if constexpr (castA) {
Vector2 sphereofs = sphere + p_motion_a;
if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphereofs))) {
return;
}
}
if (castB) {
if constexpr (castB) {
Vector2 sphereofs = sphere - p_motion_b;
if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphereofs))) {
return;
}
}
if (castA && castB) {
if constexpr (castA && castB) {
Vector2 sphereofs = sphere - p_motion_b + p_motion_a;
if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphereofs))) {
return;
@ -786,7 +786,7 @@ static void _collision_rectangle_rectangle(const GodotShape2D *p_a, const Transf
return;
}
if (withMargin) {
if constexpr (withMargin) {
Transform2D invA = p_transform_a.affine_inverse();
Transform2D invB = p_transform_b.affine_inverse();
@ -794,29 +794,29 @@ static void _collision_rectangle_rectangle(const GodotShape2D *p_a, const Transf
return;
}
if (castA || castB) {
if constexpr (castA || castB) {
Transform2D aofs = p_transform_a;
aofs.columns[2] += p_motion_a;
Transform2D bofs = p_transform_b;
bofs.columns[2] += p_motion_b;
Transform2D aofsinv = aofs.affine_inverse();
Transform2D bofsinv = bofs.affine_inverse();
[[maybe_unused]] Transform2D aofsinv = aofs.affine_inverse();
[[maybe_unused]] Transform2D bofsinv = bofs.affine_inverse();
if (castA) {
if constexpr (castA) {
if (!separator.test_axis(rectangle_A->get_box_axis(aofs, aofsinv, rectangle_B, p_transform_b, invB))) {
return;
}
}
if (castB) {
if constexpr (castB) {
if (!separator.test_axis(rectangle_A->get_box_axis(p_transform_a, invA, rectangle_B, bofs, bofsinv))) {
return;
}
}
if (castA && castB) {
if constexpr (castA && castB) {
if (!separator.test_axis(rectangle_A->get_box_axis(aofs, aofsinv, rectangle_B, bofs, bofsinv))) {
return;
}
@ -871,7 +871,7 @@ static void _collision_rectangle_capsule(const GodotShape2D *p_a, const Transfor
}
}
if (castA) {
if constexpr (castA) {
Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.columns[1] * capsule_dir;
capsule_endpoint -= p_motion_a;
@ -880,7 +880,7 @@ static void _collision_rectangle_capsule(const GodotShape2D *p_a, const Transfor
}
}
if (castB) {
if constexpr (castB) {
Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.columns[1] * capsule_dir;
capsule_endpoint += p_motion_b;
@ -889,7 +889,7 @@ static void _collision_rectangle_capsule(const GodotShape2D *p_a, const Transfor
}
}
if (castA && castB) {
if constexpr (castA && castB) {
Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.columns[1] * capsule_dir;
capsule_endpoint -= p_motion_a;
capsule_endpoint += p_motion_b;
@ -931,7 +931,7 @@ static void _collision_rectangle_convex_polygon(const GodotShape2D *p_a, const T
//convex faces
Transform2D boxinv;
if (withMargin) {
if constexpr (withMargin) {
boxinv = p_transform_a.affine_inverse();
}
for (int i = 0; i < convex_B->get_point_count(); i++) {
@ -939,22 +939,22 @@ static void _collision_rectangle_convex_polygon(const GodotShape2D *p_a, const T
return;
}
if (withMargin) {
if constexpr (withMargin) {
//all points vs all points need to be tested if margin exist
if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i))))) {
return;
}
if (castA) {
if constexpr (castA) {
if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i)) - p_motion_a))) {
return;
}
}
if (castB) {
if constexpr (castB) {
if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i)) + p_motion_b))) {
return;
}
}
if (castA && castB) {
if constexpr (castA && castB) {
if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i)) + p_motion_b - p_motion_a))) {
return;
}

View File

@ -276,7 +276,7 @@ void RenderForwardClustered::_render_list_template(RenderingDevice::DrawListID p
SceneState::PushConstant push_constant;
if (p_pass_mode == PASS_MODE_DEPTH_MATERIAL) {
if constexpr (p_pass_mode == PASS_MODE_DEPTH_MATERIAL) {
push_constant.uv_offset = Math::make_half_float(p_params->uv_offset.y) << 16;
push_constant.uv_offset |= Math::make_half_float(p_params->uv_offset.x);
} else {
@ -355,7 +355,7 @@ void RenderForwardClustered::_render_list_template(RenderingDevice::DrawListID p
uint32_t pipeline_color_pass_flags = 0;
uint32_t pipeline_specialization = 0;
if (p_pass_mode == PASS_MODE_COLOR) {
if constexpr (p_pass_mode == PASS_MODE_COLOR) {
if (element_info.uses_softshadow) {
pipeline_specialization |= SceneShaderForwardClustered::SHADER_SPECIALIZATION_SOFT_SHADOWS;
}