Use correct lightmap coefficients to ensure that the directional lightmap mode looks correct
Also remove the metallic option from directional lightmap as it is guaranteed to return negative numbers in many cases
This commit is contained in:
parent
da5f39889f
commit
f4ccba7508
@ -1729,16 +1729,10 @@ void main() {
|
||||
|
||||
vec3 n = normalize(lightmap_normal_xform * normal);
|
||||
|
||||
ambient_light += lm_light_l0 * 0.282095f;
|
||||
ambient_light += lm_light_l1n1 * 0.32573 * n.y * lightmap_exposure_normalization;
|
||||
ambient_light += lm_light_l1_0 * 0.32573 * n.z * lightmap_exposure_normalization;
|
||||
ambient_light += lm_light_l1p1 * 0.32573 * n.x * lightmap_exposure_normalization;
|
||||
if (metallic > 0.01) { // Since the more direct bounced light is lost, we can kind of fake it with this trick.
|
||||
vec3 r = reflect(normalize(-vertex), normal);
|
||||
specular_light += lm_light_l1n1 * 0.32573 * r.y * lightmap_exposure_normalization;
|
||||
specular_light += lm_light_l1_0 * 0.32573 * r.z * lightmap_exposure_normalization;
|
||||
specular_light += lm_light_l1p1 * 0.32573 * r.x * lightmap_exposure_normalization;
|
||||
}
|
||||
ambient_light += lm_light_l0 * lightmap_exposure_normalization;
|
||||
ambient_light += lm_light_l1n1 * n.y * lightmap_exposure_normalization;
|
||||
ambient_light += lm_light_l1_0 * n.z * lightmap_exposure_normalization;
|
||||
ambient_light += lm_light_l1p1 * n.x * lightmap_exposure_normalization;
|
||||
#else
|
||||
ambient_light += textureLod(lightmap_textures, uvw, 0.0).rgb * lightmap_exposure_normalization;
|
||||
#endif
|
||||
|
@ -915,7 +915,7 @@ LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID
|
||||
return BAKE_OK;
|
||||
}
|
||||
|
||||
LightmapperRD::BakeError LightmapperRD::_denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function) {
|
||||
LightmapperRD::BakeError LightmapperRD::_denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function, void *p_bake_userdata) {
|
||||
RID denoise_params_buffer = p_rd->uniform_buffer_create(sizeof(DenoiseParams));
|
||||
DenoiseParams denoise_params;
|
||||
denoise_params.spatial_bandwidth = 5.0f;
|
||||
@ -978,6 +978,11 @@ LightmapperRD::BakeError LightmapperRD::_denoise(RenderingDevice *p_rd, Ref<RDSh
|
||||
p_rd->sync();
|
||||
}
|
||||
}
|
||||
if (p_step_function) {
|
||||
int percent = (s + 1) * 100 / p_atlas_slices;
|
||||
float p = float(s) / p_atlas_slices * 0.1;
|
||||
p_step_function(0.8 + p, vformat(RTR("Denoising %d%%"), percent), p_bake_userdata, false);
|
||||
}
|
||||
}
|
||||
|
||||
p_rd->free(compute_shader_denoise);
|
||||
@ -1581,6 +1586,14 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
|
||||
Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
|
||||
img->save_exr("res://2_light_primary_" + itos(i) + ".exr", false);
|
||||
}
|
||||
|
||||
if (p_bake_sh) {
|
||||
for (int i = 0; i < atlas_slices * 4; i++) {
|
||||
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
|
||||
Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
|
||||
img->save_exr("res://2_light_primary_accum_" + itos(i) + ".exr", false);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* SECONDARY (indirect) LIGHT PASS(ES) */
|
||||
@ -1803,7 +1816,7 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
|
||||
} else {
|
||||
// JNLM (built-in).
|
||||
SWAP(light_accum_tex, light_accum_tex2);
|
||||
error = _denoise(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, normal_tex, light_accum_tex, p_denoiser_strength, p_denoiser_range, atlas_size, atlas_slices, p_bake_sh, p_step_function);
|
||||
error = _denoise(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, normal_tex, light_accum_tex, p_denoiser_strength, p_denoiser_range, atlas_size, atlas_slices, p_bake_sh, p_step_function, p_bake_userdata);
|
||||
}
|
||||
if (unlikely(error != BAKE_OK)) {
|
||||
return error;
|
||||
|
@ -272,7 +272,7 @@ class LightmapperRD : public Lightmapper {
|
||||
void _raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform);
|
||||
|
||||
BakeError _dilate(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices);
|
||||
BakeError _denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function);
|
||||
BakeError _denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function, void *p_bake_userdata);
|
||||
|
||||
Error _store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name);
|
||||
Ref<Image> _read_pfm(const String &p_name);
|
||||
|
@ -588,15 +588,20 @@ void main() {
|
||||
light_for_texture += light;
|
||||
|
||||
#ifdef USE_SH_LIGHTMAPS
|
||||
// These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
|
||||
// LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
|
||||
// L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
|
||||
// Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
|
||||
|
||||
float c[4] = float[](
|
||||
0.282095, //l0
|
||||
0.488603 * light_dir.y, //l1n1
|
||||
0.488603 * light_dir.z, //l1n0
|
||||
0.488603 * light_dir.x //l1p1
|
||||
0.25, //l0
|
||||
light_dir.y, //l1n1
|
||||
light_dir.z, //l1n0
|
||||
light_dir.x //l1p1
|
||||
);
|
||||
|
||||
for (uint j = 0; j < 4; j++) {
|
||||
sh_accum[j].rgb += light * c[j] * 8.0;
|
||||
sh_accum[j].rgb += light * c[j] * bake_params.exposure_normalization;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -646,15 +651,20 @@ void main() {
|
||||
vec3 light = trace_indirect_light(position, ray_dir, noise);
|
||||
|
||||
#ifdef USE_SH_LIGHTMAPS
|
||||
// These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
|
||||
// LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
|
||||
// L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
|
||||
// Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
|
||||
|
||||
float c[4] = float[](
|
||||
0.282095, //l0
|
||||
0.488603 * ray_dir.y, //l1n1
|
||||
0.488603 * ray_dir.z, //l1n0
|
||||
0.488603 * ray_dir.x //l1p1
|
||||
0.25, //l0
|
||||
ray_dir.y, //l1n1
|
||||
ray_dir.z, //l1n0
|
||||
ray_dir.x //l1p1
|
||||
);
|
||||
|
||||
for (uint j = 0; j < 4; j++) {
|
||||
sh_accum[j].rgb += light * c[j] * 8.0;
|
||||
sh_accum[j].rgb += light * c[j];
|
||||
}
|
||||
#else
|
||||
light_accum += light;
|
||||
|
@ -1450,16 +1450,10 @@ void fragment_shader(in SceneData scene_data) {
|
||||
vec3 n = normalize(lightmaps.data[ofs].normal_xform * normal);
|
||||
float en = lightmaps.data[ofs].exposure_normalization;
|
||||
|
||||
ambient_light += lm_light_l0 * 0.282095f * en;
|
||||
ambient_light += lm_light_l1n1 * 0.32573 * n.y * en;
|
||||
ambient_light += lm_light_l1_0 * 0.32573 * n.z * en;
|
||||
ambient_light += lm_light_l1p1 * 0.32573 * n.x * en;
|
||||
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
|
||||
vec3 r = reflect(normalize(-vertex), normal);
|
||||
specular_light += lm_light_l1n1 * 0.32573 * r.y * en;
|
||||
specular_light += lm_light_l1_0 * 0.32573 * r.z * en;
|
||||
specular_light += lm_light_l1p1 * 0.32573 * r.x * en;
|
||||
}
|
||||
ambient_light += lm_light_l0 * en;
|
||||
ambient_light += lm_light_l1n1 * n.y * en;
|
||||
ambient_light += lm_light_l1_0 * n.z * en;
|
||||
ambient_light += lm_light_l1p1 * n.x * en;
|
||||
|
||||
} else {
|
||||
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw, 0.0).rgb * lightmaps.data[ofs].exposure_normalization;
|
||||
|
@ -1210,17 +1210,10 @@ void main() {
|
||||
vec3 n = normalize(lightmaps.data[ofs].normal_xform * normal);
|
||||
float exposure_normalization = lightmaps.data[ofs].exposure_normalization;
|
||||
|
||||
ambient_light += lm_light_l0 * 0.282095f;
|
||||
ambient_light += lm_light_l1n1 * 0.32573 * n.y * exposure_normalization;
|
||||
ambient_light += lm_light_l1_0 * 0.32573 * n.z * exposure_normalization;
|
||||
ambient_light += lm_light_l1p1 * 0.32573 * n.x * exposure_normalization;
|
||||
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
|
||||
vec3 r = reflect(normalize(-vertex), normal);
|
||||
specular_light += lm_light_l1n1 * 0.32573 * r.y * exposure_normalization;
|
||||
specular_light += lm_light_l1_0 * 0.32573 * r.z * exposure_normalization;
|
||||
specular_light += lm_light_l1p1 * 0.32573 * r.x * exposure_normalization;
|
||||
}
|
||||
|
||||
ambient_light += lm_light_l0 * exposure_normalization;
|
||||
ambient_light += lm_light_l1n1 * n.y * exposure_normalization;
|
||||
ambient_light += lm_light_l1_0 * n.z * exposure_normalization;
|
||||
ambient_light += lm_light_l1p1 * n.x * exposure_normalization;
|
||||
} else {
|
||||
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], SAMPLER_LINEAR_CLAMP), uvw, 0.0).rgb * lightmaps.data[ofs].exposure_normalization;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user