Refactor Curve3D::_bake() method

The main change is to caculate tangent directly from bezier curve, without going
through discretized polyline, avoiding pitfalls of discretization.

Other changes are:
1. Add an bezier_derivative() method for Vector3, Vector2, and Math;
2. Add an tesselate_even_length() method to Curve3D, which tesselate bezier curve to even length segments adaptively;
3. Cache the tangent vectors in baked_tangent_vector_cache;
This commit is contained in:
Yaohua Xiong 2022-11-23 11:11:58 +08:00
parent fa270c2456
commit f9fa182abc
11 changed files with 223 additions and 130 deletions

View File

@ -364,6 +364,26 @@ public:
return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
}
static _ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
/* Formula from Wikipedia article on Bezier curves. */
double omt = (1.0 - p_t);
double omt2 = omt * omt;
double t2 = p_t * p_t;
double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
return d;
}
static _ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
/* Formula from Wikipedia article on Bezier curves. */
float omt = (1.0f - p_t);
float omt2 = omt * omt;
float t2 = p_t * p_t;
float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2;
return d;
}
static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
double difference = fmod(p_to - p_from, Math_TAU);
double distance = fmod(2.0 * difference, Math_TAU) - difference;

View File

@ -112,6 +112,7 @@ struct _NO_DISCARD_ Vector2 {
_FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const;
_FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
_FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
_FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
@ -289,6 +290,18 @@ Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p
return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}
Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
Vector2 res = *this;
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - p_t);
real_t omt2 = omt * omt;
real_t t2 = p_t * p_t;
Vector2 d = (p_control_1 - res) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
return d;
}
Vector2 Vector2::direction_to(const Vector2 &p_to) const {
Vector2 ret(p_to.x - x, p_to.y - y);
ret.normalize();

View File

@ -100,6 +100,7 @@ struct _NO_DISCARD_ Vector3 {
_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
_FORCE_INLINE_ Vector3 bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
@ -265,6 +266,18 @@ Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p
return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}
Vector3 Vector3::bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
Vector3 res = *this;
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - p_t);
real_t omt2 = omt * omt;
real_t t2 = p_t * p_t;
Vector3 d = (p_control_1 - res) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
return d;
}
real_t Vector3::distance_to(const Vector3 &p_to) const {
return (p_to - *this).length();
}

View File

@ -1615,6 +1615,7 @@ static void _register_variant_builtin_methods() {
bind_method(Vector2, cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray());
bind_method(Vector2, cubic_interpolate_in_time, sarray("b", "pre_a", "post_b", "weight", "b_t", "pre_a_t", "post_b_t"), varray());
bind_method(Vector2, bezier_interpolate, sarray("control_1", "control_2", "end", "t"), varray());
bind_method(Vector2, bezier_derivative, sarray("control_1", "control_2", "end", "t"), varray());
bind_method(Vector2, max_axis_index, sarray(), varray());
bind_method(Vector2, min_axis_index, sarray(), varray());
bind_method(Vector2, move_toward, sarray("to", "delta"), varray());
@ -1707,6 +1708,7 @@ static void _register_variant_builtin_methods() {
bind_method(Vector3, cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray());
bind_method(Vector3, cubic_interpolate_in_time, sarray("b", "pre_a", "post_b", "weight", "b_t", "pre_a_t", "post_b_t"), varray());
bind_method(Vector3, bezier_interpolate, sarray("control_1", "control_2", "end", "t"), varray());
bind_method(Vector3, bezier_derivative, sarray("control_1", "control_2", "end", "t"), varray());
bind_method(Vector3, move_toward, sarray("to", "delta"), varray());
bind_method(Vector3, dot, sarray("with"), varray());
bind_method(Vector3, cross, sarray("with"), varray());

View File

@ -392,6 +392,10 @@ struct VariantUtilityFunctions {
return Math::bezier_interpolate(p_start, p_control_1, p_control_2, p_end, p_t);
}
static inline double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
return Math::bezier_derivative(p_start, p_control_1, p_control_2, p_end, p_t);
}
static inline double lerp_angle(double from, double to, double weight) {
return Math::lerp_angle(from, to, weight);
}
@ -1440,6 +1444,7 @@ void Variant::_register_variant_utility_functions() {
FUNCBINDR(cubic_interpolate_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cubic_interpolate_angle_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(bezier_interpolate, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(bezier_derivative, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(lerp_angle, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(inverse_lerp, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(remap, sarray("value", "istart", "istop", "ostart", "ostop"), Variant::UTILITY_FUNC_TYPE_MATH);

View File

@ -106,6 +106,17 @@
[/codeblock]
</description>
</method>
<method name="bezier_derivative">
<return type="float" />
<param index="0" name="start" type="float" />
<param index="1" name="control_1" type="float" />
<param index="2" name="control_2" type="float" />
<param index="3" name="end" type="float" />
<param index="4" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on a one-dimensional [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate">
<return type="float" />
<param index="0" name="start" type="float" />

View File

@ -192,6 +192,15 @@
[param tolerance_degrees] controls how many degrees the midpoint of a segment may deviate from the real curve, before the segment has to be subdivided.
</description>
</method>
<method name="tessellate_even_length" qualifiers="const">
<return type="PackedVector3Array" />
<param index="0" name="max_stages" type="int" default="5" />
<param index="1" name="tolerance_length" type="float" default="0.2" />
<description>
Returns a list of points along the curve, with almost uniform density. [param max_stages] controls how many subdivisions a curve segment may face before it is considered approximate enough. Each subdivision splits the segment in half, so the default 5 stages may mean up to 32 subdivisions per curve segment. Increase with care!
[param tolerance_length] controls the maximal distance between two neighbouring points, before the segment has to be subdivided.
</description>
</method>
</methods>
<members>
<member name="bake_interval" type="float" setter="set_bake_interval" getter="get_bake_interval" default="0.2">

View File

@ -86,6 +86,16 @@
Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
</description>
</method>
<method name="bezier_derivative" qualifiers="const">
<return type="Vector2" />
<param index="0" name="control_1" type="Vector2" />
<param index="1" name="control_2" type="Vector2" />
<param index="2" name="end" type="Vector2" />
<param index="3" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate" qualifiers="const">
<return type="Vector2" />
<param index="0" name="control_1" type="Vector2" />

View File

@ -62,6 +62,16 @@
Returns the unsigned minimum angle to the given vector, in radians.
</description>
</method>
<method name="bezier_derivative" qualifiers="const">
<return type="Vector3" />
<param index="0" name="control_1" type="Vector3" />
<param index="1" name="control_2" type="Vector3" />
<param index="2" name="end" type="Vector3" />
<param index="3" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate" qualifiers="const">
<return type="Vector3" />
<param index="0" name="control_1" type="Vector3" />

View File

@ -1403,6 +1403,22 @@ void Curve3D::_bake_segment3d(RBMap<real_t, Vector3> &r_bake, real_t p_begin, re
}
}
void Curve3D::_bake_segment3d_even_length(RBMap<real_t, Vector3> &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_length) const {
Vector3 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin);
Vector3 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end);
size_t length = beg.distance_to(end);
if (length > p_length && p_depth < p_max_depth) {
real_t mp = (p_begin + p_end) * 0.5;
Vector3 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp);
r_bake[mp] = mid;
_bake_segment3d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length);
_bake_segment3d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length);
}
}
void Curve3D::_bake() const {
if (!baked_cache_dirty) {
return;
@ -1416,6 +1432,7 @@ void Curve3D::_bake() const {
baked_tilt_cache.clear();
baked_dist_cache.clear();
baked_forward_vector_cache.clear();
baked_up_vector_cache.clear();
return;
}
@ -1427,10 +1444,12 @@ void Curve3D::_bake() const {
baked_tilt_cache.set(0, points[0].tilt);
baked_dist_cache.resize(1);
baked_dist_cache.set(0, 0.0);
baked_forward_vector_cache.resize(1);
baked_forward_vector_cache.set(0, Vector3(0.0, 0.0, 1.0));
if (up_vector_enabled) {
baked_up_vector_cache.resize(1);
baked_up_vector_cache.set(0, Vector3(0, 1, 0));
baked_up_vector_cache.set(0, Vector3(0.0, 1.0, 0.0));
} else {
baked_up_vector_cache.clear();
}
@ -1438,101 +1457,52 @@ void Curve3D::_bake() const {
return;
}
Vector3 position = points[0].position;
real_t dist = 0.0;
List<Plane> pointlist; // Abuse Plane for (position, dist)
List<real_t> distlist;
// Start always from origin.
pointlist.push_back(Plane(position, points[0].tilt));
distlist.push_back(0.0);
// Step 1: Sample points
const real_t step = 0.1; // At least 10 substeps ought to be enough?
for (int i = 0; i < points.size() - 1; i++) {
real_t p = 0.0;
while (p < 1.0) {
real_t np = p + step;
if (np > 1.0) {
np = 1.0;
}
Vector3 npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, np);
real_t d = position.distance_to(npp);
if (d > bake_interval) {
// OK! between P and NP there _has_ to be Something, let's go searching!
const int iterations = 10; // Lots of detail!
real_t low = p;
real_t hi = np;
real_t mid = low + (hi - low) * 0.5;
for (int j = 0; j < iterations; j++) {
npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, mid);
d = position.distance_to(npp);
if (bake_interval < d) {
hi = mid;
} else {
low = mid;
}
mid = low + (hi - low) * 0.5;
}
position = npp;
p = mid;
Plane post;
post.normal = position;
post.d = Math::lerp(points[i].tilt, points[i + 1].tilt, mid);
dist += d;
pointlist.push_back(post);
distlist.push_back(dist);
} else {
p = np;
}
}
Vector3 npp = points[i + 1].position;
real_t d = position.distance_to(npp);
if (d > CMP_EPSILON) { // Avoid the degenerate case of two very close points.
position = npp;
Plane post;
post.normal = position;
post.d = points[i + 1].tilt;
dist += d;
pointlist.push_back(post);
distlist.push_back(dist);
}
}
baked_max_ofs = dist;
const int point_count = pointlist.size();
// Step 1: Tesselate curve to (almost) even length segments
{
baked_point_cache.resize(point_count);
Vector3 *w = baked_point_cache.ptrw();
Vector<RBMap<real_t, Vector3>> midpoints = _tessellate_even_length(10, bake_interval);
baked_tilt_cache.resize(point_count);
real_t *wt = baked_tilt_cache.ptrw();
baked_dist_cache.resize(point_count);
real_t *wd = baked_dist_cache.ptrw();
int idx = 0;
for (const Plane &E : pointlist) {
w[idx] = E.normal;
wt[idx] = E.d;
wd[idx] = distlist[idx];
idx++;
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
pc++;
pc += midpoints[i].size();
}
baked_point_cache.resize(pc);
baked_tilt_cache.resize(pc);
baked_dist_cache.resize(pc);
baked_forward_vector_cache.resize(pc);
Vector3 *bpw = baked_point_cache.ptrw();
real_t *btw = baked_tilt_cache.ptrw();
Vector3 *bfw = baked_forward_vector_cache.ptrw();
// Collect positions and sample tilts and tangents for each baked points.
bpw[0] = points[0].position;
bfw[0] = points[0].position.bezier_derivative(points[0].position + points[0].out, points[1].position + points[1].in, points[1].position, 0.0).normalized();
btw[0] = points[0].tilt;
int pidx = 0;
for (int i = 0; i < points.size() - 1; i++) {
for (const KeyValue<real_t, Vector3> &E : midpoints[i]) {
pidx++;
bpw[pidx] = E.value;
bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, E.key).normalized();
btw[pidx] = Math::lerp(points[i].tilt, points[i + 1].tilt, E.key);
}
pidx++;
bpw[pidx] = points[i + 1].position;
bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, 1.0).normalized();
btw[pidx] = points[i + 1].tilt;
}
// Recalculate the baked distances.
real_t *bdw = baked_dist_cache.ptrw();
bdw[0] = 0.0;
for (int i = 0; i < pc - 1; i++) {
bdw[i + 1] = bdw[i] + bpw[i].distance_to(bpw[i + 1]);
}
baked_max_ofs = bdw[pc - 1];
}
if (!up_vector_enabled) {
@ -1545,14 +1515,12 @@ void Curve3D::_bake() const {
// See Dougan, Carl. "The parallel transport frame." Game Programming Gems 2 (2001): 215-219.
// for an example discussing about why not the Frenet frame.
{
PackedVector3Array forward_vectors;
int point_count = baked_point_cache.size();
baked_up_vector_cache.resize(point_count);
forward_vectors.resize(point_count);
Vector3 *up_write = baked_up_vector_cache.ptrw();
Vector3 *forward_write = forward_vectors.ptrw();
const Vector3 *forward_ptr = baked_forward_vector_cache.ptr();
const Vector3 *points_ptr = baked_point_cache.ptr();
Basis frame; // X-right, Y-up, Z-forward.
@ -1560,28 +1528,20 @@ void Curve3D::_bake() const {
// Set the initial frame based on Y-up rule.
{
Vector3 up(0, 1, 0);
Vector3 forward = (points_ptr[1] - points_ptr[0]).normalized();
if (forward.is_equal_approx(Vector3())) {
forward = Vector3(1, 0, 0);
}
Vector3 forward = forward_ptr[0];
if (abs(forward.dot(up)) > 1.0 - UNIT_EPSILON) {
frame_prev = Basis::looking_at(-forward, up);
} else {
if (abs(forward.dot(Vector3(0, 1, 0))) > 1.0 - UNIT_EPSILON) {
frame_prev = Basis::looking_at(-forward, Vector3(1, 0, 0));
} else {
frame_prev = Basis::looking_at(-forward, Vector3(0, 1, 0));
}
up_write[0] = frame_prev.get_column(1);
forward_write[0] = frame_prev.get_column(2);
}
// Calculate the Parallel Transport Frame.
for (int idx = 1; idx < point_count; idx++) {
Vector3 forward = (points_ptr[idx] - points_ptr[idx - 1]).normalized();
if (forward.is_equal_approx(Vector3())) {
forward = frame_prev.get_column(2);
}
Vector3 forward = forward_ptr[idx];
Basis rotate;
rotate.rotate_to_align(frame_prev.get_column(2), forward);
@ -1589,8 +1549,6 @@ void Curve3D::_bake() const {
frame.orthonormalize(); // guard against float error accumulation
up_write[idx] = frame.get_column(1);
forward_write[idx] = frame.get_column(2);
frame_prev = frame;
}
@ -1601,8 +1559,8 @@ void Curve3D::_bake() const {
is_loop = false;
}
real_t dot = forward_write[0].dot(forward_write[point_count - 1]);
if (dot < 1.0 - 0.01) { // Alignment should not be too tight, or it dosen't work for coarse bake interval
real_t dot = forward_ptr[0].dot(forward_ptr[point_count - 1]);
if (dot < 1.0 - UNIT_EPSILON) { // Alignment should not be too tight, or it dosen't work for coarse bake interval.
is_loop = false;
}
}
@ -1612,17 +1570,17 @@ void Curve3D::_bake() const {
const Vector3 up_start = up_write[0];
const Vector3 up_end = up_write[point_count - 1];
real_t sign = SIGN(up_end.cross(up_start).dot(forward_write[0]));
real_t sign = SIGN(up_end.cross(up_start).dot(forward_ptr[0]));
real_t full_angle = Quaternion(up_end, up_start).get_angle();
if (abs(full_angle) < UNIT_EPSILON) {
if (abs(full_angle) < CMP_EPSILON) {
return;
} else {
const real_t *dists = baked_dist_cache.ptr();
for (int idx = 1; idx < point_count; idx++) {
const real_t frac = dists[idx] / baked_max_ofs;
const real_t angle = Math::lerp((real_t)0.0, full_angle, frac);
Basis twist(forward_write[idx] * sign, angle);
Basis twist(forward_ptr[idx] * sign, angle);
up_write[idx] = twist.xform(up_write[idx]);
}
@ -1720,22 +1678,14 @@ Basis Curve3D::_sample_posture(Interval p_interval, bool p_apply_tilt) const {
int idx = p_interval.idx;
real_t frac = p_interval.frac;
Vector3 forward_begin;
Vector3 forward_end;
if (idx == 0) {
forward_begin = (baked_point_cache[1] - baked_point_cache[0]).normalized();
forward_end = (baked_point_cache[1] - baked_point_cache[0]).normalized();
} else {
forward_begin = (baked_point_cache[idx] - baked_point_cache[idx - 1]).normalized();
forward_end = (baked_point_cache[idx + 1] - baked_point_cache[idx]).normalized();
}
Vector3 forward_begin = baked_forward_vector_cache[idx];
Vector3 forward_end = baked_forward_vector_cache[idx + 1];
Vector3 up_begin;
Vector3 up_end;
if (up_vector_enabled) {
const Vector3 *up_ptr = baked_up_vector_cache.ptr();
up_begin = up_ptr[idx];
up_end = up_ptr[idx + 1];
up_begin = baked_up_vector_cache[idx];
up_end = baked_up_vector_cache[idx + 1];
} else {
up_begin = Vector3(0.0, 1.0, 0.0);
up_end = Vector3(0.0, 1.0, 0.0);
@ -2046,6 +1996,50 @@ PackedVector3Array Curve3D::tessellate(int p_max_stages, real_t p_tolerance) con
return tess;
}
Vector<RBMap<real_t, Vector3>> Curve3D::_tessellate_even_length(int p_max_stages, real_t p_length) const {
Vector<RBMap<real_t, Vector3>> midpoints;
ERR_FAIL_COND_V_MSG(points.size() < 2, midpoints, "Curve must have at least 2 control point");
midpoints.resize(points.size() - 1);
for (int i = 0; i < points.size() - 1; i++) {
_bake_segment3d_even_length(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_length);
}
return midpoints;
}
PackedVector3Array Curve3D::tessellate_even_length(int p_max_stages, real_t p_length) const {
PackedVector3Array tess;
Vector<RBMap<real_t, Vector3>> midpoints = _tessellate_even_length(p_max_stages, p_length);
if (midpoints.size() == 0) {
return tess;
}
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
pc++;
pc += midpoints[i].size();
}
tess.resize(pc);
Vector3 *bpw = tess.ptrw();
bpw[0] = points[0].position;
int pidx = 0;
for (int i = 0; i < points.size() - 1; i++) {
for (const KeyValue<real_t, Vector3> &E : midpoints[i]) {
pidx++;
bpw[pidx] = E.value;
}
pidx++;
bpw[pidx] = points[i + 1].position;
}
return tess;
}
bool Curve3D::_set(const StringName &p_name, const Variant &p_value) {
Vector<String> components = String(p_name).split("/", true, 2);
if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) {
@ -2146,6 +2140,7 @@ void Curve3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve3D::get_closest_point);
ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve3D::get_closest_offset);
ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve3D::tessellate, DEFVAL(5), DEFVAL(4));
ClassDB::bind_method(D_METHOD("tessellate_even_length", "max_stages", "tolerance_length"), &Curve3D::tessellate_even_length, DEFVAL(5), DEFVAL(0.2));
ClassDB::bind_method(D_METHOD("_get_data"), &Curve3D::_get_data);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve3D::_set_data);

View File

@ -242,6 +242,7 @@ class Curve3D : public Resource {
mutable PackedVector3Array baked_point_cache;
mutable Vector<real_t> baked_tilt_cache;
mutable PackedVector3Array baked_up_vector_cache;
mutable PackedVector3Array baked_forward_vector_cache;
mutable Vector<real_t> baked_dist_cache;
mutable real_t baked_max_ofs = 0.0;
@ -262,6 +263,7 @@ class Curve3D : public Resource {
bool up_vector_enabled = true;
void _bake_segment3d(RBMap<real_t, Vector3> &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_tol) const;
void _bake_segment3d_even_length(RBMap<real_t, Vector3> &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_length) const;
Dictionary _get_data() const;
void _set_data(const Dictionary &p_data);
@ -272,6 +274,8 @@ class Curve3D : public Resource {
void _add_point(const Vector3 &p_position, const Vector3 &p_in = Vector3(), const Vector3 &p_out = Vector3(), int p_atpos = -1);
void _remove_point(int p_index);
Vector<RBMap<real_t, Vector3>> _tessellate_even_length(int p_max_stages = 5, real_t p_length = 0.2) const;
protected:
static void _bind_methods();
@ -309,7 +313,8 @@ public:
Vector3 get_closest_point(const Vector3 &p_to_point) const;
real_t get_closest_offset(const Vector3 &p_to_point) const;
PackedVector3Array tessellate(int p_max_stages = 5, real_t p_tolerance = 4) const; //useful for display
PackedVector3Array tessellate(int p_max_stages = 5, real_t p_tolerance = 4) const; // Useful for display.
PackedVector3Array tessellate_even_length(int p_max_stages = 5, real_t p_length = 0.2) const; // Useful for baking.
Curve3D();
};