libpng: Enable intrinsics on x86/SSE2, ppc64/VSX, and all arm/NEON

(cherry picked from commit 2c9b7fc7a8)
This commit is contained in:
Rémi Verschelde 2023-06-16 13:20:59 +02:00 committed by Yuri Sizov
parent 8d30a9f2a5
commit fc63a8d349
9 changed files with 1361 additions and 27 deletions

View File

@ -33,21 +33,14 @@ if env["builtin_libpng"]:
# Needed for drivers includes and in platform/web. # Needed for drivers includes and in platform/web.
env.Prepend(CPPPATH=[thirdparty_dir]) env.Prepend(CPPPATH=[thirdparty_dir])
# Currently .ASM filter_neon.S does not compile on NT.
import os
# Enable ARM NEON instructions on 32-bit Android to compile more optimized code.
use_neon = env["platform"] == "android" and env["arch"] == "arm32" and os.name != "nt"
if use_neon:
env_png.Append(CPPDEFINES=[("PNG_ARM_NEON_OPT", 2)])
else:
env_png.Append(CPPDEFINES=[("PNG_ARM_NEON_OPT", 0)])
env_thirdparty = env_png.Clone() env_thirdparty = env_png.Clone()
env_thirdparty.disable_warnings() env_thirdparty.disable_warnings()
env_thirdparty.add_source_files(thirdparty_obj, thirdparty_sources) env_thirdparty.add_source_files(thirdparty_obj, thirdparty_sources)
if use_neon: if env["arch"].startswith("arm"):
if env.msvc: # Can't compile assembly files with MSVC.
env_thirdparty.Append(CPPDEFINES=[("PNG_ARM_NEON_OPT"), 0])
else:
env_neon = env_thirdparty.Clone() env_neon = env_thirdparty.Clone()
if "S_compiler" in env: if "S_compiler" in env:
env_neon["CC"] = env["S_compiler"] env_neon["CC"] = env["S_compiler"]
@ -57,6 +50,13 @@ if env["builtin_libpng"]:
neon_sources.append(env_neon.Object(thirdparty_dir + "/arm/filter_neon.S")) neon_sources.append(env_neon.Object(thirdparty_dir + "/arm/filter_neon.S"))
neon_sources.append(env_neon.Object(thirdparty_dir + "/arm/palette_neon_intrinsics.c")) neon_sources.append(env_neon.Object(thirdparty_dir + "/arm/palette_neon_intrinsics.c"))
thirdparty_obj += neon_sources thirdparty_obj += neon_sources
elif env["arch"].startswith("x86"):
env_thirdparty.Append(CPPDEFINES=["PNG_INTEL_SSE"])
env_thirdparty.add_source_files(thirdparty_obj, thirdparty_dir + "/intel/intel_init.c")
env_thirdparty.add_source_files(thirdparty_obj, thirdparty_dir + "/intel/filter_sse2_intrinsics.c")
elif env["arch"] == "ppc64":
env_thirdparty.add_source_files(thirdparty_obj, thirdparty_dir + "/powerpc/powerpc_init.c")
env_thirdparty.add_source_files(thirdparty_obj, thirdparty_dir + "/powerpc/filter_vsx_intrinsics.c")
env.drivers_sources += thirdparty_obj env.drivers_sources += thirdparty_obj

View File

@ -262,7 +262,6 @@ if env["freetype_enabled"]:
CPPDEFINES=[ CPPDEFINES=[
"FT2_BUILD_LIBRARY", "FT2_BUILD_LIBRARY",
"FT_CONFIG_OPTION_USE_PNG", "FT_CONFIG_OPTION_USE_PNG",
("PNG_ARM_NEON_OPT", 0),
"FT_CONFIG_OPTION_SYSTEM_ZLIB", "FT_CONFIG_OPTION_SYSTEM_ZLIB",
] ]
) )

View File

@ -257,7 +257,6 @@ if env["freetype_enabled"]:
CPPDEFINES=[ CPPDEFINES=[
"FT2_BUILD_LIBRARY", "FT2_BUILD_LIBRARY",
"FT_CONFIG_OPTION_USE_PNG", "FT_CONFIG_OPTION_USE_PNG",
("PNG_ARM_NEON_OPT", 0),
"FT_CONFIG_OPTION_SYSTEM_ZLIB", "FT_CONFIG_OPTION_SYSTEM_ZLIB",
] ]
) )

View File

@ -85,19 +85,18 @@ def configure(env: "Environment"):
env["ENV"]["PATH"] = env["IOS_TOOLCHAIN_PATH"] + "/Developer/usr/bin/:" + env["ENV"]["PATH"] env["ENV"]["PATH"] = env["IOS_TOOLCHAIN_PATH"] + "/Developer/usr/bin/:" + env["ENV"]["PATH"]
compiler_path = "$IOS_TOOLCHAIN_PATH/usr/bin/${ios_triple}" compiler_path = "$IOS_TOOLCHAIN_PATH/usr/bin/${ios_triple}"
s_compiler_path = "$IOS_TOOLCHAIN_PATH/Developer/usr/bin/"
ccache_path = os.environ.get("CCACHE") ccache_path = os.environ.get("CCACHE")
if ccache_path is None: if ccache_path is None:
env["CC"] = compiler_path + "clang" env["CC"] = compiler_path + "clang"
env["CXX"] = compiler_path + "clang++" env["CXX"] = compiler_path + "clang++"
env["S_compiler"] = s_compiler_path + "gcc" env["S_compiler"] = compiler_path + "clang"
else: else:
# there aren't any ccache wrappers available for iOS, # there aren't any ccache wrappers available for iOS,
# to enable caching we need to prepend the path to the ccache binary # to enable caching we need to prepend the path to the ccache binary
env["CC"] = ccache_path + " " + compiler_path + "clang" env["CC"] = ccache_path + " " + compiler_path + "clang"
env["CXX"] = ccache_path + " " + compiler_path + "clang++" env["CXX"] = ccache_path + " " + compiler_path + "clang++"
env["S_compiler"] = ccache_path + " " + s_compiler_path + "gcc" env["S_compiler"] = ccache_path + " " + compiler_path + "clang"
env["AR"] = compiler_path + "ar" env["AR"] = compiler_path + "ar"
env["RANLIB"] = compiler_path + "ranlib" env["RANLIB"] = compiler_path + "ranlib"

View File

@ -315,14 +315,14 @@ Files extracted from upstream source:
## libpng ## libpng
- Upstream: http://libpng.org/pub/png/libpng.html - Upstream: http://libpng.org/pub/png/libpng.html
- Version: 1.6.38 (0a158f3506502dfa23edfc42790dfaed82efba17, 2022) - Version: 1.6.39 (07b8803110da160b158ebfef872627da6c85cbdf, 2022)
- License: libpng/zlib - License: libpng/zlib
Files extracted from upstream source: Files extracted from upstream source:
- all .c and .h files of the main directory, except from - all .c and .h files of the main directory, except from
`example.c` and `pngtest.c` `example.c` and `pngtest.c`
- the arm/ folder - `arm/`, `intel/` and `powerpc/` folders
- `scripts/pnglibconf.h.prebuilt` as `pnglibconf.h` - `scripts/pnglibconf.h.prebuilt` as `pnglibconf.h`
- `LICENSE` - `LICENSE`

View File

@ -0,0 +1,391 @@
/* filter_sse2_intrinsics.c - SSE2 optimized filter functions
*
* Copyright (c) 2018 Cosmin Truta
* Copyright (c) 2016-2017 Glenn Randers-Pehrson
* Written by Mike Klein and Matt Sarett
* Derived from arm/filter_neon_intrinsics.c
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
#if PNG_INTEL_SSE_IMPLEMENTATION > 0
#include <immintrin.h>
/* Functions in this file look at most 3 pixels (a,b,c) to predict the 4th (d).
* They're positioned like this:
* prev: c b
* row: a d
* The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be
* whichever of a, b, or c is closest to p=a+b-c.
*/
static __m128i load4(const void* p) {
int tmp;
memcpy(&tmp, p, sizeof(tmp));
return _mm_cvtsi32_si128(tmp);
}
static void store4(void* p, __m128i v) {
int tmp = _mm_cvtsi128_si32(v);
memcpy(p, &tmp, sizeof(int));
}
static __m128i load3(const void* p) {
png_uint_32 tmp = 0;
memcpy(&tmp, p, 3);
return _mm_cvtsi32_si128(tmp);
}
static void store3(void* p, __m128i v) {
int tmp = _mm_cvtsi128_si32(v);
memcpy(p, &tmp, 3);
}
void png_read_filter_row_sub3_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
/* The Sub filter predicts each pixel as the previous pixel, a.
* There is no pixel to the left of the first pixel. It's encoded directly.
* That works with our main loop if we just say that left pixel was zero.
*/
size_t rb;
__m128i a, d = _mm_setzero_si128();
png_debug(1, "in png_read_filter_row_sub3_sse2");
rb = row_info->rowbytes;
while (rb >= 4) {
a = d; d = load4(row);
d = _mm_add_epi8(d, a);
store3(row, d);
row += 3;
rb -= 3;
}
if (rb > 0) {
a = d; d = load3(row);
d = _mm_add_epi8(d, a);
store3(row, d);
row += 3;
rb -= 3;
}
PNG_UNUSED(prev)
}
void png_read_filter_row_sub4_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
/* The Sub filter predicts each pixel as the previous pixel, a.
* There is no pixel to the left of the first pixel. It's encoded directly.
* That works with our main loop if we just say that left pixel was zero.
*/
size_t rb;
__m128i a, d = _mm_setzero_si128();
png_debug(1, "in png_read_filter_row_sub4_sse2");
rb = row_info->rowbytes+4;
while (rb > 4) {
a = d; d = load4(row);
d = _mm_add_epi8(d, a);
store4(row, d);
row += 4;
rb -= 4;
}
PNG_UNUSED(prev)
}
void png_read_filter_row_avg3_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
/* The Avg filter predicts each pixel as the (truncated) average of a and b.
* There's no pixel to the left of the first pixel. Luckily, it's
* predicted to be half of the pixel above it. So again, this works
* perfectly with our loop if we make sure a starts at zero.
*/
size_t rb;
const __m128i zero = _mm_setzero_si128();
__m128i b;
__m128i a, d = zero;
png_debug(1, "in png_read_filter_row_avg3_sse2");
rb = row_info->rowbytes;
while (rb >= 4) {
__m128i avg;
b = load4(prev);
a = d; d = load4(row );
/* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */
avg = _mm_avg_epu8(a,b);
/* ...but we can fix it up by subtracting off 1 if it rounded up. */
avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b),
_mm_set1_epi8(1)));
d = _mm_add_epi8(d, avg);
store3(row, d);
prev += 3;
row += 3;
rb -= 3;
}
if (rb > 0) {
__m128i avg;
b = load3(prev);
a = d; d = load3(row );
/* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */
avg = _mm_avg_epu8(a,b);
/* ...but we can fix it up by subtracting off 1 if it rounded up. */
avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b),
_mm_set1_epi8(1)));
d = _mm_add_epi8(d, avg);
store3(row, d);
prev += 3;
row += 3;
rb -= 3;
}
}
void png_read_filter_row_avg4_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
/* The Avg filter predicts each pixel as the (truncated) average of a and b.
* There's no pixel to the left of the first pixel. Luckily, it's
* predicted to be half of the pixel above it. So again, this works
* perfectly with our loop if we make sure a starts at zero.
*/
size_t rb;
const __m128i zero = _mm_setzero_si128();
__m128i b;
__m128i a, d = zero;
png_debug(1, "in png_read_filter_row_avg4_sse2");
rb = row_info->rowbytes+4;
while (rb > 4) {
__m128i avg;
b = load4(prev);
a = d; d = load4(row );
/* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */
avg = _mm_avg_epu8(a,b);
/* ...but we can fix it up by subtracting off 1 if it rounded up. */
avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b),
_mm_set1_epi8(1)));
d = _mm_add_epi8(d, avg);
store4(row, d);
prev += 4;
row += 4;
rb -= 4;
}
}
/* Returns |x| for 16-bit lanes. */
static __m128i abs_i16(__m128i x) {
#if PNG_INTEL_SSE_IMPLEMENTATION >= 2
return _mm_abs_epi16(x);
#else
/* Read this all as, return x<0 ? -x : x.
* To negate two's complement, you flip all the bits then add 1.
*/
__m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128());
/* Flip negative lanes. */
x = _mm_xor_si128(x, is_negative);
/* +1 to negative lanes, else +0. */
x = _mm_sub_epi16(x, is_negative);
return x;
#endif
}
/* Bytewise c ? t : e. */
static __m128i if_then_else(__m128i c, __m128i t, __m128i e) {
#if PNG_INTEL_SSE_IMPLEMENTATION >= 3
return _mm_blendv_epi8(e,t,c);
#else
return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e));
#endif
}
void png_read_filter_row_paeth3_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
/* Paeth tries to predict pixel d using the pixel to the left of it, a,
* and two pixels from the previous row, b and c:
* prev: c b
* row: a d
* The Paeth function predicts d to be whichever of a, b, or c is nearest to
* p=a+b-c.
*
* The first pixel has no left context, and so uses an Up filter, p = b.
* This works naturally with our main loop's p = a+b-c if we force a and c
* to zero.
* Here we zero b and d, which become c and a respectively at the start of
* the loop.
*/
size_t rb;
const __m128i zero = _mm_setzero_si128();
__m128i c, b = zero,
a, d = zero;
png_debug(1, "in png_read_filter_row_paeth3_sse2");
rb = row_info->rowbytes;
while (rb >= 4) {
/* It's easiest to do this math (particularly, deal with pc) with 16-bit
* intermediates.
*/
__m128i pa,pb,pc,smallest,nearest;
c = b; b = _mm_unpacklo_epi8(load4(prev), zero);
a = d; d = _mm_unpacklo_epi8(load4(row ), zero);
/* (p-a) == (a+b-c - a) == (b-c) */
pa = _mm_sub_epi16(b,c);
/* (p-b) == (a+b-c - b) == (a-c) */
pb = _mm_sub_epi16(a,c);
/* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */
pc = _mm_add_epi16(pa,pb);
pa = abs_i16(pa); /* |p-a| */
pb = abs_i16(pb); /* |p-b| */
pc = abs_i16(pc); /* |p-c| */
smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb));
/* Paeth breaks ties favoring a over b over c. */
nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a,
if_then_else(_mm_cmpeq_epi16(smallest, pb), b,
c));
/* Note `_epi8`: we need addition to wrap modulo 255. */
d = _mm_add_epi8(d, nearest);
store3(row, _mm_packus_epi16(d,d));
prev += 3;
row += 3;
rb -= 3;
}
if (rb > 0) {
/* It's easiest to do this math (particularly, deal with pc) with 16-bit
* intermediates.
*/
__m128i pa,pb,pc,smallest,nearest;
c = b; b = _mm_unpacklo_epi8(load3(prev), zero);
a = d; d = _mm_unpacklo_epi8(load3(row ), zero);
/* (p-a) == (a+b-c - a) == (b-c) */
pa = _mm_sub_epi16(b,c);
/* (p-b) == (a+b-c - b) == (a-c) */
pb = _mm_sub_epi16(a,c);
/* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */
pc = _mm_add_epi16(pa,pb);
pa = abs_i16(pa); /* |p-a| */
pb = abs_i16(pb); /* |p-b| */
pc = abs_i16(pc); /* |p-c| */
smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb));
/* Paeth breaks ties favoring a over b over c. */
nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a,
if_then_else(_mm_cmpeq_epi16(smallest, pb), b,
c));
/* Note `_epi8`: we need addition to wrap modulo 255. */
d = _mm_add_epi8(d, nearest);
store3(row, _mm_packus_epi16(d,d));
prev += 3;
row += 3;
rb -= 3;
}
}
void png_read_filter_row_paeth4_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
/* Paeth tries to predict pixel d using the pixel to the left of it, a,
* and two pixels from the previous row, b and c:
* prev: c b
* row: a d
* The Paeth function predicts d to be whichever of a, b, or c is nearest to
* p=a+b-c.
*
* The first pixel has no left context, and so uses an Up filter, p = b.
* This works naturally with our main loop's p = a+b-c if we force a and c
* to zero.
* Here we zero b and d, which become c and a respectively at the start of
* the loop.
*/
size_t rb;
const __m128i zero = _mm_setzero_si128();
__m128i pa,pb,pc,smallest,nearest;
__m128i c, b = zero,
a, d = zero;
png_debug(1, "in png_read_filter_row_paeth4_sse2");
rb = row_info->rowbytes+4;
while (rb > 4) {
/* It's easiest to do this math (particularly, deal with pc) with 16-bit
* intermediates.
*/
c = b; b = _mm_unpacklo_epi8(load4(prev), zero);
a = d; d = _mm_unpacklo_epi8(load4(row ), zero);
/* (p-a) == (a+b-c - a) == (b-c) */
pa = _mm_sub_epi16(b,c);
/* (p-b) == (a+b-c - b) == (a-c) */
pb = _mm_sub_epi16(a,c);
/* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */
pc = _mm_add_epi16(pa,pb);
pa = abs_i16(pa); /* |p-a| */
pb = abs_i16(pb); /* |p-b| */
pc = abs_i16(pc); /* |p-c| */
smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb));
/* Paeth breaks ties favoring a over b over c. */
nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a,
if_then_else(_mm_cmpeq_epi16(smallest, pb), b,
c));
/* Note `_epi8`: we need addition to wrap modulo 255. */
d = _mm_add_epi8(d, nearest);
store4(row, _mm_packus_epi16(d,d));
prev += 4;
row += 4;
rb -= 4;
}
}
#endif /* PNG_INTEL_SSE_IMPLEMENTATION > 0 */
#endif /* READ */

52
thirdparty/libpng/intel/intel_init.c vendored Normal file
View File

@ -0,0 +1,52 @@
/* intel_init.c - SSE2 optimized filter functions
*
* Copyright (c) 2018 Cosmin Truta
* Copyright (c) 2016-2017 Glenn Randers-Pehrson
* Written by Mike Klein and Matt Sarett, Google, Inc.
* Derived from arm/arm_init.c
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
#if PNG_INTEL_SSE_IMPLEMENTATION > 0
void
png_init_filter_functions_sse2(png_structp pp, unsigned int bpp)
{
/* The techniques used to implement each of these filters in SSE operate on
* one pixel at a time.
* So they generally speed up 3bpp images about 3x, 4bpp images about 4x.
* They can scale up to 6 and 8 bpp images and down to 2 bpp images,
* but they'd not likely have any benefit for 1bpp images.
* Most of these can be implemented using only MMX and 64-bit registers,
* but they end up a bit slower than using the equally-ubiquitous SSE2.
*/
png_debug(1, "in png_init_filter_functions_sse2");
if (bpp == 3)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub3_sse2;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg3_sse2;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
png_read_filter_row_paeth3_sse2;
}
else if (bpp == 4)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub4_sse2;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg4_sse2;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
png_read_filter_row_paeth4_sse2;
}
/* No need optimize PNG_FILTER_VALUE_UP. The compiler should
* autovectorize.
*/
}
#endif /* PNG_INTEL_SSE_IMPLEMENTATION > 0 */
#endif /* PNG_READ_SUPPORTED */

View File

@ -0,0 +1,768 @@
/* filter_vsx_intrinsics.c - PowerPC optimised filter functions
*
* Copyright (c) 2018 Cosmin Truta
* Copyright (c) 2017 Glenn Randers-Pehrson
* Written by Vadim Barkov, 2017.
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
#include <stdio.h>
#include <stdint.h>
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
/* This code requires -maltivec and -mvsx on the command line: */
#if PNG_POWERPC_VSX_IMPLEMENTATION == 1 /* intrinsics code from pngpriv.h */
#include <altivec.h>
#if PNG_POWERPC_VSX_OPT > 0
#ifndef __VSX__
# error "This code requires VSX support (POWER7 and later). Please provide -mvsx compiler flag."
#endif
#define vec_ld_unaligned(vec,data) vec = vec_vsx_ld(0,data)
#define vec_st_unaligned(vec,data) vec_vsx_st(vec,0,data)
/* Functions in this file look at most 3 pixels (a,b,c) to predict the 4th (d).
* They're positioned like this:
* prev: c b
* row: a d
* The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be
* whichever of a, b, or c is closest to p=a+b-c.
* ( this is taken from ../intel/filter_sse2_intrinsics.c )
*/
#define vsx_declare_common_vars(row_info,row,prev_row,offset) \
png_byte i;\
png_bytep rp = row + offset;\
png_const_bytep pp = prev_row;\
size_t unaligned_top = 16 - (((size_t)rp % 16));\
size_t istop;\
if(unaligned_top == 16)\
unaligned_top = 0;\
istop = row_info->rowbytes;\
if((unaligned_top < istop))\
istop -= unaligned_top;\
else{\
unaligned_top = istop;\
istop = 0;\
}
void png_read_filter_row_up_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
vector unsigned char rp_vec;
vector unsigned char pp_vec;
vsx_declare_common_vars(row_info,row,prev_row,0)
/* Altivec operations require 16-byte aligned data
* but input can be unaligned. So we calculate
* unaligned part as usual.
*/
for (i = 0; i < unaligned_top; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
/* Using SIMD while we can */
while( istop >= 16 )
{
rp_vec = vec_ld(0,rp);
vec_ld_unaligned(pp_vec,pp);
rp_vec = vec_add(rp_vec,pp_vec);
vec_st(rp_vec,0,rp);
pp += 16;
rp += 16;
istop -= 16;
}
if(istop > 0)
{
/* If byte count of row is not divisible by 16
* we will process remaining part as usual
*/
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
}
}
static const vector unsigned char VSX_LEFTSHIFTED1_4 = {16,16,16,16, 0, 1, 2, 3,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_LEFTSHIFTED2_4 = {16,16,16,16,16,16,16,16, 4, 5, 6, 7,16,16,16,16};
static const vector unsigned char VSX_LEFTSHIFTED3_4 = {16,16,16,16,16,16,16,16,16,16,16,16, 8, 9,10,11};
static const vector unsigned char VSX_LEFTSHIFTED1_3 = {16,16,16, 0, 1, 2,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_LEFTSHIFTED2_3 = {16,16,16,16,16,16, 3, 4, 5,16,16,16,16,16,16,16};
static const vector unsigned char VSX_LEFTSHIFTED3_3 = {16,16,16,16,16,16,16,16,16, 6, 7, 8,16,16,16,16};
static const vector unsigned char VSX_LEFTSHIFTED4_3 = {16,16,16,16,16,16,16,16,16,16,16,16, 9,10,11,16};
static const vector unsigned char VSX_NOT_SHIFTED1_4 = {16,16,16,16, 4, 5, 6, 7,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_NOT_SHIFTED2_4 = {16,16,16,16,16,16,16,16, 8, 9,10,11,16,16,16,16};
static const vector unsigned char VSX_NOT_SHIFTED3_4 = {16,16,16,16,16,16,16,16,16,16,16,16,12,13,14,15};
static const vector unsigned char VSX_NOT_SHIFTED1_3 = {16,16,16, 3, 4, 5,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_NOT_SHIFTED2_3 = {16,16,16,16,16,16, 6, 7, 8,16,16,16,16,16,16,16};
static const vector unsigned char VSX_NOT_SHIFTED3_3 = {16,16,16,16,16,16,16,16,16, 9,10,11,16,16,16,16};
static const vector unsigned char VSX_NOT_SHIFTED4_3 = {16,16,16,16,16,16,16,16,16,16,16,16,12,13,14,16};
static const vector unsigned char VSX_CHAR_ZERO = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
#ifdef __LITTLE_ENDIAN__
static const vector unsigned char VSX_CHAR_TO_SHORT1_4 = { 4,16, 5,16, 6,16, 7,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT2_4 = { 8,16, 9,16,10,16,11,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT3_4 = {12,16,13,16,14,16,15,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR1_4 = {16,16,16,16, 0, 2, 4, 6,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR2_4 = {16,16,16,16,16,16,16,16, 0, 2, 4, 6,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR3_4 = {16,16,16,16,16,16,16,16,16,16,16,16, 0, 2, 4, 6};
static const vector unsigned char VSX_CHAR_TO_SHORT1_3 = { 3,16, 4,16, 5,16,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT2_3 = { 6,16, 7,16, 8,16,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT3_3 = { 9,16,10,16,11,16,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT4_3 = {12,16,13,16,14,16,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR1_3 = {16,16,16, 0, 2, 4,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR2_3 = {16,16,16,16,16,16, 0, 2, 4,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR3_3 = {16,16,16,16,16,16,16,16,16, 0, 2, 4,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR4_3 = {16,16,16,16,16,16,16,16,16,16,16,16, 0, 2, 4,16};
#elif defined(__BIG_ENDIAN__)
static const vector unsigned char VSX_CHAR_TO_SHORT1_4 = {16, 4,16, 5,16, 6,16, 7,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT2_4 = {16, 8,16, 9,16,10,16,11,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT3_4 = {16,12,16,13,16,14,16,15,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR1_4 = {16,16,16,16, 1, 3, 5, 7,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR2_4 = {16,16,16,16,16,16,16,16, 1, 3, 5, 7,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR3_4 = {16,16,16,16,16,16,16,16,16,16,16,16, 1, 3, 5, 7};
static const vector unsigned char VSX_CHAR_TO_SHORT1_3 = {16, 3,16, 4,16, 5,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT2_3 = {16, 6,16, 7,16, 8,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT3_3 = {16, 9,16,10,16,11,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_CHAR_TO_SHORT4_3 = {16,12,16,13,16,14,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR1_3 = {16,16,16, 1, 3, 5,16,16,16,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR2_3 = {16,16,16,16,16,16, 1, 3, 5,16,16,16,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR3_3 = {16,16,16,16,16,16,16,16,16, 1, 3, 5,16,16,16,16};
static const vector unsigned char VSX_SHORT_TO_CHAR4_3 = {16,16,16,16,16,16,16,16,16,16,16,16, 1, 3, 5,16};
#endif
#define vsx_char_to_short(vec,offset,bpp) (vector unsigned short)vec_perm((vec),VSX_CHAR_ZERO,VSX_CHAR_TO_SHORT##offset##_##bpp)
#define vsx_short_to_char(vec,offset,bpp) vec_perm(((vector unsigned char)(vec)),VSX_CHAR_ZERO,VSX_SHORT_TO_CHAR##offset##_##bpp)
#ifdef PNG_USE_ABS
# define vsx_abs(number) abs(number)
#else
# define vsx_abs(number) (number > 0) ? (number) : -(number)
#endif
void png_read_filter_row_sub4_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_byte bpp = 4;
vector unsigned char rp_vec;
vector unsigned char part_vec;
vsx_declare_common_vars(row_info,row,prev_row,bpp)
PNG_UNUSED(pp)
/* Altivec operations require 16-byte aligned data
* but input can be unaligned. So we calculate
* unaligned part as usual.
*/
for (i = 0; i < unaligned_top; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
/* Using SIMD while we can */
while( istop >= 16 )
{
for(i=0;i < bpp ; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
rp -= bpp;
rp_vec = vec_ld(0,rp);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED1_4);
rp_vec = vec_add(rp_vec,part_vec);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED2_4);
rp_vec = vec_add(rp_vec,part_vec);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED3_4);
rp_vec = vec_add(rp_vec,part_vec);
vec_st(rp_vec,0,rp);
rp += 16;
istop -= 16;
}
if(istop > 0)
for (i = 0; i < istop % 16; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*(rp - bpp))) & 0xff);
rp++;
}
}
void png_read_filter_row_sub3_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_byte bpp = 3;
vector unsigned char rp_vec;
vector unsigned char part_vec;
vsx_declare_common_vars(row_info,row,prev_row,bpp)
PNG_UNUSED(pp)
/* Altivec operations require 16-byte aligned data
* but input can be unaligned. So we calculate
* unaligned part as usual.
*/
for (i = 0; i < unaligned_top; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
/* Using SIMD while we can */
while( istop >= 16 )
{
for(i=0;i < bpp ; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
rp -= bpp;
rp_vec = vec_ld(0,rp);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED1_3);
rp_vec = vec_add(rp_vec,part_vec);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED2_3);
rp_vec = vec_add(rp_vec,part_vec);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED3_3);
rp_vec = vec_add(rp_vec,part_vec);
part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED4_3);
rp_vec = vec_add(rp_vec,part_vec);
vec_st(rp_vec,0,rp);
rp += 15;
istop -= 16;
/* Since 16 % bpp = 16 % 3 = 1, last element of array must
* be proceeded manually
*/
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
if(istop > 0)
for (i = 0; i < istop % 16; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
}
void png_read_filter_row_avg4_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_byte bpp = 4;
vector unsigned char rp_vec;
vector unsigned char pp_vec;
vector unsigned char pp_part_vec;
vector unsigned char rp_part_vec;
vector unsigned char avg_vec;
vsx_declare_common_vars(row_info,row,prev_row,bpp)
rp -= bpp;
if(istop >= bpp)
istop -= bpp;
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++) / 2 )) & 0xff);
rp++;
}
/* Altivec operations require 16-byte aligned data
* but input can be unaligned. So we calculate
* unaligned part as usual.
*/
for (i = 0; i < unaligned_top; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
/* Using SIMD while we can */
while( istop >= 16 )
{
for(i=0;i < bpp ; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
rp -= bpp;
pp -= bpp;
vec_ld_unaligned(pp_vec,pp);
rp_vec = vec_ld(0,rp);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED1_4);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED1_4);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED2_4);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED2_4);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED3_4);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED3_4);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
vec_st(rp_vec,0,rp);
rp += 16;
pp += 16;
istop -= 16;
}
if(istop > 0)
for (i = 0; i < istop % 16; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
}
void png_read_filter_row_avg3_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_byte bpp = 3;
vector unsigned char rp_vec;
vector unsigned char pp_vec;
vector unsigned char pp_part_vec;
vector unsigned char rp_part_vec;
vector unsigned char avg_vec;
vsx_declare_common_vars(row_info,row,prev_row,bpp)
rp -= bpp;
if(istop >= bpp)
istop -= bpp;
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++) / 2 )) & 0xff);
rp++;
}
/* Altivec operations require 16-byte aligned data
* but input can be unaligned. So we calculate
* unaligned part as usual.
*/
for (i = 0; i < unaligned_top; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
/* Using SIMD while we can */
while( istop >= 16 )
{
for(i=0;i < bpp ; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
rp -= bpp;
pp -= bpp;
vec_ld_unaligned(pp_vec,pp);
rp_vec = vec_ld(0,rp);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED1_3);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED1_3);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED2_3);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED2_3);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED3_3);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED3_3);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
rp_part_vec = vec_perm(rp_vec,VSX_CHAR_ZERO,VSX_LEFTSHIFTED4_3);
pp_part_vec = vec_perm(pp_vec,VSX_CHAR_ZERO,VSX_NOT_SHIFTED4_3);
avg_vec = vec_avg(rp_part_vec,pp_part_vec);
avg_vec = vec_sub(avg_vec, vec_and(vec_xor(rp_part_vec,pp_part_vec),vec_splat_u8(1)));
rp_vec = vec_add(rp_vec,avg_vec);
vec_st(rp_vec,0,rp);
rp += 15;
pp += 15;
istop -= 16;
/* Since 16 % bpp = 16 % 3 = 1, last element of array must
* be proceeded manually
*/
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
if(istop > 0)
for (i = 0; i < istop % 16; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
rp++;
}
}
/* Bytewise c ? t : e. */
#define if_then_else(c,t,e) vec_sel(e,t,c)
#define vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp) {\
c = *(pp - bpp);\
a = *(rp - bpp);\
b = *pp++;\
p = b - c;\
pc = a - c;\
pa = vsx_abs(p);\
pb = vsx_abs(pc);\
pc = vsx_abs(p + pc);\
if (pb < pa) pa = pb, a = b;\
if (pc < pa) a = c;\
a += *rp;\
*rp++ = (png_byte)a;\
}
void png_read_filter_row_paeth4_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_byte bpp = 4;
int a, b, c, pa, pb, pc, p;
vector unsigned char rp_vec;
vector unsigned char pp_vec;
vector unsigned short a_vec,b_vec,c_vec,nearest_vec;
vector signed short pa_vec,pb_vec,pc_vec,smallest_vec;
vsx_declare_common_vars(row_info,row,prev_row,bpp)
rp -= bpp;
if(istop >= bpp)
istop -= bpp;
/* Process the first pixel in the row completely (this is the same as 'up'
* because there is only one candidate predictor for the first row).
*/
for(i = 0; i < bpp ; i++)
{
*rp = (png_byte)( *rp + *pp);
rp++;
pp++;
}
for(i = 0; i < unaligned_top ; i++)
{
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
while( istop >= 16)
{
for(i = 0; i < bpp ; i++)
{
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
rp -= bpp;
pp -= bpp;
rp_vec = vec_ld(0,rp);
vec_ld_unaligned(pp_vec,pp);
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED1_4),1,4);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED1_4),1,4);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED1_4),1,4);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,1,4)));
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED2_4),2,4);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED2_4),2,4);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED2_4),2,4);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,2,4)));
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED3_4),3,4);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED3_4),3,4);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED3_4),3,4);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,3,4)));
vec_st(rp_vec,0,rp);
rp += 16;
pp += 16;
istop -= 16;
}
if(istop > 0)
for (i = 0; i < istop % 16; i++)
{
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
}
void png_read_filter_row_paeth3_vsx(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_byte bpp = 3;
int a, b, c, pa, pb, pc, p;
vector unsigned char rp_vec;
vector unsigned char pp_vec;
vector unsigned short a_vec,b_vec,c_vec,nearest_vec;
vector signed short pa_vec,pb_vec,pc_vec,smallest_vec;
vsx_declare_common_vars(row_info,row,prev_row,bpp)
rp -= bpp;
if(istop >= bpp)
istop -= bpp;
/* Process the first pixel in the row completely (this is the same as 'up'
* because there is only one candidate predictor for the first row).
*/
for(i = 0; i < bpp ; i++)
{
*rp = (png_byte)( *rp + *pp);
rp++;
pp++;
}
for(i = 0; i < unaligned_top ; i++)
{
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
while( istop >= 16)
{
for(i = 0; i < bpp ; i++)
{
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
rp -= bpp;
pp -= bpp;
rp_vec = vec_ld(0,rp);
vec_ld_unaligned(pp_vec,pp);
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED1_3),1,3);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED1_3),1,3);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED1_3),1,3);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,1,3)));
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED2_3),2,3);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED2_3),2,3);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED2_3),2,3);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,2,3)));
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED3_3),3,3);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED3_3),3,3);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED3_3),3,3);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,3,3)));
a_vec = vsx_char_to_short(vec_perm(rp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED4_3),4,3);
b_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_NOT_SHIFTED4_3),4,3);
c_vec = vsx_char_to_short(vec_perm(pp_vec , VSX_CHAR_ZERO , VSX_LEFTSHIFTED4_3),4,3);
pa_vec = (vector signed short) vec_sub(b_vec,c_vec);
pb_vec = (vector signed short) vec_sub(a_vec , c_vec);
pc_vec = vec_add(pa_vec,pb_vec);
pa_vec = vec_abs(pa_vec);
pb_vec = vec_abs(pb_vec);
pc_vec = vec_abs(pc_vec);
smallest_vec = vec_min(pc_vec, vec_min(pa_vec,pb_vec));
nearest_vec = if_then_else(
vec_cmpeq(pa_vec,smallest_vec),
a_vec,
if_then_else(
vec_cmpeq(pb_vec,smallest_vec),
b_vec,
c_vec
)
);
rp_vec = vec_add(rp_vec,(vsx_short_to_char(nearest_vec,4,3)));
vec_st(rp_vec,0,rp);
rp += 15;
pp += 15;
istop -= 16;
/* Since 16 % bpp = 16 % 3 = 1, last element of array must
* be proceeded manually
*/
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
if(istop > 0)
for (i = 0; i < istop % 16; i++)
{
vsx_paeth_process(rp,pp,a,b,c,pa,pb,pc,bpp)
}
}
#endif /* PNG_POWERPC_VSX_OPT > 0 */
#endif /* PNG_POWERPC_VSX_IMPLEMENTATION == 1 (intrinsics) */
#endif /* READ */

126
thirdparty/libpng/powerpc/powerpc_init.c vendored Normal file
View File

@ -0,0 +1,126 @@
/* powerpc_init.c - POWERPC optimised filter functions
*
* Copyright (c) 2018 Cosmin Truta
* Copyright (c) 2017 Glenn Randers-Pehrson
* Written by Vadim Barkov, 2017.
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
/* Below, after checking __linux__, various non-C90 POSIX 1003.1 functions are
* called.
*/
#define _POSIX_SOURCE 1
#include <stdio.h>
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
#if PNG_POWERPC_VSX_OPT > 0
#ifdef PNG_POWERPC_VSX_CHECK_SUPPORTED /* Do run-time checks */
/* WARNING: it is strongly recommended that you do not build libpng with
* run-time checks for CPU features if at all possible. In the case of the PowerPC
* VSX instructions there is no processor-specific way of detecting the
* presence of the required support, therefore run-time detection is extremely
* OS specific.
*
* You may set the macro PNG_POWERPC_VSX_FILE to the file name of file containing
* a fragment of C source code which defines the png_have_vsx function. There
* are a number of implementations in contrib/powerpc-vsx, but the only one that
* has partial support is contrib/powerpc-vsx/linux.c - a generic Linux
* implementation which reads /proc/cpufino.
*/
#ifndef PNG_POWERPC_VSX_FILE
# ifdef __linux__
# define PNG_POWERPC_VSX_FILE "contrib/powerpc-vsx/linux_aux.c"
# endif
#endif
#ifdef PNG_POWERPC_VSX_FILE
#include <signal.h> /* for sig_atomic_t */
static int png_have_vsx(png_structp png_ptr);
#include PNG_POWERPC_VSX_FILE
#else /* PNG_POWERPC_VSX_FILE */
# error "PNG_POWERPC_VSX_FILE undefined: no support for run-time POWERPC VSX checks"
#endif /* PNG_POWERPC_VSX_FILE */
#endif /* PNG_POWERPC_VSX_CHECK_SUPPORTED */
void
png_init_filter_functions_vsx(png_structp pp, unsigned int bpp)
{
/* The switch statement is compiled in for POWERPC_VSX_API, the call to
* png_have_vsx is compiled in for POWERPC_VSX_CHECK. If both are defined
* the check is only performed if the API has not set the PowerPC option on
* or off explicitly. In this case the check controls what happens.
*/
#ifdef PNG_POWERPC_VSX_API_SUPPORTED
switch ((pp->options >> PNG_POWERPC_VSX) & 3)
{
case PNG_OPTION_UNSET:
/* Allow the run-time check to execute if it has been enabled -
* thus both API and CHECK can be turned on. If it isn't supported
* this case will fall through to the 'default' below, which just
* returns.
*/
#endif /* PNG_POWERPC_VSX_API_SUPPORTED */
#ifdef PNG_POWERPC_VSX_CHECK_SUPPORTED
{
static volatile sig_atomic_t no_vsx = -1; /* not checked */
if (no_vsx < 0)
no_vsx = !png_have_vsx(pp);
if (no_vsx)
return;
}
#ifdef PNG_POWERPC_VSX_API_SUPPORTED
break;
#endif
#endif /* PNG_POWERPC_VSX_CHECK_SUPPORTED */
#ifdef PNG_POWERPC_VSX_API_SUPPORTED
default: /* OFF or INVALID */
return;
case PNG_OPTION_ON:
/* Option turned on */
break;
}
#endif
/* IMPORTANT: any new internal functions used here must be declared using
* PNG_INTERNAL_FUNCTION in ../pngpriv.h. This is required so that the
* 'prefix' option to configure works:
*
* ./configure --with-libpng-prefix=foobar_
*
* Verify you have got this right by running the above command, doing a build
* and examining pngprefix.h; it must contain a #define for every external
* function you add. (Notice that this happens automatically for the
* initialization function.)
*/
pp->read_filter[PNG_FILTER_VALUE_UP-1] = png_read_filter_row_up_vsx;
if (bpp == 3)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub3_vsx;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg3_vsx;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = png_read_filter_row_paeth3_vsx;
}
else if (bpp == 4)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub4_vsx;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg4_vsx;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = png_read_filter_row_paeth4_vsx;
}
}
#endif /* PNG_POWERPC_VSX_OPT > 0 */
#endif /* READ */