Merge pull request #86664 from Mickeon/doc-peeves-basis-examples

Add code examples to Basis' documentation
This commit is contained in:
Rémi Verschelde 2024-01-03 10:13:50 +01:00
commit f38076e15c
No known key found for this signature in database
GPG Key ID: C3336907360768E1

View File

@ -71,6 +71,12 @@
<param index="1" name="order" type="int" default="2" />
<description>
Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values.
[codeblock]
# Creates a Basis whose z axis points down.
var my_basis = Basis.from_euler(Vector3(TAU / 4, 0, 0))
print(my_basis.z) # Prints (0, -1, 0).
[/codeblock]
</description>
</method>
<method name="from_scale" qualifiers="static">
@ -78,6 +84,13 @@
<param index="0" name="scale" type="Vector3" />
<description>
Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
[codeblock]
var my_basis = Basis.from_scale(Vector3(2, 4, 8))
print(my_basis.x) # Prints (2, 0, 0).
print(my_basis.y) # Prints (0, 4, 0).
print(my_basis.z) # Prints (0, 0, 8).
[/codeblock]
</description>
</method>
<method name="get_euler" qualifiers="const">
@ -98,6 +111,18 @@
<return type="Vector3" />
<description>
Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
[codeblock]
var my_basis = Basis(
Vector3(2, 0, 0),
Vector3(0, 4, 0),
Vector3(0, 0, 8)
)
# Rotating the Basis in any way preserves its scale.
my_basis = my_basis.rotated(Vector3.UP, TAU / 2)
my_basis = my_basis.rotated(Vector3.RIGHT, TAU / 4)
print(my_basis.get_scale()) # Prints (2, 4, 8).
[/codeblock]
</description>
</method>
<method name="inverse" qualifiers="const">
@ -140,6 +165,14 @@
<return type="Basis" />
<description>
Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
[codeblock]
# Rotate this Node3D every frame.
func _process(delta):
basis = basis.rotated(Vector3.UP, TAU * delta)
basis = basis.rotated(Vector3.RIGHT, TAU * delta)
basis = basis.orthonormalized()
[/codeblock]
</description>
</method>
<method name="rotated" qualifiers="const">
@ -148,6 +181,14 @@
<param index="1" name="angle" type="float" />
<description>
Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector.
[codeblock]
var my_basis = Basis.IDENTITY
var angle = TAU / 2
my_basis = my_basis.rotated(Vector3.UP, angle) # Rotate around the up axis (yaw)
my_basis = my_basis.rotated(Vector3.RIGHT, angle) # Rotate around the right axis (pitch)
my_basis = my_basis.rotated(Vector3.BACK, angle) # Rotate around the back axis (roll)
[/codeblock]
</description>
</method>
<method name="scaled" qualifiers="const">
@ -155,6 +196,18 @@
<param index="0" name="scale" type="Vector3" />
<description>
Introduce an additional scaling specified by the given 3D scaling factor.
[codeblock]
var my_basis = Basis(
Vector3(1, 1, 1),
Vector3(2, 2, 2),
Vector3(3, 3, 3)
)
my_basis = my_basis.scaled(Vector3(0, 2, -2))
print(my_basis.x) # Prints (0, 2, -2).
print(my_basis.y) # Prints (0, 4, -4).
print(my_basis.z) # Prints (0, 6, -6).
[/codeblock]
</description>
</method>
<method name="slerp" qualifiers="const">
@ -190,6 +243,18 @@
<return type="Basis" />
<description>
Returns the transposed version of the matrix.
[codeblock]
var my_basis = Basis(
Vector3(1, 2, 3),
Vector3(4, 5, 6),
Vector3(7, 8, 9)
)
my_basis = my_basis.transposed()
print(my_basis.x) # Prints (1, 4, 7).
print(my_basis.y) # Prints (2, 5, 8).
print(my_basis.z) # Prints (3, 6, 9).
[/codeblock]
</description>
</method>
</methods>