Merge pull request #38253 from nekomatata/bullet-update-2.90
Update to bullet master (2.90)
This commit is contained in:
commit
f7e2ff5223
|
@ -175,6 +175,7 @@ if env["builtin_bullet"]:
|
|||
"BulletSoftBody/btDeformableContactProjection.cpp",
|
||||
"BulletSoftBody/btDeformableMultiBodyDynamicsWorld.cpp",
|
||||
"BulletSoftBody/btDeformableContactConstraint.cpp",
|
||||
"BulletSoftBody/poly34.cpp",
|
||||
# clew
|
||||
"clew/clew.c",
|
||||
# LinearMath
|
||||
|
|
|
@ -217,15 +217,17 @@ def configure(env):
|
|||
env.ParseConfig("pkg-config libpng16 --cflags --libs")
|
||||
|
||||
if not env["builtin_bullet"]:
|
||||
# We need at least version 2.89
|
||||
# We need at least version 2.90
|
||||
min_bullet_version = "2.90"
|
||||
|
||||
import subprocess
|
||||
|
||||
bullet_version = subprocess.check_output(["pkg-config", "bullet", "--modversion"]).strip()
|
||||
if str(bullet_version) < "2.89":
|
||||
if str(bullet_version) < min_bullet_version:
|
||||
# Abort as system bullet was requested but too old
|
||||
print(
|
||||
"Bullet: System version {0} does not match minimal requirements ({1}). Aborting.".format(
|
||||
bullet_version, "2.89"
|
||||
bullet_version, min_bullet_version
|
||||
)
|
||||
)
|
||||
sys.exit(255)
|
||||
|
|
|
@ -40,9 +40,12 @@ Files extracted from upstream source:
|
|||
## bullet
|
||||
|
||||
- Upstream: https://github.com/bulletphysics/bullet3
|
||||
- Version: 2.89
|
||||
- Version: 2.90 (master cd8cf7521cbb8b7808126a6adebd47bb83ea166a)
|
||||
- License: zlib
|
||||
|
||||
Important: Synced with a pre-release version of bullet 2.90 from the master branch.
|
||||
Commit hash: cd8cf7521cbb8b7808126a6adebd47bb83ea166a
|
||||
|
||||
Files extracted from upstream source:
|
||||
|
||||
- src/* apart from CMakeLists.txt and premake4.lua files
|
||||
|
|
|
@ -203,8 +203,8 @@ struct btDbvntNode
|
|||
|
||||
btDbvntNode(const btDbvtNode* n)
|
||||
: volume(n->volume)
|
||||
, angle(0)
|
||||
, normal(0,0,0)
|
||||
, angle(0)
|
||||
, data(n->data)
|
||||
{
|
||||
childs[0] = 0;
|
||||
|
|
|
@ -61,7 +61,8 @@ public:
|
|||
virtual void cleanOverlappingPair(btBroadphasePair& pair, btDispatcher* dispatcher) = 0;
|
||||
|
||||
virtual int getNumOverlappingPairs() const = 0;
|
||||
|
||||
virtual bool needsBroadphaseCollision(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1) const = 0;
|
||||
virtual btOverlapFilterCallback* getOverlapFilterCallback() = 0;
|
||||
virtual void cleanProxyFromPairs(btBroadphaseProxy* proxy, btDispatcher* dispatcher) = 0;
|
||||
|
||||
virtual void setOverlapFilterCallback(btOverlapFilterCallback* callback) = 0;
|
||||
|
@ -380,6 +381,14 @@ public:
|
|||
{
|
||||
}
|
||||
|
||||
bool needsBroadphaseCollision(btBroadphaseProxy*, btBroadphaseProxy*) const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
btOverlapFilterCallback* getOverlapFilterCallback()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
virtual void setOverlapFilterCallback(btOverlapFilterCallback* /*callback*/)
|
||||
{
|
||||
}
|
||||
|
|
|
@ -468,7 +468,7 @@ void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCall
|
|||
|
||||
#ifdef RAYAABB2
|
||||
btVector3 rayDir = (rayTarget - raySource);
|
||||
rayDir.normalize();
|
||||
rayDir.safeNormalize();// stephengold changed normalize to safeNormalize 2020-02-17
|
||||
lambda_max = rayDir.dot(rayTarget - raySource);
|
||||
///what about division by zero? --> just set rayDirection[i] to 1.0
|
||||
btVector3 rayDirectionInverse;
|
||||
|
@ -554,7 +554,7 @@ void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback*
|
|||
|
||||
#ifdef RAYAABB2
|
||||
btVector3 rayDirection = (rayTarget - raySource);
|
||||
rayDirection.normalize();
|
||||
rayDirection.safeNormalize();// stephengold changed normalize to safeNormalize 2020-02-17
|
||||
lambda_max = rayDirection.dot(rayTarget - raySource);
|
||||
///what about division by zero? --> just set rayDirection[i] to 1.0
|
||||
rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[0];
|
||||
|
|
|
@ -46,8 +46,6 @@ protected:
|
|||
|
||||
btAlignedObjectArray<btPersistentManifold*> m_manifoldsPtr;
|
||||
|
||||
btManifoldResult m_defaultManifoldResult;
|
||||
|
||||
btNearCallback m_nearCallback;
|
||||
|
||||
btPoolAllocator* m_collisionAlgorithmPoolAllocator;
|
||||
|
@ -95,11 +93,15 @@ public:
|
|||
|
||||
btPersistentManifold* getManifoldByIndexInternal(int index)
|
||||
{
|
||||
btAssert(index>=0);
|
||||
btAssert(index<m_manifoldsPtr.size());
|
||||
return m_manifoldsPtr[index];
|
||||
}
|
||||
|
||||
const btPersistentManifold* getManifoldByIndexInternal(int index) const
|
||||
{
|
||||
btAssert(index>=0);
|
||||
btAssert(index<m_manifoldsPtr.size());
|
||||
return m_manifoldsPtr[index];
|
||||
}
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ subject to the following restrictions:
|
|||
btCollisionDispatcherMt::btCollisionDispatcherMt(btCollisionConfiguration* config, int grainSize)
|
||||
: btCollisionDispatcher(config)
|
||||
{
|
||||
m_batchManifoldsPtr.resize(btGetTaskScheduler()->getNumThreads());
|
||||
m_batchUpdating = false;
|
||||
m_grainSize = grainSize; // iterations per task
|
||||
}
|
||||
|
@ -65,6 +66,10 @@ btPersistentManifold* btCollisionDispatcherMt::getNewManifold(const btCollisionO
|
|||
manifold->m_index1a = m_manifoldsPtr.size();
|
||||
m_manifoldsPtr.push_back(manifold);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_batchManifoldsPtr[btGetCurrentThreadIndex()].push_back(manifold);
|
||||
}
|
||||
|
||||
return manifold;
|
||||
}
|
||||
|
@ -121,7 +126,7 @@ struct CollisionDispatcherUpdater : public btIParallelForBody
|
|||
|
||||
void btCollisionDispatcherMt::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache, const btDispatcherInfo& info, btDispatcher* dispatcher)
|
||||
{
|
||||
int pairCount = pairCache->getNumOverlappingPairs();
|
||||
const int pairCount = pairCache->getNumOverlappingPairs();
|
||||
if (pairCount == 0)
|
||||
{
|
||||
return;
|
||||
|
@ -136,16 +141,17 @@ void btCollisionDispatcherMt::dispatchAllCollisionPairs(btOverlappingPairCache*
|
|||
btParallelFor(0, pairCount, m_grainSize, updater);
|
||||
m_batchUpdating = false;
|
||||
|
||||
// reconstruct the manifolds array to ensure determinism
|
||||
m_manifoldsPtr.resizeNoInitialize(0);
|
||||
|
||||
btBroadphasePair* pairs = pairCache->getOverlappingPairArrayPtr();
|
||||
for (int i = 0; i < pairCount; ++i)
|
||||
// merge new manifolds, if any
|
||||
for (int i = 0; i < m_batchManifoldsPtr.size(); ++i)
|
||||
{
|
||||
if (btCollisionAlgorithm* algo = pairs[i].m_algorithm)
|
||||
btAlignedObjectArray<btPersistentManifold*>& batchManifoldsPtr = m_batchManifoldsPtr[i];
|
||||
|
||||
for (int j = 0; j < batchManifoldsPtr.size(); ++j)
|
||||
{
|
||||
algo->getAllContactManifolds(m_manifoldsPtr);
|
||||
m_manifoldsPtr.push_back(batchManifoldsPtr[j]);
|
||||
}
|
||||
|
||||
batchManifoldsPtr.resizeNoInitialize(0);
|
||||
}
|
||||
|
||||
// update the indices (used when releasing manifolds)
|
||||
|
|
|
@ -30,6 +30,7 @@ public:
|
|||
virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache, const btDispatcherInfo& info, btDispatcher* dispatcher) BT_OVERRIDE;
|
||||
|
||||
protected:
|
||||
btAlignedObjectArray<btAlignedObjectArray<btPersistentManifold*> > m_batchManifoldsPtr;
|
||||
bool m_batchUpdating;
|
||||
int m_grainSize;
|
||||
};
|
||||
|
|
|
@ -139,7 +139,12 @@ public:
|
|||
|
||||
if (TestAabbAgainstAabb2(aabbMin0, aabbMax0, aabbMin1, aabbMax1))
|
||||
{
|
||||
btCollisionObjectWrapper compoundWrap(this->m_compoundColObjWrap, childShape, m_compoundColObjWrap->getCollisionObject(), newChildWorldTrans, childTrans, -1, index);
|
||||
btTransform preTransform = childTrans;
|
||||
if (this->m_compoundColObjWrap->m_preTransform)
|
||||
{
|
||||
preTransform = preTransform *(*(this->m_compoundColObjWrap->m_preTransform));
|
||||
}
|
||||
btCollisionObjectWrapper compoundWrap(this->m_compoundColObjWrap, childShape, m_compoundColObjWrap->getCollisionObject(), newChildWorldTrans, preTransform, -1, index);
|
||||
|
||||
btCollisionAlgorithm* algo = 0;
|
||||
bool allocatedAlgorithm = false;
|
||||
|
|
|
@ -46,7 +46,7 @@ struct btContactSolverInfoData
|
|||
btScalar m_sor; //successive over-relaxation term
|
||||
btScalar m_erp; //error reduction for non-contact constraints
|
||||
btScalar m_erp2; //error reduction for contact constraints
|
||||
btScalar m_deformable_erp; //error reduction for deformable constraints
|
||||
btScalar m_deformable_erp; //error reduction for deformable constraints
|
||||
btScalar m_globalCfm; //constraint force mixing for contacts and non-contacts
|
||||
btScalar m_frictionERP; //error reduction for friction constraints
|
||||
btScalar m_frictionCFM; //constraint force mixing for friction constraints
|
||||
|
@ -67,6 +67,7 @@ struct btContactSolverInfoData
|
|||
bool m_jointFeedbackInWorldSpace;
|
||||
bool m_jointFeedbackInJointFrame;
|
||||
int m_reportSolverAnalytics;
|
||||
int m_numNonContactInnerIterations;
|
||||
};
|
||||
|
||||
struct btContactSolverInfo : public btContactSolverInfoData
|
||||
|
@ -82,7 +83,7 @@ struct btContactSolverInfo : public btContactSolverInfoData
|
|||
m_numIterations = 10;
|
||||
m_erp = btScalar(0.2);
|
||||
m_erp2 = btScalar(0.2);
|
||||
m_deformable_erp = btScalar(0.);
|
||||
m_deformable_erp = btScalar(0.1);
|
||||
m_globalCfm = btScalar(0.);
|
||||
m_frictionERP = btScalar(0.2); //positional friction 'anchors' are disabled by default
|
||||
m_frictionCFM = btScalar(0.);
|
||||
|
@ -104,6 +105,7 @@ struct btContactSolverInfo : public btContactSolverInfoData
|
|||
m_jointFeedbackInWorldSpace = false;
|
||||
m_jointFeedbackInJointFrame = false;
|
||||
m_reportSolverAnalytics = 0;
|
||||
m_numNonContactInnerIterations = 1; // the number of inner iterations for solving motor constraint in a single iteration of the constraint solve
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -876,7 +876,10 @@ int btGeneric6DofSpring2Constraint::get_limit_motor_info2(
|
|||
// will we not request a velocity with the wrong direction ?
|
||||
// and the answer is not, because in practice during the solving the current velocity is subtracted from the m_constraintError
|
||||
// so the sign of the force that is really matters
|
||||
info->m_constraintError[srow] = (rotational ? -1 : 1) * (f < 0 ? -SIMD_INFINITY : SIMD_INFINITY);
|
||||
if (m_flags & BT_6DOF_FLAGS_USE_INFINITE_ERROR)
|
||||
info->m_constraintError[srow] = (rotational ? -1 : 1) * (f < 0 ? -SIMD_INFINITY : SIMD_INFINITY);
|
||||
else
|
||||
info->m_constraintError[srow] = vel + f / m * (rotational ? -1 : 1);
|
||||
|
||||
btScalar minf = f < fd ? f : fd;
|
||||
btScalar maxf = f < fd ? fd : f;
|
||||
|
|
|
@ -265,6 +265,7 @@ enum bt6DofFlags2
|
|||
BT_6DOF_FLAGS_ERP_STOP2 = 2,
|
||||
BT_6DOF_FLAGS_CFM_MOTO2 = 4,
|
||||
BT_6DOF_FLAGS_ERP_MOTO2 = 8,
|
||||
BT_6DOF_FLAGS_USE_INFINITE_ERROR = (1<<16)
|
||||
};
|
||||
#define BT_6DOF_FLAGS_AXIS_SHIFT2 4 // bits per axis
|
||||
|
||||
|
|
|
@ -14,7 +14,9 @@ subject to the following restrictions:
|
|||
*/
|
||||
|
||||
//#define COMPUTE_IMPULSE_DENOM 1
|
||||
//#define BT_ADDITIONAL_DEBUG
|
||||
#ifdef BT_DEBUG
|
||||
# define BT_ADDITIONAL_DEBUG
|
||||
#endif
|
||||
|
||||
//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
|
||||
|
||||
|
@ -690,8 +692,10 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
|
|||
{
|
||||
#if BT_THREADSAFE
|
||||
int solverBodyId = -1;
|
||||
bool isRigidBodyType = btRigidBody::upcast(&body) != NULL;
|
||||
if (isRigidBodyType && !body.isStaticOrKinematicObject())
|
||||
const bool isRigidBodyType = btRigidBody::upcast(&body) != NULL;
|
||||
const bool isStaticOrKinematic = body.isStaticOrKinematicObject();
|
||||
const bool isKinematic = body.isKinematicObject();
|
||||
if (isRigidBodyType && !isStaticOrKinematic)
|
||||
{
|
||||
// dynamic body
|
||||
// Dynamic bodies can only be in one island, so it's safe to write to the companionId
|
||||
|
@ -704,7 +708,7 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
|
|||
body.setCompanionId(solverBodyId);
|
||||
}
|
||||
}
|
||||
else if (isRigidBodyType && body.isKinematicObject())
|
||||
else if (isRigidBodyType && isKinematic)
|
||||
{
|
||||
//
|
||||
// NOTE: must test for kinematic before static because some kinematic objects also
|
||||
|
|
|
@ -800,6 +800,14 @@ public:
|
|||
///don't do CCD when the collision filters are not matching
|
||||
if (!ClosestConvexResultCallback::needsCollision(proxy0))
|
||||
return false;
|
||||
if (m_pairCache->getOverlapFilterCallback()) {
|
||||
btBroadphaseProxy* proxy1 = m_me->getBroadphaseHandle();
|
||||
bool collides = m_pairCache->needsBroadphaseCollision(proxy0, proxy1);
|
||||
if (!collides)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
btCollisionObject* otherObj = (btCollisionObject*)proxy0->m_clientObject;
|
||||
|
||||
|
|
|
@ -136,8 +136,13 @@ void btRigidBody::setGravity(const btVector3& acceleration)
|
|||
|
||||
void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping)
|
||||
{
|
||||
m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
|
||||
m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
|
||||
#ifdef BT_USE_OLD_DAMPING_METHOD
|
||||
m_linearDamping = btMax(lin_damping, btScalar(0.0));
|
||||
m_angularDamping = btMax(ang_damping, btScalar(0.0));
|
||||
#else
|
||||
m_linearDamping = btClamped(lin_damping, btScalar(0.0), btScalar(1.0));
|
||||
m_angularDamping = btClamped(ang_damping, btScalar(0.0), btScalar(1.0));
|
||||
#endif
|
||||
}
|
||||
|
||||
///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping
|
||||
|
@ -146,10 +151,9 @@ void btRigidBody::applyDamping(btScalar timeStep)
|
|||
//On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74
|
||||
//todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway
|
||||
|
||||
//#define USE_OLD_DAMPING_METHOD 1
|
||||
#ifdef USE_OLD_DAMPING_METHOD
|
||||
m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
|
||||
m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
|
||||
#ifdef BT_USE_OLD_DAMPING_METHOD
|
||||
m_linearVelocity *= btMax((btScalar(1.0) - timeStep * m_linearDamping), btScalar(0.0));
|
||||
m_angularVelocity *= btMax((btScalar(1.0) - timeStep * m_angularDamping), btScalar(0.0));
|
||||
#else
|
||||
m_linearVelocity *= btPow(btScalar(1) - m_linearDamping, timeStep);
|
||||
m_angularVelocity *= btPow(btScalar(1) - m_angularDamping, timeStep);
|
||||
|
@ -380,6 +384,9 @@ void btRigidBody::integrateVelocities(btScalar step)
|
|||
{
|
||||
m_angularVelocity *= (MAX_ANGVEL / step) / angvel;
|
||||
}
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_angularVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
btQuaternion btRigidBody::getOrientation() const
|
||||
|
|
|
@ -305,6 +305,9 @@ public:
|
|||
void applyTorque(const btVector3& torque)
|
||||
{
|
||||
m_totalTorque += torque * m_angularFactor;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_totalTorque);
|
||||
#endif
|
||||
}
|
||||
|
||||
void applyForce(const btVector3& force, const btVector3& rel_pos)
|
||||
|
@ -316,11 +319,17 @@ public:
|
|||
void applyCentralImpulse(const btVector3& impulse)
|
||||
{
|
||||
m_linearVelocity += impulse * m_linearFactor * m_inverseMass;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_linearVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
void applyTorqueImpulse(const btVector3& torque)
|
||||
{
|
||||
m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_angularVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
void applyImpulse(const btVector3& impulse, const btVector3& rel_pos)
|
||||
|
@ -361,20 +370,46 @@ public:
|
|||
{
|
||||
m_pushVelocity = v;
|
||||
}
|
||||
|
||||
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
void clampVelocity(btVector3& v) const {
|
||||
v.setX(
|
||||
fmax(-BT_CLAMP_VELOCITY_TO,
|
||||
fmin(BT_CLAMP_VELOCITY_TO, v.getX()))
|
||||
);
|
||||
v.setY(
|
||||
fmax(-BT_CLAMP_VELOCITY_TO,
|
||||
fmin(BT_CLAMP_VELOCITY_TO, v.getY()))
|
||||
);
|
||||
v.setZ(
|
||||
fmax(-BT_CLAMP_VELOCITY_TO,
|
||||
fmin(BT_CLAMP_VELOCITY_TO, v.getZ()))
|
||||
);
|
||||
}
|
||||
#endif
|
||||
|
||||
void setTurnVelocity(const btVector3& v)
|
||||
{
|
||||
m_turnVelocity = v;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_turnVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
void applyCentralPushImpulse(const btVector3& impulse)
|
||||
{
|
||||
m_pushVelocity += impulse * m_linearFactor * m_inverseMass;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_pushVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
void applyTorqueTurnImpulse(const btVector3& torque)
|
||||
{
|
||||
m_turnVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_turnVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
void clearForces()
|
||||
|
@ -408,12 +443,18 @@ public:
|
|||
{
|
||||
m_updateRevision++;
|
||||
m_linearVelocity = lin_vel;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_linearVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void setAngularVelocity(const btVector3& ang_vel)
|
||||
{
|
||||
m_updateRevision++;
|
||||
m_angularVelocity = ang_vel;
|
||||
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
|
||||
clampVelocity(m_angularVelocity);
|
||||
#endif
|
||||
}
|
||||
|
||||
btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
|
||||
|
|
|
@ -171,6 +171,8 @@ void btSimulationIslandManagerMt::initIslandPools()
|
|||
|
||||
btSimulationIslandManagerMt::Island* btSimulationIslandManagerMt::getIsland(int id)
|
||||
{
|
||||
btAssert(id >= 0);
|
||||
btAssert(id < m_lookupIslandFromId.size());
|
||||
Island* island = m_lookupIslandFromId[id];
|
||||
if (island == NULL)
|
||||
{
|
||||
|
|
|
@ -583,52 +583,6 @@ void btMultiBody::compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const
|
|||
}
|
||||
}
|
||||
|
||||
btScalar btMultiBody::getKineticEnergy() const
|
||||
{
|
||||
int num_links = getNumLinks();
|
||||
// TODO: would be better not to allocate memory here
|
||||
btAlignedObjectArray<btVector3> omega;
|
||||
omega.resize(num_links + 1);
|
||||
btAlignedObjectArray<btVector3> vel;
|
||||
vel.resize(num_links + 1);
|
||||
compTreeLinkVelocities(&omega[0], &vel[0]);
|
||||
|
||||
// we will do the factor of 0.5 at the end
|
||||
btScalar result = m_baseMass * vel[0].dot(vel[0]);
|
||||
result += omega[0].dot(m_baseInertia * omega[0]);
|
||||
|
||||
for (int i = 0; i < num_links; ++i)
|
||||
{
|
||||
result += m_links[i].m_mass * vel[i + 1].dot(vel[i + 1]);
|
||||
result += omega[i + 1].dot(m_links[i].m_inertiaLocal * omega[i + 1]);
|
||||
}
|
||||
|
||||
return 0.5f * result;
|
||||
}
|
||||
|
||||
btVector3 btMultiBody::getAngularMomentum() const
|
||||
{
|
||||
int num_links = getNumLinks();
|
||||
// TODO: would be better not to allocate memory here
|
||||
btAlignedObjectArray<btVector3> omega;
|
||||
omega.resize(num_links + 1);
|
||||
btAlignedObjectArray<btVector3> vel;
|
||||
vel.resize(num_links + 1);
|
||||
btAlignedObjectArray<btQuaternion> rot_from_world;
|
||||
rot_from_world.resize(num_links + 1);
|
||||
compTreeLinkVelocities(&omega[0], &vel[0]);
|
||||
|
||||
rot_from_world[0] = m_baseQuat;
|
||||
btVector3 result = quatRotate(rot_from_world[0].inverse(), (m_baseInertia * omega[0]));
|
||||
|
||||
for (int i = 0; i < num_links; ++i)
|
||||
{
|
||||
rot_from_world[i + 1] = m_links[i].m_cachedRotParentToThis * rot_from_world[m_links[i].m_parent + 1];
|
||||
result += (quatRotate(rot_from_world[i + 1].inverse(), (m_links[i].m_inertiaLocal * omega[i + 1])));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void btMultiBody::clearConstraintForces()
|
||||
{
|
||||
|
|
|
@ -307,13 +307,6 @@ public:
|
|||
//
|
||||
btMatrix3x3 localFrameToWorld(int i, const btMatrix3x3 &local_frame) const;
|
||||
|
||||
//
|
||||
// calculate kinetic energy and angular momentum
|
||||
// useful for debugging.
|
||||
//
|
||||
|
||||
btScalar getKineticEnergy() const;
|
||||
btVector3 getAngularMomentum() const;
|
||||
|
||||
//
|
||||
// set external forces and torques. Note all external forces/torques are given in the WORLD frame.
|
||||
|
|
|
@ -30,23 +30,28 @@ btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btColl
|
|||
btScalar leastSquaredResidual = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
|
||||
|
||||
//solve featherstone non-contact constraints
|
||||
|
||||
btScalar nonContactResidual = 0;
|
||||
//printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
|
||||
|
||||
for (int j = 0; j < m_multiBodyNonContactConstraints.size(); j++)
|
||||
for (int i = 0; i < infoGlobal.m_numNonContactInnerIterations; ++i)
|
||||
{
|
||||
int index = iteration & 1 ? j : m_multiBodyNonContactConstraints.size() - 1 - j;
|
||||
// reset the nonContactResdual to 0 at start of each inner iteration
|
||||
nonContactResidual = 0;
|
||||
for (int j = 0; j < m_multiBodyNonContactConstraints.size(); j++)
|
||||
{
|
||||
int index = iteration & 1 ? j : m_multiBodyNonContactConstraints.size() - 1 - j;
|
||||
|
||||
btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
|
||||
btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
|
||||
|
||||
btScalar residual = resolveSingleConstraintRowGeneric(constraint);
|
||||
leastSquaredResidual = btMax(leastSquaredResidual, residual * residual);
|
||||
btScalar residual = resolveSingleConstraintRowGeneric(constraint);
|
||||
nonContactResidual = btMax(nonContactResidual, residual * residual);
|
||||
|
||||
if (constraint.m_multiBodyA)
|
||||
constraint.m_multiBodyA->setPosUpdated(false);
|
||||
if (constraint.m_multiBodyB)
|
||||
constraint.m_multiBodyB->setPosUpdated(false);
|
||||
if (constraint.m_multiBodyA)
|
||||
constraint.m_multiBodyA->setPosUpdated(false);
|
||||
if (constraint.m_multiBodyB)
|
||||
constraint.m_multiBodyB->setPosUpdated(false);
|
||||
}
|
||||
}
|
||||
leastSquaredResidual = btMax(leastSquaredResidual, nonContactResidual);
|
||||
|
||||
//solve featherstone normal contact
|
||||
for (int j0 = 0; j0 < m_multiBodyNormalContactConstraints.size(); j0++)
|
||||
|
@ -1250,7 +1255,7 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
|
|||
{
|
||||
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||||
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||||
|
||||
|
||||
btMultiBody* mbA = fcA ? fcA->m_multiBody : 0;
|
||||
btMultiBody* mbB = fcB ? fcB->m_multiBody : 0;
|
||||
|
||||
|
@ -1270,7 +1275,7 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
|
|||
// return;
|
||||
|
||||
//only a single rollingFriction per manifold
|
||||
int rollingFriction = 1;
|
||||
int rollingFriction = 4;
|
||||
|
||||
for (int j = 0; j < manifold->getNumContacts(); j++)
|
||||
{
|
||||
|
|
|
@ -0,0 +1,188 @@
|
|||
/*
|
||||
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
||||
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_CONJUGATE_RESIDUAL_H
|
||||
#define BT_CONJUGATE_RESIDUAL_H
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <LinearMath/btAlignedObjectArray.h>
|
||||
#include <LinearMath/btVector3.h>
|
||||
#include <LinearMath/btScalar.h>
|
||||
#include "LinearMath/btQuickprof.h"
|
||||
template <class MatrixX>
|
||||
class btConjugateResidual
|
||||
{
|
||||
typedef btAlignedObjectArray<btVector3> TVStack;
|
||||
TVStack r,p,z,temp_p, temp_r, best_x;
|
||||
// temp_r = A*r
|
||||
// temp_p = A*p
|
||||
// z = M^(-1) * temp_p = M^(-1) * A * p
|
||||
int max_iterations;
|
||||
btScalar tolerance_squared, best_r;
|
||||
public:
|
||||
btConjugateResidual(const int max_it_in)
|
||||
: max_iterations(max_it_in)
|
||||
{
|
||||
tolerance_squared = 1e-2;
|
||||
}
|
||||
|
||||
virtual ~btConjugateResidual(){}
|
||||
|
||||
// return the number of iterations taken
|
||||
int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
|
||||
{
|
||||
BT_PROFILE("CRSolve");
|
||||
btAssert(x.size() == b.size());
|
||||
reinitialize(b);
|
||||
// r = b - A * x --with assigned dof zeroed out
|
||||
A.multiply(x, temp_r); // borrow temp_r here to store A*x
|
||||
r = sub(b, temp_r);
|
||||
// z = M^(-1) * r
|
||||
A.precondition(r, z); // borrow z to store preconditioned r
|
||||
r = z;
|
||||
btScalar residual_norm = norm(r);
|
||||
if (residual_norm <= tolerance_squared) {
|
||||
if (verbose)
|
||||
{
|
||||
std::cout << "Iteration = 0" << std::endl;
|
||||
std::cout << "Two norm of the residual = " << residual_norm << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
p = r;
|
||||
btScalar r_dot_Ar, r_dot_Ar_new;
|
||||
// temp_p = A*p
|
||||
A.multiply(p, temp_p);
|
||||
// temp_r = A*r
|
||||
temp_r = temp_p;
|
||||
r_dot_Ar = dot(r, temp_r);
|
||||
for (int k = 1; k <= max_iterations; k++) {
|
||||
// z = M^(-1) * Ap
|
||||
A.precondition(temp_p, z);
|
||||
// alpha = r^T * A * r / (Ap)^T * M^-1 * Ap)
|
||||
btScalar alpha = r_dot_Ar / dot(temp_p, z);
|
||||
// x += alpha * p;
|
||||
multAndAddTo(alpha, p, x);
|
||||
// r -= alpha * z;
|
||||
multAndAddTo(-alpha, z, r);
|
||||
btScalar norm_r = norm(r);
|
||||
if (norm_r < best_r)
|
||||
{
|
||||
best_x = x;
|
||||
best_r = norm_r;
|
||||
if (norm_r < tolerance_squared) {
|
||||
if (verbose)
|
||||
{
|
||||
std::cout << "ConjugateResidual iterations " << k << std::endl;
|
||||
}
|
||||
return k;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (verbose)
|
||||
{
|
||||
std::cout << "ConjugateResidual iterations " << k << " has residual "<< norm_r << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
// temp_r = A * r;
|
||||
A.multiply(r, temp_r);
|
||||
r_dot_Ar_new = dot(r, temp_r);
|
||||
btScalar beta = r_dot_Ar_new/r_dot_Ar;
|
||||
r_dot_Ar = r_dot_Ar_new;
|
||||
// p = beta*p + r;
|
||||
p = multAndAdd(beta, p, r);
|
||||
// temp_p = beta*temp_p + temp_r;
|
||||
temp_p = multAndAdd(beta, temp_p, temp_r);
|
||||
}
|
||||
if (verbose)
|
||||
{
|
||||
std::cout << "ConjugateResidual max iterations reached " << max_iterations << std::endl;
|
||||
}
|
||||
x = best_x;
|
||||
return max_iterations;
|
||||
}
|
||||
|
||||
void reinitialize(const TVStack& b)
|
||||
{
|
||||
r.resize(b.size());
|
||||
p.resize(b.size());
|
||||
z.resize(b.size());
|
||||
temp_p.resize(b.size());
|
||||
temp_r.resize(b.size());
|
||||
best_x.resize(b.size());
|
||||
best_r = SIMD_INFINITY;
|
||||
}
|
||||
|
||||
TVStack sub(const TVStack& a, const TVStack& b)
|
||||
{
|
||||
// c = a-b
|
||||
btAssert(a.size() == b.size());
|
||||
TVStack c;
|
||||
c.resize(a.size());
|
||||
for (int i = 0; i < a.size(); ++i)
|
||||
{
|
||||
c[i] = a[i] - b[i];
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
btScalar squaredNorm(const TVStack& a)
|
||||
{
|
||||
return dot(a,a);
|
||||
}
|
||||
|
||||
btScalar norm(const TVStack& a)
|
||||
{
|
||||
btScalar ret = 0;
|
||||
for (int i = 0; i < a.size(); ++i)
|
||||
{
|
||||
for (int d = 0; d < 3; ++d)
|
||||
{
|
||||
ret = btMax(ret, btFabs(a[i][d]));
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
btScalar dot(const TVStack& a, const TVStack& b)
|
||||
{
|
||||
btScalar ans(0);
|
||||
for (int i = 0; i < a.size(); ++i)
|
||||
ans += a[i].dot(b[i]);
|
||||
return ans;
|
||||
}
|
||||
|
||||
void multAndAddTo(btScalar s, const TVStack& a, TVStack& result)
|
||||
{
|
||||
// result += s*a
|
||||
btAssert(a.size() == result.size());
|
||||
for (int i = 0; i < a.size(); ++i)
|
||||
result[i] += s * a[i];
|
||||
}
|
||||
|
||||
TVStack multAndAdd(btScalar s, const TVStack& a, const TVStack& b)
|
||||
{
|
||||
// result = a*s + b
|
||||
TVStack result;
|
||||
result.resize(a.size());
|
||||
for (int i = 0; i < a.size(); ++i)
|
||||
result[i] = s * a[i] + b[i];
|
||||
return result;
|
||||
}
|
||||
};
|
||||
#endif /* btConjugateResidual_h */
|
||||
|
|
@ -23,12 +23,15 @@ btDeformableBackwardEulerObjective::btDeformableBackwardEulerObjective(btAligned
|
|||
, m_backupVelocity(backup_v)
|
||||
, m_implicit(false)
|
||||
{
|
||||
m_preconditioner = new MassPreconditioner(m_softBodies);
|
||||
m_massPreconditioner = new MassPreconditioner(m_softBodies);
|
||||
m_KKTPreconditioner = new KKTPreconditioner(m_softBodies, m_projection, m_lf, m_dt, m_implicit);
|
||||
m_preconditioner = m_KKTPreconditioner;
|
||||
}
|
||||
|
||||
btDeformableBackwardEulerObjective::~btDeformableBackwardEulerObjective()
|
||||
{
|
||||
delete m_preconditioner;
|
||||
delete m_KKTPreconditioner;
|
||||
delete m_massPreconditioner;
|
||||
}
|
||||
|
||||
void btDeformableBackwardEulerObjective::reinitialize(bool nodeUpdated, btScalar dt)
|
||||
|
@ -47,7 +50,7 @@ void btDeformableBackwardEulerObjective::reinitialize(bool nodeUpdated, btScalar
|
|||
m_lf[i]->reinitialize(nodeUpdated);
|
||||
}
|
||||
m_projection.reinitialize(nodeUpdated);
|
||||
m_preconditioner->reinitialize(nodeUpdated);
|
||||
// m_preconditioner->reinitialize(nodeUpdated);
|
||||
}
|
||||
|
||||
void btDeformableBackwardEulerObjective::setDt(btScalar dt)
|
||||
|
@ -80,6 +83,33 @@ void btDeformableBackwardEulerObjective::multiply(const TVStack& x, TVStack& b)
|
|||
m_lf[i]->addScaledElasticForceDifferential(-m_dt*m_dt, x, b);
|
||||
}
|
||||
}
|
||||
int offset = m_nodes.size();
|
||||
for (int i = offset; i < b.size(); ++i)
|
||||
{
|
||||
b[i].setZero();
|
||||
}
|
||||
// add in the lagrange multiplier terms
|
||||
|
||||
for (int c = 0; c < m_projection.m_lagrangeMultipliers.size(); ++c)
|
||||
{
|
||||
// C^T * lambda
|
||||
const LagrangeMultiplier& lm = m_projection.m_lagrangeMultipliers[c];
|
||||
for (int i = 0; i < lm.m_num_nodes; ++i)
|
||||
{
|
||||
for (int j = 0; j < lm.m_num_constraints; ++j)
|
||||
{
|
||||
b[lm.m_indices[i]] += x[offset+c][j] * lm.m_weights[i] * lm.m_dirs[j];
|
||||
}
|
||||
}
|
||||
// C * x
|
||||
for (int d = 0; d < lm.m_num_constraints; ++d)
|
||||
{
|
||||
for (int i = 0; i < lm.m_num_nodes; ++i)
|
||||
{
|
||||
b[offset+c][d] += lm.m_weights[i] * x[lm.m_indices[i]].dot(lm.m_dirs[d]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableBackwardEulerObjective::updateVelocity(const TVStack& dv)
|
||||
|
@ -134,7 +164,7 @@ void btDeformableBackwardEulerObjective::computeResidual(btScalar dt, TVStack &r
|
|||
m_lf[i]->addScaledDampingForce(dt, residual);
|
||||
}
|
||||
}
|
||||
m_projection.project(residual);
|
||||
// m_projection.project(residual);
|
||||
}
|
||||
|
||||
btScalar btDeformableBackwardEulerObjective::computeNorm(const TVStack& residual) const
|
||||
|
@ -186,9 +216,9 @@ void btDeformableBackwardEulerObjective::initialGuess(TVStack& dv, const TVStack
|
|||
}
|
||||
|
||||
//set constraints as projections
|
||||
void btDeformableBackwardEulerObjective::setConstraints()
|
||||
void btDeformableBackwardEulerObjective::setConstraints(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
m_projection.setConstraints();
|
||||
m_projection.setConstraints(infoGlobal);
|
||||
}
|
||||
|
||||
void btDeformableBackwardEulerObjective::applyDynamicFriction(TVStack& r)
|
||||
|
|
|
@ -15,11 +15,12 @@
|
|||
|
||||
#ifndef BT_BACKWARD_EULER_OBJECTIVE_H
|
||||
#define BT_BACKWARD_EULER_OBJECTIVE_H
|
||||
#include "btConjugateGradient.h"
|
||||
//#include "btConjugateGradient.h"
|
||||
#include "btDeformableLagrangianForce.h"
|
||||
#include "btDeformableMassSpringForce.h"
|
||||
#include "btDeformableGravityForce.h"
|
||||
#include "btDeformableCorotatedForce.h"
|
||||
#include "btDeformableMousePickingForce.h"
|
||||
#include "btDeformableLinearElasticityForce.h"
|
||||
#include "btDeformableNeoHookeanForce.h"
|
||||
#include "btDeformableContactProjection.h"
|
||||
|
@ -39,6 +40,8 @@ public:
|
|||
const TVStack& m_backupVelocity;
|
||||
btAlignedObjectArray<btSoftBody::Node* > m_nodes;
|
||||
bool m_implicit;
|
||||
MassPreconditioner* m_massPreconditioner;
|
||||
KKTPreconditioner* m_KKTPreconditioner;
|
||||
|
||||
btDeformableBackwardEulerObjective(btAlignedObjectArray<btSoftBody *>& softBodies, const TVStack& backup_v);
|
||||
|
||||
|
@ -79,7 +82,7 @@ public:
|
|||
void updateVelocity(const TVStack& dv);
|
||||
|
||||
//set constraints as projections
|
||||
void setConstraints();
|
||||
void setConstraints(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// update the projections and project the residual
|
||||
void project(TVStack& r)
|
||||
|
@ -129,6 +132,42 @@ public:
|
|||
|
||||
// Calculate the total potential energy in the system
|
||||
btScalar totalEnergy(btScalar dt);
|
||||
|
||||
void addLagrangeMultiplier(const TVStack& vec, TVStack& extended_vec)
|
||||
{
|
||||
extended_vec.resize(vec.size() + m_projection.m_lagrangeMultipliers.size());
|
||||
for (int i = 0; i < vec.size(); ++i)
|
||||
{
|
||||
extended_vec[i] = vec[i];
|
||||
}
|
||||
int offset = vec.size();
|
||||
for (int i = 0; i < m_projection.m_lagrangeMultipliers.size(); ++i)
|
||||
{
|
||||
extended_vec[offset + i].setZero();
|
||||
}
|
||||
}
|
||||
|
||||
void addLagrangeMultiplierRHS(const TVStack& residual, const TVStack& m_dv, TVStack& extended_residual)
|
||||
{
|
||||
extended_residual.resize(residual.size() + m_projection.m_lagrangeMultipliers.size());
|
||||
for (int i = 0; i < residual.size(); ++i)
|
||||
{
|
||||
extended_residual[i] = residual[i];
|
||||
}
|
||||
int offset = residual.size();
|
||||
for (int i = 0; i < m_projection.m_lagrangeMultipliers.size(); ++i)
|
||||
{
|
||||
const LagrangeMultiplier& lm = m_projection.m_lagrangeMultipliers[i];
|
||||
extended_residual[offset + i].setZero();
|
||||
for (int d = 0; d < lm.m_num_constraints; ++d)
|
||||
{
|
||||
for (int n = 0; n < lm.m_num_nodes; ++n)
|
||||
{
|
||||
extended_residual[offset + i][d] += lm.m_weights[n] * m_dv[lm.m_indices[n]].dot(lm.m_dirs[d]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif /* btBackwardEulerObjective_h */
|
||||
|
|
|
@ -18,13 +18,15 @@
|
|||
#include "btDeformableBodySolver.h"
|
||||
#include "btSoftBodyInternals.h"
|
||||
#include "LinearMath/btQuickprof.h"
|
||||
static const int kMaxConjugateGradientIterations = 50;
|
||||
static const int kMaxConjugateGradientIterations = 50;
|
||||
btDeformableBodySolver::btDeformableBodySolver()
|
||||
: m_numNodes(0)
|
||||
, m_cg(kMaxConjugateGradientIterations)
|
||||
, m_cr(kMaxConjugateGradientIterations)
|
||||
, m_maxNewtonIterations(5)
|
||||
, m_newtonTolerance(1e-4)
|
||||
, m_lineSearch(false)
|
||||
, m_useProjection(false)
|
||||
{
|
||||
m_objective = new btDeformableBackwardEulerObjective(m_softBodies, m_backupVelocity);
|
||||
}
|
||||
|
@ -41,7 +43,22 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
|
|||
{
|
||||
m_objective->computeResidual(solverdt, m_residual);
|
||||
m_objective->applyDynamicFriction(m_residual);
|
||||
computeStep(m_dv, m_residual);
|
||||
if (m_useProjection)
|
||||
{
|
||||
computeStep(m_dv, m_residual);
|
||||
}
|
||||
else
|
||||
{
|
||||
TVStack rhs, x;
|
||||
m_objective->addLagrangeMultiplierRHS(m_residual, m_dv, rhs);
|
||||
m_objective->addLagrangeMultiplier(m_dv, x);
|
||||
m_objective->m_preconditioner->reinitialize(true);
|
||||
computeStep(x, rhs);
|
||||
for (int i = 0; i<m_dv.size(); ++i)
|
||||
{
|
||||
m_dv[i] = x[i];
|
||||
}
|
||||
}
|
||||
updateVelocity();
|
||||
}
|
||||
else
|
||||
|
@ -63,7 +80,7 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
|
|||
++counter;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
m_objective->computeResidual(solverdt, m_residual);
|
||||
if (m_objective->computeNorm(m_residual) < m_newtonTolerance && i > 0)
|
||||
{
|
||||
|
@ -200,7 +217,10 @@ void btDeformableBodySolver::updateDv(btScalar scale)
|
|||
|
||||
void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual)
|
||||
{
|
||||
m_cg.solve(*m_objective, ddv, residual);
|
||||
if (m_useProjection)
|
||||
m_cg.solve(*m_objective, ddv, residual, false);
|
||||
else
|
||||
m_cr.solve(*m_objective, ddv, residual, false);
|
||||
}
|
||||
|
||||
void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt)
|
||||
|
@ -226,27 +246,22 @@ void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody
|
|||
|
||||
m_dt = dt;
|
||||
m_objective->reinitialize(nodeUpdated, dt);
|
||||
updateSoftBodies();
|
||||
}
|
||||
|
||||
void btDeformableBodySolver::setConstraints()
|
||||
void btDeformableBodySolver::setConstraints(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
BT_PROFILE("setConstraint");
|
||||
m_objective->setConstraints();
|
||||
m_objective->setConstraints(infoGlobal);
|
||||
}
|
||||
|
||||
btScalar btDeformableBodySolver::solveContactConstraints(btCollisionObject** deformableBodies,int numDeformableBodies)
|
||||
btScalar btDeformableBodySolver::solveContactConstraints(btCollisionObject** deformableBodies,int numDeformableBodies, const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
BT_PROFILE("solveContactConstraints");
|
||||
btScalar maxSquaredResidual = m_objective->m_projection.update(deformableBodies,numDeformableBodies);
|
||||
btScalar maxSquaredResidual = m_objective->m_projection.update(deformableBodies,numDeformableBodies, infoGlobal);
|
||||
return maxSquaredResidual;
|
||||
}
|
||||
|
||||
btScalar btDeformableBodySolver::solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
BT_PROFILE("solveSplitImpulse");
|
||||
return m_objective->m_projection.solveSplitImpulse(infoGlobal);
|
||||
}
|
||||
|
||||
void btDeformableBodySolver::splitImpulseSetup(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
m_objective->m_projection.splitImpulseSetup(infoGlobal);
|
||||
|
@ -333,8 +348,10 @@ void btDeformableBodySolver::setupDeformableSolve(bool implicit)
|
|||
m_backupVelocity[counter] = psb->m_nodes[j].m_vn;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_dv[counter] = psb->m_nodes[j].m_v - m_backupVelocity[counter];
|
||||
psb->m_nodes[j].m_v = m_backupVelocity[counter] + psb->m_nodes[j].m_vsplit;
|
||||
}
|
||||
psb->m_nodes[j].m_v = m_backupVelocity[counter];
|
||||
++counter;
|
||||
}
|
||||
}
|
||||
|
@ -385,6 +402,7 @@ void btDeformableBodySolver::predictMotion(btScalar solverdt)
|
|||
|
||||
void btDeformableBodySolver::predictDeformableMotion(btSoftBody* psb, btScalar dt)
|
||||
{
|
||||
BT_PROFILE("btDeformableBodySolver::predictDeformableMotion");
|
||||
int i, ni;
|
||||
|
||||
/* Update */
|
||||
|
@ -423,40 +441,22 @@ void btDeformableBodySolver::predictDeformableMotion(btSoftBody* psb, btScalar d
|
|||
n.m_v *= max_v;
|
||||
}
|
||||
n.m_q = n.m_x + n.m_v * dt;
|
||||
n.m_penetration = 0;
|
||||
}
|
||||
|
||||
/* Nodes */
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume)
|
||||
vol;
|
||||
for (i = 0, ni = psb->m_nodes.size(); i < ni; ++i)
|
||||
{
|
||||
btSoftBody::Node& n = psb->m_nodes[i];
|
||||
btVector3 points[2] = {n.m_x, n.m_q};
|
||||
vol = btDbvtVolume::FromPoints(points, 2);
|
||||
vol.Expand(btVector3(psb->m_sst.radmrg, psb->m_sst.radmrg, psb->m_sst.radmrg));
|
||||
psb->m_ndbvt.update(n.m_leaf, vol);
|
||||
}
|
||||
|
||||
psb->updateNodeTree(true, true);
|
||||
if (!psb->m_fdbvt.empty())
|
||||
{
|
||||
for (int i = 0; i < psb->m_faces.size(); ++i)
|
||||
{
|
||||
btSoftBody::Face& f = psb->m_faces[i];
|
||||
btVector3 points[6] = {f.m_n[0]->m_x, f.m_n[0]->m_q,
|
||||
f.m_n[1]->m_x, f.m_n[1]->m_q,
|
||||
f.m_n[2]->m_x, f.m_n[2]->m_q};
|
||||
vol = btDbvtVolume::FromPoints(points, 6);
|
||||
vol.Expand(btVector3(psb->m_sst.radmrg, psb->m_sst.radmrg, psb->m_sst.radmrg));
|
||||
psb->m_fdbvt.update(f.m_leaf, vol);
|
||||
}
|
||||
psb->updateFaceTree(true, true);
|
||||
}
|
||||
/* Clear contacts */
|
||||
/* Clear contacts */
|
||||
psb->m_nodeRigidContacts.resize(0);
|
||||
psb->m_faceRigidContacts.resize(0);
|
||||
psb->m_faceNodeContacts.resize(0);
|
||||
/* Optimize dbvt's */
|
||||
psb->m_ndbvt.optimizeIncremental(1);
|
||||
psb->m_fdbvt.optimizeIncremental(1);
|
||||
// psb->m_ndbvt.optimizeIncremental(1);
|
||||
// psb->m_fdbvt.optimizeIncremental(1);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -22,7 +22,8 @@
|
|||
#include "btDeformableMultiBodyDynamicsWorld.h"
|
||||
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
|
||||
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
|
||||
|
||||
#include "btConjugateResidual.h"
|
||||
#include "btConjugateGradient.h"
|
||||
struct btCollisionObjectWrapper;
|
||||
class btDeformableBackwardEulerObjective;
|
||||
class btDeformableMultiBodyDynamicsWorld;
|
||||
|
@ -40,14 +41,15 @@ protected:
|
|||
TVStack m_backupVelocity; // backed up v, equals v_n for implicit, equals v_{n+1}^* for explicit
|
||||
btScalar m_dt; // dt
|
||||
btConjugateGradient<btDeformableBackwardEulerObjective> m_cg; // CG solver
|
||||
btConjugateResidual<btDeformableBackwardEulerObjective> m_cr; // CR solver
|
||||
bool m_implicit; // use implicit scheme if true, explicit scheme if false
|
||||
int m_maxNewtonIterations; // max number of newton iterations
|
||||
btScalar m_newtonTolerance; // stop newton iterations if f(x) < m_newtonTolerance
|
||||
bool m_lineSearch; // If true, use newton's method with line search under implicit scheme
|
||||
|
||||
public:
|
||||
// handles data related to objective function
|
||||
btDeformableBackwardEulerObjective* m_objective;
|
||||
bool m_useProjection;
|
||||
|
||||
btDeformableBodySolver();
|
||||
|
||||
|
@ -61,15 +63,11 @@ public:
|
|||
// update soft body normals
|
||||
virtual void updateSoftBodies();
|
||||
|
||||
virtual btScalar solveContactConstraints(btCollisionObject** deformableBodies,int numDeformableBodies, const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// solve the momentum equation
|
||||
virtual void solveDeformableConstraints(btScalar solverdt);
|
||||
|
||||
// solve the contact between deformable and rigid as well as among deformables
|
||||
btScalar solveContactConstraints(btCollisionObject** deformableBodies,int numDeformableBodies);
|
||||
|
||||
// solve the position error between deformable and rigid as well as among deformables;
|
||||
btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// set up the position error in split impulse
|
||||
void splitImpulseSetup(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
|
@ -77,7 +75,7 @@ public:
|
|||
void reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt);
|
||||
|
||||
// set up contact constraints
|
||||
void setConstraints();
|
||||
void setConstraints(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// add in elastic forces and gravity to obtain v_{n+1}^* and calls predictDeformableMotion
|
||||
virtual void predictMotion(btScalar solverdt);
|
||||
|
|
|
@ -15,9 +15,9 @@
|
|||
|
||||
#include "btDeformableContactConstraint.h"
|
||||
/* ================ Deformable Node Anchor =================== */
|
||||
btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& a)
|
||||
btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& a, const btContactSolverInfo& infoGlobal)
|
||||
: m_anchor(&a)
|
||||
, btDeformableContactConstraint(a.m_cti.m_normal)
|
||||
, btDeformableContactConstraint(a.m_cti.m_normal, infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -79,14 +79,14 @@ btVector3 btDeformableNodeAnchorConstraint::getVa() const
|
|||
return va;
|
||||
}
|
||||
|
||||
btScalar btDeformableNodeAnchorConstraint::solveConstraint()
|
||||
btScalar btDeformableNodeAnchorConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
const btSoftBody::sCti& cti = m_anchor->m_cti;
|
||||
btVector3 va = getVa();
|
||||
btVector3 vb = getVb();
|
||||
btVector3 vr = (vb - va);
|
||||
// + (m_anchor->m_node->m_x - cti.m_colObj->getWorldTransform() * m_anchor->m_local) * 10.0
|
||||
const btScalar dn = btDot(vr, cti.m_normal);
|
||||
const btScalar dn = btDot(vr, vr);
|
||||
// dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
|
||||
btScalar residualSquare = dn*dn;
|
||||
btVector3 impulse = m_anchor->m_c0 * vr;
|
||||
|
@ -134,14 +134,15 @@ void btDeformableNodeAnchorConstraint::applyImpulse(const btVector3& impulse)
|
|||
}
|
||||
|
||||
/* ================ Deformable vs. Rigid =================== */
|
||||
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c)
|
||||
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c, const btContactSolverInfo& infoGlobal)
|
||||
: m_contact(&c)
|
||||
, btDeformableContactConstraint(c.m_cti.m_normal)
|
||||
, btDeformableContactConstraint(c.m_cti.m_normal, infoGlobal)
|
||||
{
|
||||
m_total_normal_dv.setZero();
|
||||
m_total_tangent_dv.setZero();
|
||||
// penetration is non-positive. The magnitude of penetration is the depth of penetration.
|
||||
m_penetration = btMin(btScalar(0), c.m_cti.m_offset);
|
||||
// The magnitude of penetration is the depth of penetration.
|
||||
m_penetration = c.m_cti.m_offset;
|
||||
// m_penetration = btMin(btScalar(0),c.m_cti.m_offset);
|
||||
}
|
||||
|
||||
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btDeformableRigidContactConstraint& other)
|
||||
|
@ -206,16 +207,16 @@ btVector3 btDeformableRigidContactConstraint::getVa() const
|
|||
return va;
|
||||
}
|
||||
|
||||
btScalar btDeformableRigidContactConstraint::solveConstraint()
|
||||
btScalar btDeformableRigidContactConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
const btSoftBody::sCti& cti = m_contact->m_cti;
|
||||
btVector3 va = getVa();
|
||||
btVector3 vb = getVb();
|
||||
btVector3 vr = vb - va;
|
||||
const btScalar dn = btDot(vr, cti.m_normal);
|
||||
btScalar dn = btDot(vr, cti.m_normal) + m_penetration * infoGlobal.m_deformable_erp / infoGlobal.m_timeStep;
|
||||
// dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
|
||||
btScalar residualSquare = dn*dn;
|
||||
btVector3 impulse = m_contact->m_c0 * vr;
|
||||
btVector3 impulse = m_contact->m_c0 * (vr + m_penetration * infoGlobal.m_deformable_erp / infoGlobal.m_timeStep * cti.m_normal) ;
|
||||
const btVector3 impulse_normal = m_contact->m_c0 * (cti.m_normal * dn);
|
||||
btVector3 impulse_tangent = impulse - impulse_normal;
|
||||
btVector3 old_total_tangent_dv = m_total_tangent_dv;
|
||||
|
@ -256,6 +257,8 @@ btScalar btDeformableRigidContactConstraint::solveConstraint()
|
|||
impulse = impulse_normal + impulse_tangent;
|
||||
// apply impulse to deformable nodes involved and change their velocities
|
||||
applyImpulse(impulse);
|
||||
if (residualSquare < 1e-7)
|
||||
return residualSquare;
|
||||
// apply impulse to the rigid/multibodies involved and change their velocities
|
||||
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
||||
{
|
||||
|
@ -285,43 +288,17 @@ btScalar btDeformableRigidContactConstraint::solveConstraint()
|
|||
}
|
||||
}
|
||||
}
|
||||
// va = getVa();
|
||||
// vb = getVb();
|
||||
// vr = vb - va;
|
||||
// btScalar dn1 = btDot(vr, cti.m_normal) / 150;
|
||||
// m_penetration += dn1;
|
||||
return residualSquare;
|
||||
}
|
||||
|
||||
btScalar btDeformableRigidContactConstraint::solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
const btSoftBody::sCti& cti = m_contact->m_cti;
|
||||
const btScalar dn = m_penetration;
|
||||
if (dn != 0)
|
||||
{
|
||||
const btVector3 impulse = (m_contact->m_c0 * (cti.m_normal * dn / infoGlobal.m_timeStep));
|
||||
// one iteration of the position impulse corrects all the position error at this timestep
|
||||
m_penetration -= dn;
|
||||
// apply impulse to deformable nodes involved and change their position
|
||||
applySplitImpulse(impulse);
|
||||
// apply impulse to the rigid/multibodies involved and change their position
|
||||
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
||||
{
|
||||
btRigidBody* rigidCol = 0;
|
||||
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
||||
if (rigidCol)
|
||||
{
|
||||
rigidCol->applyPushImpulse(impulse, m_contact->m_c1);
|
||||
}
|
||||
}
|
||||
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
}
|
||||
return (m_penetration/infoGlobal.m_timeStep) * (m_penetration/infoGlobal.m_timeStep);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ================ Node vs. Rigid =================== */
|
||||
btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact)
|
||||
btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact, const btContactSolverInfo& infoGlobal)
|
||||
: m_node(contact.m_node)
|
||||
, btDeformableRigidContactConstraint(contact)
|
||||
, btDeformableRigidContactConstraint(contact, infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -349,22 +326,17 @@ void btDeformableNodeRigidContactConstraint::applyImpulse(const btVector3& impul
|
|||
contact->m_node->m_v -= dv;
|
||||
}
|
||||
|
||||
void btDeformableNodeRigidContactConstraint::applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
const btSoftBody::DeformableNodeRigidContact* contact = getContact();
|
||||
btVector3 dv = impulse * contact->m_c2;
|
||||
contact->m_node->m_vsplit -= dv;
|
||||
};
|
||||
|
||||
/* ================ Face vs. Rigid =================== */
|
||||
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact)
|
||||
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact, const btContactSolverInfo& infoGlobal, bool useStrainLimiting)
|
||||
: m_face(contact.m_face)
|
||||
, btDeformableRigidContactConstraint(contact)
|
||||
, m_useStrainLimiting(useStrainLimiting)
|
||||
, btDeformableRigidContactConstraint(contact, infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btDeformableFaceRigidContactConstraint& other)
|
||||
: m_face(other.m_face)
|
||||
, m_useStrainLimiting(other.m_useStrainLimiting)
|
||||
, btDeformableRigidContactConstraint(other)
|
||||
{
|
||||
}
|
||||
|
@ -411,47 +383,70 @@ void btDeformableFaceRigidContactConstraint::applyImpulse(const btVector3& impul
|
|||
v1 -= dv * contact->m_weights[1];
|
||||
if (im2 > 0)
|
||||
v2 -= dv * contact->m_weights[2];
|
||||
|
||||
// apply strain limiting to prevent undamped modes
|
||||
btScalar m01 = (btScalar(1)/(im0 + im1));
|
||||
btScalar m02 = (btScalar(1)/(im0 + im2));
|
||||
btScalar m12 = (btScalar(1)/(im1 + im2));
|
||||
|
||||
btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
|
||||
btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
|
||||
btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
|
||||
|
||||
v0 += dv0;
|
||||
v1 += dv1;
|
||||
v2 += dv2;
|
||||
}
|
||||
|
||||
void btDeformableFaceRigidContactConstraint::applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
|
||||
btVector3 dv = impulse * contact->m_c2;
|
||||
btSoftBody::Face* face = contact->m_face;
|
||||
|
||||
btVector3& v0 = face->m_n[0]->m_vsplit;
|
||||
btVector3& v1 = face->m_n[1]->m_vsplit;
|
||||
btVector3& v2 = face->m_n[2]->m_vsplit;
|
||||
const btScalar& im0 = face->m_n[0]->m_im;
|
||||
const btScalar& im1 = face->m_n[1]->m_im;
|
||||
const btScalar& im2 = face->m_n[2]->m_im;
|
||||
if (im0 > 0)
|
||||
v0 -= dv * contact->m_weights[0];
|
||||
if (im1 > 0)
|
||||
v1 -= dv * contact->m_weights[1];
|
||||
if (im2 > 0)
|
||||
v2 -= dv * contact->m_weights[2];
|
||||
if (m_useStrainLimiting)
|
||||
{
|
||||
btScalar relaxation = 1./btScalar(m_infoGlobal->m_numIterations);
|
||||
btScalar m01 = (relaxation/(im0 + im1));
|
||||
btScalar m02 = (relaxation/(im0 + im2));
|
||||
btScalar m12 = (relaxation/(im1 + im2));
|
||||
#ifdef USE_STRAIN_RATE_LIMITING
|
||||
// apply strain limiting to prevent the new velocity to change the current length of the edge by more than 1%.
|
||||
btScalar p = 0.01;
|
||||
btVector3& x0 = face->m_n[0]->m_x;
|
||||
btVector3& x1 = face->m_n[1]->m_x;
|
||||
btVector3& x2 = face->m_n[2]->m_x;
|
||||
const btVector3 x_diff[3] = {x1-x0, x2-x0, x2-x1};
|
||||
const btVector3 v_diff[3] = {v1-v0, v2-v0, v2-v1};
|
||||
btVector3 u[3];
|
||||
btScalar x_diff_dot_u, dn[3];
|
||||
btScalar dt = m_infoGlobal->m_timeStep;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
btScalar x_diff_norm = x_diff[i].safeNorm();
|
||||
btScalar x_diff_norm_new = (x_diff[i] + v_diff[i] * dt).safeNorm();
|
||||
btScalar strainRate = x_diff_norm_new/x_diff_norm;
|
||||
u[i] = v_diff[i];
|
||||
u[i].safeNormalize();
|
||||
if (x_diff_norm == 0 || (1-p <= strainRate && strainRate <= 1+p))
|
||||
{
|
||||
dn[i] = 0;
|
||||
continue;
|
||||
}
|
||||
x_diff_dot_u = btDot(x_diff[i], u[i]);
|
||||
btScalar s;
|
||||
if (1-p > strainRate)
|
||||
{
|
||||
s = 1/dt * (-x_diff_dot_u - btSqrt(x_diff_dot_u*x_diff_dot_u + (p*p-2*p) * x_diff_norm * x_diff_norm));
|
||||
}
|
||||
else
|
||||
{
|
||||
s = 1/dt * (-x_diff_dot_u + btSqrt(x_diff_dot_u*x_diff_dot_u + (p*p+2*p) * x_diff_norm * x_diff_norm));
|
||||
}
|
||||
// x_diff_norm_new = (x_diff[i] + s * u[i] * dt).safeNorm();
|
||||
// strainRate = x_diff_norm_new/x_diff_norm;
|
||||
dn[i] = s - v_diff[i].safeNorm();
|
||||
}
|
||||
btVector3 dv0 = im0 * (m01 * u[0]*(-dn[0]) + m02 * u[1]*-(dn[1]));
|
||||
btVector3 dv1 = im1 * (m01 * u[0]*(dn[0]) + m12 * u[2]*(-dn[2]));
|
||||
btVector3 dv2 = im2 * (m12 * u[2]*(dn[2]) + m02 * u[1]*(dn[1]));
|
||||
#else
|
||||
// apply strain limiting to prevent undamped modes
|
||||
btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
|
||||
btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
|
||||
btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
|
||||
#endif
|
||||
v0 += dv0;
|
||||
v1 += dv1;
|
||||
v2 += dv2;
|
||||
}
|
||||
}
|
||||
|
||||
/* ================ Face vs. Node =================== */
|
||||
btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact)
|
||||
btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact, const btContactSolverInfo& infoGlobal)
|
||||
: m_node(contact.m_node)
|
||||
, m_face(contact.m_face)
|
||||
, m_contact(&contact)
|
||||
, btDeformableContactConstraint(contact.m_normal)
|
||||
, btDeformableContactConstraint(contact.m_normal, infoGlobal)
|
||||
{
|
||||
m_total_normal_dv.setZero();
|
||||
m_total_tangent_dv.setZero();
|
||||
|
@ -487,7 +482,7 @@ btVector3 btDeformableFaceNodeContactConstraint::getDv(const btSoftBody::Node* n
|
|||
return dv * contact->m_weights[2];
|
||||
}
|
||||
|
||||
btScalar btDeformableFaceNodeContactConstraint::solveConstraint()
|
||||
btScalar btDeformableFaceNodeContactConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
btVector3 va = getVa();
|
||||
btVector3 vb = getVb();
|
||||
|
@ -577,15 +572,4 @@ void btDeformableFaceNodeContactConstraint::applyImpulse(const btVector3& impuls
|
|||
{
|
||||
v2 -= dvb * contact->m_weights[2];
|
||||
}
|
||||
// todo: Face node constraints needs more work
|
||||
// btScalar m01 = (btScalar(1)/(im0 + im1));
|
||||
// btScalar m02 = (btScalar(1)/(im0 + im2));
|
||||
// btScalar m12 = (btScalar(1)/(im1 + im2));
|
||||
//
|
||||
// btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
|
||||
// btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
|
||||
// btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
|
||||
// v0 += dv0;
|
||||
// v1 += dv1;
|
||||
// v2 += dv2;
|
||||
}
|
||||
|
|
|
@ -24,34 +24,33 @@ public:
|
|||
// True if the friction is static
|
||||
// False if the friction is dynamic
|
||||
bool m_static;
|
||||
|
||||
// normal of the contact
|
||||
btVector3 m_normal;
|
||||
|
||||
btDeformableContactConstraint(const btVector3& normal): m_static(false), m_normal(normal)
|
||||
{
|
||||
}
|
||||
|
||||
btDeformableContactConstraint(bool isStatic, const btVector3& normal): m_static(isStatic), m_normal(normal)
|
||||
{
|
||||
}
|
||||
|
||||
btDeformableContactConstraint(const btDeformableContactConstraint& other)
|
||||
: m_static(other.m_static)
|
||||
, m_normal(other.m_normal)
|
||||
{
|
||||
|
||||
}
|
||||
btDeformableContactConstraint(){}
|
||||
|
||||
const btContactSolverInfo* m_infoGlobal;
|
||||
|
||||
// normal of the contact
|
||||
btVector3 m_normal;
|
||||
|
||||
btDeformableContactConstraint(const btVector3& normal, const btContactSolverInfo& infoGlobal): m_static(false), m_normal(normal), m_infoGlobal(&infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
btDeformableContactConstraint(bool isStatic, const btVector3& normal, const btContactSolverInfo& infoGlobal): m_static(isStatic), m_normal(normal), m_infoGlobal(&infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
btDeformableContactConstraint(){}
|
||||
|
||||
btDeformableContactConstraint(const btDeformableContactConstraint& other)
|
||||
: m_static(other.m_static)
|
||||
, m_normal(other.m_normal)
|
||||
, m_infoGlobal(other.m_infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~btDeformableContactConstraint(){}
|
||||
|
||||
// solve the constraint with inelastic impulse and return the error, which is the square of normal component of velocity diffrerence
|
||||
// the constraint is solved by calculating the impulse between object A and B in the contact and apply the impulse to both objects involved in the contact
|
||||
virtual btScalar solveConstraint() = 0;
|
||||
|
||||
// solve the position error by applying an inelastic impulse that changes only the position (not velocity)
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal) = 0;
|
||||
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal) = 0;
|
||||
|
||||
// get the velocity of the object A in the contact
|
||||
virtual btVector3 getVa() const = 0;
|
||||
|
@ -65,9 +64,6 @@ public:
|
|||
// apply impulse to the soft body node and/or face involved
|
||||
virtual void applyImpulse(const btVector3& impulse) = 0;
|
||||
|
||||
// apply position based impulse to the soft body node and/or face involved
|
||||
virtual void applySplitImpulse(const btVector3& impulse) = 0;
|
||||
|
||||
// scale the penetration depth by erp
|
||||
virtual void setPenetrationScale(btScalar scale) = 0;
|
||||
};
|
||||
|
@ -77,29 +73,21 @@ public:
|
|||
class btDeformableStaticConstraint : public btDeformableContactConstraint
|
||||
{
|
||||
public:
|
||||
const btSoftBody::Node* m_node;
|
||||
btSoftBody::Node* m_node;
|
||||
|
||||
btDeformableStaticConstraint(){}
|
||||
|
||||
btDeformableStaticConstraint(const btSoftBody::Node* node): m_node(node), btDeformableContactConstraint(false, btVector3(0,0,0))
|
||||
btDeformableStaticConstraint(btSoftBody::Node* node, const btContactSolverInfo& infoGlobal): m_node(node), btDeformableContactConstraint(false, btVector3(0,0,0), infoGlobal)
|
||||
{
|
||||
}
|
||||
|
||||
btDeformableStaticConstraint(){}
|
||||
btDeformableStaticConstraint(const btDeformableStaticConstraint& other)
|
||||
: m_node(other.m_node)
|
||||
, btDeformableContactConstraint(other)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
virtual ~btDeformableStaticConstraint(){}
|
||||
|
||||
virtual btScalar solveConstraint()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
@ -120,7 +108,6 @@ public:
|
|||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse){}
|
||||
virtual void applySplitImpulse(const btVector3& impulse){}
|
||||
virtual void setPenetrationScale(btScalar scale){}
|
||||
};
|
||||
|
||||
|
@ -130,19 +117,15 @@ class btDeformableNodeAnchorConstraint : public btDeformableContactConstraint
|
|||
{
|
||||
public:
|
||||
const btSoftBody::DeformableNodeRigidAnchor* m_anchor;
|
||||
|
||||
btDeformableNodeAnchorConstraint(){}
|
||||
btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& c);
|
||||
|
||||
btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& c, const btContactSolverInfo& infoGlobal);
|
||||
btDeformableNodeAnchorConstraint(const btDeformableNodeAnchorConstraint& other);
|
||||
btDeformableNodeAnchorConstraint(){}
|
||||
virtual ~btDeformableNodeAnchorConstraint()
|
||||
{
|
||||
}
|
||||
virtual btScalar solveConstraint();
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
return 0;
|
||||
}
|
||||
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// object A is the rigid/multi body, and object B is the deformable node/face
|
||||
virtual btVector3 getVa() const;
|
||||
// get the velocity of the deformable node in contact
|
||||
|
@ -152,10 +135,7 @@ public:
|
|||
return btVector3(0,0,0);
|
||||
}
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
};
|
||||
|
||||
virtual void setPenetrationScale(btScalar scale){}
|
||||
};
|
||||
|
||||
|
@ -169,10 +149,10 @@ public:
|
|||
btVector3 m_total_tangent_dv;
|
||||
btScalar m_penetration;
|
||||
const btSoftBody::DeformableRigidContact* m_contact;
|
||||
|
||||
btDeformableRigidContactConstraint(){}
|
||||
btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c);
|
||||
|
||||
btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c, const btContactSolverInfo& infoGlobal);
|
||||
btDeformableRigidContactConstraint(const btDeformableRigidContactConstraint& other);
|
||||
btDeformableRigidContactConstraint(){}
|
||||
virtual ~btDeformableRigidContactConstraint()
|
||||
{
|
||||
}
|
||||
|
@ -180,9 +160,7 @@ public:
|
|||
// object A is the rigid/multi body, and object B is the deformable node/face
|
||||
virtual btVector3 getVa() const;
|
||||
|
||||
virtual btScalar solveConstraint();
|
||||
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal);
|
||||
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
virtual void setPenetrationScale(btScalar scale)
|
||||
{
|
||||
|
@ -196,12 +174,11 @@ class btDeformableNodeRigidContactConstraint : public btDeformableRigidContactCo
|
|||
{
|
||||
public:
|
||||
// the deformable node in contact
|
||||
const btSoftBody::Node* m_node;
|
||||
|
||||
btDeformableNodeRigidContactConstraint(){}
|
||||
btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact);
|
||||
btSoftBody::Node* m_node;
|
||||
|
||||
btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact, const btContactSolverInfo& infoGlobal);
|
||||
btDeformableNodeRigidContactConstraint(const btDeformableNodeRigidContactConstraint& other);
|
||||
|
||||
btDeformableNodeRigidContactConstraint(){}
|
||||
virtual ~btDeformableNodeRigidContactConstraint()
|
||||
{
|
||||
}
|
||||
|
@ -219,7 +196,6 @@ public:
|
|||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse);
|
||||
};
|
||||
|
||||
//
|
||||
|
@ -228,10 +204,10 @@ class btDeformableFaceRigidContactConstraint : public btDeformableRigidContactCo
|
|||
{
|
||||
public:
|
||||
const btSoftBody::Face* m_face;
|
||||
btDeformableFaceRigidContactConstraint(){}
|
||||
btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact);
|
||||
bool m_useStrainLimiting;
|
||||
btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact, const btContactSolverInfo& infoGlobal, bool useStrainLimiting);
|
||||
btDeformableFaceRigidContactConstraint(const btDeformableFaceRigidContactConstraint& other);
|
||||
|
||||
btDeformableFaceRigidContactConstraint(): m_useStrainLimiting(false) {}
|
||||
virtual ~btDeformableFaceRigidContactConstraint()
|
||||
{
|
||||
}
|
||||
|
@ -249,7 +225,6 @@ public:
|
|||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse);
|
||||
};
|
||||
|
||||
//
|
||||
|
@ -263,19 +238,11 @@ public:
|
|||
btVector3 m_total_normal_dv;
|
||||
btVector3 m_total_tangent_dv;
|
||||
|
||||
btDeformableFaceNodeContactConstraint(){}
|
||||
|
||||
btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact);
|
||||
|
||||
btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact, const btContactSolverInfo& infoGlobal);
|
||||
btDeformableFaceNodeContactConstraint(){}
|
||||
virtual ~btDeformableFaceNodeContactConstraint(){}
|
||||
|
||||
virtual btScalar solveConstraint();
|
||||
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
// todo: xuchenhan@
|
||||
return 0;
|
||||
}
|
||||
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// get the velocity of the object A in the contact
|
||||
virtual btVector3 getVa() const;
|
||||
|
@ -293,10 +260,7 @@ public:
|
|||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
}
|
||||
|
||||
virtual void setPenetrationScale(btScalar scale){}
|
||||
};
|
||||
#endif /* BT_DEFORMABLE_CONTACT_CONSTRAINT_H */
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#include "btDeformableMultiBodyDynamicsWorld.h"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
btScalar btDeformableContactProjection::update(btCollisionObject** deformableBodies,int numDeformableBodies)
|
||||
btScalar btDeformableContactProjection::update(btCollisionObject** deformableBodies,int numDeformableBodies, const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
btScalar residualSquare = 0;
|
||||
for (int i = 0; i < numDeformableBodies; ++i)
|
||||
|
@ -32,25 +32,25 @@ btScalar btDeformableContactProjection::update(btCollisionObject** deformableBod
|
|||
for (int k = 0; k < m_nodeRigidConstraints[j].size(); ++k)
|
||||
{
|
||||
btDeformableNodeRigidContactConstraint& constraint = m_nodeRigidConstraints[j][k];
|
||||
btScalar localResidualSquare = constraint.solveConstraint();
|
||||
btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
for (int k = 0; k < m_nodeAnchorConstraints[j].size(); ++k)
|
||||
{
|
||||
btDeformableNodeAnchorConstraint& constraint = m_nodeAnchorConstraints[j][k];
|
||||
btScalar localResidualSquare = constraint.solveConstraint();
|
||||
btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
for (int k = 0; k < m_faceRigidConstraints[j].size(); ++k)
|
||||
{
|
||||
btDeformableFaceRigidContactConstraint& constraint = m_faceRigidConstraints[j][k];
|
||||
btScalar localResidualSquare = constraint.solveConstraint();
|
||||
btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
for (int k = 0; k < m_deformableConstraints[j].size(); ++k)
|
||||
{
|
||||
btDeformableFaceNodeContactConstraint& constraint = m_deformableConstraints[j][k];
|
||||
btScalar localResidualSquare = constraint.solveConstraint();
|
||||
btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
}
|
||||
|
@ -77,39 +77,8 @@ void btDeformableContactProjection::splitImpulseSetup(const btContactSolverInfo&
|
|||
}
|
||||
}
|
||||
|
||||
btScalar btDeformableContactProjection::solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
btScalar residualSquare = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
// node constraints
|
||||
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
btDeformableNodeRigidContactConstraint& constraint = m_nodeRigidConstraints[i][j];
|
||||
btScalar localResidualSquare = constraint.solveSplitImpulse(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
// anchor constraints
|
||||
for (int j = 0; j < m_nodeAnchorConstraints[i].size(); ++j)
|
||||
{
|
||||
btDeformableNodeAnchorConstraint& constraint = m_nodeAnchorConstraints[i][j];
|
||||
btScalar localResidualSquare = constraint.solveSplitImpulse(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
// face constraints
|
||||
for (int j = 0; j < m_faceRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
btDeformableFaceRigidContactConstraint& constraint = m_faceRigidConstraints[i][j];
|
||||
btScalar localResidualSquare = constraint.solveSplitImpulse(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
|
||||
}
|
||||
return residualSquare;
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::setConstraints()
|
||||
{
|
||||
void btDeformableContactProjection::setConstraints(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
BT_PROFILE("setConstraints");
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
|
@ -124,7 +93,7 @@ void btDeformableContactProjection::setConstraints()
|
|||
{
|
||||
if (psb->m_nodes[j].m_im == 0)
|
||||
{
|
||||
btDeformableStaticConstraint static_constraint(&psb->m_nodes[j]);
|
||||
btDeformableStaticConstraint static_constraint(&psb->m_nodes[j], infoGlobal);
|
||||
m_staticConstraints[i].push_back(static_constraint);
|
||||
}
|
||||
}
|
||||
|
@ -139,7 +108,7 @@ void btDeformableContactProjection::setConstraints()
|
|||
continue;
|
||||
}
|
||||
anchor.m_c1 = anchor.m_cti.m_colObj->getWorldTransform().getBasis() * anchor.m_local;
|
||||
btDeformableNodeAnchorConstraint constraint(anchor);
|
||||
btDeformableNodeAnchorConstraint constraint(anchor, infoGlobal);
|
||||
m_nodeAnchorConstraints[i].push_back(constraint);
|
||||
}
|
||||
|
||||
|
@ -152,7 +121,7 @@ void btDeformableContactProjection::setConstraints()
|
|||
{
|
||||
continue;
|
||||
}
|
||||
btDeformableNodeRigidContactConstraint constraint(contact);
|
||||
btDeformableNodeRigidContactConstraint constraint(contact, infoGlobal);
|
||||
btVector3 va = constraint.getVa();
|
||||
btVector3 vb = constraint.getVb();
|
||||
const btVector3 vr = vb - va;
|
||||
|
@ -173,7 +142,7 @@ void btDeformableContactProjection::setConstraints()
|
|||
{
|
||||
continue;
|
||||
}
|
||||
btDeformableFaceRigidContactConstraint constraint(contact);
|
||||
btDeformableFaceRigidContactConstraint constraint(contact, infoGlobal, m_useStrainLimiting);
|
||||
btVector3 va = constraint.getVa();
|
||||
btVector3 vb = constraint.getVb();
|
||||
const btVector3 vr = vb - va;
|
||||
|
@ -184,253 +153,404 @@ void btDeformableContactProjection::setConstraints()
|
|||
m_faceRigidConstraints[i].push_back(constraint);
|
||||
}
|
||||
}
|
||||
|
||||
// set Deformable Face vs. Deformable Node constraint
|
||||
for (int j = 0; j < psb->m_faceNodeContacts.size(); ++j)
|
||||
{
|
||||
const btSoftBody::DeformableFaceNodeContact& contact = psb->m_faceNodeContacts[j];
|
||||
|
||||
btDeformableFaceNodeContactConstraint constraint(contact);
|
||||
btVector3 va = constraint.getVa();
|
||||
btVector3 vb = constraint.getVb();
|
||||
const btVector3 vr = vb - va;
|
||||
const btScalar dn = btDot(vr, contact.m_normal);
|
||||
if (dn > -SIMD_EPSILON)
|
||||
{
|
||||
m_deformableConstraints[i].push_back(constraint);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::project(TVStack& x)
|
||||
{
|
||||
const int dim = 3;
|
||||
for (int index = 0; index < m_projectionsDict.size(); ++index)
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projectionDirs = *m_projectionsDict.getAtIndex(index);
|
||||
size_t i = m_projectionsDict.getKeyAtIndex(index).getUid1();
|
||||
if (projectionDirs.size() >= dim)
|
||||
{
|
||||
// static node
|
||||
x[i].setZero();
|
||||
continue;
|
||||
}
|
||||
else if (projectionDirs.size() == 2)
|
||||
{
|
||||
btVector3 dir0 = projectionDirs[0];
|
||||
btVector3 dir1 = projectionDirs[1];
|
||||
btVector3 free_dir = btCross(dir0, dir1);
|
||||
if (free_dir.safeNorm() < SIMD_EPSILON)
|
||||
{
|
||||
x[i] -= x[i].dot(dir0) * dir0;
|
||||
x[i] -= x[i].dot(dir1) * dir1;
|
||||
}
|
||||
else
|
||||
{
|
||||
free_dir.normalize();
|
||||
x[i] = x[i].dot(free_dir) * free_dir;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
btAssert(projectionDirs.size() == 1);
|
||||
btVector3 dir0 = projectionDirs[0];
|
||||
x[i] -= x[i].dot(dir0) * dir0;
|
||||
}
|
||||
}
|
||||
#ifndef USE_MGS
|
||||
const int dim = 3;
|
||||
for (int index = 0; index < m_projectionsDict.size(); ++index)
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projectionDirs = *m_projectionsDict.getAtIndex(index);
|
||||
size_t i = m_projectionsDict.getKeyAtIndex(index).getUid1();
|
||||
if (projectionDirs.size() >= dim)
|
||||
{
|
||||
// static node
|
||||
x[i].setZero();
|
||||
continue;
|
||||
}
|
||||
else if (projectionDirs.size() == 2)
|
||||
{
|
||||
btVector3 dir0 = projectionDirs[0];
|
||||
btVector3 dir1 = projectionDirs[1];
|
||||
btVector3 free_dir = btCross(dir0, dir1);
|
||||
if (free_dir.safeNorm() < SIMD_EPSILON)
|
||||
{
|
||||
x[i] -= x[i].dot(dir0) * dir0;
|
||||
x[i] -= x[i].dot(dir1) * dir1;
|
||||
}
|
||||
else
|
||||
{
|
||||
free_dir.normalize();
|
||||
x[i] = x[i].dot(free_dir) * free_dir;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
btAssert(projectionDirs.size() == 1);
|
||||
btVector3 dir0 = projectionDirs[0];
|
||||
x[i] -= x[i].dot(dir0) * dir0;
|
||||
}
|
||||
}
|
||||
#else
|
||||
btReducedVector p(x.size());
|
||||
for (int i = 0; i < m_projections.size(); ++i)
|
||||
{
|
||||
p += (m_projections[i].dot(x) * m_projections[i]);
|
||||
}
|
||||
for (int i = 0; i < p.m_indices.size(); ++i)
|
||||
{
|
||||
x[p.m_indices[i]] -= p.m_vecs[i];
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::setProjection()
|
||||
{
|
||||
btAlignedObjectArray<btVector3> units;
|
||||
units.push_back(btVector3(1,0,0));
|
||||
units.push_back(btVector3(0,1,0));
|
||||
units.push_back(btVector3(0,0,1));
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < m_staticConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_staticConstraints[i][j].m_node->index;
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
#ifndef USE_MGS
|
||||
BT_PROFILE("btDeformableContactProjection::setProjection");
|
||||
btAlignedObjectArray<btVector3> units;
|
||||
units.push_back(btVector3(1,0,0));
|
||||
units.push_back(btVector3(0,1,0));
|
||||
units.push_back(btVector3(0,0,1));
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < m_staticConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_staticConstraints[i][j].m_node->index;
|
||||
m_staticConstraints[i][j].m_node->m_penetration = SIMD_INFINITY;
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_nodeAnchorConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeAnchorConstraints[i][j].m_anchor->m_node->index;
|
||||
m_nodeAnchorConstraints[i][j].m_anchor->m_node->m_penetration = SIMD_INFINITY;
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeRigidConstraints[i][j].m_node->index;
|
||||
m_nodeRigidConstraints[i][j].m_node->m_penetration = -m_nodeRigidConstraints[i][j].getContact()->m_cti.m_offset;
|
||||
if (m_nodeRigidConstraints[i][j].m_static)
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> projections;
|
||||
projections.push_back(m_nodeRigidConstraints[i][j].m_normal);
|
||||
m_projectionsDict.insert(index, projections);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
projections.push_back(m_nodeRigidConstraints[i][j].m_normal);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_faceRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
const btSoftBody::Face* face = m_faceRigidConstraints[i][j].m_face;
|
||||
btScalar penetration = -m_faceRigidConstraints[i][j].getContact()->m_cti.m_offset;
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
face->m_n[k]->m_penetration = btMax(face->m_n[k]->m_penetration, penetration);
|
||||
}
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
btSoftBody::Node* node = face->m_n[k];
|
||||
node->m_penetration = true;
|
||||
int index = node->index;
|
||||
if (m_faceRigidConstraints[i][j].m_static)
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> projections;
|
||||
projections.push_back(m_faceRigidConstraints[i][j].m_normal);
|
||||
m_projectionsDict.insert(index, projections);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
projections.push_back(m_faceRigidConstraints[i][j].m_normal);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
int dof = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
dof += m_softBodies[i]->m_nodes.size();
|
||||
}
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < m_staticConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_staticConstraints[i][j].m_node->index;
|
||||
m_staticConstraints[i][j].m_node->m_penetration = SIMD_INFINITY;
|
||||
btAlignedObjectArray<int> indices;
|
||||
btAlignedObjectArray<btVector3> vecs1,vecs2,vecs3;
|
||||
indices.push_back(index);
|
||||
vecs1.push_back(btVector3(1,0,0));
|
||||
vecs2.push_back(btVector3(0,1,0));
|
||||
vecs3.push_back(btVector3(0,0,1));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs1));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs2));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs3));
|
||||
}
|
||||
|
||||
for (int j = 0; j < m_nodeAnchorConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeAnchorConstraints[i][j].m_anchor->m_node->index;
|
||||
m_nodeAnchorConstraints[i][j].m_anchor->m_node->m_penetration = SIMD_INFINITY;
|
||||
btAlignedObjectArray<int> indices;
|
||||
btAlignedObjectArray<btVector3> vecs1,vecs2,vecs3;
|
||||
indices.push_back(index);
|
||||
vecs1.push_back(btVector3(1,0,0));
|
||||
vecs2.push_back(btVector3(0,1,0));
|
||||
vecs3.push_back(btVector3(0,0,1));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs1));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs2));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs3));
|
||||
}
|
||||
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeRigidConstraints[i][j].m_node->index;
|
||||
m_nodeRigidConstraints[i][j].m_node->m_penetration = -m_nodeRigidConstraints[i][j].getContact()->m_cti.m_offset;
|
||||
btAlignedObjectArray<int> indices;
|
||||
indices.push_back(index);
|
||||
btAlignedObjectArray<btVector3> vecs1,vecs2,vecs3;
|
||||
if (m_nodeRigidConstraints[i][j].m_static)
|
||||
{
|
||||
vecs1.push_back(btVector3(1,0,0));
|
||||
vecs2.push_back(btVector3(0,1,0));
|
||||
vecs3.push_back(btVector3(0,0,1));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs1));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs2));
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs3));
|
||||
}
|
||||
else
|
||||
{
|
||||
vecs1.push_back(m_nodeRigidConstraints[i][j].m_normal);
|
||||
m_projections.push_back(btReducedVector(dof, indices, vecs1));
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_faceRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
const btSoftBody::Face* face = m_faceRigidConstraints[i][j].m_face;
|
||||
btVector3 bary = m_faceRigidConstraints[i][j].getContact()->m_bary;
|
||||
btScalar penetration = -m_faceRigidConstraints[i][j].getContact()->m_cti.m_offset;
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
face->m_n[k]->m_penetration = btMax(face->m_n[k]->m_penetration, penetration);
|
||||
}
|
||||
if (m_faceRigidConstraints[i][j].m_static)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
for (int l = 0; l < 3; ++l)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_nodeAnchorConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeAnchorConstraints[i][j].m_anchor->m_node->index;
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeRigidConstraints[i][j].m_node->index;
|
||||
if (m_nodeRigidConstraints[i][j].m_static)
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
|
||||
btReducedVector rv(dof);
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
rv.m_indices.push_back(face->m_n[k]->index);
|
||||
btVector3 v(0,0,0);
|
||||
v[l] = bary[k];
|
||||
rv.m_vecs.push_back(v);
|
||||
rv.sort();
|
||||
}
|
||||
m_projections.push_back(rv);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
btReducedVector rv(dof);
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> projections;
|
||||
projections.push_back(m_nodeRigidConstraints[i][j].m_normal);
|
||||
m_projectionsDict.insert(index, projections);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
projections.push_back(m_nodeRigidConstraints[i][j].m_normal);
|
||||
rv.m_indices.push_back(face->m_n[k]->index);
|
||||
rv.m_vecs.push_back(bary[k] * m_faceRigidConstraints[i][j].m_normal);
|
||||
rv.sort();
|
||||
}
|
||||
m_projections.push_back(rv);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_faceRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
const btSoftBody::Face* face = m_faceRigidConstraints[i][j].m_face;
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
const btSoftBody::Node* node = face->m_n[k];
|
||||
int index = node->index;
|
||||
if (m_faceRigidConstraints[i][j].m_static)
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> projections;
|
||||
projections.push_back(m_faceRigidConstraints[i][j].m_normal);
|
||||
m_projectionsDict.insert(index, projections);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
projections.push_back(m_faceRigidConstraints[i][j].m_normal);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m_deformableConstraints[i].size(); ++j)
|
||||
{
|
||||
const btSoftBody::Face* face = m_deformableConstraints[i][j].m_face;
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
const btSoftBody::Node* node = face->m_n[k];
|
||||
int index = node->index;
|
||||
if (m_deformableConstraints[i][j].m_static)
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> projections;
|
||||
projections.push_back(m_deformableConstraints[i][j].m_normal);
|
||||
m_projectionsDict.insert(index, projections);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
projections.push_back(m_deformableConstraints[i][j].m_normal);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
btModifiedGramSchmidt<btReducedVector> mgs(m_projections);
|
||||
mgs.solve();
|
||||
m_projections = mgs.m_out;
|
||||
#endif
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::checkConstraints(const TVStack& x)
|
||||
{
|
||||
for (int i = 0; i < m_lagrangeMultipliers.size(); ++i)
|
||||
{
|
||||
btVector3 d(0,0,0);
|
||||
const LagrangeMultiplier& lm = m_lagrangeMultipliers[i];
|
||||
for (int j = 0; j < lm.m_num_constraints; ++j)
|
||||
{
|
||||
for (int k = 0; k < lm.m_num_nodes; ++k)
|
||||
{
|
||||
d[j] += lm.m_weights[k] * x[lm.m_indices[k]].dot(lm.m_dirs[j]);
|
||||
}
|
||||
}
|
||||
printf("d = %f, %f, %f\n",d[0],d[1],d[2]);
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::setLagrangeMultiplier()
|
||||
{
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < m_staticConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_staticConstraints[i][j].m_node->index;
|
||||
m_staticConstraints[i][j].m_node->m_penetration = SIMD_INFINITY;
|
||||
LagrangeMultiplier lm;
|
||||
lm.m_num_nodes = 1;
|
||||
lm.m_indices[0] = index;
|
||||
lm.m_weights[0] = 1.0;
|
||||
lm.m_num_constraints = 3;
|
||||
lm.m_dirs[0] = btVector3(1,0,0);
|
||||
lm.m_dirs[1] = btVector3(0,1,0);
|
||||
lm.m_dirs[2] = btVector3(0,0,1);
|
||||
m_lagrangeMultipliers.push_back(lm);
|
||||
}
|
||||
for (int j = 0; j < m_nodeAnchorConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeAnchorConstraints[i][j].m_anchor->m_node->index;
|
||||
m_nodeAnchorConstraints[i][j].m_anchor->m_node->m_penetration = SIMD_INFINITY;
|
||||
LagrangeMultiplier lm;
|
||||
lm.m_num_nodes = 1;
|
||||
lm.m_indices[0] = index;
|
||||
lm.m_weights[0] = 1.0;
|
||||
lm.m_num_constraints = 3;
|
||||
lm.m_dirs[0] = btVector3(1,0,0);
|
||||
lm.m_dirs[1] = btVector3(0,1,0);
|
||||
lm.m_dirs[2] = btVector3(0,0,1);
|
||||
m_lagrangeMultipliers.push_back(lm);
|
||||
}
|
||||
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
int index = m_nodeRigidConstraints[i][j].m_node->index;
|
||||
m_nodeRigidConstraints[i][j].m_node->m_penetration = -m_nodeRigidConstraints[i][j].getContact()->m_cti.m_offset;
|
||||
LagrangeMultiplier lm;
|
||||
lm.m_num_nodes = 1;
|
||||
lm.m_indices[0] = index;
|
||||
lm.m_weights[0] = 1.0;
|
||||
if (m_nodeRigidConstraints[i][j].m_static)
|
||||
{
|
||||
lm.m_num_constraints = 3;
|
||||
lm.m_dirs[0] = btVector3(1,0,0);
|
||||
lm.m_dirs[1] = btVector3(0,1,0);
|
||||
lm.m_dirs[2] = btVector3(0,0,1);
|
||||
}
|
||||
else
|
||||
{
|
||||
lm.m_num_constraints = 1;
|
||||
lm.m_dirs[0] = m_nodeRigidConstraints[i][j].m_normal;
|
||||
}
|
||||
m_lagrangeMultipliers.push_back(lm);
|
||||
}
|
||||
for (int j = 0; j < m_faceRigidConstraints[i].size(); ++j)
|
||||
{
|
||||
const btSoftBody::Face* face = m_faceRigidConstraints[i][j].m_face;
|
||||
|
||||
const btSoftBody::Node* node = m_deformableConstraints[i][j].m_node;
|
||||
int index = node->index;
|
||||
if (m_deformableConstraints[i][j].m_static)
|
||||
btVector3 bary = m_faceRigidConstraints[i][j].getContact()->m_bary;
|
||||
btScalar penetration = -m_faceRigidConstraints[i][j].getContact()->m_cti.m_offset;
|
||||
LagrangeMultiplier lm;
|
||||
lm.m_num_nodes = 3;
|
||||
for (int k = 0; k<3; ++k)
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
m_projectionsDict.insert(index, units);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
projections.push_back(units[k]);
|
||||
}
|
||||
}
|
||||
face->m_n[k]->m_penetration = btMax(face->m_n[k]->m_penetration, penetration);
|
||||
lm.m_indices[k] = face->m_n[k]->index;
|
||||
lm.m_weights[k] = bary[k];
|
||||
}
|
||||
if (m_faceRigidConstraints[i][j].m_static)
|
||||
{
|
||||
lm.m_num_constraints = 3;
|
||||
lm.m_dirs[0] = btVector3(1,0,0);
|
||||
lm.m_dirs[1] = btVector3(0,1,0);
|
||||
lm.m_dirs[2] = btVector3(0,0,1);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_projectionsDict.find(index) == NULL)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> projections;
|
||||
projections.push_back(m_deformableConstraints[i][j].m_normal);
|
||||
m_projectionsDict.insert(index, projections);
|
||||
}
|
||||
else
|
||||
{
|
||||
btAlignedObjectArray<btVector3>& projections = *m_projectionsDict[index];
|
||||
projections.push_back(m_deformableConstraints[i][j].m_normal);
|
||||
}
|
||||
lm.m_num_constraints = 1;
|
||||
lm.m_dirs[0] = m_faceRigidConstraints[i][j].m_normal;
|
||||
}
|
||||
m_lagrangeMultipliers.push_back(lm);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
void btDeformableContactProjection::applyDynamicFriction(TVStack& f)
|
||||
{
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
|
@ -502,7 +622,12 @@ void btDeformableContactProjection::reinitialize(bool nodeUpdated)
|
|||
m_faceRigidConstraints[i].clear();
|
||||
m_deformableConstraints[i].clear();
|
||||
}
|
||||
m_projectionsDict.clear();
|
||||
#ifndef USE_MGS
|
||||
m_projectionsDict.clear();
|
||||
#else
|
||||
m_projections.clear();
|
||||
#endif
|
||||
m_lagrangeMultipliers.clear();
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -21,30 +21,37 @@
|
|||
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
|
||||
#include "btDeformableContactConstraint.h"
|
||||
#include "LinearMath/btHashMap.h"
|
||||
#include "LinearMath/btReducedVector.h"
|
||||
#include "LinearMath/btModifiedGramSchmidt.h"
|
||||
#include <vector>
|
||||
|
||||
struct LagrangeMultiplier
|
||||
{
|
||||
int m_num_constraints; // Number of constraints
|
||||
int m_num_nodes; // Number of nodes in these constraints
|
||||
btScalar m_weights[3]; // weights of the nodes involved, same size as m_num_nodes
|
||||
btVector3 m_dirs[3]; // Constraint directions, same size of m_num_constraints;
|
||||
int m_indices[3]; // indices of the nodes involved, same size as m_num_nodes;
|
||||
};
|
||||
|
||||
|
||||
class btDeformableContactProjection
|
||||
{
|
||||
public:
|
||||
typedef btAlignedObjectArray<btVector3> TVStack;
|
||||
btAlignedObjectArray<btSoftBody *>& m_softBodies;
|
||||
|
||||
// // map from node index to static constraint
|
||||
// btHashMap<btHashInt, btDeformableStaticConstraint> m_staticConstraints;
|
||||
// // map from node index to node rigid constraint
|
||||
// btHashMap<btHashInt, btAlignedObjectArray<btDeformableNodeRigidContactConstraint> > m_nodeRigidConstraints;
|
||||
// // map from node index to face rigid constraint
|
||||
// btHashMap<btHashInt, btAlignedObjectArray<btDeformableFaceRigidContactConstraint*> > m_faceRigidConstraints;
|
||||
// // map from node index to deformable constraint
|
||||
// btHashMap<btHashInt, btAlignedObjectArray<btDeformableFaceNodeContactConstraint*> > m_deformableConstraints;
|
||||
// // map from node index to node anchor constraint
|
||||
// btHashMap<btHashInt, btDeformableNodeAnchorConstraint> m_nodeAnchorConstraints;
|
||||
|
||||
// all constraints involving face
|
||||
btAlignedObjectArray<btDeformableContactConstraint*> m_allFaceConstraints;
|
||||
|
||||
#ifndef USE_MGS
|
||||
// map from node index to projection directions
|
||||
btHashMap<btHashInt, btAlignedObjectArray<btVector3> > m_projectionsDict;
|
||||
|
||||
#else
|
||||
btAlignedObjectArray<btReducedVector> m_projections;
|
||||
#endif
|
||||
|
||||
btAlignedObjectArray<LagrangeMultiplier> m_lagrangeMultipliers;
|
||||
|
||||
// map from node index to static constraint
|
||||
btAlignedObjectArray<btAlignedObjectArray<btDeformableStaticConstraint> > m_staticConstraints;
|
||||
// map from node index to node rigid constraint
|
||||
|
@ -56,6 +63,8 @@ public:
|
|||
// map from node index to node anchor constraint
|
||||
btAlignedObjectArray<btAlignedObjectArray<btDeformableNodeAnchorConstraint> > m_nodeAnchorConstraints;
|
||||
|
||||
bool m_useStrainLimiting;
|
||||
|
||||
btDeformableContactProjection(btAlignedObjectArray<btSoftBody *>& softBodies)
|
||||
: m_softBodies(softBodies)
|
||||
{
|
||||
|
@ -72,13 +81,10 @@ public:
|
|||
virtual void applyDynamicFriction(TVStack& f);
|
||||
|
||||
// update and solve the constraints
|
||||
virtual btScalar update(btCollisionObject** deformableBodies,int numDeformableBodies);
|
||||
|
||||
// solve the position error using split impulse
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal);
|
||||
virtual btScalar update(btCollisionObject** deformableBodies,int numDeformableBodies, const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// Add constraints to m_constraints. In addition, the constraints that each vertex own are recorded in m_constraintsDict.
|
||||
virtual void setConstraints();
|
||||
virtual void setConstraints(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// Set up projections for each vertex by adding the projection direction to
|
||||
virtual void setProjection();
|
||||
|
@ -86,5 +92,9 @@ public:
|
|||
virtual void reinitialize(bool nodeUpdated);
|
||||
|
||||
virtual void splitImpulseSetup(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
virtual void setLagrangeMultiplier();
|
||||
|
||||
void checkConstraints(const TVStack& x);
|
||||
};
|
||||
#endif /* btDeformableContactProjection_h */
|
||||
|
|
|
@ -114,6 +114,8 @@ public:
|
|||
{
|
||||
}
|
||||
|
||||
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA){}
|
||||
|
||||
virtual btDeformableLagrangianForceType getForceType()
|
||||
{
|
||||
return BT_COROTATED_FORCE;
|
||||
|
|
|
@ -50,6 +50,8 @@ public:
|
|||
{
|
||||
}
|
||||
|
||||
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA){}
|
||||
|
||||
virtual void addScaledGravityForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
int numNodes = getNumNodes();
|
||||
|
|
|
@ -26,7 +26,8 @@ enum btDeformableLagrangianForceType
|
|||
BT_MASSSPRING_FORCE = 2,
|
||||
BT_COROTATED_FORCE = 3,
|
||||
BT_NEOHOOKEAN_FORCE = 4,
|
||||
BT_LINEAR_ELASTICITY_FORCE = 5
|
||||
BT_LINEAR_ELASTICITY_FORCE = 5,
|
||||
BT_MOUSE_PICKING_FORCE = 6
|
||||
};
|
||||
|
||||
static inline double randomDouble(double low, double high)
|
||||
|
@ -53,6 +54,9 @@ public:
|
|||
// add damping df
|
||||
virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df) = 0;
|
||||
|
||||
// build diagonal of A matrix
|
||||
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA) = 0;
|
||||
|
||||
// add elastic df
|
||||
virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df) = 0;
|
||||
|
||||
|
@ -85,6 +89,11 @@ public:
|
|||
m_softBodies.push_back(psb);
|
||||
}
|
||||
|
||||
virtual void removeSoftBody(btSoftBody* psb)
|
||||
{
|
||||
m_softBodies.remove(psb);
|
||||
}
|
||||
|
||||
virtual void setIndices(const btAlignedObjectArray<btSoftBody::Node*>* nodes)
|
||||
{
|
||||
m_nodes = nodes;
|
||||
|
|
|
@ -149,6 +149,52 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA)
|
||||
{
|
||||
// implicit damping force differential
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
btScalar scaled_k_damp = m_dampingStiffness * scale;
|
||||
for (int j = 0; j < psb->m_links.size(); ++j)
|
||||
{
|
||||
const btSoftBody::Link& link = psb->m_links[j];
|
||||
btSoftBody::Node* node1 = link.m_n[0];
|
||||
btSoftBody::Node* node2 = link.m_n[1];
|
||||
size_t id1 = node1->index;
|
||||
size_t id2 = node2->index;
|
||||
if (m_momentum_conserving)
|
||||
{
|
||||
if ((node2->m_x - node1->m_x).norm() > SIMD_EPSILON)
|
||||
{
|
||||
btVector3 dir = (node2->m_x - node1->m_x).normalized();
|
||||
for (int d = 0; d < 3; ++d)
|
||||
{
|
||||
if (node1->m_im > 0)
|
||||
diagA[id1][d] -= scaled_k_damp * dir[d] * dir[d];
|
||||
if (node2->m_im > 0)
|
||||
diagA[id2][d] -= scaled_k_damp * dir[d] * dir[d];
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int d = 0; d < 3; ++d)
|
||||
{
|
||||
if (node1->m_im > 0)
|
||||
diagA[id1][d] -= scaled_k_damp;
|
||||
if (node2->m_im > 0)
|
||||
diagA[id2][d] -= scaled_k_damp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual double totalElasticEnergy(btScalar dt)
|
||||
{
|
||||
double energy = 0;
|
||||
|
|
|
@ -0,0 +1,145 @@
|
|||
/*
|
||||
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
||||
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_MOUSE_PICKING_FORCE_H
|
||||
#define BT_MOUSE_PICKING_FORCE_H
|
||||
|
||||
#include "btDeformableLagrangianForce.h"
|
||||
|
||||
class btDeformableMousePickingForce : public btDeformableLagrangianForce
|
||||
{
|
||||
// If true, the damping force will be in the direction of the spring
|
||||
// If false, the damping force will be in the direction of the velocity
|
||||
btScalar m_elasticStiffness, m_dampingStiffness;
|
||||
const btSoftBody::Face& m_face;
|
||||
btVector3 m_mouse_pos;
|
||||
btScalar m_maxForce;
|
||||
public:
|
||||
typedef btAlignedObjectArray<btVector3> TVStack;
|
||||
btDeformableMousePickingForce(btScalar k, btScalar d, const btSoftBody::Face& face, btVector3 mouse_pos, btScalar maxForce = 0.3) : m_elasticStiffness(k), m_dampingStiffness(d), m_face(face), m_mouse_pos(mouse_pos), m_maxForce(maxForce)
|
||||
{
|
||||
}
|
||||
|
||||
virtual void addScaledForces(btScalar scale, TVStack& force)
|
||||
{
|
||||
addScaledDampingForce(scale, force);
|
||||
addScaledElasticForce(scale, force);
|
||||
}
|
||||
|
||||
virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
addScaledElasticForce(scale, force);
|
||||
}
|
||||
|
||||
virtual void addScaledDampingForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
btVector3 v_diff = m_face.m_n[i]->m_v;
|
||||
btVector3 scaled_force = scale * m_dampingStiffness * v_diff;
|
||||
if ((m_face.m_n[i]->m_x - m_mouse_pos).norm() > SIMD_EPSILON)
|
||||
{
|
||||
btVector3 dir = (m_face.m_n[i]->m_x - m_mouse_pos).normalized();
|
||||
scaled_force = scale * m_dampingStiffness * v_diff.dot(dir) * dir;
|
||||
}
|
||||
force[m_face.m_n[i]->index] -= scaled_force;
|
||||
}
|
||||
}
|
||||
|
||||
virtual void addScaledElasticForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
btScalar scaled_stiffness = scale * m_elasticStiffness;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
btVector3 dir = (m_face.m_n[i]->m_q - m_mouse_pos);
|
||||
btVector3 scaled_force = scaled_stiffness * dir;
|
||||
if (scaled_force.safeNorm() > m_maxForce)
|
||||
{
|
||||
scaled_force.safeNormalize();
|
||||
scaled_force *= m_maxForce;
|
||||
}
|
||||
force[m_face.m_n[i]->index] -= scaled_force;
|
||||
}
|
||||
}
|
||||
|
||||
virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
|
||||
{
|
||||
btScalar scaled_k_damp = m_dampingStiffness * scale;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
btVector3 local_scaled_df = scaled_k_damp * dv[m_face.m_n[i]->index];
|
||||
if ((m_face.m_n[i]->m_x - m_mouse_pos).norm() > SIMD_EPSILON)
|
||||
{
|
||||
btVector3 dir = (m_face.m_n[i]->m_x - m_mouse_pos).normalized();
|
||||
local_scaled_df= scaled_k_damp * dv[m_face.m_n[i]->index].dot(dir) * dir;
|
||||
}
|
||||
df[m_face.m_n[i]->index] -= local_scaled_df;
|
||||
}
|
||||
}
|
||||
|
||||
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA){}
|
||||
|
||||
virtual double totalElasticEnergy(btScalar dt)
|
||||
{
|
||||
double energy = 0;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
btVector3 dir = (m_face.m_n[i]->m_q - m_mouse_pos);
|
||||
btVector3 scaled_force = m_elasticStiffness * dir;
|
||||
if (scaled_force.safeNorm() > m_maxForce)
|
||||
{
|
||||
scaled_force.safeNormalize();
|
||||
scaled_force *= m_maxForce;
|
||||
}
|
||||
energy += 0.5 * scaled_force.dot(dir);
|
||||
}
|
||||
return energy;
|
||||
}
|
||||
|
||||
virtual double totalDampingEnergy(btScalar dt)
|
||||
{
|
||||
double energy = 0;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
btVector3 v_diff = m_face.m_n[i]->m_v;
|
||||
btVector3 scaled_force = m_dampingStiffness * v_diff;
|
||||
if ((m_face.m_n[i]->m_x - m_mouse_pos).norm() > SIMD_EPSILON)
|
||||
{
|
||||
btVector3 dir = (m_face.m_n[i]->m_x - m_mouse_pos).normalized();
|
||||
scaled_force = m_dampingStiffness * v_diff.dot(dir) * dir;
|
||||
}
|
||||
energy -= scaled_force.dot(m_face.m_n[i]->m_v) / dt;
|
||||
}
|
||||
return energy;
|
||||
}
|
||||
|
||||
virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
|
||||
{
|
||||
//TODO
|
||||
}
|
||||
|
||||
void setMousePos(const btVector3& p)
|
||||
{
|
||||
m_mouse_pos = p;
|
||||
}
|
||||
|
||||
virtual btDeformableLagrangianForceType getForceType()
|
||||
{
|
||||
return BT_MOUSE_PICKING_FORCE;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif /* btMassSpring_h */
|
|
@ -32,7 +32,7 @@ btScalar btDeformableMultiBodyConstraintSolver::solveDeformableGroupIterations(b
|
|||
m_leastSquaresResidual = solveSingleIteration(iteration, bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
|
||||
// solver body velocity -> rigid body velocity
|
||||
solverBodyWriteBack(infoGlobal);
|
||||
btScalar deformableResidual = m_deformableSolver->solveContactConstraints(deformableBodies,numDeformableBodies);
|
||||
btScalar deformableResidual = m_deformableSolver->solveContactConstraints(deformableBodies,numDeformableBodies, infoGlobal);
|
||||
// update rigid body velocity in rigid/deformable contact
|
||||
m_leastSquaresResidual = btMax(m_leastSquaresResidual, deformableResidual);
|
||||
// solver body velocity <- rigid body velocity
|
||||
|
@ -112,7 +112,7 @@ void btDeformableMultiBodyConstraintSolver::solveGroupCacheFriendlySplitImpulseI
|
|||
if (infoGlobal.m_splitImpulse)
|
||||
{
|
||||
{
|
||||
m_deformableSolver->splitImpulseSetup(infoGlobal);
|
||||
// m_deformableSolver->splitImpulseSetup(infoGlobal);
|
||||
for (iteration = 0; iteration < infoGlobal.m_numIterations; iteration++)
|
||||
{
|
||||
btScalar leastSquaresResidual = 0.f;
|
||||
|
@ -127,8 +127,8 @@ void btDeformableMultiBodyConstraintSolver::solveGroupCacheFriendlySplitImpulseI
|
|||
leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
|
||||
}
|
||||
// solve the position correction between deformable and rigid/multibody
|
||||
btScalar residual = m_deformableSolver->solveSplitImpulse(infoGlobal);
|
||||
leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
|
||||
// btScalar residual = m_deformableSolver->solveSplitImpulse(infoGlobal);
|
||||
// leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
|
||||
}
|
||||
if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration >= (infoGlobal.m_numIterations - 1))
|
||||
{
|
||||
|
|
|
@ -22,7 +22,6 @@ Call internalStepSimulation multiple times, to achieve 240Hz (4 steps of 60Hz).
|
|||
2. Detect discrete collisions between rigid and deformable bodies at position x_{n+1}^* = x_n + dt * v_{n+1}^*.
|
||||
|
||||
3a. Solve all constraints, including LCP. Contact, position correction due to numerical drift, friction, and anchors for deformable.
|
||||
TODO: add option for positional drift correction (using vel_target += erp * pos_error/dt
|
||||
|
||||
3b. 5 Newton steps (multiple step). Conjugent Gradient solves linear system. Deformable Damping: Then velocities of deformable bodies v_{n+1} are solved in
|
||||
M(v_{n+1} - v_{n+1}^*) = damping_force * dt / mass,
|
||||
|
@ -58,14 +57,20 @@ m_deformableBodySolver(deformableBodySolver), m_solverCallback(0)
|
|||
m_sbi.water_density = 0;
|
||||
m_sbi.water_offset = 0;
|
||||
m_sbi.water_normal = btVector3(0, 0, 0);
|
||||
m_sbi.m_gravity.setValue(0, -10, 0);
|
||||
m_sbi.m_gravity.setValue(0, -9.8, 0);
|
||||
m_internalTime = 0.0;
|
||||
m_implicit = false;
|
||||
m_lineSearch = false;
|
||||
m_selfCollision = true;
|
||||
m_useProjection = true;
|
||||
m_ccdIterations = 5;
|
||||
m_solverDeformableBodyIslandCallback = new DeformableBodyInplaceSolverIslandCallback(constraintSolver, dispatcher);
|
||||
}
|
||||
|
||||
btDeformableMultiBodyDynamicsWorld::~btDeformableMultiBodyDynamicsWorld()
|
||||
{
|
||||
delete m_solverDeformableBodyIslandCallback;
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::internalSingleStepSimulation(btScalar timeStep)
|
||||
{
|
||||
BT_PROFILE("internalSingleStepSimulation");
|
||||
|
@ -74,20 +79,16 @@ void btDeformableMultiBodyDynamicsWorld::internalSingleStepSimulation(btScalar t
|
|||
(*m_internalPreTickCallback)(this, timeStep);
|
||||
}
|
||||
reinitialize(timeStep);
|
||||
|
||||
// add gravity to velocity of rigid and multi bodys
|
||||
applyRigidBodyGravity(timeStep);
|
||||
|
||||
///apply gravity and explicit force to velocity, predict motion
|
||||
predictUnconstraintMotion(timeStep);
|
||||
|
||||
///perform collision detection
|
||||
///perform collision detection that involves rigid/multi bodies
|
||||
btMultiBodyDynamicsWorld::performDiscreteCollisionDetection();
|
||||
|
||||
if (m_selfCollision)
|
||||
{
|
||||
softBodySelfCollision();
|
||||
}
|
||||
|
||||
btMultiBodyDynamicsWorld::calculateSimulationIslands();
|
||||
|
||||
beforeSolverCallbacks(timeStep);
|
||||
|
@ -96,7 +97,13 @@ void btDeformableMultiBodyDynamicsWorld::internalSingleStepSimulation(btScalar t
|
|||
solveConstraints(timeStep);
|
||||
|
||||
afterSolverCallbacks(timeStep);
|
||||
|
||||
|
||||
performDeformableCollisionDetection();
|
||||
|
||||
applyRepulsionForce(timeStep);
|
||||
|
||||
performGeometricCollisions(timeStep);
|
||||
|
||||
integrateTransforms(timeStep);
|
||||
|
||||
///update vehicle simulation
|
||||
|
@ -107,6 +114,27 @@ void btDeformableMultiBodyDynamicsWorld::internalSingleStepSimulation(btScalar t
|
|||
// ///////////////////////////////
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::performDeformableCollisionDetection()
|
||||
{
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
m_softBodies[i]->m_softSoftCollision = true;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
for (int j = i; j < m_softBodies.size(); ++j)
|
||||
{
|
||||
m_softBodies[i]->defaultCollisionHandler(m_softBodies[j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
m_softBodies[i]->m_softSoftCollision = false;
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::updateActivationState(btScalar timeStep)
|
||||
{
|
||||
for (int i = 0; i < m_softBodies.size(); i++)
|
||||
|
@ -131,10 +159,106 @@ void btDeformableMultiBodyDynamicsWorld::updateActivationState(btScalar timeStep
|
|||
btMultiBodyDynamicsWorld::updateActivationState(timeStep);
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::applyRepulsionForce(btScalar timeStep)
|
||||
{
|
||||
BT_PROFILE("btDeformableMultiBodyDynamicsWorld::applyRepulsionForce");
|
||||
for (int i = 0; i < m_softBodies.size(); i++)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (psb->isActive())
|
||||
{
|
||||
psb->applyRepulsionForce(timeStep, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::performGeometricCollisions(btScalar timeStep)
|
||||
{
|
||||
BT_PROFILE("btDeformableMultiBodyDynamicsWorld::performGeometricCollisions");
|
||||
// refit the BVH tree for CCD
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (psb->isActive())
|
||||
{
|
||||
m_softBodies[i]->updateFaceTree(true, false);
|
||||
m_softBodies[i]->updateNodeTree(true, false);
|
||||
for (int j = 0; j < m_softBodies[i]->m_faces.size(); ++j)
|
||||
{
|
||||
btSoftBody::Face& f = m_softBodies[i]->m_faces[j];
|
||||
f.m_n0 = (f.m_n[1]->m_x - f.m_n[0]->m_x).cross(f.m_n[2]->m_x - f.m_n[0]->m_x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clear contact points & update DBVT
|
||||
for (int r = 0; r < m_ccdIterations; ++r)
|
||||
{
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (psb->isActive())
|
||||
{
|
||||
// clear contact points in the previous iteration
|
||||
psb->m_faceNodeContacts.clear();
|
||||
|
||||
// update m_q and normals for CCD calculation
|
||||
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
||||
{
|
||||
psb->m_nodes[j].m_q = psb->m_nodes[j].m_x + timeStep * psb->m_nodes[j].m_v;
|
||||
}
|
||||
for (int j = 0; j < psb->m_faces.size(); ++j)
|
||||
{
|
||||
btSoftBody::Face& f = psb->m_faces[j];
|
||||
f.m_n1 = (f.m_n[1]->m_q - f.m_n[0]->m_q).cross(f.m_n[2]->m_q - f.m_n[0]->m_q);
|
||||
f.m_vn = (f.m_n[1]->m_v - f.m_n[0]->m_v).cross(f.m_n[2]->m_v - f.m_n[0]->m_v) * timeStep * timeStep;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// apply CCD to register new contact points
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
for (int j = i; j < m_softBodies.size(); ++j)
|
||||
{
|
||||
btSoftBody* psb1 = m_softBodies[i];
|
||||
btSoftBody* psb2 = m_softBodies[j];
|
||||
if (psb1->isActive() && psb2->isActive())
|
||||
{
|
||||
m_softBodies[i]->geometricCollisionHandler(m_softBodies[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int penetration_count = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (psb->isActive())
|
||||
{
|
||||
penetration_count += psb->m_faceNodeContacts.size();
|
||||
}
|
||||
}
|
||||
if (penetration_count == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// apply inelastic impulse
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (psb->isActive())
|
||||
{
|
||||
psb->applyRepulsionForce(timeStep, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::softBodySelfCollision()
|
||||
{
|
||||
m_deformableBodySolver->updateSoftBodies();
|
||||
BT_PROFILE("btDeformableMultiBodyDynamicsWorld::softBodySelfCollision");
|
||||
for (int i = 0; i < m_softBodies.size(); i++)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
|
@ -192,8 +316,6 @@ void btDeformableMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
|
|||
}
|
||||
}
|
||||
node.m_x = node.m_x + timeStep * node.m_v;
|
||||
node.m_v -= node.m_vsplit;
|
||||
node.m_vsplit.setZero();
|
||||
node.m_q = node.m_x;
|
||||
node.m_vn = node.m_v;
|
||||
}
|
||||
|
@ -255,6 +377,7 @@ void btDeformableMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
|
|||
|
||||
void btDeformableMultiBodyDynamicsWorld::solveConstraints(btScalar timeStep)
|
||||
{
|
||||
BT_PROFILE("btDeformableMultiBodyDynamicsWorld::solveConstraints");
|
||||
// save v_{n+1}^* velocity after explicit forces
|
||||
m_deformableBodySolver->backupVelocity();
|
||||
|
||||
|
@ -265,8 +388,11 @@ void btDeformableMultiBodyDynamicsWorld::solveConstraints(btScalar timeStep)
|
|||
solveContactConstraints();
|
||||
|
||||
// set up the directions in which the velocity does not change in the momentum solve
|
||||
m_deformableBodySolver->m_objective->m_projection.setProjection();
|
||||
|
||||
if (m_useProjection)
|
||||
m_deformableBodySolver->m_objective->m_projection.setProjection();
|
||||
else
|
||||
m_deformableBodySolver->m_objective->m_projection.setLagrangeMultiplier();
|
||||
|
||||
// for explicit scheme, m_backupVelocity = v_{n+1}^*
|
||||
// for implicit scheme, m_backupVelocity = v_n
|
||||
// Here, set dv = v_{n+1} - v_n for nodes in contact
|
||||
|
@ -280,7 +406,7 @@ void btDeformableMultiBodyDynamicsWorld::solveConstraints(btScalar timeStep)
|
|||
void btDeformableMultiBodyDynamicsWorld::setupConstraints()
|
||||
{
|
||||
// set up constraints between multibody and deformable bodies
|
||||
m_deformableBodySolver->setConstraints();
|
||||
m_deformableBodySolver->setConstraints(m_solverInfo);
|
||||
|
||||
// set up constraints among multibodies
|
||||
{
|
||||
|
@ -403,6 +529,17 @@ void btDeformableMultiBodyDynamicsWorld::reinitialize(btScalar timeStep)
|
|||
dispatchInfo.m_stepCount = 0;
|
||||
dispatchInfo.m_debugDraw = btMultiBodyDynamicsWorld::getDebugDrawer();
|
||||
btMultiBodyDynamicsWorld::getSolverInfo().m_timeStep = timeStep;
|
||||
if (m_useProjection)
|
||||
{
|
||||
m_deformableBodySolver->m_useProjection = true;
|
||||
// m_deformableBodySolver->m_objective->m_projection.m_useStrainLimiting = true;
|
||||
m_deformableBodySolver->m_objective->m_preconditioner = m_deformableBodySolver->m_objective->m_massPreconditioner;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_deformableBodySolver->m_objective->m_preconditioner = m_deformableBodySolver->m_objective->m_KKTPreconditioner;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -566,6 +703,24 @@ void btDeformableMultiBodyDynamicsWorld::addForce(btSoftBody* psb, btDeformableL
|
|||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::removeForce(btSoftBody* psb, btDeformableLagrangianForce* force)
|
||||
{
|
||||
btAlignedObjectArray<btDeformableLagrangianForce*>& forces = m_deformableBodySolver->m_objective->m_lf;
|
||||
int removed_index = -1;
|
||||
for (int i = 0; i < forces.size(); ++i)
|
||||
{
|
||||
if (forces[i]->getForceType() == force->getForceType())
|
||||
{
|
||||
forces[i]->removeSoftBody(psb);
|
||||
if (forces[i]->m_softBodies.size() == 0)
|
||||
removed_index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (removed_index >= 0)
|
||||
forces.removeAtIndex(removed_index);
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::removeSoftBody(btSoftBody* body)
|
||||
{
|
||||
m_softBodies.remove(body);
|
||||
|
|
|
@ -46,10 +46,10 @@ class btDeformableMultiBodyDynamicsWorld : public btMultiBodyDynamicsWorld
|
|||
bool m_drawClusterTree;
|
||||
btSoftBodyWorldInfo m_sbi;
|
||||
btScalar m_internalTime;
|
||||
int m_contact_iterations;
|
||||
int m_ccdIterations;
|
||||
bool m_implicit;
|
||||
bool m_lineSearch;
|
||||
bool m_selfCollision;
|
||||
bool m_useProjection;
|
||||
DeformableBodyInplaceSolverIslandCallback* m_solverDeformableBodyIslandCallback;
|
||||
|
||||
typedef void (*btSolverCallback)(btScalar time, btDeformableMultiBodyDynamicsWorld* world);
|
||||
|
@ -80,9 +80,7 @@ public:
|
|||
m_solverCallback = cb;
|
||||
}
|
||||
|
||||
virtual ~btDeformableMultiBodyDynamicsWorld()
|
||||
{
|
||||
}
|
||||
virtual ~btDeformableMultiBodyDynamicsWorld();
|
||||
|
||||
virtual btMultiBodyDynamicsWorld* getMultiBodyDynamicsWorld()
|
||||
{
|
||||
|
@ -133,6 +131,8 @@ public:
|
|||
|
||||
void addForce(btSoftBody* psb, btDeformableLagrangianForce* force);
|
||||
|
||||
void removeForce(btSoftBody* psb, btDeformableLagrangianForce* force);
|
||||
|
||||
void removeSoftBody(btSoftBody* body);
|
||||
|
||||
void removeCollisionObject(btCollisionObject* collisionObject);
|
||||
|
@ -142,6 +142,8 @@ public:
|
|||
|
||||
void setupConstraints();
|
||||
|
||||
void performDeformableCollisionDetection();
|
||||
|
||||
void solveMultiBodyConstraints();
|
||||
|
||||
void solveContactConstraints();
|
||||
|
@ -159,7 +161,151 @@ public:
|
|||
{
|
||||
m_lineSearch = lineSearch;
|
||||
}
|
||||
|
||||
void applyRepulsionForce(btScalar timeStep);
|
||||
|
||||
void performGeometricCollisions(btScalar timeStep);
|
||||
|
||||
struct btDeformableSingleRayCallback : public btBroadphaseRayCallback
|
||||
{
|
||||
btVector3 m_rayFromWorld;
|
||||
btVector3 m_rayToWorld;
|
||||
btTransform m_rayFromTrans;
|
||||
btTransform m_rayToTrans;
|
||||
btVector3 m_hitNormal;
|
||||
|
||||
const btDeformableMultiBodyDynamicsWorld* m_world;
|
||||
btCollisionWorld::RayResultCallback& m_resultCallback;
|
||||
|
||||
btDeformableSingleRayCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld, const btDeformableMultiBodyDynamicsWorld* world, btCollisionWorld::RayResultCallback& resultCallback)
|
||||
: m_rayFromWorld(rayFromWorld),
|
||||
m_rayToWorld(rayToWorld),
|
||||
m_world(world),
|
||||
m_resultCallback(resultCallback)
|
||||
{
|
||||
m_rayFromTrans.setIdentity();
|
||||
m_rayFromTrans.setOrigin(m_rayFromWorld);
|
||||
m_rayToTrans.setIdentity();
|
||||
m_rayToTrans.setOrigin(m_rayToWorld);
|
||||
|
||||
btVector3 rayDir = (rayToWorld - rayFromWorld);
|
||||
|
||||
rayDir.normalize();
|
||||
///what about division by zero? --> just set rayDirection[i] to INF/1e30
|
||||
m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0];
|
||||
m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1];
|
||||
m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2];
|
||||
m_signs[0] = m_rayDirectionInverse[0] < 0.0;
|
||||
m_signs[1] = m_rayDirectionInverse[1] < 0.0;
|
||||
m_signs[2] = m_rayDirectionInverse[2] < 0.0;
|
||||
|
||||
m_lambda_max = rayDir.dot(m_rayToWorld - m_rayFromWorld);
|
||||
}
|
||||
|
||||
virtual bool process(const btBroadphaseProxy* proxy)
|
||||
{
|
||||
///terminate further ray tests, once the closestHitFraction reached zero
|
||||
if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
|
||||
return false;
|
||||
|
||||
btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
|
||||
|
||||
//only perform raycast if filterMask matches
|
||||
if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
|
||||
{
|
||||
//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
|
||||
//btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
|
||||
#if 0
|
||||
#ifdef RECALCULATE_AABB
|
||||
btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
|
||||
collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
|
||||
#else
|
||||
//getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
|
||||
const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
|
||||
const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
|
||||
#endif
|
||||
#endif
|
||||
//btScalar hitLambda = m_resultCallback.m_closestHitFraction;
|
||||
//culling already done by broadphase
|
||||
//if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
|
||||
{
|
||||
m_world->rayTestSingle(m_rayFromTrans, m_rayToTrans,
|
||||
collisionObject,
|
||||
collisionObject->getCollisionShape(),
|
||||
collisionObject->getWorldTransform(),
|
||||
m_resultCallback);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
|
||||
{
|
||||
BT_PROFILE("rayTest");
|
||||
/// use the broadphase to accelerate the search for objects, based on their aabb
|
||||
/// and for each object with ray-aabb overlap, perform an exact ray test
|
||||
btDeformableSingleRayCallback rayCB(rayFromWorld, rayToWorld, this, resultCallback);
|
||||
|
||||
#ifndef USE_BRUTEFORCE_RAYBROADPHASE
|
||||
m_broadphasePairCache->rayTest(rayFromWorld, rayToWorld, rayCB);
|
||||
#else
|
||||
for (int i = 0; i < this->getNumCollisionObjects(); i++)
|
||||
{
|
||||
rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
|
||||
}
|
||||
#endif //USE_BRUTEFORCE_RAYBROADPHASE
|
||||
}
|
||||
|
||||
void rayTestSingle(const btTransform& rayFromTrans, const btTransform& rayToTrans,
|
||||
btCollisionObject* collisionObject,
|
||||
const btCollisionShape* collisionShape,
|
||||
const btTransform& colObjWorldTransform,
|
||||
RayResultCallback& resultCallback) const
|
||||
{
|
||||
if (collisionShape->isSoftBody())
|
||||
{
|
||||
btSoftBody* softBody = btSoftBody::upcast(collisionObject);
|
||||
if (softBody)
|
||||
{
|
||||
btSoftBody::sRayCast softResult;
|
||||
if (softBody->rayFaceTest(rayFromTrans.getOrigin(), rayToTrans.getOrigin(), softResult))
|
||||
{
|
||||
if (softResult.fraction <= resultCallback.m_closestHitFraction)
|
||||
{
|
||||
btCollisionWorld::LocalShapeInfo shapeInfo;
|
||||
shapeInfo.m_shapePart = 0;
|
||||
shapeInfo.m_triangleIndex = softResult.index;
|
||||
// get the normal
|
||||
btVector3 rayDir = rayToTrans.getOrigin() - rayFromTrans.getOrigin();
|
||||
btVector3 normal = -rayDir;
|
||||
normal.normalize();
|
||||
{
|
||||
normal = softBody->m_faces[softResult.index].m_normal;
|
||||
if (normal.dot(rayDir) > 0)
|
||||
{
|
||||
// normal always point toward origin of the ray
|
||||
normal = -normal;
|
||||
}
|
||||
}
|
||||
|
||||
btCollisionWorld::LocalRayResult rayResult(collisionObject,
|
||||
&shapeInfo,
|
||||
normal,
|
||||
softResult.fraction);
|
||||
bool normalInWorldSpace = true;
|
||||
resultCallback.addSingleResult(rayResult, normalInWorldSpace);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
btCollisionWorld::rayTestSingle(rayFromTrans, rayToTrans, collisionObject, collisionShape, colObjWorldTransform, resultCallback);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif //BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD_H
|
||||
|
|
|
@ -24,21 +24,65 @@ class btDeformableNeoHookeanForce : public btDeformableLagrangianForce
|
|||
{
|
||||
public:
|
||||
typedef btAlignedObjectArray<btVector3> TVStack;
|
||||
btScalar m_mu, m_lambda;
|
||||
btScalar m_mu, m_lambda; // Lame Parameters
|
||||
btScalar m_E, m_nu; // Young's modulus and Poisson ratio
|
||||
btScalar m_mu_damp, m_lambda_damp;
|
||||
btDeformableNeoHookeanForce(): m_mu(1), m_lambda(1)
|
||||
{
|
||||
btScalar damping = 0.05;
|
||||
m_mu_damp = damping * m_mu;
|
||||
m_lambda_damp = damping * m_lambda;
|
||||
updateYoungsModulusAndPoissonRatio();
|
||||
}
|
||||
|
||||
btDeformableNeoHookeanForce(btScalar mu, btScalar lambda, btScalar damping = 0.05): m_mu(mu), m_lambda(lambda)
|
||||
{
|
||||
m_mu_damp = damping * m_mu;
|
||||
m_lambda_damp = damping * m_lambda;
|
||||
updateYoungsModulusAndPoissonRatio();
|
||||
}
|
||||
|
||||
|
||||
void updateYoungsModulusAndPoissonRatio()
|
||||
{
|
||||
// conversion from Lame Parameters to Young's modulus and Poisson ratio
|
||||
// https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
|
||||
m_E = m_mu * (3*m_lambda + 2*m_mu)/(m_lambda + m_mu);
|
||||
m_nu = m_lambda * 0.5 / (m_mu + m_lambda);
|
||||
}
|
||||
|
||||
void updateLameParameters()
|
||||
{
|
||||
// conversion from Young's modulus and Poisson ratio to Lame Parameters
|
||||
// https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
|
||||
m_mu = m_E * 0.5 / (1 + m_nu);
|
||||
m_lambda = m_E * m_nu / ((1 + m_nu) * (1- 2*m_nu));
|
||||
}
|
||||
|
||||
void setYoungsModulus(btScalar E)
|
||||
{
|
||||
m_E = E;
|
||||
updateLameParameters();
|
||||
}
|
||||
|
||||
void setPoissonRatio(btScalar nu)
|
||||
{
|
||||
m_nu = nu;
|
||||
updateLameParameters();
|
||||
}
|
||||
|
||||
void setDamping(btScalar damping)
|
||||
{
|
||||
m_mu_damp = damping * m_mu;
|
||||
m_lambda_damp = damping * m_lambda;
|
||||
}
|
||||
|
||||
void setLameParameters(btScalar mu, btScalar lambda)
|
||||
{
|
||||
m_mu = mu;
|
||||
m_lambda = lambda;
|
||||
updateYoungsModulusAndPoissonRatio();
|
||||
}
|
||||
|
||||
virtual void addScaledForces(btScalar scale, TVStack& force)
|
||||
{
|
||||
addScaledDampingForce(scale, force);
|
||||
|
@ -269,6 +313,8 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA){}
|
||||
|
||||
virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
|
||||
{
|
||||
int numNodes = getNumNodes();
|
||||
|
|
|
@ -68,12 +68,221 @@ public:
|
|||
virtual void operator()(const TVStack& x, TVStack& b)
|
||||
{
|
||||
btAssert(b.size() == x.size());
|
||||
btAssert(m_inv_mass.size() == x.size());
|
||||
for (int i = 0; i < b.size(); ++i)
|
||||
btAssert(m_inv_mass.size() <= x.size());
|
||||
for (int i = 0; i < m_inv_mass.size(); ++i)
|
||||
{
|
||||
b[i] = x[i] * m_inv_mass[i];
|
||||
}
|
||||
for (int i = m_inv_mass.size(); i < b.size(); ++i)
|
||||
{
|
||||
b[i] = x[i];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class KKTPreconditioner : public Preconditioner
|
||||
{
|
||||
const btAlignedObjectArray<btSoftBody *>& m_softBodies;
|
||||
const btDeformableContactProjection& m_projections;
|
||||
const btAlignedObjectArray<btDeformableLagrangianForce*>& m_lf;
|
||||
TVStack m_inv_A, m_inv_S;
|
||||
const btScalar& m_dt;
|
||||
const bool& m_implicit;
|
||||
public:
|
||||
KKTPreconditioner(const btAlignedObjectArray<btSoftBody *>& softBodies, const btDeformableContactProjection& projections, const btAlignedObjectArray<btDeformableLagrangianForce*>& lf, const btScalar& dt, const bool& implicit)
|
||||
: m_softBodies(softBodies)
|
||||
, m_projections(projections)
|
||||
, m_lf(lf)
|
||||
, m_dt(dt)
|
||||
, m_implicit(implicit)
|
||||
{
|
||||
}
|
||||
|
||||
virtual void reinitialize(bool nodeUpdated)
|
||||
{
|
||||
if (nodeUpdated)
|
||||
{
|
||||
int num_nodes = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
num_nodes += psb->m_nodes.size();
|
||||
}
|
||||
m_inv_A.resize(num_nodes);
|
||||
}
|
||||
buildDiagonalA(m_inv_A);
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
// printf("A[%d] = %f, %f, %f \n", i, m_inv_A[i][0], m_inv_A[i][1], m_inv_A[i][2]);
|
||||
for (int d = 0; d < 3; ++d)
|
||||
{
|
||||
m_inv_A[i][d] = (m_inv_A[i][d] == 0) ? 0.0 : 1.0/ m_inv_A[i][d];
|
||||
}
|
||||
}
|
||||
m_inv_S.resize(m_projections.m_lagrangeMultipliers.size());
|
||||
// printf("S.size() = %d \n", m_inv_S.size());
|
||||
buildDiagonalS(m_inv_A, m_inv_S);
|
||||
for (int i = 0; i < m_inv_S.size(); ++i)
|
||||
{
|
||||
// printf("S[%d] = %f, %f, %f \n", i, m_inv_S[i][0], m_inv_S[i][1], m_inv_S[i][2]);
|
||||
for (int d = 0; d < 3; ++d)
|
||||
{
|
||||
m_inv_S[i][d] = (m_inv_S[i][d] == 0) ? 0.0 : 1.0/ m_inv_S[i][d];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void buildDiagonalA(TVStack& diagA) const
|
||||
{
|
||||
size_t counter = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
||||
{
|
||||
const btSoftBody::Node& node = psb->m_nodes[j];
|
||||
diagA[counter] = (node.m_im == 0) ? btVector3(0,0,0) : btVector3(1.0/node.m_im, 1.0 / node.m_im, 1.0 / node.m_im);
|
||||
++counter;
|
||||
}
|
||||
}
|
||||
if (m_implicit)
|
||||
{
|
||||
printf("implicit not implemented\n");
|
||||
btAssert(false);
|
||||
}
|
||||
for (int i = 0; i < m_lf.size(); ++i)
|
||||
{
|
||||
// add damping matrix
|
||||
m_lf[i]->buildDampingForceDifferentialDiagonal(-m_dt, diagA);
|
||||
}
|
||||
}
|
||||
|
||||
void buildDiagonalS(const TVStack& inv_A, TVStack& diagS)
|
||||
{
|
||||
for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
|
||||
{
|
||||
// S[k,k] = e_k^T * C A_d^-1 C^T * e_k
|
||||
const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
|
||||
btVector3& t = diagS[c];
|
||||
t.setZero();
|
||||
for (int j = 0; j < lm.m_num_constraints; ++j)
|
||||
{
|
||||
for (int i = 0; i < lm.m_num_nodes; ++i)
|
||||
{
|
||||
for (int d = 0; d < 3; ++d)
|
||||
{
|
||||
t[j] += inv_A[lm.m_indices[i]][d] * lm.m_dirs[j][d] * lm.m_dirs[j][d] * lm.m_weights[i] * lm.m_weights[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#define USE_FULL_PRECONDITIONER
|
||||
#ifndef USE_FULL_PRECONDITIONER
|
||||
virtual void operator()(const TVStack& x, TVStack& b)
|
||||
{
|
||||
btAssert(b.size() == x.size());
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
b[i] = x[i] * m_inv_A[i];
|
||||
}
|
||||
int offset = m_inv_A.size();
|
||||
for (int i = 0; i < m_inv_S.size(); ++i)
|
||||
{
|
||||
b[i+offset] = x[i+offset] * m_inv_S[i];
|
||||
}
|
||||
}
|
||||
#else
|
||||
virtual void operator()(const TVStack& x, TVStack& b)
|
||||
{
|
||||
btAssert(b.size() == x.size());
|
||||
int offset = m_inv_A.size();
|
||||
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
b[i] = x[i] * m_inv_A[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_inv_S.size(); ++i)
|
||||
{
|
||||
b[i+offset].setZero();
|
||||
}
|
||||
|
||||
for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
|
||||
{
|
||||
const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
|
||||
// C * x
|
||||
for (int d = 0; d < lm.m_num_constraints; ++d)
|
||||
{
|
||||
for (int i = 0; i < lm.m_num_nodes; ++i)
|
||||
{
|
||||
b[offset+c][d] += lm.m_weights[i] * b[lm.m_indices[i]].dot(lm.m_dirs[d]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_inv_S.size(); ++i)
|
||||
{
|
||||
b[i+offset] = b[i+offset] * m_inv_S[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
b[i].setZero();
|
||||
}
|
||||
|
||||
for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
|
||||
{
|
||||
// C^T * lambda
|
||||
const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
|
||||
for (int i = 0; i < lm.m_num_nodes; ++i)
|
||||
{
|
||||
for (int j = 0; j < lm.m_num_constraints; ++j)
|
||||
{
|
||||
b[lm.m_indices[i]] += b[offset+c][j] * lm.m_weights[i] * lm.m_dirs[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
b[i] = (x[i] - b[i]) * m_inv_A[i];
|
||||
}
|
||||
|
||||
TVStack t;
|
||||
t.resize(b.size());
|
||||
for (int i = 0; i < m_inv_S.size(); ++i)
|
||||
{
|
||||
t[i+offset] = x[i+offset] * m_inv_S[i];
|
||||
}
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
t[i].setZero();
|
||||
}
|
||||
for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
|
||||
{
|
||||
// C^T * lambda
|
||||
const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
|
||||
for (int i = 0; i < lm.m_num_nodes; ++i)
|
||||
{
|
||||
for (int j = 0; j < lm.m_num_constraints; ++j)
|
||||
{
|
||||
t[lm.m_indices[i]] += t[offset+c][j] * lm.m_weights[i] * lm.m_dirs[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < m_inv_A.size(); ++i)
|
||||
{
|
||||
b[i] += t[i] * m_inv_A[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_inv_S.size(); ++i)
|
||||
{
|
||||
b[i+offset] -= x[i+offset] * m_inv_S[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif /* BT_PRECONDITIONER_H */
|
||||
|
|
|
@ -18,12 +18,114 @@ subject to the following restrictions:
|
|||
#include "BulletSoftBody/btSoftBodySolvers.h"
|
||||
#include "btSoftBodyData.h"
|
||||
#include "LinearMath/btSerializer.h"
|
||||
#include "LinearMath/btImplicitQRSVD.h"
|
||||
#include "LinearMath/btAlignedAllocator.h"
|
||||
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
|
||||
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
|
||||
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
|
||||
#include <iostream>
|
||||
//
|
||||
static inline btDbvtNode* buildTreeBottomUp(btAlignedObjectArray<btDbvtNode*>& leafNodes, btAlignedObjectArray<btAlignedObjectArray<int> >& adj)
|
||||
{
|
||||
int N = leafNodes.size();
|
||||
if (N == 0)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
while (N > 1)
|
||||
{
|
||||
btAlignedObjectArray<bool> marked;
|
||||
btAlignedObjectArray<btDbvtNode*> newLeafNodes;
|
||||
btAlignedObjectArray<std::pair<int,int> > childIds;
|
||||
btAlignedObjectArray<btAlignedObjectArray<int> > newAdj;
|
||||
marked.resize(N);
|
||||
for (int i = 0; i < N; ++i)
|
||||
marked[i] = false;
|
||||
|
||||
// pair adjacent nodes into new(parent) node
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
if (marked[i])
|
||||
continue;
|
||||
bool merged = false;
|
||||
for (int j = 0; j < adj[i].size(); ++j)
|
||||
{
|
||||
int n = adj[i][j];
|
||||
if (!marked[adj[i][j]])
|
||||
{
|
||||
btDbvtNode* node = new (btAlignedAlloc(sizeof(btDbvtNode), 16)) btDbvtNode();
|
||||
node->parent = NULL;
|
||||
node->childs[0] = leafNodes[i];
|
||||
node->childs[1] = leafNodes[n];
|
||||
leafNodes[i]->parent = node;
|
||||
leafNodes[n]->parent = node;
|
||||
newLeafNodes.push_back(node);
|
||||
childIds.push_back(std::make_pair(i,n));
|
||||
merged = true;
|
||||
marked[n] = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!merged)
|
||||
{
|
||||
newLeafNodes.push_back(leafNodes[i]);
|
||||
childIds.push_back(std::make_pair(i,-1));
|
||||
}
|
||||
marked[i] = true;
|
||||
}
|
||||
// update adjacency matrix
|
||||
newAdj.resize(newLeafNodes.size());
|
||||
for (int i = 0; i < newLeafNodes.size(); ++i)
|
||||
{
|
||||
for (int j = i+1; j < newLeafNodes.size(); ++j)
|
||||
{
|
||||
bool neighbor = false;
|
||||
const btAlignedObjectArray<int>& leftChildNeighbors = adj[childIds[i].first];
|
||||
for (int k = 0; k < leftChildNeighbors.size(); ++k)
|
||||
{
|
||||
if (leftChildNeighbors[k] == childIds[j].first || leftChildNeighbors[k] == childIds[j].second)
|
||||
{
|
||||
neighbor = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!neighbor && childIds[i].second != -1)
|
||||
{
|
||||
const btAlignedObjectArray<int>& rightChildNeighbors = adj[childIds[i].second];
|
||||
for (int k = 0; k < rightChildNeighbors.size(); ++k)
|
||||
{
|
||||
if (rightChildNeighbors[k] == childIds[j].first || rightChildNeighbors[k] == childIds[j].second)
|
||||
{
|
||||
neighbor = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (neighbor)
|
||||
{
|
||||
newAdj[i].push_back(j);
|
||||
newAdj[j].push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
leafNodes = newLeafNodes;
|
||||
//this assignment leaks memory, the assignment doesn't do a deep copy, for now a manual copy
|
||||
//adj = newAdj;
|
||||
adj.clear();
|
||||
adj.resize(newAdj.size());
|
||||
for (int i = 0; i < newAdj.size(); i++)
|
||||
{
|
||||
for (int j = 0; j < newAdj[i].size(); j++)
|
||||
{
|
||||
adj[i].push_back(newAdj[i][j]);
|
||||
}
|
||||
}
|
||||
N = leafNodes.size();
|
||||
}
|
||||
return leafNodes[0];
|
||||
}
|
||||
|
||||
//
|
||||
btSoftBody::btSoftBody(btSoftBodyWorldInfo* worldInfo, int node_count, const btVector3* x, const btScalar* m)
|
||||
: m_softBodySolver(0), m_worldInfo(worldInfo)
|
||||
|
@ -41,6 +143,7 @@ btSoftBody::btSoftBody(btSoftBodyWorldInfo* worldInfo, int node_count, const btV
|
|||
/* Nodes */
|
||||
const btScalar margin = getCollisionShape()->getMargin();
|
||||
m_nodes.resize(node_count);
|
||||
m_X.resize(node_count);
|
||||
for (int i = 0, ni = node_count; i < ni; ++i)
|
||||
{
|
||||
Node& n = m_nodes[i];
|
||||
|
@ -51,8 +154,11 @@ btSoftBody::btSoftBody(btSoftBodyWorldInfo* worldInfo, int node_count, const btV
|
|||
n.m_im = n.m_im > 0 ? 1 / n.m_im : 0;
|
||||
n.m_leaf = m_ndbvt.insert(btDbvtVolume::FromCR(n.m_x, margin), &n);
|
||||
n.m_material = pm;
|
||||
m_X[i] = n.m_x;
|
||||
}
|
||||
updateBounds();
|
||||
setCollisionQuadrature(3);
|
||||
m_fdbvnt = 0;
|
||||
}
|
||||
|
||||
btSoftBody::btSoftBody(btSoftBodyWorldInfo* worldInfo)
|
||||
|
@ -111,15 +217,18 @@ void btSoftBody::initDefaults()
|
|||
m_collisionShape = new btSoftBodyCollisionShape(this);
|
||||
m_collisionShape->setMargin(0.25f);
|
||||
|
||||
m_initialWorldTransform.setIdentity();
|
||||
m_worldTransform.setIdentity();
|
||||
|
||||
m_windVelocity = btVector3(0, 0, 0);
|
||||
m_restLengthScale = btScalar(1.0);
|
||||
m_dampingCoefficient = 1;
|
||||
m_sleepingThreshold = 0.1;
|
||||
m_useFaceContact = true;
|
||||
m_dampingCoefficient = 1.0;
|
||||
m_sleepingThreshold = .4;
|
||||
m_useSelfCollision = false;
|
||||
m_collisionFlags = 0;
|
||||
m_collisionFlags = 0;
|
||||
m_softSoftCollision = false;
|
||||
m_maxSpeedSquared = 0;
|
||||
m_repulsionStiffness = 0.5;
|
||||
m_fdbvnt = 0;
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -134,6 +243,8 @@ btSoftBody::~btSoftBody()
|
|||
btAlignedFree(m_materials[i]);
|
||||
for (i = 0; i < m_joints.size(); ++i)
|
||||
btAlignedFree(m_joints[i]);
|
||||
if (m_fdbvnt)
|
||||
delete m_fdbvnt;
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -896,6 +1007,71 @@ void btSoftBody::setVolumeDensity(btScalar density)
|
|||
setVolumeMass(volume * density / 6);
|
||||
}
|
||||
|
||||
//
|
||||
btVector3 btSoftBody::getLinearVelocity()
|
||||
{
|
||||
btVector3 total_momentum = btVector3(0,0,0);
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
{
|
||||
btScalar mass = m_nodes[i].m_im == 0 ? 0 : 1.0/m_nodes[i].m_im;
|
||||
total_momentum += mass * m_nodes[i].m_v;
|
||||
}
|
||||
btScalar total_mass = getTotalMass();
|
||||
return total_mass == 0 ? total_momentum : total_momentum / total_mass;
|
||||
}
|
||||
|
||||
//
|
||||
void btSoftBody::setLinearVelocity(const btVector3& linVel)
|
||||
{
|
||||
btVector3 old_vel = getLinearVelocity();
|
||||
btVector3 diff = linVel - old_vel;
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
m_nodes[i].m_v += diff;
|
||||
}
|
||||
|
||||
//
|
||||
void btSoftBody::setAngularVelocity(const btVector3& angVel)
|
||||
{
|
||||
btVector3 old_vel = getLinearVelocity();
|
||||
btVector3 com = getCenterOfMass();
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
{
|
||||
m_nodes[i].m_v = angVel.cross(m_nodes[i].m_x - com) + old_vel;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
btTransform btSoftBody::getRigidTransform()
|
||||
{
|
||||
btVector3 t = getCenterOfMass();
|
||||
btMatrix3x3 S;
|
||||
S.setZero();
|
||||
// get rotation that minimizes L2 difference: \sum_i || RX_i + t - x_i ||
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
{
|
||||
S += OuterProduct(m_X[i], t-m_nodes[i].m_x);
|
||||
}
|
||||
btVector3 sigma;
|
||||
btMatrix3x3 U,V;
|
||||
singularValueDecomposition(S,U,sigma,V);
|
||||
btMatrix3x3 R = V * U.transpose();
|
||||
btTransform trs;
|
||||
trs.setIdentity();
|
||||
trs.setOrigin(t);
|
||||
trs.setBasis(R);
|
||||
return trs;
|
||||
}
|
||||
|
||||
//
|
||||
void btSoftBody::transformTo(const btTransform& trs)
|
||||
{
|
||||
// get the current best rigid fit
|
||||
btTransform current_transform = getRigidTransform();
|
||||
// apply transform in material space
|
||||
btTransform new_transform = trs * current_transform.inverse();
|
||||
transform(new_transform);
|
||||
}
|
||||
|
||||
//
|
||||
void btSoftBody::transform(const btTransform& trs)
|
||||
{
|
||||
|
@ -916,7 +1092,6 @@ void btSoftBody::transform(const btTransform& trs)
|
|||
updateNormals();
|
||||
updateBounds();
|
||||
updateConstants();
|
||||
m_initialWorldTransform = trs;
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -1834,6 +2009,25 @@ bool btSoftBody::rayTest(const btVector3& rayFrom,
|
|||
return (rayTest(rayFrom, rayTo, results.fraction, results.feature, results.index, false) != 0);
|
||||
}
|
||||
|
||||
bool btSoftBody::rayFaceTest(const btVector3& rayFrom,
|
||||
const btVector3& rayTo,
|
||||
sRayCast& results)
|
||||
{
|
||||
if (m_faces.size() == 0)
|
||||
return false;
|
||||
else
|
||||
{
|
||||
if (m_fdbvt.empty())
|
||||
initializeFaceTree();
|
||||
}
|
||||
|
||||
results.body = this;
|
||||
results.fraction = 1.f;
|
||||
results.index = -1;
|
||||
|
||||
return (rayFaceTest(rayFrom, rayTo, results.fraction, results.index) != 0);
|
||||
}
|
||||
|
||||
//
|
||||
void btSoftBody::setSolver(eSolverPresets::_ preset)
|
||||
{
|
||||
|
@ -2339,15 +2533,160 @@ int btSoftBody::rayTest(const btVector3& rayFrom, const btVector3& rayTo,
|
|||
return (cnt);
|
||||
}
|
||||
|
||||
int btSoftBody::rayFaceTest(const btVector3& rayFrom, const btVector3& rayTo,
|
||||
btScalar& mint, int& index) const
|
||||
{
|
||||
int cnt = 0;
|
||||
{ /* Use dbvt */
|
||||
RayFromToCaster collider(rayFrom, rayTo, mint);
|
||||
|
||||
btDbvt::rayTest(m_fdbvt.m_root, rayFrom, rayTo, collider);
|
||||
if (collider.m_face)
|
||||
{
|
||||
mint = collider.m_mint;
|
||||
index = (int)(collider.m_face - &m_faces[0]);
|
||||
cnt = 1;
|
||||
}
|
||||
}
|
||||
return (cnt);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
static inline btDbvntNode* copyToDbvnt(const btDbvtNode* n)
|
||||
{
|
||||
if (n == 0)
|
||||
return 0;
|
||||
btDbvntNode* root = new btDbvntNode(n);
|
||||
if (n->isinternal())
|
||||
{
|
||||
btDbvntNode* c0 = copyToDbvnt(n->childs[0]);
|
||||
root->childs[0] = c0;
|
||||
btDbvntNode* c1 = copyToDbvnt(n->childs[1]);
|
||||
root->childs[1] = c1;
|
||||
}
|
||||
return root;
|
||||
}
|
||||
|
||||
static inline void calculateNormalCone(btDbvntNode* root)
|
||||
{
|
||||
if (!root)
|
||||
return;
|
||||
if (root->isleaf())
|
||||
{
|
||||
const btSoftBody::Face* face = (btSoftBody::Face*)root->data;
|
||||
root->normal = face->m_normal;
|
||||
root->angle = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
btVector3 n0(0,0,0), n1(0,0,0);
|
||||
btScalar a0 = 0, a1 = 0;
|
||||
if (root->childs[0])
|
||||
{
|
||||
calculateNormalCone(root->childs[0]);
|
||||
n0 = root->childs[0]->normal;
|
||||
a0 = root->childs[0]->angle;
|
||||
}
|
||||
if (root->childs[1])
|
||||
{
|
||||
calculateNormalCone(root->childs[1]);
|
||||
n1 = root->childs[1]->normal;
|
||||
a1 = root->childs[1]->angle;
|
||||
}
|
||||
root->normal = (n0+n1).safeNormalize();
|
||||
root->angle = btMax(a0,a1) + btAngle(n0, n1)*0.5;
|
||||
}
|
||||
}
|
||||
|
||||
void btSoftBody::initializeFaceTree()
|
||||
{
|
||||
BT_PROFILE("btSoftBody::initializeFaceTree");
|
||||
m_fdbvt.clear();
|
||||
// create leaf nodes;
|
||||
btAlignedObjectArray<btDbvtNode*> leafNodes;
|
||||
leafNodes.resize(m_faces.size());
|
||||
for (int i = 0; i < m_faces.size(); ++i)
|
||||
{
|
||||
Face& f = m_faces[i];
|
||||
f.m_leaf = m_fdbvt.insert(VolumeOf(f, 0), &f);
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol = VolumeOf(f, 0);
|
||||
btDbvtNode* node = new (btAlignedAlloc(sizeof(btDbvtNode), 16)) btDbvtNode();
|
||||
node->parent = NULL;
|
||||
node->data = &f;
|
||||
node->childs[1] = 0;
|
||||
node->volume = vol;
|
||||
leafNodes[i] = node;
|
||||
f.m_leaf = node;
|
||||
}
|
||||
btAlignedObjectArray<btAlignedObjectArray<int> > adj;
|
||||
adj.resize(m_faces.size());
|
||||
// construct the adjacency list for triangles
|
||||
for (int i = 0; i < adj.size(); ++i)
|
||||
{
|
||||
for (int j = i+1; j < adj.size(); ++j)
|
||||
{
|
||||
int dup = 0;
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
for (int l = 0; l < 3; ++l)
|
||||
{
|
||||
if (m_faces[i].m_n[k] == m_faces[j].m_n[l])
|
||||
{
|
||||
++dup;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (dup == 2)
|
||||
{
|
||||
adj[i].push_back(j);
|
||||
adj[j].push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
m_fdbvt.m_root = buildTreeBottomUp(leafNodes, adj);
|
||||
if (m_fdbvnt)
|
||||
delete m_fdbvnt;
|
||||
m_fdbvnt = copyToDbvnt(m_fdbvt.m_root);
|
||||
updateFaceTree(false, false);
|
||||
rebuildNodeTree();
|
||||
}
|
||||
|
||||
//
|
||||
void btSoftBody::rebuildNodeTree()
|
||||
{
|
||||
m_ndbvt.clear();
|
||||
btAlignedObjectArray<btDbvtNode*> leafNodes;
|
||||
leafNodes.resize(m_nodes.size());
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
{
|
||||
Node& n = m_nodes[i];
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol = btDbvtVolume::FromCR(n.m_x, 0);
|
||||
btDbvtNode* node = new (btAlignedAlloc(sizeof(btDbvtNode), 16)) btDbvtNode();
|
||||
node->parent = NULL;
|
||||
node->data = &n;
|
||||
node->childs[1] = 0;
|
||||
node->volume = vol;
|
||||
leafNodes[i] = node;
|
||||
n.m_leaf = node;
|
||||
}
|
||||
btAlignedObjectArray<btAlignedObjectArray<int> > adj;
|
||||
adj.resize(m_nodes.size());
|
||||
btAlignedObjectArray<int> old_id;
|
||||
old_id.resize(m_nodes.size());
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
old_id[i] = m_nodes[i].index;
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
m_nodes[i].index = i;
|
||||
for (int i = 0; i < m_links.size(); ++i)
|
||||
{
|
||||
Link& l = m_links[i];
|
||||
adj[l.m_n[0]->index].push_back(l.m_n[1]->index);
|
||||
adj[l.m_n[1]->index].push_back(l.m_n[0]->index);
|
||||
}
|
||||
m_ndbvt.m_root = buildTreeBottomUp(leafNodes, adj);
|
||||
for (int i = 0; i < m_nodes.size(); ++i)
|
||||
m_nodes[i].index = old_id[i];
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -2403,10 +2742,9 @@ bool btSoftBody::checkDeformableContact(const btCollisionObjectWrapper* colObjWr
|
|||
const btCollisionObject* tmpCollisionObj = colObjWrap->getCollisionObject();
|
||||
// use the position x_{n+1}^* = x_n + dt * v_{n+1}^* where v_{n+1}^* = v_n + dtg for collision detect
|
||||
// but resolve contact at x_n
|
||||
// btTransform wtr = (predict) ?
|
||||
// (colObjWrap->m_preTransform != NULL ? tmpCollisionObj->getInterpolationWorldTransform()*(*colObjWrap->m_preTransform) : tmpCollisionObj->getInterpolationWorldTransform())
|
||||
// : colObjWrap->getWorldTransform();
|
||||
const btTransform& wtr = colObjWrap->getWorldTransform();
|
||||
btTransform wtr = (predict) ?
|
||||
(colObjWrap->m_preTransform != NULL ? tmpCollisionObj->getInterpolationWorldTransform()*(*colObjWrap->m_preTransform) : tmpCollisionObj->getInterpolationWorldTransform())
|
||||
: colObjWrap->getWorldTransform();
|
||||
btScalar dst =
|
||||
m_worldInfo->m_sparsesdf.Evaluate(
|
||||
wtr.invXform(x),
|
||||
|
@ -2457,7 +2795,6 @@ bool btSoftBody::checkDeformableFaceContact(const btCollisionObjectWrapper* colO
|
|||
btTransform wtr = (predict) ?
|
||||
(colObjWrap->m_preTransform != NULL ? tmpCollisionObj->getInterpolationWorldTransform()*(*colObjWrap->m_preTransform) : tmpCollisionObj->getInterpolationWorldTransform())
|
||||
: colObjWrap->getWorldTransform();
|
||||
// const btTransform& wtr = colObjWrap->getWorldTransform();
|
||||
btScalar dst;
|
||||
|
||||
//#define USE_QUADRATURE 1
|
||||
|
@ -2476,6 +2813,7 @@ bool btSoftBody::checkDeformableFaceContact(const btCollisionObjectWrapper* colO
|
|||
nrm,
|
||||
margin);
|
||||
nrm = wtr.getBasis() * nrm;
|
||||
cti.m_colObj = colObjWrap->getCollisionObject();
|
||||
// use cached contact point
|
||||
}
|
||||
else
|
||||
|
@ -2492,10 +2830,11 @@ bool btSoftBody::checkDeformableFaceContact(const btCollisionObjectWrapper* colO
|
|||
contact_point = results.witnesses[0];
|
||||
getBarycentric(contact_point, f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, bary);
|
||||
nrm = results.normal;
|
||||
cti.m_colObj = colObjWrap->getCollisionObject();
|
||||
for (int i = 0; i < 3; ++i)
|
||||
f.m_pcontact[i] = bary[i];
|
||||
}
|
||||
|
||||
return (dst < 0);
|
||||
#endif
|
||||
|
||||
// use collision quadrature point
|
||||
|
@ -2505,7 +2844,11 @@ bool btSoftBody::checkDeformableFaceContact(const btCollisionObjectWrapper* colO
|
|||
btVector3 local_nrm;
|
||||
for (int q = 0; q < m_quads.size(); ++q)
|
||||
{
|
||||
btVector3 p = BaryEval(f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, m_quads[q]);
|
||||
btVector3 p;
|
||||
if (predict)
|
||||
p = BaryEval(f.m_n[0]->m_q, f.m_n[1]->m_q, f.m_n[2]->m_q, m_quads[q]);
|
||||
else
|
||||
p = BaryEval(f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, m_quads[q]);
|
||||
btScalar local_dst = m_worldInfo->m_sparsesdf.Evaluate(
|
||||
wtr.invXform(p),
|
||||
shp,
|
||||
|
@ -2513,43 +2856,83 @@ bool btSoftBody::checkDeformableFaceContact(const btCollisionObjectWrapper* colO
|
|||
margin);
|
||||
if (local_dst < dst)
|
||||
{
|
||||
if (local_dst < 0 && predict)
|
||||
return true;
|
||||
dst = local_dst;
|
||||
contact_point = p;
|
||||
bary = m_quads[q];
|
||||
nrm = wtr.getBasis() * local_nrm;
|
||||
nrm = local_nrm;
|
||||
}
|
||||
if (!predict)
|
||||
{
|
||||
cti.m_colObj = colObjWrap->getCollisionObject();
|
||||
cti.m_normal = wtr.getBasis() * nrm;
|
||||
cti.m_offset = dst;
|
||||
}
|
||||
}
|
||||
return (dst < 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
// // regular face contact
|
||||
// {
|
||||
// btGjkEpaSolver2::sResults results;
|
||||
// btTransform triangle_transform;
|
||||
// triangle_transform.setIdentity();
|
||||
// triangle_transform.setOrigin(f.m_n[0]->m_x);
|
||||
// btTriangleShape triangle(btVector3(0,0,0), f.m_n[1]->m_x-f.m_n[0]->m_x, f.m_n[2]->m_x-f.m_n[0]->m_x);
|
||||
// btVector3 guess(0,0,0);
|
||||
// if (predict)
|
||||
// {
|
||||
// triangle_transform.setOrigin(f.m_n[0]->m_q);
|
||||
// triangle = btTriangleShape(btVector3(0,0,0), f.m_n[1]->m_q-f.m_n[0]->m_q, f.m_n[2]->m_q-f.m_n[0]->m_q);
|
||||
// }
|
||||
// const btConvexShape* csh = static_cast<const btConvexShape*>(shp);
|
||||
//// btGjkEpaSolver2::SignedDistance(&triangle, triangle_transform, csh, wtr, guess, results);
|
||||
//// dst = results.distance - margin;
|
||||
//// contact_point = results.witnesses[0];
|
||||
// btGjkEpaSolver2::Penetration(&triangle, triangle_transform, csh, wtr, guess, results);
|
||||
// if (results.status == btGjkEpaSolver2::sResults::Separated)
|
||||
// return false;
|
||||
// dst = results.distance - margin;
|
||||
// contact_point = results.witnesses[1];
|
||||
// getBarycentric(contact_point, f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, bary);
|
||||
// nrm = results.normal;
|
||||
// for (int i = 0; i < 3; ++i)
|
||||
// f.m_pcontact[i] = bary[i];
|
||||
// }
|
||||
//
|
||||
// if (!predict)
|
||||
// {
|
||||
// cti.m_colObj = colObjWrap->getCollisionObject();
|
||||
// cti.m_normal = nrm;
|
||||
// cti.m_offset = dst;
|
||||
// }
|
||||
//
|
||||
|
||||
// regular face contact
|
||||
{
|
||||
btGjkEpaSolver2::sResults results;
|
||||
btTransform triangle_transform;
|
||||
triangle_transform.setIdentity();
|
||||
triangle_transform.setOrigin(f.m_n[0]->m_x);
|
||||
btTriangleShape triangle(btVector3(0,0,0), f.m_n[1]->m_x-f.m_n[0]->m_x, f.m_n[2]->m_x-f.m_n[0]->m_x);
|
||||
triangle_transform.setOrigin(f.m_n[0]->m_q);
|
||||
btTriangleShape triangle(btVector3(0,0,0), f.m_n[1]->m_q-f.m_n[0]->m_q, f.m_n[2]->m_q-f.m_n[0]->m_q);
|
||||
btVector3 guess(0,0,0);
|
||||
const btConvexShape* csh = static_cast<const btConvexShape*>(shp);
|
||||
btGjkEpaSolver2::SignedDistance(&triangle, triangle_transform, csh, wtr, guess, results);
|
||||
dst = results.distance - margin;
|
||||
dst = results.distance-csh->getMargin();
|
||||
dst -= margin;
|
||||
if (dst >= 0)
|
||||
return false;
|
||||
contact_point = results.witnesses[0];
|
||||
getBarycentric(contact_point, f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, bary);
|
||||
getBarycentric(contact_point, f.m_n[0]->m_q, f.m_n[1]->m_q, f.m_n[2]->m_q, bary);
|
||||
btVector3 curr = BaryEval(f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, bary);
|
||||
nrm = results.normal;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
f.m_pcontact[i] = bary[i];
|
||||
}
|
||||
|
||||
if (!predict)
|
||||
{
|
||||
cti.m_colObj = colObjWrap->getCollisionObject();
|
||||
cti.m_normal = nrm;
|
||||
cti.m_offset = dst;
|
||||
cti.m_offset = dst + (curr - contact_point).dot(nrm);
|
||||
}
|
||||
|
||||
if (dst < 0)
|
||||
return true;
|
||||
return (false);
|
||||
return (dst < 0);
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -3075,6 +3458,7 @@ void btSoftBody::setSpringStiffness(btScalar k)
|
|||
{
|
||||
m_links[i].Feature::m_material->m_kLST = k;
|
||||
}
|
||||
m_repulsionStiffness = k;
|
||||
}
|
||||
|
||||
void btSoftBody::initializeDmInverse()
|
||||
|
@ -3372,18 +3756,39 @@ void btSoftBody::setMaxStress(btScalar maxStress)
|
|||
//
|
||||
void btSoftBody::interpolateRenderMesh()
|
||||
{
|
||||
for (int i = 0; i < m_renderNodes.size(); ++i)
|
||||
{
|
||||
Node& n = m_renderNodes[i];
|
||||
n.m_x.setZero();
|
||||
for (int j = 0; j < 4; ++j)
|
||||
{
|
||||
if (m_renderNodesParents[i].size())
|
||||
if (m_z.size() > 0)
|
||||
{
|
||||
for (int i = 0; i < m_renderNodes.size(); ++i)
|
||||
{
|
||||
const Node* p0 = m_renderNodesParents[i][0];
|
||||
const Node* p1 = m_renderNodesParents[i][1];
|
||||
const Node* p2 = m_renderNodesParents[i][2];
|
||||
btVector3 normal = btCross(p1->m_x - p0->m_x, p2->m_x - p0->m_x);
|
||||
btVector3 unit_normal = normal.normalized();
|
||||
Node& n = m_renderNodes[i];
|
||||
n.m_x.setZero();
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
n.m_x += m_renderNodesParents[i][j]->m_x * m_renderNodesInterpolationWeights[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
n.m_x += m_z[i] * unit_normal;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < m_renderNodes.size(); ++i)
|
||||
{
|
||||
Node& n = m_renderNodes[i];
|
||||
n.m_x.setZero();
|
||||
for (int j = 0; j < 4; ++j)
|
||||
{
|
||||
if (m_renderNodesParents[i].size())
|
||||
{
|
||||
n.m_x += m_renderNodesParents[i][j]->m_x * m_renderNodesInterpolationWeights[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btSoftBody::setCollisionQuadrature(int N)
|
||||
|
@ -3649,13 +4054,10 @@ void btSoftBody::defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap
|
|||
break;
|
||||
case fCollision::SDF_RD:
|
||||
{
|
||||
|
||||
btRigidBody* prb1 = (btRigidBody*)btRigidBody::upcast(pcoWrap->getCollisionObject());
|
||||
if (pcoWrap->getCollisionObject()->isActive() || this->isActive())
|
||||
{
|
||||
const btTransform wtr = pcoWrap->getWorldTransform();
|
||||
// const btTransform ctr = pcoWrap->getWorldTransform();
|
||||
// const btScalar timemargin = (wtr.getOrigin() - ctr.getOrigin()).length();
|
||||
const btScalar timemargin = 0;
|
||||
const btScalar basemargin = getCollisionShape()->getMargin();
|
||||
btVector3 mins;
|
||||
|
@ -3667,22 +4069,25 @@ void btSoftBody::defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap
|
|||
maxs);
|
||||
volume = btDbvtVolume::FromMM(mins, maxs);
|
||||
volume.Expand(btVector3(basemargin, basemargin, basemargin));
|
||||
btSoftColliders::CollideSDF_RD docollideNode;
|
||||
docollideNode.psb = this;
|
||||
docollideNode.m_colObj1Wrap = pcoWrap;
|
||||
docollideNode.m_rigidBody = prb1;
|
||||
docollideNode.dynmargin = basemargin + timemargin;
|
||||
docollideNode.stamargin = basemargin;
|
||||
m_ndbvt.collideTV(m_ndbvt.m_root, volume, docollideNode);
|
||||
|
||||
if (this->m_useFaceContact)
|
||||
if (m_cfg.collisions & fCollision::SDF_RDN)
|
||||
{
|
||||
btSoftColliders::CollideSDF_RD docollideNode;
|
||||
docollideNode.psb = this;
|
||||
docollideNode.m_colObj1Wrap = pcoWrap;
|
||||
docollideNode.m_rigidBody = prb1;
|
||||
docollideNode.dynmargin = basemargin + timemargin;
|
||||
docollideNode.stamargin = basemargin;
|
||||
m_ndbvt.collideTV(m_ndbvt.m_root, volume, docollideNode);
|
||||
}
|
||||
|
||||
if (((pcoWrap->getCollisionObject()->getInternalType() == CO_RIGID_BODY) && (m_cfg.collisions & fCollision::SDF_RDF)) || ((pcoWrap->getCollisionObject()->getInternalType() == CO_FEATHERSTONE_LINK) && (m_cfg.collisions & fCollision::SDF_MDF)))
|
||||
{
|
||||
btSoftColliders::CollideSDF_RDF docollideFace;
|
||||
docollideFace.psb = this;
|
||||
docollideFace.m_colObj1Wrap = pcoWrap;
|
||||
docollideFace.m_rigidBody = prb1;
|
||||
docollideFace.dynmargin = basemargin + timemargin;
|
||||
docollideFace.stamargin = basemargin;
|
||||
docollideFace.dynmargin = basemargin + timemargin;
|
||||
docollideFace.stamargin = basemargin;
|
||||
m_fdbvt.collideTV(m_fdbvt.m_root, volume, docollideFace);
|
||||
}
|
||||
}
|
||||
|
@ -3691,51 +4096,6 @@ void btSoftBody::defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap
|
|||
}
|
||||
}
|
||||
|
||||
static inline btDbvntNode* copyToDbvnt(const btDbvtNode* n)
|
||||
{
|
||||
if (n == 0)
|
||||
return 0;
|
||||
btDbvntNode* root = new btDbvntNode(n);
|
||||
if (n->isinternal())
|
||||
{
|
||||
btDbvntNode* c0 = copyToDbvnt(n->childs[0]);
|
||||
root->childs[0] = c0;
|
||||
btDbvntNode* c1 = copyToDbvnt(n->childs[1]);
|
||||
root->childs[1] = c1;
|
||||
}
|
||||
return root;
|
||||
}
|
||||
|
||||
static inline void calculateNormalCone(btDbvntNode* root)
|
||||
{
|
||||
if (!root)
|
||||
return;
|
||||
if (root->isleaf())
|
||||
{
|
||||
const btSoftBody::Face* face = (btSoftBody::Face*)root->data;
|
||||
root->normal = face->m_normal;
|
||||
root->angle = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
btVector3 n0(0,0,0), n1(0,0,0);
|
||||
btScalar a0 = 0, a1 = 0;
|
||||
if (root->childs[0])
|
||||
{
|
||||
calculateNormalCone(root->childs[0]);
|
||||
n0 = root->childs[0]->normal;
|
||||
a0 = root->childs[0]->angle;
|
||||
}
|
||||
if (root->childs[1])
|
||||
{
|
||||
calculateNormalCone(root->childs[1]);
|
||||
n1 = root->childs[1]->normal;
|
||||
a1 = root->childs[1]->angle;
|
||||
}
|
||||
root->normal = (n0+n1).safeNormalize();
|
||||
root->angle = btMax(a0,a1) + btAngle(n0, n1)*0.5;
|
||||
}
|
||||
}
|
||||
//
|
||||
void btSoftBody::defaultCollisionHandler(btSoftBody* psb)
|
||||
{
|
||||
|
@ -3779,6 +4139,8 @@ void btSoftBody::defaultCollisionHandler(btSoftBody* psb)
|
|||
break;
|
||||
case fCollision::VF_DD:
|
||||
{
|
||||
if (!psb->m_softSoftCollision)
|
||||
return;
|
||||
if (psb->isActive() || this->isActive())
|
||||
{
|
||||
if (this != psb)
|
||||
|
@ -3797,6 +4159,7 @@ void btSoftBody::defaultCollisionHandler(btSoftBody* psb)
|
|||
docollide.psb[0]->m_ndbvt.collideTT(docollide.psb[0]->m_ndbvt.m_root,
|
||||
docollide.psb[1]->m_fdbvt.m_root,
|
||||
docollide);
|
||||
|
||||
/* psb1 nodes vs psb0 faces */
|
||||
if (this->m_tetras.size() > 0)
|
||||
docollide.useFaceNormal = true;
|
||||
|
@ -3812,20 +4175,17 @@ void btSoftBody::defaultCollisionHandler(btSoftBody* psb)
|
|||
{
|
||||
if (psb->useSelfCollision())
|
||||
{
|
||||
btSoftColliders::CollideFF_DD docollide;
|
||||
docollide.mrg = getCollisionShape()->getMargin() +
|
||||
psb->getCollisionShape()->getMargin();
|
||||
docollide.psb[0] = this;
|
||||
docollide.psb[1] = psb;
|
||||
if (this->m_tetras.size() > 0)
|
||||
docollide.useFaceNormal = true;
|
||||
else
|
||||
docollide.useFaceNormal = false;
|
||||
/* psb0 faces vs psb0 faces */
|
||||
btDbvntNode* root = copyToDbvnt(this->m_fdbvt.m_root);
|
||||
calculateNormalCone(root);
|
||||
this->m_fdbvt.selfCollideT(root,docollide);
|
||||
delete root;
|
||||
btSoftColliders::CollideFF_DD docollide;
|
||||
docollide.mrg = 2*getCollisionShape()->getMargin();
|
||||
docollide.psb[0] = this;
|
||||
docollide.psb[1] = psb;
|
||||
if (this->m_tetras.size() > 0)
|
||||
docollide.useFaceNormal = true;
|
||||
else
|
||||
docollide.useFaceNormal = false;
|
||||
/* psb0 faces vs psb0 faces */
|
||||
calculateNormalCone(this->m_fdbvnt);
|
||||
this->m_fdbvt.selfCollideT(m_fdbvnt,docollide);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -3837,6 +4197,58 @@ void btSoftBody::defaultCollisionHandler(btSoftBody* psb)
|
|||
}
|
||||
}
|
||||
|
||||
void btSoftBody::geometricCollisionHandler(btSoftBody* psb)
|
||||
{
|
||||
if (psb->isActive() || this->isActive())
|
||||
{
|
||||
if (this != psb)
|
||||
{
|
||||
btSoftColliders::CollideCCD docollide;
|
||||
/* common */
|
||||
docollide.mrg = SAFE_EPSILON; // for rounding error instead of actual margin
|
||||
docollide.dt = psb->m_sst.sdt;
|
||||
/* psb0 nodes vs psb1 faces */
|
||||
if (psb->m_tetras.size() > 0)
|
||||
docollide.useFaceNormal = true;
|
||||
else
|
||||
docollide.useFaceNormal = false;
|
||||
docollide.psb[0] = this;
|
||||
docollide.psb[1] = psb;
|
||||
docollide.psb[0]->m_ndbvt.collideTT(docollide.psb[0]->m_ndbvt.m_root,
|
||||
docollide.psb[1]->m_fdbvt.m_root,
|
||||
docollide);
|
||||
/* psb1 nodes vs psb0 faces */
|
||||
if (this->m_tetras.size() > 0)
|
||||
docollide.useFaceNormal = true;
|
||||
else
|
||||
docollide.useFaceNormal = false;
|
||||
docollide.psb[0] = psb;
|
||||
docollide.psb[1] = this;
|
||||
docollide.psb[0]->m_ndbvt.collideTT(docollide.psb[0]->m_ndbvt.m_root,
|
||||
docollide.psb[1]->m_fdbvt.m_root,
|
||||
docollide);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (psb->useSelfCollision())
|
||||
{
|
||||
btSoftColliders::CollideCCD docollide;
|
||||
docollide.mrg = SAFE_EPSILON;
|
||||
docollide.psb[0] = this;
|
||||
docollide.psb[1] = psb;
|
||||
docollide.dt = psb->m_sst.sdt;
|
||||
if (this->m_tetras.size() > 0)
|
||||
docollide.useFaceNormal = true;
|
||||
else
|
||||
docollide.useFaceNormal = false;
|
||||
/* psb0 faces vs psb0 faces */
|
||||
calculateNormalCone(this->m_fdbvnt); // should compute this outside of this scope
|
||||
this->m_fdbvt.selfCollideT(m_fdbvnt,docollide);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btSoftBody::setWindVelocity(const btVector3& velocity)
|
||||
{
|
||||
m_windVelocity = velocity;
|
||||
|
|
|
@ -35,6 +35,8 @@ subject to the following restrictions:
|
|||
//#else
|
||||
#define btSoftBodyData btSoftBodyFloatData
|
||||
#define btSoftBodyDataName "btSoftBodyFloatData"
|
||||
static const btScalar OVERLAP_REDUCTION_FACTOR = 0.1;
|
||||
static unsigned long seed = 243703;
|
||||
//#endif //BT_USE_DOUBLE_PRECISION
|
||||
|
||||
class btBroadphaseInterface;
|
||||
|
@ -161,14 +163,18 @@ public:
|
|||
RVSmask = 0x000f, ///Rigid versus soft mask
|
||||
SDF_RS = 0x0001, ///SDF based rigid vs soft
|
||||
CL_RS = 0x0002, ///Cluster vs convex rigid vs soft
|
||||
SDF_RD = 0x0003, ///DF based rigid vs deformable
|
||||
SDF_RDF = 0x0004, ///DF based rigid vs deformable faces
|
||||
SDF_RD = 0x0004, ///rigid vs deformable
|
||||
|
||||
SVSmask = 0x00F0, ///Rigid versus soft mask
|
||||
SVSmask = 0x00f0, ///Rigid versus soft mask
|
||||
VF_SS = 0x0010, ///Vertex vs face soft vs soft handling
|
||||
CL_SS = 0x0020, ///Cluster vs cluster soft vs soft handling
|
||||
CL_SELF = 0x0040, ///Cluster soft body self collision
|
||||
VF_DD = 0x0050, ///Vertex vs face soft vs soft handling
|
||||
VF_DD = 0x0080, ///Vertex vs face soft vs soft handling
|
||||
|
||||
RVDFmask = 0x0f00, /// Rigid versus deformable face mask
|
||||
SDF_RDF = 0x0100, /// GJK based Rigid vs. deformable face
|
||||
SDF_MDF = 0x0200, /// GJK based Multibody vs. deformable face
|
||||
SDF_RDN = 0x0400, /// SDF based Rigid vs. deformable node
|
||||
/* presets */
|
||||
Default = SDF_RS,
|
||||
END
|
||||
|
@ -257,13 +263,13 @@ public:
|
|||
btVector3 m_x; // Position
|
||||
btVector3 m_q; // Previous step position/Test position
|
||||
btVector3 m_v; // Velocity
|
||||
btVector3 m_vsplit; // Temporary Velocity in addintion to velocity used in split impulse
|
||||
btVector3 m_vn; // Previous step velocity
|
||||
btVector3 m_f; // Force accumulator
|
||||
btVector3 m_n; // Normal
|
||||
btScalar m_im; // 1/mass
|
||||
btScalar m_area; // Area
|
||||
btDbvtNode* m_leaf; // Leaf data
|
||||
btScalar m_penetration; // depth of penetration
|
||||
int m_battach : 1; // Attached
|
||||
int index;
|
||||
};
|
||||
|
@ -289,6 +295,7 @@ public:
|
|||
btScalar m_ra; // Rest area
|
||||
btDbvtNode* m_leaf; // Leaf data
|
||||
btVector4 m_pcontact; // barycentric weights of the persistent contact
|
||||
btVector3 m_n0, m_n1, m_vn;
|
||||
int m_index;
|
||||
};
|
||||
/* Tetra */
|
||||
|
@ -717,6 +724,15 @@ public:
|
|||
/* SolverState */
|
||||
struct SolverState
|
||||
{
|
||||
//if you add new variables, always initialize them!
|
||||
SolverState()
|
||||
:sdt(0),
|
||||
isdt(0),
|
||||
velmrg(0),
|
||||
radmrg(0),
|
||||
updmrg(0)
|
||||
{
|
||||
}
|
||||
btScalar sdt; // dt*timescale
|
||||
btScalar isdt; // 1/sdt
|
||||
btScalar velmrg; // velocity margin
|
||||
|
@ -796,22 +812,24 @@ public:
|
|||
bool m_bUpdateRtCst; // Update runtime constants
|
||||
btDbvt m_ndbvt; // Nodes tree
|
||||
btDbvt m_fdbvt; // Faces tree
|
||||
btDbvntNode* m_fdbvnt; // Faces tree with normals
|
||||
btDbvt m_cdbvt; // Clusters tree
|
||||
tClusterArray m_clusters; // Clusters
|
||||
btScalar m_dampingCoefficient; // Damping Coefficient
|
||||
btScalar m_sleepingThreshold;
|
||||
btScalar m_maxSpeedSquared;
|
||||
bool m_useFaceContact;
|
||||
btAlignedObjectArray<btVector3> m_quads; // quadrature points for collision detection
|
||||
|
||||
btAlignedObjectArray<btVector4> m_renderNodesInterpolationWeights;
|
||||
btAlignedObjectArray<btAlignedObjectArray<const btSoftBody::Node*> > m_renderNodesParents;
|
||||
bool m_useSelfCollision;
|
||||
btScalar m_dampingCoefficient; // Damping Coefficient
|
||||
btScalar m_sleepingThreshold;
|
||||
btScalar m_maxSpeedSquared;
|
||||
btAlignedObjectArray<btVector3> m_quads; // quadrature points for collision detection
|
||||
btScalar m_repulsionStiffness;
|
||||
btAlignedObjectArray<btVector3> m_X; // initial positions
|
||||
|
||||
btAlignedObjectArray<btVector4> m_renderNodesInterpolationWeights;
|
||||
btAlignedObjectArray<btAlignedObjectArray<const btSoftBody::Node*> > m_renderNodesParents;
|
||||
btAlignedObjectArray<btScalar> m_z; // vertical distance used in extrapolation
|
||||
bool m_useSelfCollision;
|
||||
bool m_softSoftCollision;
|
||||
|
||||
btAlignedObjectArray<bool> m_clusterConnectivity; //cluster connectivity, for self-collision
|
||||
|
||||
btTransform m_initialWorldTransform;
|
||||
|
||||
btVector3 m_windVelocity;
|
||||
|
||||
btScalar m_restLengthScale;
|
||||
|
@ -843,11 +861,6 @@ public:
|
|||
{
|
||||
m_dampingCoefficient = damping_coeff;
|
||||
}
|
||||
|
||||
void setUseFaceContact(bool useFaceContact)
|
||||
{
|
||||
m_useFaceContact = false;
|
||||
}
|
||||
|
||||
///@todo: avoid internal softbody shape hack and move collision code to collision library
|
||||
virtual void setCollisionShape(btCollisionShape* collisionShape)
|
||||
|
@ -957,6 +970,16 @@ public:
|
|||
void setVolumeMass(btScalar mass);
|
||||
/* Set volume density (using tetrahedrons) */
|
||||
void setVolumeDensity(btScalar density);
|
||||
/* Get the linear velocity of the center of mass */
|
||||
btVector3 getLinearVelocity();
|
||||
/* Set the linear velocity of the center of mass */
|
||||
void setLinearVelocity(const btVector3& linVel);
|
||||
/* Set the angular velocity of the center of mass */
|
||||
void setAngularVelocity(const btVector3& angVel);
|
||||
/* Get best fit rigid transform */
|
||||
btTransform getRigidTransform();
|
||||
/* Transform to given pose */
|
||||
void transformTo(const btTransform& trs);
|
||||
/* Transform */
|
||||
void transform(const btTransform& trs);
|
||||
/* Translate */
|
||||
|
@ -1023,6 +1046,11 @@ public:
|
|||
bool rayTest(const btVector3& rayFrom,
|
||||
const btVector3& rayTo,
|
||||
sRayCast& results);
|
||||
bool rayFaceTest(const btVector3& rayFrom,
|
||||
const btVector3& rayTo,
|
||||
sRayCast& results);
|
||||
int rayFaceTest(const btVector3& rayFrom, const btVector3& rayTo,
|
||||
btScalar& mint, int& index) const;
|
||||
/* Solver presets */
|
||||
void setSolver(eSolverPresets::_ preset);
|
||||
/* predictMotion */
|
||||
|
@ -1120,6 +1148,7 @@ public:
|
|||
int rayTest(const btVector3& rayFrom, const btVector3& rayTo,
|
||||
btScalar& mint, eFeature::_& feature, int& index, bool bcountonly) const;
|
||||
void initializeFaceTree();
|
||||
void rebuildNodeTree();
|
||||
btVector3 evaluateCom() const;
|
||||
bool checkDeformableContact(const btCollisionObjectWrapper* colObjWrap, const btVector3& x, btScalar margin, btSoftBody::sCti& cti, bool predict = false) const;
|
||||
bool checkDeformableFaceContact(const btCollisionObjectWrapper* colObjWrap, Face& f, btVector3& contact_point, btVector3& bary, btScalar margin, btSoftBody::sCti& cti, bool predict = false) const;
|
||||
|
@ -1152,7 +1181,180 @@ public:
|
|||
static void VSolve_Links(btSoftBody* psb, btScalar kst);
|
||||
static psolver_t getSolver(ePSolver::_ solver);
|
||||
static vsolver_t getSolver(eVSolver::_ solver);
|
||||
void geometricCollisionHandler(btSoftBody* psb);
|
||||
#define SAFE_EPSILON SIMD_EPSILON*100.0
|
||||
void updateNode(btDbvtNode* node, bool use_velocity, bool margin)
|
||||
{
|
||||
if (node->isleaf())
|
||||
{
|
||||
btSoftBody::Node* n = (btSoftBody::Node*)(node->data);
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
|
||||
btScalar pad = margin ? m_sst.radmrg : SAFE_EPSILON; // use user defined margin or margin for floating point precision
|
||||
if (use_velocity)
|
||||
{
|
||||
btVector3 points[2] = {n->m_x, n->m_x + m_sst.sdt * n->m_v};
|
||||
vol = btDbvtVolume::FromPoints(points, 2);
|
||||
vol.Expand(btVector3(pad, pad, pad));
|
||||
}
|
||||
else
|
||||
{
|
||||
vol = btDbvtVolume::FromCR(n->m_x, pad);
|
||||
}
|
||||
node->volume = vol;
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
updateNode(node->childs[0], use_velocity, margin);
|
||||
updateNode(node->childs[1], use_velocity, margin);
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
|
||||
Merge(node->childs[0]->volume, node->childs[1]->volume, vol);
|
||||
node->volume = vol;
|
||||
}
|
||||
}
|
||||
|
||||
void updateNodeTree(bool use_velocity, bool margin)
|
||||
{
|
||||
if (m_ndbvt.m_root)
|
||||
updateNode(m_ndbvt.m_root, use_velocity, margin);
|
||||
}
|
||||
|
||||
template <class DBVTNODE> // btDbvtNode or btDbvntNode
|
||||
void updateFace(DBVTNODE* node, bool use_velocity, bool margin)
|
||||
{
|
||||
if (node->isleaf())
|
||||
{
|
||||
btSoftBody::Face* f = (btSoftBody::Face*)(node->data);
|
||||
btScalar pad = margin ? m_sst.radmrg : SAFE_EPSILON; // use user defined margin or margin for floating point precision
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
|
||||
if (use_velocity)
|
||||
{
|
||||
btVector3 points[6] = {f->m_n[0]->m_x, f->m_n[0]->m_x + m_sst.sdt * f->m_n[0]->m_v,
|
||||
f->m_n[1]->m_x, f->m_n[1]->m_x + m_sst.sdt * f->m_n[1]->m_v,
|
||||
f->m_n[2]->m_x, f->m_n[2]->m_x + m_sst.sdt * f->m_n[2]->m_v};
|
||||
vol = btDbvtVolume::FromPoints(points, 6);
|
||||
}
|
||||
else
|
||||
{
|
||||
btVector3 points[3] = {f->m_n[0]->m_x,
|
||||
f->m_n[1]->m_x,
|
||||
f->m_n[2]->m_x};
|
||||
vol = btDbvtVolume::FromPoints(points, 3);
|
||||
}
|
||||
vol.Expand(btVector3(pad, pad, pad));
|
||||
node->volume = vol;
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
updateFace(node->childs[0], use_velocity, margin);
|
||||
updateFace(node->childs[1], use_velocity, margin);
|
||||
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
|
||||
Merge(node->childs[0]->volume, node->childs[1]->volume, vol);
|
||||
node->volume = vol;
|
||||
}
|
||||
}
|
||||
void updateFaceTree(bool use_velocity, bool margin)
|
||||
{
|
||||
if (m_fdbvt.m_root)
|
||||
updateFace(m_fdbvt.m_root, use_velocity, margin);
|
||||
if (m_fdbvnt)
|
||||
updateFace(m_fdbvnt, use_velocity, margin);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline T BaryEval(const T& a,
|
||||
const T& b,
|
||||
const T& c,
|
||||
const btVector3& coord)
|
||||
{
|
||||
return (a * coord.x() + b * coord.y() + c * coord.z());
|
||||
}
|
||||
|
||||
void applyRepulsionForce(btScalar timeStep, bool applySpringForce)
|
||||
{
|
||||
btAlignedObjectArray<int> indices;
|
||||
{
|
||||
// randomize the order of repulsive force
|
||||
indices.resize(m_faceNodeContacts.size());
|
||||
for (int i = 0; i < m_faceNodeContacts.size(); ++i)
|
||||
indices[i] = i;
|
||||
#define NEXTRAND (seed = (1664525L * seed + 1013904223L) & 0xffffffff)
|
||||
int i, ni;
|
||||
|
||||
for (i = 0, ni = indices.size(); i < ni; ++i)
|
||||
{
|
||||
btSwap(indices[i], indices[NEXTRAND % ni]);
|
||||
}
|
||||
}
|
||||
for (int k = 0; k < m_faceNodeContacts.size(); ++k)
|
||||
{
|
||||
int i = indices[k];
|
||||
btSoftBody::DeformableFaceNodeContact& c = m_faceNodeContacts[i];
|
||||
btSoftBody::Node* node = c.m_node;
|
||||
btSoftBody::Face* face = c.m_face;
|
||||
const btVector3& w = c.m_bary;
|
||||
const btVector3& n = c.m_normal;
|
||||
btVector3 l = node->m_x - BaryEval(face->m_n[0]->m_x, face->m_n[1]->m_x, face->m_n[2]->m_x, w);
|
||||
btScalar d = c.m_margin - n.dot(l);
|
||||
d = btMax(btScalar(0),d);
|
||||
|
||||
const btVector3& va = node->m_v;
|
||||
btVector3 vb = BaryEval(face->m_n[0]->m_v, face->m_n[1]->m_v, face->m_n[2]->m_v, w);
|
||||
btVector3 vr = va - vb;
|
||||
const btScalar vn = btDot(vr, n); // dn < 0 <==> opposing
|
||||
if (vn > OVERLAP_REDUCTION_FACTOR * d / timeStep)
|
||||
continue;
|
||||
btVector3 vt = vr - vn*n;
|
||||
btScalar I = 0;
|
||||
btScalar mass = node->m_im == 0 ? 0 : btScalar(1)/node->m_im;
|
||||
if (applySpringForce)
|
||||
I = -btMin(m_repulsionStiffness * timeStep * d, mass * (OVERLAP_REDUCTION_FACTOR * d / timeStep - vn));
|
||||
if (vn < 0)
|
||||
I += 0.5 * mass * vn;
|
||||
btScalar face_penetration = 0, node_penetration = node->m_penetration;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
face_penetration = btMax(face_penetration, face->m_n[i]->m_penetration);
|
||||
btScalar I_tilde = .5 *I /(1.0+w.length2());
|
||||
|
||||
// double the impulse if node or face is constrained.
|
||||
if (face_penetration > 0 || node_penetration > 0)
|
||||
I_tilde *= 2.0;
|
||||
if (face_penetration <= node_penetration)
|
||||
{
|
||||
for (int j = 0; j < 3; ++j)
|
||||
face->m_n[j]->m_v += w[j]*n*I_tilde*node->m_im;
|
||||
}
|
||||
if (face_penetration >= node_penetration)
|
||||
{
|
||||
node->m_v -= I_tilde*node->m_im*n;
|
||||
}
|
||||
|
||||
// apply frictional impulse
|
||||
btScalar vt_norm = vt.safeNorm();
|
||||
if (vt_norm > SIMD_EPSILON)
|
||||
{
|
||||
btScalar delta_vn = -2 * I * node->m_im;
|
||||
btScalar mu = c.m_friction;
|
||||
btScalar vt_new = btMax(btScalar(1) - mu * delta_vn / (vt_norm + SIMD_EPSILON), btScalar(0))*vt_norm;
|
||||
I = 0.5 * mass * (vt_norm-vt_new);
|
||||
vt.safeNormalize();
|
||||
I_tilde = .5 *I /(1.0+w.length2());
|
||||
// double the impulse if node or face is constrained.
|
||||
// if (face_penetration > 0 || node_penetration > 0)
|
||||
// I_tilde *= 2.0;
|
||||
if (face_penetration <= node_penetration)
|
||||
{
|
||||
for (int j = 0; j < 3; ++j)
|
||||
face->m_n[j]->m_v += w[j] * vt * I_tilde * (face->m_n[j])->m_im;
|
||||
}
|
||||
if (face_penetration >= node_penetration)
|
||||
{
|
||||
node->m_v -= I_tilde * node->m_im * vt;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
virtual int calculateSerializeBufferSize() const;
|
||||
|
||||
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
||||
|
|
|
@ -1300,13 +1300,23 @@ btSoftBody* btSoftBodyHelpers::CreateFromVtkFile(btSoftBodyWorldInfo& worldInfo,
|
|||
}
|
||||
else if (reading_tets)
|
||||
{
|
||||
int d;
|
||||
ss >> d;
|
||||
if (d != 4)
|
||||
{
|
||||
printf("Load deformable failed: Only Tetrahedra are supported in VTK file.\n");
|
||||
fs.close();
|
||||
return 0;
|
||||
}
|
||||
ss.ignore(128, ' '); // ignore "4"
|
||||
Index tet;
|
||||
tet.resize(4);
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
ss >> tet[i];
|
||||
printf("%d ", tet[i]);
|
||||
}
|
||||
printf("\n");
|
||||
indices[indices_count++] = tet;
|
||||
}
|
||||
}
|
||||
|
@ -1500,10 +1510,27 @@ void btSoftBodyHelpers::getBarycentricWeights(const btVector3& a, const btVector
|
|||
bary = btVector4(va6*v6, vb6*v6, vc6*v6, vd6*v6);
|
||||
}
|
||||
|
||||
// Given a simplex with vertices a,b,c, find the barycentric weights of p in this simplex. bary[3] = 0.
|
||||
void btSoftBodyHelpers::getBarycentricWeights(const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& p, btVector4& bary)
|
||||
{
|
||||
btVector3 v0 = b - a, v1 = c - a, v2 = p - a;
|
||||
btScalar d00 = btDot(v0, v0);
|
||||
btScalar d01 = btDot(v0, v1);
|
||||
btScalar d11 = btDot(v1, v1);
|
||||
btScalar d20 = btDot(v2, v0);
|
||||
btScalar d21 = btDot(v2, v1);
|
||||
btScalar invDenom = 1.0 / (d00 * d11 - d01 * d01);
|
||||
bary[1] = (d11 * d20 - d01 * d21) * invDenom;
|
||||
bary[2] = (d00 * d21 - d01 * d20) * invDenom;
|
||||
bary[0] = 1.0 - bary[1] - bary[2];
|
||||
bary[3] = 0;
|
||||
}
|
||||
|
||||
// Iterate through all render nodes to find the simulation tetrahedron that contains the render node and record the barycentric weights
|
||||
// If the node is not inside any tetrahedron, assign it to the tetrahedron in which the node has the least negative barycentric weight
|
||||
void btSoftBodyHelpers::interpolateBarycentricWeights(btSoftBody* psb)
|
||||
{
|
||||
psb->m_z.resize(0);
|
||||
psb->m_renderNodesInterpolationWeights.resize(psb->m_renderNodes.size());
|
||||
psb->m_renderNodesParents.resize(psb->m_renderNodes.size());
|
||||
for (int i = 0; i < psb->m_renderNodes.size(); ++i)
|
||||
|
@ -1513,7 +1540,6 @@ void btSoftBodyHelpers::interpolateBarycentricWeights(btSoftBody* psb)
|
|||
btVector4 optimal_bary;
|
||||
btScalar min_bary_weight = -1e3;
|
||||
btAlignedObjectArray<const btSoftBody::Node*> optimal_parents;
|
||||
bool found = false;
|
||||
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
||||
{
|
||||
const btSoftBody::Tetra& t = psb->m_tetras[j];
|
||||
|
@ -1544,3 +1570,55 @@ void btSoftBodyHelpers::interpolateBarycentricWeights(btSoftBody* psb)
|
|||
psb->m_renderNodesParents[i] = optimal_parents;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Iterate through all render nodes to find the simulation triangle that's closest to the node in the barycentric sense.
|
||||
void btSoftBodyHelpers::extrapolateBarycentricWeights(btSoftBody* psb)
|
||||
{
|
||||
psb->m_renderNodesInterpolationWeights.resize(psb->m_renderNodes.size());
|
||||
psb->m_renderNodesParents.resize(psb->m_renderNodes.size());
|
||||
psb->m_z.resize(psb->m_renderNodes.size());
|
||||
for (int i = 0; i < psb->m_renderNodes.size(); ++i)
|
||||
{
|
||||
const btVector3& p = psb->m_renderNodes[i].m_x;
|
||||
btVector4 bary;
|
||||
btVector4 optimal_bary;
|
||||
btScalar min_bary_weight = -SIMD_INFINITY;
|
||||
btAlignedObjectArray<const btSoftBody::Node*> optimal_parents;
|
||||
btScalar dist = 0, optimal_dist = 0;
|
||||
for (int j = 0; j < psb->m_faces.size(); ++j)
|
||||
{
|
||||
const btSoftBody::Face& f = psb->m_faces[j];
|
||||
btVector3 n = btCross(f.m_n[1]->m_x - f.m_n[0]->m_x, f.m_n[2]->m_x - f.m_n[0]->m_x);
|
||||
btVector3 unit_n = n.normalized();
|
||||
dist = (p-f.m_n[0]->m_x).dot(unit_n);
|
||||
btVector3 proj_p = p - dist*unit_n;
|
||||
getBarycentricWeights(f.m_n[0]->m_x, f.m_n[1]->m_x, f.m_n[2]->m_x, proj_p, bary);
|
||||
btScalar new_min_bary_weight = bary[0];
|
||||
for (int k = 1; k < 3; ++k)
|
||||
{
|
||||
new_min_bary_weight = btMin(new_min_bary_weight, bary[k]);
|
||||
}
|
||||
|
||||
// p is out of the current best triangle, we found a traingle that's better
|
||||
bool better_than_closest_outisde = (new_min_bary_weight > min_bary_weight && min_bary_weight<0.);
|
||||
// p is inside of the current best triangle, we found a triangle that's better
|
||||
bool better_than_best_inside = (new_min_bary_weight>=0 && min_bary_weight>=0 && btFabs(dist)<btFabs(optimal_dist));
|
||||
|
||||
if (better_than_closest_outisde || better_than_best_inside)
|
||||
{
|
||||
btAlignedObjectArray<const btSoftBody::Node*> parents;
|
||||
parents.push_back(f.m_n[0]);
|
||||
parents.push_back(f.m_n[1]);
|
||||
parents.push_back(f.m_n[2]);
|
||||
optimal_parents = parents;
|
||||
optimal_bary = bary;
|
||||
optimal_dist = dist;
|
||||
min_bary_weight = new_min_bary_weight;
|
||||
}
|
||||
}
|
||||
psb->m_renderNodesInterpolationWeights[i] = optimal_bary;
|
||||
psb->m_renderNodesParents[i] = optimal_parents;
|
||||
psb->m_z[i] = optimal_dist;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -148,8 +148,12 @@ struct btSoftBodyHelpers
|
|||
|
||||
static void getBarycentricWeights(const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, const btVector3& p, btVector4& bary);
|
||||
|
||||
static void getBarycentricWeights(const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& p, btVector4& bary);
|
||||
|
||||
static void interpolateBarycentricWeights(btSoftBody* psb);
|
||||
|
||||
static void extrapolateBarycentricWeights(btSoftBody* psb);
|
||||
|
||||
static void generateBoundaryFaces(btSoftBody* psb);
|
||||
|
||||
static void duplicateFaces(const char* filename, const btSoftBody* psb);
|
||||
|
|
|
@ -18,7 +18,6 @@ subject to the following restrictions:
|
|||
#define _BT_SOFT_BODY_INTERNALS_H
|
||||
|
||||
#include "btSoftBody.h"
|
||||
|
||||
#include "LinearMath/btQuickprof.h"
|
||||
#include "LinearMath/btPolarDecomposition.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
|
||||
|
@ -29,9 +28,10 @@ subject to the following restrictions:
|
|||
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
|
||||
#include <string.h> //for memset
|
||||
#include <cmath>
|
||||
#include "poly34.h"
|
||||
|
||||
// Given a multibody link, a contact point and a contact direction, fill in the jacobian data needed to calculate the velocity change given an impulse in the contact direction
|
||||
static void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol,
|
||||
static SIMD_FORCE_INLINE void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol,
|
||||
btMultiBodyJacobianData& jacobianData,
|
||||
const btVector3& contact_point,
|
||||
const btVector3& dir)
|
||||
|
@ -44,7 +44,7 @@ static void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol,
|
|||
multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, contact_point, dir, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
|
||||
multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], &jacobianData.m_deltaVelocitiesUnitImpulse[0], jacobianData.scratch_r, jacobianData.scratch_v);
|
||||
}
|
||||
static btVector3 generateUnitOrthogonalVector(const btVector3& u)
|
||||
static SIMD_FORCE_INLINE btVector3 generateUnitOrthogonalVector(const btVector3& u)
|
||||
{
|
||||
btScalar ux = u.getX();
|
||||
btScalar uy = u.getY();
|
||||
|
@ -62,6 +62,571 @@ static btVector3 generateUnitOrthogonalVector(const btVector3& u)
|
|||
v.normalize();
|
||||
return v;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool proximityTest(const btVector3& x1, const btVector3& x2, const btVector3& x3, const btVector3& x4, const btVector3& normal, const btScalar& mrg, btVector3& bary)
|
||||
{
|
||||
btVector3 x43 = x4-x3;
|
||||
if (std::abs(x43.dot(normal)) > mrg)
|
||||
return false;
|
||||
btVector3 x13 = x1-x3;
|
||||
btVector3 x23 = x2-x3;
|
||||
btScalar a11 = x13.length2();
|
||||
btScalar a22 = x23.length2();
|
||||
btScalar a12 = x13.dot(x23);
|
||||
btScalar b1 = x13.dot(x43);
|
||||
btScalar b2 = x23.dot(x43);
|
||||
btScalar det = a11*a22 - a12*a12;
|
||||
if (det < SIMD_EPSILON)
|
||||
return false;
|
||||
btScalar w1 = (b1*a22-b2*a12)/det;
|
||||
btScalar w2 = (b2*a11-b1*a12)/det;
|
||||
btScalar w3 = 1-w1-w2;
|
||||
btScalar delta = mrg / std::sqrt(0.5*std::abs(x13.cross(x23).safeNorm()));
|
||||
bary = btVector3(w1,w2,w3);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
if (bary[i] < -delta || bary[i] > 1+delta)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static const int KDOP_COUNT = 13;
|
||||
static btVector3 dop[KDOP_COUNT]={btVector3(1,0,0),
|
||||
btVector3(0,1,0),
|
||||
btVector3(0,0,1),
|
||||
btVector3(1,1,0),
|
||||
btVector3(1,0,1),
|
||||
btVector3(0,1,1),
|
||||
btVector3(1,-1,0),
|
||||
btVector3(1,0,-1),
|
||||
btVector3(0,1,-1),
|
||||
btVector3(1,1,1),
|
||||
btVector3(1,-1,1),
|
||||
btVector3(1,1,-1),
|
||||
btVector3(1,-1,-1)
|
||||
};
|
||||
|
||||
static inline int getSign(const btVector3& n, const btVector3& x)
|
||||
{
|
||||
btScalar d = n.dot(x);
|
||||
if (d>SIMD_EPSILON)
|
||||
return 1;
|
||||
if (d<-SIMD_EPSILON)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool hasSeparatingPlane(const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt)
|
||||
{
|
||||
btVector3 hex[6] = {face->m_n[0]->m_x - node->m_x,
|
||||
face->m_n[1]->m_x - node->m_x,
|
||||
face->m_n[2]->m_x - node->m_x,
|
||||
face->m_n[0]->m_x + dt*face->m_n[0]->m_v - node->m_x,
|
||||
face->m_n[1]->m_x + dt*face->m_n[1]->m_v - node->m_x,
|
||||
face->m_n[2]->m_x + dt*face->m_n[2]->m_v - node->m_x
|
||||
};
|
||||
btVector3 segment = dt*node->m_v;
|
||||
for (int i = 0; i < KDOP_COUNT; ++i)
|
||||
{
|
||||
int s = getSign(dop[i], segment);
|
||||
int j = 0;
|
||||
for (; j < 6; ++j)
|
||||
{
|
||||
if (getSign(dop[i], hex[j]) == s)
|
||||
break;
|
||||
}
|
||||
if (j == 6)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool nearZero(const btScalar& a)
|
||||
{
|
||||
return (a>-SAFE_EPSILON && a<SAFE_EPSILON);
|
||||
}
|
||||
static SIMD_FORCE_INLINE bool sameSign(const btScalar& a, const btScalar& b)
|
||||
{
|
||||
return (nearZero(a) || nearZero(b) || (a>SAFE_EPSILON && b>SAFE_EPSILON) || (a<-SAFE_EPSILON && b<-SAFE_EPSILON));
|
||||
}
|
||||
static SIMD_FORCE_INLINE bool diffSign(const btScalar& a, const btScalar& b)
|
||||
{
|
||||
return !sameSign(a, b);
|
||||
}
|
||||
inline btScalar evaluateBezier2(const btScalar &p0, const btScalar &p1, const btScalar &p2, const btScalar &t, const btScalar &s)
|
||||
{
|
||||
btScalar s2 = s*s;
|
||||
btScalar t2 = t*t;
|
||||
|
||||
return p0*s2+p1*btScalar(2.0)*s*t+p2*t2;
|
||||
}
|
||||
inline btScalar evaluateBezier(const btScalar &p0, const btScalar &p1, const btScalar &p2, const btScalar &p3, const btScalar &t, const btScalar &s)
|
||||
{
|
||||
btScalar s2 = s*s;
|
||||
btScalar s3 = s2*s;
|
||||
btScalar t2 = t*t;
|
||||
btScalar t3 = t2*t;
|
||||
|
||||
return p0*s3+p1*btScalar(3.0)*s2*t+p2*btScalar(3.0)*s*t2+p3*t3;
|
||||
}
|
||||
static SIMD_FORCE_INLINE bool getSigns(bool type_c, const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& t0, const btScalar& t1, btScalar <0, btScalar <1)
|
||||
{
|
||||
if (sameSign(t0, t1)) {
|
||||
lt0 = t0;
|
||||
lt1 = t0;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (type_c || diffSign(k0, k3)) {
|
||||
btScalar ft = evaluateBezier(k0, k1, k2, k3, t0, -t1);
|
||||
if (t0<-0)
|
||||
ft = -ft;
|
||||
|
||||
if (sameSign(ft, k0)) {
|
||||
lt0 = t1;
|
||||
lt1 = t1;
|
||||
}
|
||||
else {
|
||||
lt0 = t0;
|
||||
lt1 = t0;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!type_c) {
|
||||
btScalar ft = evaluateBezier(k0, k1, k2, k3, t0, -t1);
|
||||
if (t0<-0)
|
||||
ft = -ft;
|
||||
|
||||
if (diffSign(ft, k0)) {
|
||||
lt0 = t0;
|
||||
lt1 = t1;
|
||||
return true;
|
||||
}
|
||||
|
||||
btScalar fk = evaluateBezier2(k1-k0, k2-k1, k3-k2, t0, -t1);
|
||||
|
||||
if (sameSign(fk, k1-k0))
|
||||
lt0 = lt1 = t1;
|
||||
else
|
||||
lt0 = lt1 = t0;
|
||||
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE void getBernsteinCoeff(const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt, btScalar& k0, btScalar& k1, btScalar& k2, btScalar& k3)
|
||||
{
|
||||
const btVector3& n0 = face->m_n0;
|
||||
const btVector3& n1 = face->m_n1;
|
||||
btVector3 n_hat = n0 + n1 - face->m_vn;
|
||||
btVector3 p0ma0 = node->m_x - face->m_n[0]->m_x;
|
||||
btVector3 p1ma1 = node->m_q - face->m_n[0]->m_q;
|
||||
k0 = (p0ma0).dot(n0) * 3.0;
|
||||
k1 = (p0ma0).dot(n_hat) + (p1ma1).dot(n0);
|
||||
k2 = (p1ma1).dot(n_hat) + (p0ma0).dot(n1);
|
||||
k3 = (p1ma1).dot(n1) * 3.0;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE void polyDecomposition(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& j0, const btScalar& j1, const btScalar& j2, btScalar& u0, btScalar& u1, btScalar& v0, btScalar& v1)
|
||||
{
|
||||
btScalar denom = 4.0 * (j1-j2) * (j1-j0) + (j2-j0) * (j2-j0);
|
||||
u0 = (2.0*(j1-j2)*(3.0*k1-2.0*k0-k3) - (j0-j2)*(3.0*k2-2.0*k3-k0)) / denom;
|
||||
u1 = (2.0*(j1-j0)*(3.0*k2-2.0*k3-k0) - (j2-j0)*(3.0*k1-2.0*k0-k3)) / denom;
|
||||
v0 = k0-u0*j0;
|
||||
v1 = k3-u1*j2;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool rootFindingLemma(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3)
|
||||
{
|
||||
btScalar u0, u1, v0, v1;
|
||||
btScalar j0 = 3.0*(k1-k0);
|
||||
btScalar j1 = 3.0*(k2-k1);
|
||||
btScalar j2 = 3.0*(k3-k2);
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (sameSign(v0, v1))
|
||||
{
|
||||
btScalar Ypa = j0*(1.0-v0)*(1.0-v0) + 2.0*j1*v0*(1.0-v0) + j2*v0*v0; // Y'(v0)
|
||||
if (sameSign(Ypa, j0))
|
||||
{
|
||||
return (diffSign(k0,v1));
|
||||
}
|
||||
}
|
||||
return diffSign(k0,v0);
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE void getJs(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btSoftBody::Node* a, const btSoftBody::Node* b, const btSoftBody::Node* c, const btSoftBody::Node* p, const btScalar& dt, btScalar& j0, btScalar& j1, btScalar& j2)
|
||||
{
|
||||
const btVector3& a0 = a->m_x;
|
||||
const btVector3& b0 = b->m_x;
|
||||
const btVector3& c0 = c->m_x;
|
||||
const btVector3& va = a->m_v;
|
||||
const btVector3& vb = b->m_v;
|
||||
const btVector3& vc = c->m_v;
|
||||
const btVector3 a1 = a0 + dt*va;
|
||||
const btVector3 b1 = b0 + dt*vb;
|
||||
const btVector3 c1 = c0 + dt*vc;
|
||||
btVector3 n0 = (b0-a0).cross(c0-a0);
|
||||
btVector3 n1 = (b1-a1).cross(c1-a1);
|
||||
btVector3 n_hat = n0+n1 - dt*dt*(vb-va).cross(vc-va);
|
||||
const btVector3& p0 = p->m_x;
|
||||
const btVector3& vp = p->m_v;
|
||||
btVector3 p1 = p0 + dt*vp;
|
||||
btVector3 m0 = (b0-p0).cross(c0-p0);
|
||||
btVector3 m1 = (b1-p1).cross(c1-p1);
|
||||
btVector3 m_hat = m0+m1 - dt*dt*(vb-vp).cross(vc-vp);
|
||||
btScalar l0 = m0.dot(n0);
|
||||
btScalar l1 = 0.25 * (m0.dot(n_hat) + m_hat.dot(n0));
|
||||
btScalar l2 = btScalar(1)/btScalar(6)*(m0.dot(n1) + m_hat.dot(n_hat) + m1.dot(n0));
|
||||
btScalar l3 = 0.25 * (m_hat.dot(n1) + m1.dot(n_hat));
|
||||
btScalar l4 = m1.dot(n1);
|
||||
|
||||
btScalar k1p = 0.25 * k0 + 0.75 * k1;
|
||||
btScalar k2p = 0.5 * k1 + 0.5 * k2;
|
||||
btScalar k3p = 0.75 * k2 + 0.25 * k3;
|
||||
|
||||
btScalar s0 = (l1 * k0 - l0 * k1p)*4.0;
|
||||
btScalar s1 = (l2 * k0 - l0 * k2p)*2.0;
|
||||
btScalar s2 = (l3 * k0 - l0 * k3p)*btScalar(4)/btScalar(3);
|
||||
btScalar s3 = l4 * k0 - l0 * k3;
|
||||
|
||||
j0 = (s1*k0 - s0*k1) * 3.0;
|
||||
j1 = (s2*k0 - s0*k2) * 1.5;
|
||||
j2 = (s3*k0 - s0*k3);
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool signDetermination1Internal(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& u0, const btScalar& u1, const btScalar& v0, const btScalar& v1)
|
||||
{
|
||||
btScalar Yu0 = k0*(1.0-u0)*(1.0-u0)*(1.0-u0) + 3.0*k1*u0*(1.0-u0)*(1.0-u0) + 3.0*k2*u0*u0*(1.0-u0) + k3*u0*u0*u0; // Y(u0)
|
||||
btScalar Yv0 = k0*(1.0-v0)*(1.0-v0)*(1.0-v0) + 3.0*k1*v0*(1.0-v0)*(1.0-v0) + 3.0*k2*v0*v0*(1.0-v0) + k3*v0*v0*v0; // Y(v0)
|
||||
|
||||
btScalar sign_Ytp = (u0 > u1) ? Yu0 : -Yu0;
|
||||
btScalar L = sameSign(sign_Ytp, k0) ? u1 : u0;
|
||||
sign_Ytp = (v0 > v1) ? Yv0 : -Yv0;
|
||||
btScalar K = (sameSign(sign_Ytp,k0)) ? v1 : v0;
|
||||
return diffSign(L,K);
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool signDetermination2Internal(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& j0, const btScalar& j1, const btScalar& j2, const btScalar& u0, const btScalar& u1, const btScalar& v0, const btScalar& v1)
|
||||
{
|
||||
btScalar Yu0 = k0*(1.0-u0)*(1.0-u0)*(1.0-u0) + 3.0*k1*u0*(1.0-u0)*(1.0-u0) + 3.0*k2*u0*u0*(1.0-u0) + k3*u0*u0*u0; // Y(u0)
|
||||
btScalar sign_Ytp = (u0 > u1) ? Yu0 : -Yu0, L1, L2;
|
||||
if (diffSign(sign_Ytp,k0))
|
||||
{
|
||||
L1 = u0;
|
||||
L2 = u1;
|
||||
}
|
||||
else
|
||||
{
|
||||
btScalar Yp_u0 = j0*(1.0-u0)*(1.0-u0) + 2.0*j1*(1.0-u0)*u0 + j2*u0*u0;
|
||||
if (sameSign(Yp_u0,j0))
|
||||
{
|
||||
L1 = u1;
|
||||
L2 = u1;
|
||||
}
|
||||
else
|
||||
{
|
||||
L1 = u0;
|
||||
L2 = u0;
|
||||
}
|
||||
}
|
||||
btScalar Yv0 = k0*(1.0-v0)*(1.0-v0)*(1.0-v0) + 3.0*k1*v0*(1.0-v0)*(1.0-v0) + 3.0*k2*v0*v0*(1.0-v0) + k3*v0*v0*v0; // Y(uv0)
|
||||
sign_Ytp = (v0 > v1) ? Yv0 : -Yv0;
|
||||
btScalar K1, K2;
|
||||
if (diffSign(sign_Ytp,k0))
|
||||
{
|
||||
K1 = v0;
|
||||
K2 = v1;
|
||||
}
|
||||
else
|
||||
{
|
||||
btScalar Yp_v0 = j0*(1.0-v0)*(1.0-v0) + 2.0*j1*(1.0-v0)*v0 + j2*v0*v0;
|
||||
if (sameSign(Yp_v0,j0))
|
||||
{
|
||||
K1 = v1;
|
||||
K2 = v1;
|
||||
}
|
||||
else
|
||||
{
|
||||
K1 = v0;
|
||||
K2 = v0;
|
||||
}
|
||||
}
|
||||
return (diffSign(K1, L1) || diffSign(L2, K2));
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool signDetermination1(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt)
|
||||
{
|
||||
btScalar j0, j1, j2, u0, u1, v0, v1;
|
||||
// p1
|
||||
getJs(k0,k1,k2,k3,face->m_n[0], face->m_n[1], face->m_n[2], node, dt, j0, j1, j2);
|
||||
if (nearZero(j0+j2-j1*2.0))
|
||||
{
|
||||
btScalar lt0, lt1;
|
||||
getSigns(true, k0, k1, k2, k3, j0, j2, lt0, lt1);
|
||||
if (lt0 < -SAFE_EPSILON)
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (!signDetermination1Internal(k0,k1,k2,k3,u0,u1,v0,v1))
|
||||
return false;
|
||||
}
|
||||
// p2
|
||||
getJs(k0,k1,k2,k3,face->m_n[1], face->m_n[2], face->m_n[0], node, dt, j0, j1, j2);
|
||||
if (nearZero(j0+j2-j1*2.0))
|
||||
{
|
||||
btScalar lt0, lt1;
|
||||
getSigns(true, k0, k1, k2, k3, j0, j2, lt0, lt1);
|
||||
if (lt0 < -SAFE_EPSILON)
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (!signDetermination1Internal(k0,k1,k2,k3,u0,u1,v0,v1))
|
||||
return false;
|
||||
}
|
||||
// p3
|
||||
getJs(k0,k1,k2,k3,face->m_n[2], face->m_n[0], face->m_n[1], node, dt, j0, j1, j2);
|
||||
if (nearZero(j0+j2-j1*2.0))
|
||||
{
|
||||
btScalar lt0, lt1;
|
||||
getSigns(true, k0, k1, k2, k3, j0, j2, lt0, lt1);
|
||||
if (lt0 < -SAFE_EPSILON)
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (!signDetermination1Internal(k0,k1,k2,k3,u0,u1,v0,v1))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool signDetermination2(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt)
|
||||
{
|
||||
btScalar j0, j1, j2, u0, u1, v0, v1;
|
||||
// p1
|
||||
getJs(k0,k1,k2,k3,face->m_n[0], face->m_n[1], face->m_n[2], node, dt, j0, j1, j2);
|
||||
if (nearZero(j0+j2-j1*2.0))
|
||||
{
|
||||
btScalar lt0, lt1;
|
||||
bool bt0 = true, bt1=true;
|
||||
getSigns(false, k0, k1, k2, k3, j0, j2, lt0, lt1);
|
||||
if (lt0 < -SAFE_EPSILON)
|
||||
bt0 = false;
|
||||
if (lt1 < -SAFE_EPSILON)
|
||||
bt1 = false;
|
||||
if (!bt0 && !bt1)
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (!signDetermination2Internal(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1))
|
||||
return false;
|
||||
}
|
||||
// p2
|
||||
getJs(k0,k1,k2,k3,face->m_n[1], face->m_n[2], face->m_n[0], node, dt, j0, j1, j2);
|
||||
if (nearZero(j0+j2-j1*2.0))
|
||||
{
|
||||
btScalar lt0, lt1;
|
||||
bool bt0=true, bt1=true;
|
||||
getSigns(false, k0, k1, k2, k3, j0, j2, lt0, lt1);
|
||||
if (lt0 < -SAFE_EPSILON)
|
||||
bt0 = false;
|
||||
if (lt1 < -SAFE_EPSILON)
|
||||
bt1 = false;
|
||||
if (!bt0 && !bt1)
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (!signDetermination2Internal(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1))
|
||||
return false;
|
||||
}
|
||||
// p3
|
||||
getJs(k0,k1,k2,k3,face->m_n[2], face->m_n[0], face->m_n[1], node, dt, j0, j1, j2);
|
||||
if (nearZero(j0+j2-j1*2.0))
|
||||
{
|
||||
btScalar lt0, lt1;
|
||||
bool bt0=true, bt1=true;
|
||||
getSigns(false, k0, k1, k2, k3, j0, j2, lt0, lt1);
|
||||
if (lt0 < -SAFE_EPSILON)
|
||||
bt0 = false;
|
||||
if (lt1 < -SAFE_EPSILON)
|
||||
bt1 = false;
|
||||
if (!bt0 && !bt1)
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
polyDecomposition(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1);
|
||||
if (!signDetermination2Internal(k0,k1,k2,k3,j0,j1,j2,u0,u1,v0,v1))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool coplanarAndInsideTest(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt)
|
||||
{
|
||||
// Coplanar test
|
||||
if (diffSign(k1-k0, k3-k2))
|
||||
{
|
||||
// Case b:
|
||||
if (sameSign(k0, k3) && !rootFindingLemma(k0,k1,k2,k3))
|
||||
return false;
|
||||
// inside test
|
||||
return signDetermination2(k0, k1, k2, k3, face, node, dt);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Case c:
|
||||
if (sameSign(k0, k3))
|
||||
return false;
|
||||
// inside test
|
||||
return signDetermination1(k0, k1, k2, k3, face, node, dt);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
static SIMD_FORCE_INLINE bool conservativeCulling(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& mrg)
|
||||
{
|
||||
if (k0 > mrg && k1 > mrg && k2 > mrg && k3 > mrg)
|
||||
return true;
|
||||
if (k0 < -mrg && k1 < -mrg && k2 < -mrg && k3 < -mrg)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool bernsteinVFTest(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& mrg, const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt)
|
||||
{
|
||||
if (conservativeCulling(k0, k1, k2, k3, mrg))
|
||||
return false;
|
||||
return coplanarAndInsideTest(k0, k1, k2, k3, face, node, dt);
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE void deCasteljau(const btScalar& k0, const btScalar& k1, const btScalar& k2, const btScalar& k3, const btScalar& t0, btScalar& k10, btScalar& k20, btScalar& k30, btScalar& k21, btScalar& k12)
|
||||
{
|
||||
k10 = k0*(1.0-t0) + k1*t0;
|
||||
btScalar k11 = k1*(1.0-t0) + k2*t0;
|
||||
k12 = k2*(1.0-t0) + k3*t0;
|
||||
k20 = k10*(1.0-t0) + k11*t0;
|
||||
k21 = k11*(1.0-t0) + k12*t0;
|
||||
k30 = k20*(1.0-t0) + k21*t0;
|
||||
}
|
||||
static SIMD_FORCE_INLINE bool bernsteinVFTest(const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt, const btScalar& mrg)
|
||||
{
|
||||
btScalar k0, k1, k2, k3;
|
||||
getBernsteinCoeff(face, node, dt, k0, k1, k2, k3);
|
||||
if (conservativeCulling(k0, k1, k2, k3, mrg))
|
||||
return false;
|
||||
return true;
|
||||
if (diffSign(k2-2.0*k1+k0, k3-2.0*k2+k1))
|
||||
{
|
||||
btScalar k10, k20, k30, k21, k12;
|
||||
btScalar t0 = (k2-2.0*k1+k0)/(k0-3.0*k1+3.0*k2-k3);
|
||||
deCasteljau(k0, k1, k2, k3, t0, k10, k20, k30, k21, k12);
|
||||
return bernsteinVFTest(k0, k10, k20, k30, mrg, face, node, dt) || bernsteinVFTest(k30, k21, k12, k3, mrg, face, node, dt);
|
||||
}
|
||||
return coplanarAndInsideTest(k0, k1, k2, k3, face, node, dt);
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool continuousCollisionDetection(const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt, const btScalar& mrg, btVector3& bary)
|
||||
{
|
||||
if (hasSeparatingPlane(face, node, dt))
|
||||
return false;
|
||||
btVector3 x21 = face->m_n[1]->m_x - face->m_n[0]->m_x;
|
||||
btVector3 x31 = face->m_n[2]->m_x - face->m_n[0]->m_x;
|
||||
btVector3 x41 = node->m_x - face->m_n[0]->m_x;
|
||||
btVector3 v21 = face->m_n[1]->m_v - face->m_n[0]->m_v;
|
||||
btVector3 v31 = face->m_n[2]->m_v - face->m_n[0]->m_v;
|
||||
btVector3 v41 = node->m_v - face->m_n[0]->m_v;
|
||||
btVector3 a = x21.cross(x31);
|
||||
btVector3 b = x21.cross(v31) + v21.cross(x31);
|
||||
btVector3 c = v21.cross(v31);
|
||||
btVector3 d = x41;
|
||||
btVector3 e = v41;
|
||||
btScalar a0 = a.dot(d);
|
||||
btScalar a1 = a.dot(e) + b.dot(d);
|
||||
btScalar a2 = c.dot(d) + b.dot(e);
|
||||
btScalar a3 = c.dot(e);
|
||||
btScalar eps = SAFE_EPSILON;
|
||||
int num_roots = 0;
|
||||
btScalar roots[3];
|
||||
if (std::abs(a3) < eps)
|
||||
{
|
||||
// cubic term is zero
|
||||
if (std::abs(a2) < eps)
|
||||
{
|
||||
if (std::abs(a1) < eps)
|
||||
{
|
||||
if (std::abs(a0) < eps)
|
||||
{
|
||||
num_roots = 2;
|
||||
roots[0] = 0;
|
||||
roots[1] = dt;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
num_roots = 1;
|
||||
roots[0] = -a0/a1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
num_roots = SolveP2(roots, a1/a2, a0/a2);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
num_roots = SolveP3(roots, a2/a3, a1/a3, a0/a3);
|
||||
}
|
||||
// std::sort(roots, roots+num_roots);
|
||||
if (num_roots > 1)
|
||||
{
|
||||
if (roots[0] > roots[1])
|
||||
btSwap(roots[0], roots[1]);
|
||||
}
|
||||
if (num_roots > 2)
|
||||
{
|
||||
if (roots[0] > roots[2])
|
||||
btSwap(roots[0], roots[2]);
|
||||
if (roots[1] > roots[2])
|
||||
btSwap(roots[1], roots[2]);
|
||||
}
|
||||
for (int r = 0; r < num_roots; ++r)
|
||||
{
|
||||
double root = roots[r];
|
||||
if (root <= 0)
|
||||
continue;
|
||||
if (root > dt + SIMD_EPSILON)
|
||||
return false;
|
||||
btVector3 x1 = face->m_n[0]->m_x + root * face->m_n[0]->m_v;
|
||||
btVector3 x2 = face->m_n[1]->m_x + root * face->m_n[1]->m_v;
|
||||
btVector3 x3 = face->m_n[2]->m_x + root * face->m_n[2]->m_v;
|
||||
btVector3 x4 = node->m_x + root * node->m_v;
|
||||
btVector3 normal = (x2-x1).cross(x3-x1);
|
||||
normal.safeNormalize();
|
||||
if (proximityTest(x1, x2, x3, x4, normal, mrg, bary))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
static SIMD_FORCE_INLINE bool bernsteinCCD(const btSoftBody::Face* face, const btSoftBody::Node* node, const btScalar& dt, const btScalar& mrg, btVector3& bary)
|
||||
{
|
||||
if (!bernsteinVFTest(face, node, dt, mrg))
|
||||
return false;
|
||||
if (!continuousCollisionDetection(face, node, dt, 1e-6, bary))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// btSymMatrix
|
||||
//
|
||||
|
@ -373,6 +938,26 @@ static inline btMatrix3x3 OuterProduct(const btScalar* v1,const btScalar* v2,con
|
|||
return (m);
|
||||
}
|
||||
|
||||
static inline btMatrix3x3 OuterProduct(const btVector3& v1,const btVector3& v2)
|
||||
{
|
||||
btMatrix3x3 m;
|
||||
btScalar a11 = v1[0] * v2[0];
|
||||
btScalar a12 = v1[0] * v2[1];
|
||||
btScalar a13 = v1[0] * v2[2];
|
||||
|
||||
btScalar a21 = v1[1] * v2[0];
|
||||
btScalar a22 = v1[1] * v2[1];
|
||||
btScalar a23 = v1[1] * v2[2];
|
||||
|
||||
btScalar a31 = v1[2] * v2[0];
|
||||
btScalar a32 = v1[2] * v2[1];
|
||||
btScalar a33 = v1[2] * v2[2];
|
||||
m[0] = btVector3(a11, a12, a13);
|
||||
m[1] = btVector3(a21, a22, a23);
|
||||
m[2] = btVector3(a31, a32, a33);
|
||||
return (m);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
static inline btMatrix3x3 Add(const btMatrix3x3& a,
|
||||
|
@ -1070,8 +1655,8 @@ struct btSoftColliders
|
|||
|
||||
if (!n.m_battach)
|
||||
{
|
||||
// check for collision at x_{n+1}^* as well at x_n
|
||||
if (psb->checkDeformableContact(m_colObj1Wrap, n.m_x, m, c.m_cti, /*predict = */ true) || psb->checkDeformableContact(m_colObj1Wrap, n.m_q, m, c.m_cti, /*predict = */ true))
|
||||
// check for collision at x_{n+1}^*
|
||||
if (psb->checkDeformableContact(m_colObj1Wrap, n.m_q, m, c.m_cti, /*predict = */ true))
|
||||
{
|
||||
const btScalar ima = n.m_im;
|
||||
// todo: collision between multibody and fixed deformable node will be missed.
|
||||
|
@ -1159,7 +1744,6 @@ struct btSoftColliders
|
|||
btSoftBody::Node* n0 = f.m_n[0];
|
||||
btSoftBody::Node* n1 = f.m_n[1];
|
||||
btSoftBody::Node* n2 = f.m_n[2];
|
||||
|
||||
const btScalar m = (n0->m_im > 0 && n1->m_im > 0 && n2->m_im > 0 )? dynmargin : stamargin;
|
||||
btSoftBody::DeformableFaceRigidContact c;
|
||||
btVector3 contact_point;
|
||||
|
@ -1174,18 +1758,19 @@ struct btSoftColliders
|
|||
if (ms > 0)
|
||||
{
|
||||
// resolve contact at x_n
|
||||
psb->checkDeformableFaceContact(m_colObj1Wrap, f, contact_point, bary, m, c.m_cti, /*predict = */ false);
|
||||
// psb->checkDeformableFaceContact(m_colObj1Wrap, f, contact_point, bary, m, c.m_cti, /*predict = */ false);
|
||||
btSoftBody::sCti& cti = c.m_cti;
|
||||
c.m_contactPoint = contact_point;
|
||||
c.m_bary = bary;
|
||||
// todo xuchenhan@: this is assuming mass of all vertices are the same. Need to modify if mass are different for distinct vertices
|
||||
c.m_weights = btScalar(2)/(btScalar(1) + bary.length2()) * bary;
|
||||
c.m_face = &f;
|
||||
// friction is handled by the nodes to prevent sticking
|
||||
// const btScalar fc = 0;
|
||||
const btScalar fc = psb->m_cfg.kDF * m_colObj1Wrap->getCollisionObject()->getFriction();
|
||||
|
||||
// the effective inverse mass of the face as in https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
|
||||
ima = bary.getX()*c.m_weights.getX() * n0->m_im + bary.getY()*c.m_weights.getY() * n1->m_im + bary.getZ()*c.m_weights.getZ() * n2->m_im;
|
||||
|
||||
c.m_c2 = ima;
|
||||
c.m_c3 = fc;
|
||||
c.m_c4 = m_colObj1Wrap->getCollisionObject()->isStaticOrKinematicObject() ? psb->m_cfg.kKHR : psb->m_cfg.kCHR;
|
||||
|
@ -1316,19 +1901,11 @@ struct btSoftColliders
|
|||
{
|
||||
btSoftBody::Node* node = (btSoftBody::Node*)lnode->data;
|
||||
btSoftBody::Face* face = (btSoftBody::Face*)lface->data;
|
||||
|
||||
btVector3 o = node->m_x;
|
||||
btVector3 p;
|
||||
btScalar d = SIMD_INFINITY;
|
||||
ProjectOrigin(face->m_n[0]->m_x - o,
|
||||
face->m_n[1]->m_x - o,
|
||||
face->m_n[2]->m_x - o,
|
||||
p, d);
|
||||
const btScalar m = mrg + (o - node->m_q).safeNorm() * 2;
|
||||
if (d < (m * m))
|
||||
btVector3 bary;
|
||||
if (proximityTest(face->m_n[0]->m_x, face->m_n[1]->m_x, face->m_n[2]->m_x, node->m_x, face->m_normal, mrg, bary))
|
||||
{
|
||||
const btSoftBody::Node* n[] = {face->m_n[0], face->m_n[1], face->m_n[2]};
|
||||
const btVector3 w = BaryCoord(n[0]->m_x, n[1]->m_x, n[2]->m_x, p + o);
|
||||
const btVector3 w = bary;
|
||||
const btScalar ma = node->m_im;
|
||||
btScalar mb = BaryEval(n[0]->m_im, n[1]->m_im, n[2]->m_im, w);
|
||||
if ((n[0]->m_im <= 0) ||
|
||||
|
@ -1341,20 +1918,14 @@ struct btSoftColliders
|
|||
if (ms > 0)
|
||||
{
|
||||
btSoftBody::DeformableFaceNodeContact c;
|
||||
if (useFaceNormal)
|
||||
c.m_normal = face->m_normal;
|
||||
else
|
||||
c.m_normal = p / -btSqrt(d);
|
||||
c.m_normal = face->m_normal;
|
||||
if (!useFaceNormal && c.m_normal.dot(node->m_x - face->m_n[2]->m_x) < 0)
|
||||
c.m_normal = -face->m_normal;
|
||||
c.m_margin = mrg;
|
||||
c.m_node = node;
|
||||
c.m_face = face;
|
||||
c.m_bary = w;
|
||||
// todo xuchenhan@: this is assuming mass of all vertices are the same. Need to modify if mass are different for distinct vertices
|
||||
c.m_weights = btScalar(2)/(btScalar(1) + w.length2()) * w;
|
||||
c.m_friction = psb[0]->m_cfg.kDF * psb[1]->m_cfg.kDF;
|
||||
// the effective inverse mass of the face as in https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
|
||||
c.m_imf = c.m_bary[0]*c.m_weights[0] * n[0]->m_im + c.m_bary[1]*c.m_weights[1] * n[1]->m_im + c.m_bary[2]*c.m_weights[2] * n[2]->m_im;
|
||||
c.m_c0 = btScalar(1)/(ma + c.m_imf);
|
||||
psb[0]->m_faceNodeContacts.push_back(c);
|
||||
}
|
||||
}
|
||||
|
@ -1372,69 +1943,152 @@ struct btSoftColliders
|
|||
void Process(const btDbvntNode* lface1,
|
||||
const btDbvntNode* lface2)
|
||||
{
|
||||
btSoftBody::Face* f = (btSoftBody::Face*)lface1->data;
|
||||
btSoftBody::Face* face = (btSoftBody::Face*)lface2->data;
|
||||
btSoftBody::Face* f1 = (btSoftBody::Face*)lface1->data;
|
||||
btSoftBody::Face* f2 = (btSoftBody::Face*)lface2->data;
|
||||
if (f1 != f2)
|
||||
{
|
||||
Repel(f1, f2);
|
||||
Repel(f2, f1);
|
||||
}
|
||||
}
|
||||
void Repel(btSoftBody::Face* f1, btSoftBody::Face* f2)
|
||||
{
|
||||
//#define REPEL_NEIGHBOR 1
|
||||
#ifndef REPEL_NEIGHBOR
|
||||
for (int node_id = 0; node_id < 3; ++node_id)
|
||||
{
|
||||
btSoftBody::Node* node = f->m_n[node_id];
|
||||
bool skip = false;
|
||||
btSoftBody::Node* node = f1->m_n[node_id];
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
if (face->m_n[i] == node)
|
||||
if (f2->m_n[i] == node)
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
bool skip = false;
|
||||
for (int node_id = 0; node_id < 3; ++node_id)
|
||||
{
|
||||
btSoftBody::Node* node = f1->m_n[node_id];
|
||||
#ifdef REPEL_NEIGHBOR
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
if (f2->m_n[i] == node)
|
||||
{
|
||||
skip = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (skip)
|
||||
continue;
|
||||
btVector3 o = node->m_x;
|
||||
btVector3 p;
|
||||
btScalar d = SIMD_INFINITY;
|
||||
ProjectOrigin(face->m_n[0]->m_x - o,
|
||||
face->m_n[1]->m_x - o,
|
||||
face->m_n[2]->m_x - o,
|
||||
p, d);
|
||||
const btScalar m = mrg + (o - node->m_q).safeNorm() * 2;
|
||||
if (d < (m * m))
|
||||
{
|
||||
const btSoftBody::Node* n[] = {face->m_n[0], face->m_n[1], face->m_n[2]};
|
||||
const btVector3 w = BaryCoord(n[0]->m_x, n[1]->m_x, n[2]->m_x, p + o);
|
||||
const btScalar ma = node->m_im;
|
||||
btScalar mb = BaryEval(n[0]->m_im, n[1]->m_im, n[2]->m_im, w);
|
||||
if ((n[0]->m_im <= 0) ||
|
||||
(n[1]->m_im <= 0) ||
|
||||
(n[2]->m_im <= 0))
|
||||
{
|
||||
mb = 0;
|
||||
}
|
||||
const btScalar ms = ma + mb;
|
||||
if (ms > 0)
|
||||
{
|
||||
btSoftBody::DeformableFaceNodeContact c;
|
||||
if (useFaceNormal)
|
||||
c.m_normal = face->m_normal;
|
||||
else
|
||||
c.m_normal = p / -btSqrt(d);
|
||||
c.m_margin = mrg;
|
||||
c.m_node = node;
|
||||
c.m_face = face;
|
||||
c.m_bary = w;
|
||||
// todo xuchenhan@: this is assuming mass of all vertices are the same. Need to modify if mass are different for distinct vertices
|
||||
c.m_weights = btScalar(2)/(btScalar(1) + w.length2()) * w;
|
||||
c.m_friction = psb[0]->m_cfg.kDF * psb[1]->m_cfg.kDF;
|
||||
// the effective inverse mass of the face as in https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
|
||||
c.m_imf = c.m_bary[0]*c.m_weights[0] * n[0]->m_im + c.m_bary[1]*c.m_weights[1] * n[1]->m_im + c.m_bary[2]*c.m_weights[2] * n[2]->m_im;
|
||||
c.m_c0 = btScalar(1)/(ma + c.m_imf);
|
||||
psb[0]->m_faceNodeContacts.push_back(c);
|
||||
}
|
||||
skip = false;
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
btSoftBody::Face* face = f2;
|
||||
btVector3 bary;
|
||||
if (!proximityTest(face->m_n[0]->m_x, face->m_n[1]->m_x, face->m_n[2]->m_x, node->m_x, face->m_normal, mrg, bary))
|
||||
continue;
|
||||
btSoftBody::DeformableFaceNodeContact c;
|
||||
c.m_normal = face->m_normal;
|
||||
if (!useFaceNormal && c.m_normal.dot(node->m_x - face->m_n[2]->m_x) < 0)
|
||||
c.m_normal = -face->m_normal;
|
||||
c.m_margin = mrg;
|
||||
c.m_node = node;
|
||||
c.m_face = face;
|
||||
c.m_bary = bary;
|
||||
c.m_friction = psb[0]->m_cfg.kDF * psb[1]->m_cfg.kDF;
|
||||
psb[0]->m_faceNodeContacts.push_back(c);
|
||||
}
|
||||
}
|
||||
btSoftBody* psb[2];
|
||||
btScalar mrg;
|
||||
bool useFaceNormal;
|
||||
};
|
||||
};
|
||||
|
||||
struct CollideCCD : btDbvt::ICollide
|
||||
{
|
||||
void Process(const btDbvtNode* lnode,
|
||||
const btDbvtNode* lface)
|
||||
{
|
||||
btSoftBody::Node* node = (btSoftBody::Node*)lnode->data;
|
||||
btSoftBody::Face* face = (btSoftBody::Face*)lface->data;
|
||||
btVector3 bary;
|
||||
if (bernsteinCCD(face, node, dt, SAFE_EPSILON, bary))
|
||||
{
|
||||
btSoftBody::DeformableFaceNodeContact c;
|
||||
c.m_normal = face->m_normal;
|
||||
if (!useFaceNormal && c.m_normal.dot(node->m_x - face->m_n[2]->m_x) < 0)
|
||||
c.m_normal = -face->m_normal;
|
||||
c.m_node = node;
|
||||
c.m_face = face;
|
||||
c.m_bary = bary;
|
||||
c.m_friction = psb[0]->m_cfg.kDF * psb[1]->m_cfg.kDF;
|
||||
psb[0]->m_faceNodeContacts.push_back(c);
|
||||
}
|
||||
}
|
||||
void Process(const btDbvntNode* lface1,
|
||||
const btDbvntNode* lface2)
|
||||
{
|
||||
btSoftBody::Face* f1 = (btSoftBody::Face*)lface1->data;
|
||||
btSoftBody::Face* f2 = (btSoftBody::Face*)lface2->data;
|
||||
if (f1 != f2)
|
||||
{
|
||||
Repel(f1, f2);
|
||||
Repel(f2, f1);
|
||||
}
|
||||
}
|
||||
void Repel(btSoftBody::Face* f1, btSoftBody::Face* f2)
|
||||
{
|
||||
//#define REPEL_NEIGHBOR 1
|
||||
#ifndef REPEL_NEIGHBOR
|
||||
for (int node_id = 0; node_id < 3; ++node_id)
|
||||
{
|
||||
btSoftBody::Node* node = f1->m_n[node_id];
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
if (f2->m_n[i] == node)
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
bool skip = false;
|
||||
for (int node_id = 0; node_id < 3; ++node_id)
|
||||
{
|
||||
btSoftBody::Node* node = f1->m_n[node_id];
|
||||
#ifdef REPEL_NEIGHBOR
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
if (f2->m_n[i] == node)
|
||||
{
|
||||
skip = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (skip)
|
||||
{
|
||||
skip = false;
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
btSoftBody::Face* face = f2;
|
||||
btVector3 bary;
|
||||
if (bernsteinCCD(face, node, dt, SAFE_EPSILON, bary))
|
||||
{
|
||||
btSoftBody::DeformableFaceNodeContact c;
|
||||
c.m_normal = face->m_normal;
|
||||
if (!useFaceNormal && c.m_normal.dot(node->m_x - face->m_n[2]->m_x) < 0)
|
||||
c.m_normal = -face->m_normal;
|
||||
c.m_node = node;
|
||||
c.m_face = face;
|
||||
c.m_bary = bary;
|
||||
c.m_friction = psb[0]->m_cfg.kDF * psb[1]->m_cfg.kDF;
|
||||
psb[0]->m_faceNodeContacts.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
btSoftBody* psb[2];
|
||||
btScalar dt, mrg;
|
||||
bool useFaceNormal;
|
||||
};
|
||||
};
|
||||
#endif //_BT_SOFT_BODY_INTERNALS_H
|
||||
|
|
|
@ -48,9 +48,10 @@ btSoftRigidCollisionAlgorithm::~btSoftRigidCollisionAlgorithm()
|
|||
}
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "LinearMath/btQuickprof.h"
|
||||
void btSoftRigidCollisionAlgorithm::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
|
||||
{
|
||||
BT_PROFILE("btSoftRigidCollisionAlgorithm::processCollision");
|
||||
(void)dispatchInfo;
|
||||
(void)resultOut;
|
||||
//printf("btSoftRigidCollisionAlgorithm\n");
|
||||
|
|
|
@ -0,0 +1,419 @@
|
|||
// poly34.cpp : solution of cubic and quartic equation
|
||||
// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
|
||||
// khash2 (at) gmail.com
|
||||
// Thanks to Alexandr Rakhmanin <rakhmanin (at) gmail.com>
|
||||
// public domain
|
||||
//
|
||||
#include <math.h>
|
||||
|
||||
#include "poly34.h" // solution of cubic and quartic equation
|
||||
#define TwoPi 6.28318530717958648
|
||||
const btScalar eps = SIMD_EPSILON;
|
||||
|
||||
//=============================================================================
|
||||
// _root3, root3 from http://prografix.narod.ru
|
||||
//=============================================================================
|
||||
static SIMD_FORCE_INLINE btScalar _root3(btScalar x)
|
||||
{
|
||||
btScalar s = 1.;
|
||||
while (x < 1.) {
|
||||
x *= 8.;
|
||||
s *= 0.5;
|
||||
}
|
||||
while (x > 8.) {
|
||||
x *= 0.125;
|
||||
s *= 2.;
|
||||
}
|
||||
btScalar r = 1.5;
|
||||
r -= 1. / 3. * (r - x / (r * r));
|
||||
r -= 1. / 3. * (r - x / (r * r));
|
||||
r -= 1. / 3. * (r - x / (r * r));
|
||||
r -= 1. / 3. * (r - x / (r * r));
|
||||
r -= 1. / 3. * (r - x / (r * r));
|
||||
r -= 1. / 3. * (r - x / (r * r));
|
||||
return r * s;
|
||||
}
|
||||
|
||||
btScalar SIMD_FORCE_INLINE root3(btScalar x)
|
||||
{
|
||||
if (x > 0)
|
||||
return _root3(x);
|
||||
else if (x < 0)
|
||||
return -_root3(-x);
|
||||
else
|
||||
return 0.;
|
||||
}
|
||||
|
||||
// x - array of size 2
|
||||
// return 2: 2 real roots x[0], x[1]
|
||||
// return 0: pair of complex roots: x[0]i*x[1]
|
||||
int SolveP2(btScalar* x, btScalar a, btScalar b)
|
||||
{ // solve equation x^2 + a*x + b = 0
|
||||
btScalar D = 0.25 * a * a - b;
|
||||
if (D >= 0) {
|
||||
D = sqrt(D);
|
||||
x[0] = -0.5 * a + D;
|
||||
x[1] = -0.5 * a - D;
|
||||
return 2;
|
||||
}
|
||||
x[0] = -0.5 * a;
|
||||
x[1] = sqrt(-D);
|
||||
return 0;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
// x - array of size 3
|
||||
// In case 3 real roots: => x[0], x[1], x[2], return 3
|
||||
// 2 real roots: x[0], x[1], return 2
|
||||
// 1 real root : x[0], x[1] i*x[2], return 1
|
||||
int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c)
|
||||
{ // solve cubic equation x^3 + a*x^2 + b*x + c = 0
|
||||
btScalar a2 = a * a;
|
||||
btScalar q = (a2 - 3 * b) / 9;
|
||||
if (q < 0)
|
||||
q = eps;
|
||||
btScalar r = (a * (2 * a2 - 9 * b) + 27 * c) / 54;
|
||||
// equation x^3 + q*x + r = 0
|
||||
btScalar r2 = r * r;
|
||||
btScalar q3 = q * q * q;
|
||||
btScalar A, B;
|
||||
if (r2 <= (q3 + eps)) { //<<-- FIXED!
|
||||
btScalar t = r / sqrt(q3);
|
||||
if (t < -1)
|
||||
t = -1;
|
||||
if (t > 1)
|
||||
t = 1;
|
||||
t = acos(t);
|
||||
a /= 3;
|
||||
q = -2 * sqrt(q);
|
||||
x[0] = q * cos(t / 3) - a;
|
||||
x[1] = q * cos((t + TwoPi) / 3) - a;
|
||||
x[2] = q * cos((t - TwoPi) / 3) - a;
|
||||
return (3);
|
||||
}
|
||||
else {
|
||||
//A =-pow(fabs(r)+sqrt(r2-q3),1./3);
|
||||
A = -root3(fabs(r) + sqrt(r2 - q3));
|
||||
if (r < 0)
|
||||
A = -A;
|
||||
B = (A == 0 ? 0 : q / A);
|
||||
|
||||
a /= 3;
|
||||
x[0] = (A + B) - a;
|
||||
x[1] = -0.5 * (A + B) - a;
|
||||
x[2] = 0.5 * sqrt(3.) * (A - B);
|
||||
if (fabs(x[2]) < eps) {
|
||||
x[2] = x[1];
|
||||
return (2);
|
||||
}
|
||||
return (1);
|
||||
}
|
||||
} // SolveP3(btScalar *x,btScalar a,btScalar b,btScalar c) {
|
||||
//---------------------------------------------------------------------------
|
||||
// a>=0!
|
||||
void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b) // returns: a+i*s = sqrt(x+i*y)
|
||||
{
|
||||
btScalar r = sqrt(x * x + y * y);
|
||||
if (y == 0) {
|
||||
r = sqrt(r);
|
||||
if (x >= 0) {
|
||||
a = r;
|
||||
b = 0;
|
||||
}
|
||||
else {
|
||||
a = 0;
|
||||
b = r;
|
||||
}
|
||||
}
|
||||
else { // y != 0
|
||||
a = sqrt(0.5 * (x + r));
|
||||
b = 0.5 * y / a;
|
||||
}
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
int SolveP4Bi(btScalar* x, btScalar b, btScalar d) // solve equation x^4 + b*x^2 + d = 0
|
||||
{
|
||||
btScalar D = b * b - 4 * d;
|
||||
if (D >= 0) {
|
||||
btScalar sD = sqrt(D);
|
||||
btScalar x1 = (-b + sD) / 2;
|
||||
btScalar x2 = (-b - sD) / 2; // x2 <= x1
|
||||
if (x2 >= 0) // 0 <= x2 <= x1, 4 real roots
|
||||
{
|
||||
btScalar sx1 = sqrt(x1);
|
||||
btScalar sx2 = sqrt(x2);
|
||||
x[0] = -sx1;
|
||||
x[1] = sx1;
|
||||
x[2] = -sx2;
|
||||
x[3] = sx2;
|
||||
return 4;
|
||||
}
|
||||
if (x1 < 0) // x2 <= x1 < 0, two pair of imaginary roots
|
||||
{
|
||||
btScalar sx1 = sqrt(-x1);
|
||||
btScalar sx2 = sqrt(-x2);
|
||||
x[0] = 0;
|
||||
x[1] = sx1;
|
||||
x[2] = 0;
|
||||
x[3] = sx2;
|
||||
return 0;
|
||||
}
|
||||
// now x2 < 0 <= x1 , two real roots and one pair of imginary root
|
||||
btScalar sx1 = sqrt(x1);
|
||||
btScalar sx2 = sqrt(-x2);
|
||||
x[0] = -sx1;
|
||||
x[1] = sx1;
|
||||
x[2] = 0;
|
||||
x[3] = sx2;
|
||||
return 2;
|
||||
}
|
||||
else { // if( D < 0 ), two pair of compex roots
|
||||
btScalar sD2 = 0.5 * sqrt(-D);
|
||||
CSqrt(-0.5 * b, sD2, x[0], x[1]);
|
||||
CSqrt(-0.5 * b, -sD2, x[2], x[3]);
|
||||
return 0;
|
||||
} // if( D>=0 )
|
||||
} // SolveP4Bi(btScalar *x, btScalar b, btScalar d) // solve equation x^4 + b*x^2 d
|
||||
//---------------------------------------------------------------------------
|
||||
#define SWAP(a, b) \
|
||||
{ \
|
||||
t = b; \
|
||||
b = a; \
|
||||
a = t; \
|
||||
}
|
||||
static void dblSort3(btScalar& a, btScalar& b, btScalar& c) // make: a <= b <= c
|
||||
{
|
||||
btScalar t;
|
||||
if (a > b)
|
||||
SWAP(a, b); // now a<=b
|
||||
if (c < b) {
|
||||
SWAP(b, c); // now a<=b, b<=c
|
||||
if (a > b)
|
||||
SWAP(a, b); // now a<=b
|
||||
}
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d) // solve equation x^4 + b*x^2 + c*x + d
|
||||
{
|
||||
//if( c==0 ) return SolveP4Bi(x,b,d); // After that, c!=0
|
||||
if (fabs(c) < 1e-14 * (fabs(b) + fabs(d)))
|
||||
return SolveP4Bi(x, b, d); // After that, c!=0
|
||||
|
||||
int res3 = SolveP3(x, 2 * b, b * b - 4 * d, -c * c); // solve resolvent
|
||||
// by Viet theorem: x1*x2*x3=-c*c not equals to 0, so x1!=0, x2!=0, x3!=0
|
||||
if (res3 > 1) // 3 real roots,
|
||||
{
|
||||
dblSort3(x[0], x[1], x[2]); // sort roots to x[0] <= x[1] <= x[2]
|
||||
// Note: x[0]*x[1]*x[2]= c*c > 0
|
||||
if (x[0] > 0) // all roots are positive
|
||||
{
|
||||
btScalar sz1 = sqrt(x[0]);
|
||||
btScalar sz2 = sqrt(x[1]);
|
||||
btScalar sz3 = sqrt(x[2]);
|
||||
// Note: sz1*sz2*sz3= -c (and not equal to 0)
|
||||
if (c > 0) {
|
||||
x[0] = (-sz1 - sz2 - sz3) / 2;
|
||||
x[1] = (-sz1 + sz2 + sz3) / 2;
|
||||
x[2] = (+sz1 - sz2 + sz3) / 2;
|
||||
x[3] = (+sz1 + sz2 - sz3) / 2;
|
||||
return 4;
|
||||
}
|
||||
// now: c<0
|
||||
x[0] = (-sz1 - sz2 + sz3) / 2;
|
||||
x[1] = (-sz1 + sz2 - sz3) / 2;
|
||||
x[2] = (+sz1 - sz2 - sz3) / 2;
|
||||
x[3] = (+sz1 + sz2 + sz3) / 2;
|
||||
return 4;
|
||||
} // if( x[0] > 0) // all roots are positive
|
||||
// now x[0] <= x[1] < 0, x[2] > 0
|
||||
// two pair of comlex roots
|
||||
btScalar sz1 = sqrt(-x[0]);
|
||||
btScalar sz2 = sqrt(-x[1]);
|
||||
btScalar sz3 = sqrt(x[2]);
|
||||
|
||||
if (c > 0) // sign = -1
|
||||
{
|
||||
x[0] = -sz3 / 2;
|
||||
x[1] = (sz1 - sz2) / 2; // x[0]i*x[1]
|
||||
x[2] = sz3 / 2;
|
||||
x[3] = (-sz1 - sz2) / 2; // x[2]i*x[3]
|
||||
return 0;
|
||||
}
|
||||
// now: c<0 , sign = +1
|
||||
x[0] = sz3 / 2;
|
||||
x[1] = (-sz1 + sz2) / 2;
|
||||
x[2] = -sz3 / 2;
|
||||
x[3] = (sz1 + sz2) / 2;
|
||||
return 0;
|
||||
} // if( res3>1 ) // 3 real roots,
|
||||
// now resoventa have 1 real and pair of compex roots
|
||||
// x[0] - real root, and x[0]>0,
|
||||
// x[1]i*x[2] - complex roots,
|
||||
// x[0] must be >=0. But one times x[0]=~ 1e-17, so:
|
||||
if (x[0] < 0)
|
||||
x[0] = 0;
|
||||
btScalar sz1 = sqrt(x[0]);
|
||||
btScalar szr, szi;
|
||||
CSqrt(x[1], x[2], szr, szi); // (szr+i*szi)^2 = x[1]+i*x[2]
|
||||
if (c > 0) // sign = -1
|
||||
{
|
||||
x[0] = -sz1 / 2 - szr; // 1st real root
|
||||
x[1] = -sz1 / 2 + szr; // 2nd real root
|
||||
x[2] = sz1 / 2;
|
||||
x[3] = szi;
|
||||
return 2;
|
||||
}
|
||||
// now: c<0 , sign = +1
|
||||
x[0] = sz1 / 2 - szr; // 1st real root
|
||||
x[1] = sz1 / 2 + szr; // 2nd real root
|
||||
x[2] = -sz1 / 2;
|
||||
x[3] = szi;
|
||||
return 2;
|
||||
} // SolveP4De(btScalar *x, btScalar b, btScalar c, btScalar d) // solve equation x^4 + b*x^2 + c*x + d
|
||||
//-----------------------------------------------------------------------------
|
||||
btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d) // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
|
||||
{
|
||||
btScalar fxs = ((4 * x + 3 * a) * x + 2 * b) * x + c; // f'(x)
|
||||
if (fxs == 0)
|
||||
return x; //return 1e99; <<-- FIXED!
|
||||
btScalar fx = (((x + a) * x + b) * x + c) * x + d; // f(x)
|
||||
return x - fx / fxs;
|
||||
}
|
||||
//-----------------------------------------------------------------------------
|
||||
// x - array of size 4
|
||||
// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
|
||||
// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3],
|
||||
// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3],
|
||||
int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d)
|
||||
{ // solve equation x^4 + a*x^3 + b*x^2 + c*x + d by Dekart-Euler method
|
||||
// move to a=0:
|
||||
btScalar d1 = d + 0.25 * a * (0.25 * b * a - 3. / 64 * a * a * a - c);
|
||||
btScalar c1 = c + 0.5 * a * (0.25 * a * a - b);
|
||||
btScalar b1 = b - 0.375 * a * a;
|
||||
int res = SolveP4De(x, b1, c1, d1);
|
||||
if (res == 4) {
|
||||
x[0] -= a / 4;
|
||||
x[1] -= a / 4;
|
||||
x[2] -= a / 4;
|
||||
x[3] -= a / 4;
|
||||
}
|
||||
else if (res == 2) {
|
||||
x[0] -= a / 4;
|
||||
x[1] -= a / 4;
|
||||
x[2] -= a / 4;
|
||||
}
|
||||
else {
|
||||
x[0] -= a / 4;
|
||||
x[2] -= a / 4;
|
||||
}
|
||||
// one Newton step for each real root:
|
||||
if (res > 0) {
|
||||
x[0] = N4Step(x[0], a, b, c, d);
|
||||
x[1] = N4Step(x[1], a, b, c, d);
|
||||
}
|
||||
if (res > 2) {
|
||||
x[2] = N4Step(x[2], a, b, c, d);
|
||||
x[3] = N4Step(x[3], a, b, c, d);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
//-----------------------------------------------------------------------------
|
||||
#define F5(t) (((((t + a) * t + b) * t + c) * t + d) * t + e)
|
||||
//-----------------------------------------------------------------------------
|
||||
btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e) // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
|
||||
{
|
||||
int cnt;
|
||||
if (fabs(e) < eps)
|
||||
return 0;
|
||||
|
||||
btScalar brd = fabs(a); // brd - border of real roots
|
||||
if (fabs(b) > brd)
|
||||
brd = fabs(b);
|
||||
if (fabs(c) > brd)
|
||||
brd = fabs(c);
|
||||
if (fabs(d) > brd)
|
||||
brd = fabs(d);
|
||||
if (fabs(e) > brd)
|
||||
brd = fabs(e);
|
||||
brd++; // brd - border of real roots
|
||||
|
||||
btScalar x0, f0; // less than root
|
||||
btScalar x1, f1; // greater than root
|
||||
btScalar x2, f2, f2s; // next values, f(x2), f'(x2)
|
||||
btScalar dx = 0;
|
||||
|
||||
if (e < 0) {
|
||||
x0 = 0;
|
||||
x1 = brd;
|
||||
f0 = e;
|
||||
f1 = F5(x1);
|
||||
x2 = 0.01 * brd;
|
||||
} // positive root
|
||||
else {
|
||||
x0 = -brd;
|
||||
x1 = 0;
|
||||
f0 = F5(x0);
|
||||
f1 = e;
|
||||
x2 = -0.01 * brd;
|
||||
} // negative root
|
||||
|
||||
if (fabs(f0) < eps)
|
||||
return x0;
|
||||
if (fabs(f1) < eps)
|
||||
return x1;
|
||||
|
||||
// now x0<x1, f(x0)<0, f(x1)>0
|
||||
// Firstly 10 bisections
|
||||
for (cnt = 0; cnt < 10; cnt++) {
|
||||
x2 = (x0 + x1) / 2; // next point
|
||||
//x2 = x0 - f0*(x1 - x0) / (f1 - f0); // next point
|
||||
f2 = F5(x2); // f(x2)
|
||||
if (fabs(f2) < eps)
|
||||
return x2;
|
||||
if (f2 > 0) {
|
||||
x1 = x2;
|
||||
f1 = f2;
|
||||
}
|
||||
else {
|
||||
x0 = x2;
|
||||
f0 = f2;
|
||||
}
|
||||
}
|
||||
|
||||
// At each step:
|
||||
// x0<x1, f(x0)<0, f(x1)>0.
|
||||
// x2 - next value
|
||||
// we hope that x0 < x2 < x1, but not necessarily
|
||||
do {
|
||||
if (cnt++ > 50)
|
||||
break;
|
||||
if (x2 <= x0 || x2 >= x1)
|
||||
x2 = (x0 + x1) / 2; // now x0 < x2 < x1
|
||||
f2 = F5(x2); // f(x2)
|
||||
if (fabs(f2) < eps)
|
||||
return x2;
|
||||
if (f2 > 0) {
|
||||
x1 = x2;
|
||||
f1 = f2;
|
||||
}
|
||||
else {
|
||||
x0 = x2;
|
||||
f0 = f2;
|
||||
}
|
||||
f2s = (((5 * x2 + 4 * a) * x2 + 3 * b) * x2 + 2 * c) * x2 + d; // f'(x2)
|
||||
if (fabs(f2s) < eps) {
|
||||
x2 = 1e99;
|
||||
continue;
|
||||
}
|
||||
dx = f2 / f2s;
|
||||
x2 -= dx;
|
||||
} while (fabs(dx) > eps);
|
||||
return x2;
|
||||
} // SolveP5_1(btScalar a,btScalar b,btScalar c,btScalar d,btScalar e) // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
|
||||
//-----------------------------------------------------------------------------
|
||||
int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e) // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
|
||||
{
|
||||
btScalar r = x[0] = SolveP5_1(a, b, c, d, e);
|
||||
btScalar a1 = a + r, b1 = b + r * a1, c1 = c + r * b1, d1 = d + r * c1;
|
||||
return 1 + SolveP4(x + 1, a1, b1, c1, d1);
|
||||
} // SolveP5(btScalar *x,btScalar a,btScalar b,btScalar c,btScalar d,btScalar e) // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
|
||||
//-----------------------------------------------------------------------------
|
|
@ -0,0 +1,38 @@
|
|||
// poly34.h : solution of cubic and quartic equation
|
||||
// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
|
||||
// khash2 (at) gmail.com
|
||||
|
||||
#ifndef POLY_34
|
||||
#define POLY_34
|
||||
#include "LinearMath/btScalar.h"
|
||||
// x - array of size 2
|
||||
// return 2: 2 real roots x[0], x[1]
|
||||
// return 0: pair of complex roots: x[0]i*x[1]
|
||||
int SolveP2(btScalar* x, btScalar a, btScalar b); // solve equation x^2 + a*x + b = 0
|
||||
|
||||
// x - array of size 3
|
||||
// return 3: 3 real roots x[0], x[1], x[2]
|
||||
// return 1: 1 real root x[0] and pair of complex roots: x[1]i*x[2]
|
||||
int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c); // solve cubic equation x^3 + a*x^2 + b*x + c = 0
|
||||
|
||||
// x - array of size 4
|
||||
// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
|
||||
// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3],
|
||||
// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3],
|
||||
int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d); // solve equation x^4 + a*x^3 + b*x^2 + c*x + d = 0 by Dekart-Euler method
|
||||
|
||||
// x - array of size 5
|
||||
// return 5: 5 real roots x[0], x[1], x[2], x[3], x[4], possible multiple roots
|
||||
// return 3: 3 real roots x[0], x[1], x[2] and complex x[3]i*x[4],
|
||||
// return 1: 1 real root x[0] and two pair of complex roots: x[1]i*x[2], x[3]i*x[4],
|
||||
int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// And some additional functions for internal use.
|
||||
// Your may remove this definitions from here
|
||||
int SolveP4Bi(btScalar* x, btScalar b, btScalar d); // solve equation x^4 + b*x^2 + d = 0
|
||||
int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d); // solve equation x^4 + b*x^2 + c*x + d = 0
|
||||
void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b); // returns as a+i*s, sqrt(x+i*y)
|
||||
btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d); // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
|
||||
btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
|
||||
#endif
|
|
@ -41,7 +41,7 @@
|
|||
|
||||
#ifndef btImplicitQRSVD_h
|
||||
#define btImplicitQRSVD_h
|
||||
|
||||
#include <limits>
|
||||
#include "btMatrix3x3.h"
|
||||
class btMatrix2x2
|
||||
{
|
||||
|
@ -753,7 +753,7 @@ inline int singularValueDecomposition(const btMatrix3x3& A,
|
|||
btMatrix3x3& V,
|
||||
btScalar tol = 128*std::numeric_limits<btScalar>::epsilon())
|
||||
{
|
||||
using std::fabs;
|
||||
// using std::fabs;
|
||||
btMatrix3x3 B = A;
|
||||
U.setIdentity();
|
||||
V.setIdentity();
|
||||
|
|
|
@ -26,10 +26,12 @@ subject to the following restrictions:
|
|||
#endif
|
||||
|
||||
#if defined(BT_USE_SSE)
|
||||
#define v0000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f))
|
||||
#define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f))
|
||||
#define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f))
|
||||
#define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f))
|
||||
#elif defined(BT_USE_NEON)
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0000) = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
|
||||
|
@ -330,6 +332,20 @@ public:
|
|||
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
||||
#endif
|
||||
}
|
||||
|
||||
/**@brief Set the matrix to the identity */
|
||||
void setZero()
|
||||
{
|
||||
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
|
||||
m_el[0] = v0000;
|
||||
m_el[1] = v0000;
|
||||
m_el[2] = v0000;
|
||||
#else
|
||||
setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0),
|
||||
btScalar(0.0), btScalar(0.0), btScalar(0.0),
|
||||
btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
||||
#endif
|
||||
}
|
||||
|
||||
static const btMatrix3x3& getIdentity()
|
||||
{
|
||||
|
|
|
@ -346,10 +346,9 @@ struct btMatrixX
|
|||
T dotProd = 0;
|
||||
{
|
||||
{
|
||||
int r = rows();
|
||||
int c = cols();
|
||||
|
||||
for (int k = 0; k < cols(); k++)
|
||||
for (int k = 0; k < c; k++)
|
||||
{
|
||||
T w = (*this)(i, k);
|
||||
if (other(k, j) != 0.f)
|
||||
|
|
|
@ -0,0 +1,83 @@
|
|||
//
|
||||
// btModifiedGramSchmidt.h
|
||||
// LinearMath
|
||||
//
|
||||
// Created by Xuchen Han on 4/4/20.
|
||||
//
|
||||
|
||||
#ifndef btModifiedGramSchmidt_h
|
||||
#define btModifiedGramSchmidt_h
|
||||
|
||||
#include "btReducedVector.h"
|
||||
#include "btAlignedObjectArray.h"
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
template<class TV>
|
||||
class btModifiedGramSchmidt
|
||||
{
|
||||
public:
|
||||
btAlignedObjectArray<TV> m_in;
|
||||
btAlignedObjectArray<TV> m_out;
|
||||
|
||||
btModifiedGramSchmidt(const btAlignedObjectArray<TV>& vecs): m_in(vecs)
|
||||
{
|
||||
m_out.resize(0);
|
||||
}
|
||||
|
||||
void solve()
|
||||
{
|
||||
m_out.resize(m_in.size());
|
||||
for (int i = 0; i < m_in.size(); ++i)
|
||||
{
|
||||
// printf("========= starting %d ==========\n", i);
|
||||
TV v(m_in[i]);
|
||||
// v.print();
|
||||
for (int j = 0; j < i; ++j)
|
||||
{
|
||||
v = v - v.proj(m_out[j]);
|
||||
// v.print();
|
||||
}
|
||||
v.normalize();
|
||||
m_out[i] = v;
|
||||
// v.print();
|
||||
}
|
||||
}
|
||||
|
||||
void test()
|
||||
{
|
||||
std::cout << SIMD_EPSILON << std::endl;
|
||||
printf("=======inputs=========\n");
|
||||
for (int i = 0; i < m_out.size(); ++i)
|
||||
{
|
||||
m_in[i].print();
|
||||
}
|
||||
printf("=======output=========\n");
|
||||
for (int i = 0; i < m_out.size(); ++i)
|
||||
{
|
||||
m_out[i].print();
|
||||
}
|
||||
btScalar eps = SIMD_EPSILON;
|
||||
for (int i = 0; i < m_out.size(); ++i)
|
||||
{
|
||||
for (int j = 0; j < m_out.size(); ++j)
|
||||
{
|
||||
if (i == j)
|
||||
{
|
||||
if (std::abs(1.0-m_out[i].dot(m_out[j])) > eps)// && std::abs(m_out[i].dot(m_out[j])) > eps)
|
||||
{
|
||||
printf("vec[%d] is not unit, norm squared = %f\n", i,m_out[i].dot(m_out[j]));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (std::abs(m_out[i].dot(m_out[j])) > eps)
|
||||
{
|
||||
printf("vec[%d] and vec[%d] is not orthogonal, dot product = %f\n", i, j, m_out[i].dot(m_out[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
template class btModifiedGramSchmidt<btReducedVector>;
|
||||
#endif /* btModifiedGramSchmidt_h */
|
|
@ -0,0 +1,170 @@
|
|||
//
|
||||
// btReducedVector.cpp
|
||||
// LinearMath
|
||||
//
|
||||
// Created by Xuchen Han on 4/4/20.
|
||||
//
|
||||
#include <stdio.h>
|
||||
#include "btReducedVector.h"
|
||||
#include <cmath>
|
||||
|
||||
// returns the projection of this onto other
|
||||
btReducedVector btReducedVector::proj(const btReducedVector& other) const
|
||||
{
|
||||
btReducedVector ret(m_sz);
|
||||
btScalar other_length2 = other.length2();
|
||||
if (other_length2 < SIMD_EPSILON)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
return other*(this->dot(other))/other_length2;
|
||||
}
|
||||
|
||||
void btReducedVector::normalize()
|
||||
{
|
||||
if (this->length2() < SIMD_EPSILON)
|
||||
{
|
||||
m_indices.clear();
|
||||
m_vecs.clear();
|
||||
return;
|
||||
}
|
||||
*this /= std::sqrt(this->length2());
|
||||
}
|
||||
|
||||
bool btReducedVector::testAdd() const
|
||||
{
|
||||
int sz = 5;
|
||||
btAlignedObjectArray<int> id1;
|
||||
id1.push_back(1);
|
||||
id1.push_back(3);
|
||||
btAlignedObjectArray<btVector3> v1;
|
||||
v1.push_back(btVector3(1,0,1));
|
||||
v1.push_back(btVector3(3,1,5));
|
||||
btAlignedObjectArray<int> id2;
|
||||
id2.push_back(2);
|
||||
id2.push_back(3);
|
||||
id2.push_back(5);
|
||||
btAlignedObjectArray<btVector3> v2;
|
||||
v2.push_back(btVector3(2,3,1));
|
||||
v2.push_back(btVector3(3,4,9));
|
||||
v2.push_back(btVector3(0,4,0));
|
||||
btAlignedObjectArray<int> id3;
|
||||
id3.push_back(1);
|
||||
id3.push_back(2);
|
||||
id3.push_back(3);
|
||||
id3.push_back(5);
|
||||
btAlignedObjectArray<btVector3> v3;
|
||||
v3.push_back(btVector3(1,0,1));
|
||||
v3.push_back(btVector3(2,3,1));
|
||||
v3.push_back(btVector3(6,5,14));
|
||||
v3.push_back(btVector3(0,4,0));
|
||||
btReducedVector rv1(sz, id1, v1);
|
||||
btReducedVector rv2(sz, id2, v2);
|
||||
btReducedVector ans(sz, id3, v3);
|
||||
bool ret = ((ans == rv1+rv2) && (ans == rv2+rv1));
|
||||
if (!ret)
|
||||
printf("btReducedVector testAdd failed\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool btReducedVector::testMinus() const
|
||||
{
|
||||
int sz = 5;
|
||||
btAlignedObjectArray<int> id1;
|
||||
id1.push_back(1);
|
||||
id1.push_back(3);
|
||||
btAlignedObjectArray<btVector3> v1;
|
||||
v1.push_back(btVector3(1,0,1));
|
||||
v1.push_back(btVector3(3,1,5));
|
||||
btAlignedObjectArray<int> id2;
|
||||
id2.push_back(2);
|
||||
id2.push_back(3);
|
||||
id2.push_back(5);
|
||||
btAlignedObjectArray<btVector3> v2;
|
||||
v2.push_back(btVector3(2,3,1));
|
||||
v2.push_back(btVector3(3,4,9));
|
||||
v2.push_back(btVector3(0,4,0));
|
||||
btAlignedObjectArray<int> id3;
|
||||
id3.push_back(1);
|
||||
id3.push_back(2);
|
||||
id3.push_back(3);
|
||||
id3.push_back(5);
|
||||
btAlignedObjectArray<btVector3> v3;
|
||||
v3.push_back(btVector3(-1,-0,-1));
|
||||
v3.push_back(btVector3(2,3,1));
|
||||
v3.push_back(btVector3(0,3,4));
|
||||
v3.push_back(btVector3(0,4,0));
|
||||
btReducedVector rv1(sz, id1, v1);
|
||||
btReducedVector rv2(sz, id2, v2);
|
||||
btReducedVector ans(sz, id3, v3);
|
||||
bool ret = (ans == rv2-rv1);
|
||||
if (!ret)
|
||||
printf("btReducedVector testMinus failed\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool btReducedVector::testDot() const
|
||||
{
|
||||
int sz = 5;
|
||||
btAlignedObjectArray<int> id1;
|
||||
id1.push_back(1);
|
||||
id1.push_back(3);
|
||||
btAlignedObjectArray<btVector3> v1;
|
||||
v1.push_back(btVector3(1,0,1));
|
||||
v1.push_back(btVector3(3,1,5));
|
||||
btAlignedObjectArray<int> id2;
|
||||
id2.push_back(2);
|
||||
id2.push_back(3);
|
||||
id2.push_back(5);
|
||||
btAlignedObjectArray<btVector3> v2;
|
||||
v2.push_back(btVector3(2,3,1));
|
||||
v2.push_back(btVector3(3,4,9));
|
||||
v2.push_back(btVector3(0,4,0));
|
||||
btReducedVector rv1(sz, id1, v1);
|
||||
btReducedVector rv2(sz, id2, v2);
|
||||
btScalar ans = 58;
|
||||
bool ret = (ans == rv2.dot(rv1) && ans == rv1.dot(rv2));
|
||||
ans = 14+16+9+16+81;
|
||||
ret &= (ans==rv2.dot(rv2));
|
||||
|
||||
if (!ret)
|
||||
printf("btReducedVector testDot failed\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool btReducedVector::testMultiply() const
|
||||
{
|
||||
int sz = 5;
|
||||
btAlignedObjectArray<int> id1;
|
||||
id1.push_back(1);
|
||||
id1.push_back(3);
|
||||
btAlignedObjectArray<btVector3> v1;
|
||||
v1.push_back(btVector3(1,0,1));
|
||||
v1.push_back(btVector3(3,1,5));
|
||||
btScalar s = 2;
|
||||
btReducedVector rv1(sz, id1, v1);
|
||||
btAlignedObjectArray<int> id2;
|
||||
id2.push_back(1);
|
||||
id2.push_back(3);
|
||||
btAlignedObjectArray<btVector3> v2;
|
||||
v2.push_back(btVector3(2,0,2));
|
||||
v2.push_back(btVector3(6,2,10));
|
||||
btReducedVector ans(sz, id2, v2);
|
||||
bool ret = (ans == rv1*s);
|
||||
if (!ret)
|
||||
printf("btReducedVector testMultiply failed\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
void btReducedVector::test() const
|
||||
{
|
||||
bool ans = testAdd() && testMinus() && testDot() && testMultiply();
|
||||
if (ans)
|
||||
{
|
||||
printf("All tests passed\n");
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("Tests failed\n");
|
||||
}
|
||||
}
|
|
@ -0,0 +1,320 @@
|
|||
//
|
||||
// btReducedVectors.h
|
||||
// BulletLinearMath
|
||||
//
|
||||
// Created by Xuchen Han on 4/4/20.
|
||||
//
|
||||
#ifndef btReducedVectors_h
|
||||
#define btReducedVectors_h
|
||||
#include "btVector3.h"
|
||||
#include "btMatrix3x3.h"
|
||||
#include "btAlignedObjectArray.h"
|
||||
#include <stdio.h>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
struct TwoInts
|
||||
{
|
||||
int a,b;
|
||||
};
|
||||
inline bool operator<(const TwoInts& A, const TwoInts& B)
|
||||
{
|
||||
return A.b < B.b;
|
||||
}
|
||||
|
||||
|
||||
// A helper vector type used for CG projections
|
||||
class btReducedVector
|
||||
{
|
||||
public:
|
||||
btAlignedObjectArray<int> m_indices;
|
||||
btAlignedObjectArray<btVector3> m_vecs;
|
||||
int m_sz; // all m_indices value < m_sz
|
||||
public:
|
||||
btReducedVector():m_sz(0)
|
||||
{
|
||||
m_indices.resize(0);
|
||||
m_vecs.resize(0);
|
||||
m_indices.clear();
|
||||
m_vecs.clear();
|
||||
}
|
||||
|
||||
btReducedVector(int sz): m_sz(sz)
|
||||
{
|
||||
m_indices.resize(0);
|
||||
m_vecs.resize(0);
|
||||
m_indices.clear();
|
||||
m_vecs.clear();
|
||||
}
|
||||
|
||||
btReducedVector(int sz, const btAlignedObjectArray<int>& indices, const btAlignedObjectArray<btVector3>& vecs): m_sz(sz), m_indices(indices), m_vecs(vecs)
|
||||
{
|
||||
}
|
||||
|
||||
void simplify()
|
||||
{
|
||||
btAlignedObjectArray<int> old_indices(m_indices);
|
||||
btAlignedObjectArray<btVector3> old_vecs(m_vecs);
|
||||
m_indices.resize(0);
|
||||
m_vecs.resize(0);
|
||||
m_indices.clear();
|
||||
m_vecs.clear();
|
||||
for (int i = 0; i < old_indices.size(); ++i)
|
||||
{
|
||||
if (old_vecs[i].length2() > SIMD_EPSILON)
|
||||
{
|
||||
m_indices.push_back(old_indices[i]);
|
||||
m_vecs.push_back(old_vecs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
btReducedVector operator+(const btReducedVector& other)
|
||||
{
|
||||
btReducedVector ret(m_sz);
|
||||
int i=0, j=0;
|
||||
while (i < m_indices.size() && j < other.m_indices.size())
|
||||
{
|
||||
if (m_indices[i] < other.m_indices[j])
|
||||
{
|
||||
ret.m_indices.push_back(m_indices[i]);
|
||||
ret.m_vecs.push_back(m_vecs[i]);
|
||||
++i;
|
||||
}
|
||||
else if (m_indices[i] > other.m_indices[j])
|
||||
{
|
||||
ret.m_indices.push_back(other.m_indices[j]);
|
||||
ret.m_vecs.push_back(other.m_vecs[j]);
|
||||
++j;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.m_indices.push_back(other.m_indices[j]);
|
||||
ret.m_vecs.push_back(m_vecs[i] + other.m_vecs[j]);
|
||||
++i; ++j;
|
||||
}
|
||||
}
|
||||
while (i < m_indices.size())
|
||||
{
|
||||
ret.m_indices.push_back(m_indices[i]);
|
||||
ret.m_vecs.push_back(m_vecs[i]);
|
||||
++i;
|
||||
}
|
||||
while (j < other.m_indices.size())
|
||||
{
|
||||
ret.m_indices.push_back(other.m_indices[j]);
|
||||
ret.m_vecs.push_back(other.m_vecs[j]);
|
||||
++j;
|
||||
}
|
||||
ret.simplify();
|
||||
return ret;
|
||||
}
|
||||
|
||||
btReducedVector operator-()
|
||||
{
|
||||
btReducedVector ret(m_sz);
|
||||
for (int i = 0; i < m_indices.size(); ++i)
|
||||
{
|
||||
ret.m_indices.push_back(m_indices[i]);
|
||||
ret.m_vecs.push_back(-m_vecs[i]);
|
||||
}
|
||||
ret.simplify();
|
||||
return ret;
|
||||
}
|
||||
|
||||
btReducedVector operator-(const btReducedVector& other)
|
||||
{
|
||||
btReducedVector ret(m_sz);
|
||||
int i=0, j=0;
|
||||
while (i < m_indices.size() && j < other.m_indices.size())
|
||||
{
|
||||
if (m_indices[i] < other.m_indices[j])
|
||||
{
|
||||
ret.m_indices.push_back(m_indices[i]);
|
||||
ret.m_vecs.push_back(m_vecs[i]);
|
||||
++i;
|
||||
}
|
||||
else if (m_indices[i] > other.m_indices[j])
|
||||
{
|
||||
ret.m_indices.push_back(other.m_indices[j]);
|
||||
ret.m_vecs.push_back(-other.m_vecs[j]);
|
||||
++j;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret.m_indices.push_back(other.m_indices[j]);
|
||||
ret.m_vecs.push_back(m_vecs[i] - other.m_vecs[j]);
|
||||
++i; ++j;
|
||||
}
|
||||
}
|
||||
while (i < m_indices.size())
|
||||
{
|
||||
ret.m_indices.push_back(m_indices[i]);
|
||||
ret.m_vecs.push_back(m_vecs[i]);
|
||||
++i;
|
||||
}
|
||||
while (j < other.m_indices.size())
|
||||
{
|
||||
ret.m_indices.push_back(other.m_indices[j]);
|
||||
ret.m_vecs.push_back(-other.m_vecs[j]);
|
||||
++j;
|
||||
}
|
||||
ret.simplify();
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool operator==(const btReducedVector& other) const
|
||||
{
|
||||
if (m_sz != other.m_sz)
|
||||
return false;
|
||||
if (m_indices.size() != other.m_indices.size())
|
||||
return false;
|
||||
for (int i = 0; i < m_indices.size(); ++i)
|
||||
{
|
||||
if (m_indices[i] != other.m_indices[i] || m_vecs[i] != other.m_vecs[i])
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool operator!=(const btReducedVector& other) const
|
||||
{
|
||||
return !(*this == other);
|
||||
}
|
||||
|
||||
btReducedVector& operator=(const btReducedVector& other)
|
||||
{
|
||||
if (this == &other)
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
m_sz = other.m_sz;
|
||||
m_indices.copyFromArray(other.m_indices);
|
||||
m_vecs.copyFromArray(other.m_vecs);
|
||||
return *this;
|
||||
}
|
||||
|
||||
btScalar dot(const btReducedVector& other) const
|
||||
{
|
||||
btScalar ret = 0;
|
||||
int j = 0;
|
||||
for (int i = 0; i < m_indices.size(); ++i)
|
||||
{
|
||||
while (j < other.m_indices.size() && other.m_indices[j] < m_indices[i])
|
||||
{
|
||||
++j;
|
||||
}
|
||||
if (j < other.m_indices.size() && other.m_indices[j] == m_indices[i])
|
||||
{
|
||||
ret += m_vecs[i].dot(other.m_vecs[j]);
|
||||
// ++j;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
btScalar dot(const btAlignedObjectArray<btVector3>& other) const
|
||||
{
|
||||
btScalar ret = 0;
|
||||
for (int i = 0; i < m_indices.size(); ++i)
|
||||
{
|
||||
ret += m_vecs[i].dot(other[m_indices[i]]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
btScalar length2() const
|
||||
{
|
||||
return this->dot(*this);
|
||||
}
|
||||
|
||||
void normalize();
|
||||
|
||||
// returns the projection of this onto other
|
||||
btReducedVector proj(const btReducedVector& other) const;
|
||||
|
||||
bool testAdd() const;
|
||||
|
||||
bool testMinus() const;
|
||||
|
||||
bool testDot() const;
|
||||
|
||||
bool testMultiply() const;
|
||||
|
||||
void test() const;
|
||||
|
||||
void print() const
|
||||
{
|
||||
for (int i = 0; i < m_indices.size(); ++i)
|
||||
{
|
||||
printf("%d: (%f, %f, %f)/", m_indices[i], m_vecs[i][0],m_vecs[i][1],m_vecs[i][2]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
void sort()
|
||||
{
|
||||
std::vector<TwoInts> tuples;
|
||||
for (int i = 0; i < m_indices.size(); ++i)
|
||||
{
|
||||
TwoInts ti;
|
||||
ti.a = i;
|
||||
ti.b = m_indices[i];
|
||||
tuples.push_back(ti);
|
||||
}
|
||||
std::sort(tuples.begin(), tuples.end());
|
||||
btAlignedObjectArray<int> new_indices;
|
||||
btAlignedObjectArray<btVector3> new_vecs;
|
||||
for (int i = 0; i < tuples.size(); ++i)
|
||||
{
|
||||
new_indices.push_back(tuples[i].b);
|
||||
new_vecs.push_back(m_vecs[tuples[i].a]);
|
||||
}
|
||||
m_indices = new_indices;
|
||||
m_vecs = new_vecs;
|
||||
}
|
||||
};
|
||||
|
||||
SIMD_FORCE_INLINE btReducedVector operator*(const btReducedVector& v, btScalar s)
|
||||
{
|
||||
btReducedVector ret(v.m_sz);
|
||||
for (int i = 0; i < v.m_indices.size(); ++i)
|
||||
{
|
||||
ret.m_indices.push_back(v.m_indices[i]);
|
||||
ret.m_vecs.push_back(s*v.m_vecs[i]);
|
||||
}
|
||||
ret.simplify();
|
||||
return ret;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btReducedVector operator*(btScalar s, const btReducedVector& v)
|
||||
{
|
||||
return v*s;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btReducedVector operator/(const btReducedVector& v, btScalar s)
|
||||
{
|
||||
return v * (1.0/s);
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btReducedVector& operator/=(btReducedVector& v, btScalar s)
|
||||
{
|
||||
v = v/s;
|
||||
return v;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btReducedVector& operator+=(btReducedVector& v1, const btReducedVector& v2)
|
||||
{
|
||||
v1 = v1+v2;
|
||||
return v1;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btReducedVector& operator-=(btReducedVector& v1, const btReducedVector& v2)
|
||||
{
|
||||
v1 = v1-v2;
|
||||
return v1;
|
||||
}
|
||||
|
||||
#endif /* btReducedVectors_h */
|
|
@ -23,6 +23,7 @@
|
|||
#include "BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp"
|
||||
#include "BulletCollision/CollisionDispatch/btSphereBoxCollisionAlgorithm.cpp"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.cpp"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcherMt.cpp"
|
||||
#include "BulletCollision/CollisionDispatch/btConvexPlaneCollisionAlgorithm.cpp"
|
||||
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.cpp"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObject.cpp"
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#include "LinearMath/btConvexHullComputer.cpp"
|
||||
#include "LinearMath/btQuickprof.cpp"
|
||||
#include "LinearMath/btThreads.cpp"
|
||||
#include "LinearMath/btReducedVector.cpp"
|
||||
#include "LinearMath/TaskScheduler/btTaskScheduler.cpp"
|
||||
#include "LinearMath/TaskScheduler/btThreadSupportPosix.cpp"
|
||||
#include "LinearMath/TaskScheduler/btThreadSupportWin32.cpp"
|
||||
|
|
Loading…
Reference in New Issue