Use mingw-std-threads in MinGW builds

This commit is contained in:
Pedro J. Estébanez 2023-11-17 20:44:38 +01:00
parent ad72de5083
commit fe4850c0d0
29 changed files with 2342 additions and 28 deletions

View File

@ -328,6 +328,11 @@ Comment: meshoptimizer
Copyright: 2016-2022, Arseny Kapoulkine Copyright: 2016-2022, Arseny Kapoulkine
License: Expat License: Expat
Files: ./thirdparty/mingw-std-threads/
Comment: mingw-std-threads
Copyright: 2016, Mega Limited
License: BSD-2-clause
Files: ./thirdparty/minimp3/ Files: ./thirdparty/minimp3/
Comment: MiniMP3 Comment: MiniMP3
Copyright: lieff Copyright: lieff

View File

@ -117,6 +117,11 @@ AABB AABB::intersection(const AABB &p_aabb) const {
return AABB(min, max - min); return AABB(min, max - min);
} }
#ifdef MINGW_ENABLED
#undef near
#undef far
#endif
bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const { bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const {
#ifdef MATH_CHECKS #ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {

View File

@ -656,7 +656,7 @@ private:
friend class RefCounted; friend class RefCounted;
bool type_is_reference = false; bool type_is_reference = false;
std::mutex _instance_binding_mutex; BinaryMutex _instance_binding_mutex;
struct InstanceBinding { struct InstanceBinding {
void *binding = nullptr; void *binding = nullptr;
void *token = nullptr; void *token = nullptr;

View File

@ -31,7 +31,14 @@
#ifndef CONDITION_VARIABLE_H #ifndef CONDITION_VARIABLE_H
#define CONDITION_VARIABLE_H #define CONDITION_VARIABLE_H
#ifdef MINGW_ENABLED
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#include "thirdparty/mingw-std-threads/mingw.condition_variable.h"
#define THREADING_NAMESPACE mingw_stdthread
#else
#include <condition_variable> #include <condition_variable>
#define THREADING_NAMESPACE std
#endif
// An object one or multiple threads can wait on a be notified by some other. // An object one or multiple threads can wait on a be notified by some other.
// Normally, you want to use a semaphore for such scenarios, but when the // Normally, you want to use a semaphore for such scenarios, but when the
@ -40,12 +47,12 @@
// own mutex to tie the wait-notify to some other behavior, you need to use this. // own mutex to tie the wait-notify to some other behavior, you need to use this.
class ConditionVariable { class ConditionVariable {
mutable std::condition_variable condition; mutable THREADING_NAMESPACE::condition_variable condition;
public: public:
template <class BinaryMutexT> template <class BinaryMutexT>
_ALWAYS_INLINE_ void wait(const MutexLock<BinaryMutexT> &p_lock) const { _ALWAYS_INLINE_ void wait(const MutexLock<BinaryMutexT> &p_lock) const {
condition.wait(const_cast<std::unique_lock<std::mutex> &>(p_lock.lock)); condition.wait(const_cast<THREADING_NAMESPACE::unique_lock<THREADING_NAMESPACE::mutex> &>(p_lock.lock));
} }
_ALWAYS_INLINE_ void notify_one() const { _ALWAYS_INLINE_ void notify_one() const {

View File

@ -40,7 +40,7 @@ void _global_unlock() {
_global_mutex.unlock(); _global_mutex.unlock();
} }
template class MutexImpl<std::recursive_mutex>; template class MutexImpl<THREADING_NAMESPACE::recursive_mutex>;
template class MutexImpl<std::mutex>; template class MutexImpl<THREADING_NAMESPACE::mutex>;
template class MutexLock<MutexImpl<std::recursive_mutex>>; template class MutexLock<MutexImpl<THREADING_NAMESPACE::recursive_mutex>>;
template class MutexLock<MutexImpl<std::mutex>>; template class MutexLock<MutexImpl<THREADING_NAMESPACE::mutex>>;

View File

@ -34,7 +34,14 @@
#include "core/error/error_macros.h" #include "core/error/error_macros.h"
#include "core/typedefs.h" #include "core/typedefs.h"
#ifdef MINGW_ENABLED
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#include "thirdparty/mingw-std-threads/mingw.mutex.h"
#define THREADING_NAMESPACE mingw_stdthread
#else
#include <mutex> #include <mutex>
#define THREADING_NAMESPACE std
#endif
template <class MutexT> template <class MutexT>
class MutexLock; class MutexLock;
@ -73,9 +80,9 @@ template <int Tag>
class SafeBinaryMutex { class SafeBinaryMutex {
friend class MutexLock<SafeBinaryMutex>; friend class MutexLock<SafeBinaryMutex>;
using StdMutexType = std::mutex; using StdMutexType = THREADING_NAMESPACE::mutex;
mutable std::mutex mutex; mutable THREADING_NAMESPACE::mutex mutex;
static thread_local uint32_t count; static thread_local uint32_t count;
public: public:
@ -115,7 +122,7 @@ template <class MutexT>
class MutexLock { class MutexLock {
friend class ConditionVariable; friend class ConditionVariable;
std::unique_lock<typename MutexT::StdMutexType> lock; THREADING_NAMESPACE::unique_lock<typename MutexT::StdMutexType> lock;
public: public:
_ALWAYS_INLINE_ explicit MutexLock(const MutexT &p_mutex) : _ALWAYS_INLINE_ explicit MutexLock(const MutexT &p_mutex) :
@ -128,7 +135,7 @@ template <int Tag>
class MutexLock<SafeBinaryMutex<Tag>> { class MutexLock<SafeBinaryMutex<Tag>> {
friend class ConditionVariable; friend class ConditionVariable;
std::unique_lock<std::mutex> lock; THREADING_NAMESPACE::unique_lock<THREADING_NAMESPACE::mutex> lock;
public: public:
_ALWAYS_INLINE_ explicit MutexLock(const SafeBinaryMutex<Tag> &p_mutex) : _ALWAYS_INLINE_ explicit MutexLock(const SafeBinaryMutex<Tag> &p_mutex) :
@ -140,12 +147,12 @@ public:
}; };
}; };
using Mutex = MutexImpl<std::recursive_mutex>; // Recursive, for general use using Mutex = MutexImpl<THREADING_NAMESPACE::recursive_mutex>; // Recursive, for general use
using BinaryMutex = MutexImpl<std::mutex>; // Non-recursive, handle with care using BinaryMutex = MutexImpl<THREADING_NAMESPACE::mutex>; // Non-recursive, handle with care
extern template class MutexImpl<std::recursive_mutex>; extern template class MutexImpl<THREADING_NAMESPACE::recursive_mutex>;
extern template class MutexImpl<std::mutex>; extern template class MutexImpl<THREADING_NAMESPACE::mutex>;
extern template class MutexLock<MutexImpl<std::recursive_mutex>>; extern template class MutexLock<MutexImpl<THREADING_NAMESPACE::recursive_mutex>>;
extern template class MutexLock<MutexImpl<std::mutex>>; extern template class MutexLock<MutexImpl<THREADING_NAMESPACE::mutex>>;
#endif // MUTEX_H #endif // MUTEX_H

View File

@ -39,7 +39,15 @@
#include "core/version_generated.gen.h" #include "core/version_generated.gen.h"
#include <stdarg.h> #include <stdarg.h>
#ifdef MINGW_ENABLED
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#include "thirdparty/mingw-std-threads/mingw.thread.h"
#define THREADING_NAMESPACE mingw_stdthread
#else
#include <thread> #include <thread>
#define THREADING_NAMESPACE std
#endif
OS *OS::singleton = nullptr; OS *OS::singleton = nullptr;
uint64_t OS::target_ticks = 0; uint64_t OS::target_ticks = 0;
@ -359,7 +367,7 @@ String OS::get_unique_id() const {
} }
int OS::get_processor_count() const { int OS::get_processor_count() const {
return std::thread::hardware_concurrency(); return THREADING_NAMESPACE::thread::hardware_concurrency();
} }
String OS::get_processor_name() const { String OS::get_processor_name() const {

View File

@ -33,10 +33,17 @@
#include "core/typedefs.h" #include "core/typedefs.h"
#ifdef MINGW_ENABLED
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#include "thirdparty/mingw-std-threads/mingw.shared_mutex.h"
#define THREADING_NAMESPACE mingw_stdthread
#else
#include <shared_mutex> #include <shared_mutex>
#define THREADING_NAMESPACE std
#endif
class RWLock { class RWLock {
mutable std::shared_timed_mutex mutex; mutable THREADING_NAMESPACE::shared_timed_mutex mutex;
public: public:
// Lock the RWLock, block if locked by someone else. // Lock the RWLock, block if locked by someone else.

View File

@ -37,13 +37,21 @@
#include "core/error/error_macros.h" #include "core/error/error_macros.h"
#endif #endif
#ifdef MINGW_ENABLED
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#include "thirdparty/mingw-std-threads/mingw.condition_variable.h"
#include "thirdparty/mingw-std-threads/mingw.mutex.h"
#define THREADING_NAMESPACE mingw_stdthread
#else
#include <condition_variable> #include <condition_variable>
#include <mutex> #include <mutex>
#define THREADING_NAMESPACE std
#endif
class Semaphore { class Semaphore {
private: private:
mutable std::mutex mutex; mutable THREADING_NAMESPACE::mutex mutex;
mutable std::condition_variable condition; mutable THREADING_NAMESPACE::condition_variable condition;
mutable uint32_t count = 0; // Initialized as locked. mutable uint32_t count = 0; // Initialized as locked.
#ifdef DEBUG_ENABLED #ifdef DEBUG_ENABLED
mutable uint32_t awaiters = 0; mutable uint32_t awaiters = 0;
@ -57,7 +65,7 @@ public:
} }
_ALWAYS_INLINE_ void wait() const { _ALWAYS_INLINE_ void wait() const {
std::unique_lock lock(mutex); THREADING_NAMESPACE::unique_lock lock(mutex);
#ifdef DEBUG_ENABLED #ifdef DEBUG_ENABLED
++awaiters; ++awaiters;
#endif #endif
@ -116,7 +124,7 @@ public:
"A Semaphore object is being destroyed while one or more threads are still waiting on it.\n" "A Semaphore object is being destroyed while one or more threads are still waiting on it.\n"
"Please call post() on it as necessary to prevent such a situation and so ensure correct cleanup."); "Please call post() on it as necessary to prevent such a situation and so ensure correct cleanup.");
// And now, the hacky countermeasure (i.e., leak the condition variable). // And now, the hacky countermeasure (i.e., leak the condition variable).
new (&condition) std::condition_variable(); new (&condition) THREADING_NAMESPACE::condition_variable();
} }
} }
#endif #endif

View File

@ -69,8 +69,7 @@ void Thread::callback(ID p_caller_id, const Settings &p_settings, Callback p_cal
Thread::ID Thread::start(Thread::Callback p_callback, void *p_user, const Settings &p_settings) { Thread::ID Thread::start(Thread::Callback p_callback, void *p_user, const Settings &p_settings) {
ERR_FAIL_COND_V_MSG(id != UNASSIGNED_ID, UNASSIGNED_ID, "A Thread object has been re-started without wait_to_finish() having been called on it."); ERR_FAIL_COND_V_MSG(id != UNASSIGNED_ID, UNASSIGNED_ID, "A Thread object has been re-started without wait_to_finish() having been called on it.");
id = id_counter.increment(); id = id_counter.increment();
std::thread new_thread(&Thread::callback, id, p_settings, p_callback, p_user); thread = THREADING_NAMESPACE::thread(&Thread::callback, id, p_settings, p_callback, p_user);
thread.swap(new_thread);
return id; return id;
} }
@ -82,8 +81,7 @@ void Thread::wait_to_finish() {
ERR_FAIL_COND_MSG(id == UNASSIGNED_ID, "Attempt of waiting to finish on a thread that was never started."); ERR_FAIL_COND_MSG(id == UNASSIGNED_ID, "Attempt of waiting to finish on a thread that was never started.");
ERR_FAIL_COND_MSG(id == get_caller_id(), "Threads can't wait to finish on themselves, another thread must wait."); ERR_FAIL_COND_MSG(id == get_caller_id(), "Threads can't wait to finish on themselves, another thread must wait.");
thread.join(); thread.join();
std::thread empty_thread; thread = THREADING_NAMESPACE::thread();
thread.swap(empty_thread);
id = UNASSIGNED_ID; id = UNASSIGNED_ID;
} }

View File

@ -42,7 +42,14 @@
#include "core/templates/safe_refcount.h" #include "core/templates/safe_refcount.h"
#include "core/typedefs.h" #include "core/typedefs.h"
#ifdef MINGW_ENABLED
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#include "thirdparty/mingw-std-threads/mingw.thread.h"
#define THREADING_NAMESPACE mingw_stdthread
#else
#include <thread> #include <thread>
#define THREADING_NAMESPACE std
#endif
class String; class String;
@ -82,7 +89,7 @@ private:
ID id = UNASSIGNED_ID; ID id = UNASSIGNED_ID;
static SafeNumeric<uint64_t> id_counter; static SafeNumeric<uint64_t> id_counter;
static thread_local ID caller_id; static thread_local ID caller_id;
std::thread thread; THREADING_NAMESPACE::thread thread;
static void callback(ID p_caller_id, const Settings &p_settings, Thread::Callback p_callback, void *p_userdata); static void callback(ID p_caller_id, const Settings &p_settings, Thread::Callback p_callback, void *p_userdata);

View File

@ -68,6 +68,10 @@ public:
DependencyEditor(); DependencyEditor();
}; };
#ifdef MINGW_ENABLED
#undef FILE_OPEN
#endif
class DependencyEditorOwners : public AcceptDialog { class DependencyEditorOwners : public AcceptDialog {
GDCLASS(DependencyEditorOwners, AcceptDialog); GDCLASS(DependencyEditorOwners, AcceptDialog);

View File

@ -204,6 +204,10 @@ class EditorScriptCodeCompletionCache;
class FindInFilesDialog; class FindInFilesDialog;
class FindInFilesPanel; class FindInFilesPanel;
#ifdef MINGW_ENABLED
#undef FILE_OPEN
#endif
class ScriptEditor : public PanelContainer { class ScriptEditor : public PanelContainer {
GDCLASS(ScriptEditor, PanelContainer); GDCLASS(ScriptEditor, PanelContainer);

View File

@ -42,6 +42,10 @@ class TextShaderEditor;
class VisualShaderEditor; class VisualShaderEditor;
class WindowWrapper; class WindowWrapper;
#ifdef MINGW_ENABLED
#undef FILE_OPEN
#endif
class ShaderEditorPlugin : public EditorPlugin { class ShaderEditorPlugin : public EditorPlugin {
GDCLASS(ShaderEditorPlugin, EditorPlugin); GDCLASS(ShaderEditorPlugin, EditorPlugin);

View File

@ -260,6 +260,10 @@ class VisualShaderEditor : public VBoxContainer {
COLLAPSE_ALL COLLAPSE_ALL
}; };
#ifdef MINGW_ENABLED
#undef DELETE
#endif
enum NodeMenuOptions { enum NodeMenuOptions {
ADD, ADD,
SEPARATOR, // ignore SEPARATOR, // ignore

View File

@ -37,6 +37,12 @@
#include "core/templates/vector.h" #include "core/templates/vector.h"
#include "core/variant/variant.h" #include "core/variant/variant.h"
#ifdef MINGW_ENABLED
#undef CONST
#undef IN
#undef VOID
#endif
class GDScriptTokenizer { class GDScriptTokenizer {
public: public:
enum CursorPlace { enum CursorPlace {

View File

@ -45,6 +45,11 @@
#include "main/main.h" #include "main/main.h"
#include "scene/gui/line_edit.h" #include "scene/gui/line_edit.h"
#ifdef MINGW_ENABLED
#define near
#define far
#endif
#ifdef WINDOWS_ENABLED #ifdef WINDOWS_ENABLED
#include <shlwapi.h> #include <shlwapi.h>
#endif #endif

View File

@ -36,6 +36,11 @@
#include "scene/resources/camera_attributes.h" #include "scene/resources/camera_attributes.h"
#include "scene/resources/environment.h" #include "scene/resources/environment.h"
#ifdef MINGW_ENABLED
#undef near
#undef far
#endif
class Camera3D : public Node3D { class Camera3D : public Node3D {
GDCLASS(Camera3D, Node3D); GDCLASS(Camera3D, Node3D);

View File

@ -72,6 +72,11 @@ void SceneDebugger::deinitialize() {
} }
} }
#ifdef MINGW_ENABLED
#undef near
#undef far
#endif
#ifdef DEBUG_ENABLED #ifdef DEBUG_ENABLED
Error SceneDebugger::parse_message(void *p_user, const String &p_msg, const Array &p_args, bool &r_captured) { Error SceneDebugger::parse_message(void *p_user, const String &p_msg, const Array &p_args, bool &r_captured) {
SceneTree *scene_tree = SceneTree::get_singleton(); SceneTree *scene_tree = SceneTree::get_singleton();

View File

@ -373,6 +373,11 @@ real_t CameraAttributesPhysical::get_fov() const {
return frustum_fov; return frustum_fov;
} }
#ifdef MINGW_ENABLED
#undef near
#undef far
#endif
void CameraAttributesPhysical::_update_frustum() { void CameraAttributesPhysical::_update_frustum() {
//https://en.wikipedia.org/wiki/Circle_of_confusion#Circle_of_confusion_diameter_limit_based_on_d/1500 //https://en.wikipedia.org/wiki/Circle_of_confusion#Circle_of_confusion_diameter_limit_based_on_d/1500
Vector2i sensor_size = Vector2i(36, 24); // Matches high-end DSLR, could be made variable if there is demand. Vector2i sensor_size = Vector2i(36, 24); // Matches high-end DSLR, could be made variable if there is demand.

View File

@ -47,6 +47,11 @@ void RendererSceneRender::CameraData::set_camera(const Transform3D p_transform,
taa_jitter = p_taa_jitter; taa_jitter = p_taa_jitter;
} }
#ifdef MINGW_ENABLED
#undef near
#undef far
#endif
void RendererSceneRender::CameraData::set_multiview_camera(uint32_t p_view_count, const Transform3D *p_transforms, const Projection *p_projections, bool p_is_orthogonal, bool p_vaspect) { void RendererSceneRender::CameraData::set_multiview_camera(uint32_t p_view_count, const Transform3D *p_transforms, const Projection *p_projections, bool p_is_orthogonal, bool p_vaspect) {
ERR_FAIL_COND_MSG(p_view_count != 2, "Incorrect view count for stereoscopic view"); ERR_FAIL_COND_MSG(p_view_count != 2, "Incorrect view count for stereoscopic view");

18
thirdparty/README.md vendored
View File

@ -515,6 +515,24 @@ error metrics instead of a combination of distance and attribute errors. Patches
for both changes can be found in the `patches` directory. for both changes can be found in the `patches` directory.
## mingw-std-threads
- Upstream: https://github.com/meganz/mingw-std-threads
- Version: git (c931bac289dd431f1dd30fc4a5d1a7be36668073, 2023)
- License: BSD-2-clause
Files extracted from upstream repository:
- `LICENSE`
- `mingw.condition_variable.h`
- `mingw.invoke.h`
- `mingw.mutex.h`
- `mingw.shared_mutex.h`
- `mingw.thread.h`
Once copied, apply `no_except.patch` (needed because Godot is built without exceptions).
## minimp3 ## minimp3
- Upstream: https://github.com/lieff/minimp3 - Upstream: https://github.com/lieff/minimp3

24
thirdparty/mingw-std-threads/LICENSE vendored Normal file
View File

@ -0,0 +1,24 @@
Copyright (c) 2016, Mega Limited
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,564 @@
/**
* @file condition_variable.h
* @brief std::condition_variable implementation for MinGW
*
* (c) 2013-2016 by Mega Limited, Auckland, New Zealand
* @author Alexander Vassilev
*
* @copyright Simplified (2-clause) BSD License.
* You should have received a copy of the license along with this
* program.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* @note
* This file may become part of the mingw-w64 runtime package. If/when this happens,
* the appropriate license will be added, i.e. this code will become dual-licensed,
* and the current BSD 2-clause license will stay.
*/
#ifndef MINGW_CONDITIONAL_VARIABLE_H
#define MINGW_CONDITIONAL_VARIABLE_H
#if !defined(__cplusplus) || (__cplusplus < 201103L)
#error A C++11 compiler is required!
#endif
// Use the standard classes for std::, if available.
#include <condition_variable>
#include <cassert>
#include <chrono>
#include <system_error>
#include <sdkddkver.h> // Detect Windows version.
#if (WINVER < _WIN32_WINNT_VISTA)
#include <atomic>
#endif
#if (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR))
#pragma message "The Windows API that MinGW-w32 provides is not fully compatible\
with Microsoft's API. We'll try to work around this, but we can make no\
guarantees. This problem does not exist in MinGW-w64."
#include <windows.h> // No further granularity can be expected.
#else
#if (WINVER < _WIN32_WINNT_VISTA)
#include <windef.h>
#include <winbase.h> // For CreateSemaphore
#include <handleapi.h>
#endif
#include <synchapi.h>
#endif
#include "mingw.mutex.h"
#include "mingw.shared_mutex.h"
#if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0501)
#error To use the MinGW-std-threads library, you will need to define the macro _WIN32_WINNT to be 0x0501 (Windows XP) or higher.
#endif
namespace mingw_stdthread
{
#if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS)
enum class cv_status { no_timeout, timeout };
#else
using std::cv_status;
#endif
namespace xp
{
// Include the XP-compatible condition_variable classes only if actually
// compiling for XP. The XP-compatible classes are slower than the newer
// versions, and depend on features not compatible with Windows Phone 8.
#if (WINVER < _WIN32_WINNT_VISTA)
class condition_variable_any
{
recursive_mutex mMutex {};
std::atomic<int> mNumWaiters {0};
HANDLE mSemaphore;
HANDLE mWakeEvent {};
public:
using native_handle_type = HANDLE;
native_handle_type native_handle()
{
return mSemaphore;
}
condition_variable_any(const condition_variable_any&) = delete;
condition_variable_any& operator=(const condition_variable_any&) = delete;
condition_variable_any()
: mSemaphore(CreateSemaphoreA(NULL, 0, 0xFFFF, NULL))
{
if (mSemaphore == NULL)
__builtin_trap();
mWakeEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (mWakeEvent == NULL)
{
CloseHandle(mSemaphore);
__builtin_trap();
}
}
~condition_variable_any()
{
CloseHandle(mWakeEvent);
CloseHandle(mSemaphore);
}
private:
template <class M>
bool wait_impl(M& lock, DWORD timeout)
{
{
lock_guard<recursive_mutex> guard(mMutex);
mNumWaiters++;
}
lock.unlock();
DWORD ret = WaitForSingleObject(mSemaphore, timeout);
mNumWaiters--;
SetEvent(mWakeEvent);
lock.lock();
if (ret == WAIT_OBJECT_0)
return true;
else if (ret == WAIT_TIMEOUT)
return false;
//2 possible cases:
//1)The point in notify_all() where we determine the count to
//increment the semaphore with has not been reached yet:
//we just need to decrement mNumWaiters, but setting the event does not hurt
//
//2)Semaphore has just been released with mNumWaiters just before
//we decremented it. This means that the semaphore count
//after all waiters finish won't be 0 - because not all waiters
//woke up by acquiring the semaphore - we woke up by a timeout.
//The notify_all() must handle this gracefully
//
else
{
using namespace std;
__builtin_trap();
}
}
public:
template <class M>
void wait(M& lock)
{
wait_impl(lock, INFINITE);
}
template <class M, class Predicate>
void wait(M& lock, Predicate pred)
{
while(!pred())
{
wait(lock);
};
}
void notify_all() noexcept
{
lock_guard<recursive_mutex> lock(mMutex); //block any further wait requests until all current waiters are unblocked
if (mNumWaiters.load() <= 0)
return;
ReleaseSemaphore(mSemaphore, mNumWaiters, NULL);
while(mNumWaiters > 0)
{
auto ret = WaitForSingleObject(mWakeEvent, 1000);
if (ret == WAIT_FAILED || ret == WAIT_ABANDONED)
std::terminate();
}
assert(mNumWaiters == 0);
//in case some of the waiters timed out just after we released the
//semaphore by mNumWaiters, it won't be zero now, because not all waiters
//woke up by acquiring the semaphore. So we must zero the semaphore before
//we accept waiters for the next event
//See _wait_impl for details
while(WaitForSingleObject(mSemaphore, 0) == WAIT_OBJECT_0);
}
void notify_one() noexcept
{
lock_guard<recursive_mutex> lock(mMutex);
int targetWaiters = mNumWaiters.load() - 1;
if (targetWaiters <= -1)
return;
ReleaseSemaphore(mSemaphore, 1, NULL);
while(mNumWaiters > targetWaiters)
{
auto ret = WaitForSingleObject(mWakeEvent, 1000);
if (ret == WAIT_FAILED || ret == WAIT_ABANDONED)
std::terminate();
}
assert(mNumWaiters == targetWaiters);
}
template <class M, class Rep, class Period>
cv_status wait_for(M& lock,
const std::chrono::duration<Rep, Period>& rel_time)
{
using namespace std::chrono;
auto timeout = duration_cast<milliseconds>(rel_time).count();
DWORD waittime = (timeout < INFINITE) ? ((timeout < 0) ? 0 : static_cast<DWORD>(timeout)) : (INFINITE - 1);
bool ret = wait_impl(lock, waittime) || (timeout >= INFINITE);
return ret?cv_status::no_timeout:cv_status::timeout;
}
template <class M, class Rep, class Period, class Predicate>
bool wait_for(M& lock,
const std::chrono::duration<Rep, Period>& rel_time, Predicate pred)
{
return wait_until(lock, std::chrono::steady_clock::now()+rel_time, pred);
}
template <class M, class Clock, class Duration>
cv_status wait_until (M& lock,
const std::chrono::time_point<Clock,Duration>& abs_time)
{
return wait_for(lock, abs_time - Clock::now());
}
template <class M, class Clock, class Duration, class Predicate>
bool wait_until (M& lock,
const std::chrono::time_point<Clock, Duration>& abs_time,
Predicate pred)
{
while (!pred())
{
if (wait_until(lock, abs_time) == cv_status::timeout)
{
return pred();
}
}
return true;
}
};
class condition_variable: condition_variable_any
{
using base = condition_variable_any;
public:
using base::native_handle_type;
using base::native_handle;
using base::base;
using base::notify_all;
using base::notify_one;
void wait(unique_lock<mutex> &lock)
{
base::wait(lock);
}
template <class Predicate>
void wait(unique_lock<mutex>& lock, Predicate pred)
{
base::wait(lock, pred);
}
template <class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock, const std::chrono::duration<Rep, Period>& rel_time)
{
return base::wait_for(lock, rel_time);
}
template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock, const std::chrono::duration<Rep, Period>& rel_time, Predicate pred)
{
return base::wait_for(lock, rel_time, pred);
}
template <class Clock, class Duration>
cv_status wait_until (unique_lock<mutex>& lock, const std::chrono::time_point<Clock,Duration>& abs_time)
{
return base::wait_until(lock, abs_time);
}
template <class Clock, class Duration, class Predicate>
bool wait_until (unique_lock<mutex>& lock, const std::chrono::time_point<Clock, Duration>& abs_time, Predicate pred)
{
return base::wait_until(lock, abs_time, pred);
}
};
#endif // Compiling for XP
} // Namespace mingw_stdthread::xp
#if (WINVER >= _WIN32_WINNT_VISTA)
namespace vista
{
// If compiling for Vista or higher, use the native condition variable.
class condition_variable
{
static constexpr DWORD kInfinite = 0xffffffffl;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
CONDITION_VARIABLE cvariable_ = CONDITION_VARIABLE_INIT;
#pragma GCC diagnostic pop
friend class condition_variable_any;
#if STDMUTEX_RECURSION_CHECKS
template<typename MTX>
inline static void before_wait (MTX * pmutex)
{
pmutex->mOwnerThread.checkSetOwnerBeforeUnlock();
}
template<typename MTX>
inline static void after_wait (MTX * pmutex)
{
pmutex->mOwnerThread.setOwnerAfterLock(GetCurrentThreadId());
}
#else
inline static void before_wait (void *) { }
inline static void after_wait (void *) { }
#endif
bool wait_impl (unique_lock<xp::mutex> & lock, DWORD time)
{
using mutex_handle_type = typename xp::mutex::native_handle_type;
static_assert(std::is_same<mutex_handle_type, PCRITICAL_SECTION>::value,
"Native Win32 condition variable requires std::mutex to \
use native Win32 critical section objects.");
xp::mutex * pmutex = lock.release();
before_wait(pmutex);
BOOL success = SleepConditionVariableCS(&cvariable_,
pmutex->native_handle(),
time);
after_wait(pmutex);
lock = unique_lock<xp::mutex>(*pmutex, adopt_lock);
return success;
}
bool wait_unique (windows7::mutex * pmutex, DWORD time)
{
before_wait(pmutex);
BOOL success = SleepConditionVariableSRW( native_handle(),
pmutex->native_handle(),
time,
// CONDITION_VARIABLE_LOCKMODE_SHARED has a value not specified by
// Microsoft's Dev Center, but is known to be (convertible to) a ULONG. To
// ensure that the value passed to this function is not equal to Microsoft's
// constant, we can either use a static_assert, or simply generate an
// appropriate value.
!CONDITION_VARIABLE_LOCKMODE_SHARED);
after_wait(pmutex);
return success;
}
bool wait_impl (unique_lock<windows7::mutex> & lock, DWORD time)
{
windows7::mutex * pmutex = lock.release();
bool success = wait_unique(pmutex, time);
lock = unique_lock<windows7::mutex>(*pmutex, adopt_lock);
return success;
}
public:
using native_handle_type = PCONDITION_VARIABLE;
native_handle_type native_handle (void)
{
return &cvariable_;
}
condition_variable (void) = default;
~condition_variable (void) = default;
condition_variable (const condition_variable &) = delete;
condition_variable & operator= (const condition_variable &) = delete;
void notify_one (void) noexcept
{
WakeConditionVariable(&cvariable_);
}
void notify_all (void) noexcept
{
WakeAllConditionVariable(&cvariable_);
}
void wait (unique_lock<mutex> & lock)
{
wait_impl(lock, kInfinite);
}
template<class Predicate>
void wait (unique_lock<mutex> & lock, Predicate pred)
{
while (!pred())
wait(lock);
}
template <class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,
const std::chrono::duration<Rep, Period>& rel_time)
{
using namespace std::chrono;
auto timeout = duration_cast<milliseconds>(rel_time).count();
DWORD waittime = (timeout < kInfinite) ? ((timeout < 0) ? 0 : static_cast<DWORD>(timeout)) : (kInfinite - 1);
bool result = wait_impl(lock, waittime) || (timeout >= kInfinite);
return result ? cv_status::no_timeout : cv_status::timeout;
}
template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,
const std::chrono::duration<Rep, Period>& rel_time,
Predicate pred)
{
return wait_until(lock,
std::chrono::steady_clock::now() + rel_time,
std::move(pred));
}
template <class Clock, class Duration>
cv_status wait_until (unique_lock<mutex>& lock,
const std::chrono::time_point<Clock,Duration>& abs_time)
{
return wait_for(lock, abs_time - Clock::now());
}
template <class Clock, class Duration, class Predicate>
bool wait_until (unique_lock<mutex>& lock,
const std::chrono::time_point<Clock, Duration>& abs_time,
Predicate pred)
{
while (!pred())
{
if (wait_until(lock, abs_time) == cv_status::timeout)
{
return pred();
}
}
return true;
}
};
class condition_variable_any
{
static constexpr DWORD kInfinite = 0xffffffffl;
using native_shared_mutex = windows7::shared_mutex;
condition_variable internal_cv_ {};
// When available, the SRW-based mutexes should be faster than the
// CriticalSection-based mutexes. Only try_lock will be unavailable in Vista,
// and try_lock is not used by condition_variable_any.
windows7::mutex internal_mutex_ {};
template<class L>
bool wait_impl (L & lock, DWORD time)
{
unique_lock<decltype(internal_mutex_)> internal_lock(internal_mutex_);
lock.unlock();
bool success = internal_cv_.wait_impl(internal_lock, time);
lock.lock();
return success;
}
// If the lock happens to be called on a native Windows mutex, skip any extra
// contention.
inline bool wait_impl (unique_lock<mutex> & lock, DWORD time)
{
return internal_cv_.wait_impl(lock, time);
}
// Some shared_mutex functionality is available even in Vista, but it's not
// until Windows 7 that a full implementation is natively possible. The class
// itself is defined, with missing features, at the Vista feature level.
bool wait_impl (unique_lock<native_shared_mutex> & lock, DWORD time)
{
native_shared_mutex * pmutex = lock.release();
bool success = internal_cv_.wait_unique(pmutex, time);
lock = unique_lock<native_shared_mutex>(*pmutex, adopt_lock);
return success;
}
bool wait_impl (shared_lock<native_shared_mutex> & lock, DWORD time)
{
native_shared_mutex * pmutex = lock.release();
BOOL success = SleepConditionVariableSRW(native_handle(),
pmutex->native_handle(), time,
CONDITION_VARIABLE_LOCKMODE_SHARED);
lock = shared_lock<native_shared_mutex>(*pmutex, adopt_lock);
return success;
}
public:
using native_handle_type = typename condition_variable::native_handle_type;
native_handle_type native_handle (void)
{
return internal_cv_.native_handle();
}
void notify_one (void) noexcept
{
internal_cv_.notify_one();
}
void notify_all (void) noexcept
{
internal_cv_.notify_all();
}
condition_variable_any (void) = default;
~condition_variable_any (void) = default;
template<class L>
void wait (L & lock)
{
wait_impl(lock, kInfinite);
}
template<class L, class Predicate>
void wait (L & lock, Predicate pred)
{
while (!pred())
wait(lock);
}
template <class L, class Rep, class Period>
cv_status wait_for(L& lock, const std::chrono::duration<Rep,Period>& period)
{
using namespace std::chrono;
auto timeout = duration_cast<milliseconds>(period).count();
DWORD waittime = (timeout < kInfinite) ? ((timeout < 0) ? 0 : static_cast<DWORD>(timeout)) : (kInfinite - 1);
bool result = wait_impl(lock, waittime) || (timeout >= kInfinite);
return result ? cv_status::no_timeout : cv_status::timeout;
}
template <class L, class Rep, class Period, class Predicate>
bool wait_for(L& lock, const std::chrono::duration<Rep, Period>& period,
Predicate pred)
{
return wait_until(lock, std::chrono::steady_clock::now() + period,
std::move(pred));
}
template <class L, class Clock, class Duration>
cv_status wait_until (L& lock,
const std::chrono::time_point<Clock,Duration>& abs_time)
{
return wait_for(lock, abs_time - Clock::now());
}
template <class L, class Clock, class Duration, class Predicate>
bool wait_until (L& lock,
const std::chrono::time_point<Clock, Duration>& abs_time,
Predicate pred)
{
while (!pred())
{
if (wait_until(lock, abs_time) == cv_status::timeout)
{
return pred();
}
}
return true;
}
};
} // Namespace vista
#endif
#if WINVER < 0x0600
using xp::condition_variable;
using xp::condition_variable_any;
#else
using vista::condition_variable;
using vista::condition_variable_any;
#endif
} // Namespace mingw_stdthread
// Push objects into std, but only if they are not already there.
namespace std
{
// Because of quirks of the compiler, the common "using namespace std;"
// directive would flatten the namespaces and introduce ambiguity where there
// was none. Direct specification (std::), however, would be unaffected.
// Take the safe option, and include only in the presence of MinGW's win32
// implementation.
#if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS)
using mingw_stdthread::cv_status;
using mingw_stdthread::condition_variable;
using mingw_stdthread::condition_variable_any;
#elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#pragma message "This version of MinGW seems to include a win32 port of\
pthreads, and probably already has C++11 std threading classes implemented,\
based on pthreads. These classes, found in namespace std, are not overridden\
by the mingw-std-thread library. If you would still like to use this\
implementation (as it is more lightweight), use the classes provided in\
namespace mingw_stdthread."
#endif
}
#endif // MINGW_CONDITIONAL_VARIABLE_H

View File

@ -0,0 +1,109 @@
/// \file mingw.invoke.h
/// \brief Lightweight `invoke` implementation, for C++11 and C++14.
///
/// (c) 2018-2019 by Nathaniel J. McClatchey, San Jose, CA, United States
/// \author Nathaniel J. McClatchey, PhD
///
/// \copyright Simplified (2-clause) BSD License.
///
/// \note This file may become part of the mingw-w64 runtime package. If/when
/// this happens, the appropriate license will be added, i.e. this code will
/// become dual-licensed, and the current BSD 2-clause license will stay.
#ifndef MINGW_INVOKE_H_
#define MINGW_INVOKE_H_
#include <type_traits> // For std::result_of, etc.
#include <utility> // For std::forward
#include <functional> // For std::reference_wrapper
namespace mingw_stdthread
{
namespace detail
{
// For compatibility, implement std::invoke for C++11 and C++14
#if __cplusplus < 201703L
template<bool PMemFunc, bool PMemData>
struct Invoker
{
template<class F, class... Args>
inline static typename std::result_of<F(Args...)>::type invoke (F&& f, Args&&... args)
{
return std::forward<F>(f)(std::forward<Args>(args)...);
}
};
template<bool>
struct InvokerHelper;
template<>
struct InvokerHelper<false>
{
template<class T1>
inline static auto get (T1&& t1) -> decltype(*std::forward<T1>(t1))
{
return *std::forward<T1>(t1);
}
template<class T1>
inline static auto get (const std::reference_wrapper<T1>& t1) -> decltype(t1.get())
{
return t1.get();
}
};
template<>
struct InvokerHelper<true>
{
template<class T1>
inline static auto get (T1&& t1) -> decltype(std::forward<T1>(t1))
{
return std::forward<T1>(t1);
}
};
template<>
struct Invoker<true, false>
{
template<class T, class F, class T1, class... Args>
inline static auto invoke (F T::* f, T1&& t1, Args&&... args) ->\
decltype((InvokerHelper<std::is_base_of<T,typename std::decay<T1>::type>::value>::get(std::forward<T1>(t1)).*f)(std::forward<Args>(args)...))
{
return (InvokerHelper<std::is_base_of<T,typename std::decay<T1>::type>::value>::get(std::forward<T1>(t1)).*f)(std::forward<Args>(args)...);
}
};
template<>
struct Invoker<false, true>
{
template<class T, class F, class T1, class... Args>
inline static auto invoke (F T::* f, T1&& t1, Args&&... args) ->\
decltype(InvokerHelper<std::is_base_of<T,typename std::decay<T1>::type>::value>::get(t1).*f)
{
return InvokerHelper<std::is_base_of<T,typename std::decay<T1>::type>::value>::get(t1).*f;
}
};
template<class F, class... Args>
struct InvokeResult
{
typedef Invoker<std::is_member_function_pointer<typename std::remove_reference<F>::type>::value,
std::is_member_object_pointer<typename std::remove_reference<F>::type>::value &&
(sizeof...(Args) == 1)> invoker;
inline static auto invoke (F&& f, Args&&... args) -> decltype(invoker::invoke(std::forward<F>(f), std::forward<Args>(args)...))
{
return invoker::invoke(std::forward<F>(f), std::forward<Args>(args)...);
}
};
template<class F, class...Args>
auto invoke (F&& f, Args&&... args) -> decltype(InvokeResult<F, Args...>::invoke(std::forward<F>(f), std::forward<Args>(args)...))
{
return InvokeResult<F, Args...>::invoke(std::forward<F>(f), std::forward<Args>(args)...);
}
#else
using std::invoke;
#endif
} // Namespace "detail"
} // Namespace "mingw_stdthread"
#endif

View File

@ -0,0 +1,500 @@
/**
* @file mingw.mutex.h
* @brief std::mutex et al implementation for MinGW
** (c) 2013-2016 by Mega Limited, Auckland, New Zealand
* @author Alexander Vassilev
*
* @copyright Simplified (2-clause) BSD License.
* You should have received a copy of the license along with this
* program.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* @note
* This file may become part of the mingw-w64 runtime package. If/when this happens,
* the appropriate license will be added, i.e. this code will become dual-licensed,
* and the current BSD 2-clause license will stay.
*/
#ifndef WIN32STDMUTEX_H
#define WIN32STDMUTEX_H
#if !defined(__cplusplus) || (__cplusplus < 201103L)
#error A C++11 compiler is required!
#endif
// Recursion checks on non-recursive locks have some performance penalty, and
// the C++ standard does not mandate them. The user might want to explicitly
// enable or disable such checks. If the user has no preference, enable such
// checks in debug builds, but not in release builds.
#ifdef STDMUTEX_RECURSION_CHECKS
#elif defined(NDEBUG)
#define STDMUTEX_RECURSION_CHECKS 0
#else
#define STDMUTEX_RECURSION_CHECKS 1
#endif
#include <chrono>
#include <system_error>
#include <atomic>
#include <mutex> //need for call_once()
#if STDMUTEX_RECURSION_CHECKS || !defined(NDEBUG)
#include <cstdio>
#endif
#include <sdkddkver.h> // Detect Windows version.
#if (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR))
#pragma message "The Windows API that MinGW-w32 provides is not fully compatible\
with Microsoft's API. We'll try to work around this, but we can make no\
guarantees. This problem does not exist in MinGW-w64."
#include <windows.h> // No further granularity can be expected.
#else
#if STDMUTEX_RECURSION_CHECKS
#include <processthreadsapi.h> // For GetCurrentThreadId
#endif
#include <synchapi.h> // For InitializeCriticalSection, etc.
#include <errhandlingapi.h> // For GetLastError
#include <handleapi.h>
#endif
// Need for the implementation of invoke
#include "mingw.invoke.h"
#if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0501)
#error To use the MinGW-std-threads library, you will need to define the macro _WIN32_WINNT to be 0x0501 (Windows XP) or higher.
#endif
namespace mingw_stdthread
{
// The _NonRecursive class has mechanisms that do not play nice with direct
// manipulation of the native handle. This forward declaration is part of
// a friend class declaration.
#if STDMUTEX_RECURSION_CHECKS
namespace vista
{
class condition_variable;
}
#endif
// To make this namespace equivalent to the thread-related subset of std,
// pull in the classes and class templates supplied by std but not by this
// implementation.
using std::lock_guard;
using std::unique_lock;
using std::adopt_lock_t;
using std::defer_lock_t;
using std::try_to_lock_t;
using std::adopt_lock;
using std::defer_lock;
using std::try_to_lock;
class recursive_mutex
{
CRITICAL_SECTION mHandle;
public:
typedef LPCRITICAL_SECTION native_handle_type;
native_handle_type native_handle() {return &mHandle;}
recursive_mutex() noexcept : mHandle()
{
InitializeCriticalSection(&mHandle);
}
recursive_mutex (const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;
~recursive_mutex() noexcept
{
DeleteCriticalSection(&mHandle);
}
void lock()
{
EnterCriticalSection(&mHandle);
}
void unlock()
{
LeaveCriticalSection(&mHandle);
}
bool try_lock()
{
return (TryEnterCriticalSection(&mHandle)!=0);
}
};
#if STDMUTEX_RECURSION_CHECKS
struct _OwnerThread
{
// If this is to be read before locking, then the owner-thread variable must
// be atomic to prevent a torn read from spuriously causing errors.
std::atomic<DWORD> mOwnerThread;
constexpr _OwnerThread () noexcept : mOwnerThread(0) {}
static void on_deadlock (void)
{
using namespace std;
fprintf(stderr, "FATAL: Recursive locking of non-recursive mutex\
detected. Throwing system exception\n");
fflush(stderr);
__builtin_trap();
}
DWORD checkOwnerBeforeLock() const
{
DWORD self = GetCurrentThreadId();
if (mOwnerThread.load(std::memory_order_relaxed) == self)
on_deadlock();
return self;
}
void setOwnerAfterLock(DWORD id)
{
mOwnerThread.store(id, std::memory_order_relaxed);
}
void checkSetOwnerBeforeUnlock()
{
DWORD self = GetCurrentThreadId();
if (mOwnerThread.load(std::memory_order_relaxed) != self)
on_deadlock();
mOwnerThread.store(0, std::memory_order_relaxed);
}
};
#endif
// Though the Slim Reader-Writer (SRW) locks used here are not complete until
// Windows 7, implementing partial functionality in Vista will simplify the
// interaction with condition variables.
//Define SRWLOCK_INIT.
#if !defined(SRWLOCK_INIT)
#pragma message "SRWLOCK_INIT macro is not defined. Defining automatically."
#define SRWLOCK_INIT {0}
#endif
#if defined(_WIN32) && (WINVER >= _WIN32_WINNT_VISTA)
namespace windows7
{
class mutex
{
SRWLOCK mHandle;
// Track locking thread for error checking.
#if STDMUTEX_RECURSION_CHECKS
friend class vista::condition_variable;
_OwnerThread mOwnerThread {};
#endif
public:
typedef PSRWLOCK native_handle_type;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
constexpr mutex () noexcept : mHandle(SRWLOCK_INIT) { }
#pragma GCC diagnostic pop
mutex (const mutex&) = delete;
mutex & operator= (const mutex&) = delete;
void lock (void)
{
// Note: Undefined behavior if called recursively.
#if STDMUTEX_RECURSION_CHECKS
DWORD self = mOwnerThread.checkOwnerBeforeLock();
#endif
AcquireSRWLockExclusive(&mHandle);
#if STDMUTEX_RECURSION_CHECKS
mOwnerThread.setOwnerAfterLock(self);
#endif
}
void unlock (void)
{
#if STDMUTEX_RECURSION_CHECKS
mOwnerThread.checkSetOwnerBeforeUnlock();
#endif
ReleaseSRWLockExclusive(&mHandle);
}
// TryAcquireSRW functions are a Windows 7 feature.
#if (WINVER >= _WIN32_WINNT_WIN7)
bool try_lock (void)
{
#if STDMUTEX_RECURSION_CHECKS
DWORD self = mOwnerThread.checkOwnerBeforeLock();
#endif
BOOL ret = TryAcquireSRWLockExclusive(&mHandle);
#if STDMUTEX_RECURSION_CHECKS
if (ret)
mOwnerThread.setOwnerAfterLock(self);
#endif
return ret;
}
#endif
native_handle_type native_handle (void)
{
return &mHandle;
}
};
} // Namespace windows7
#endif // Compiling for Vista
namespace xp
{
class mutex
{
CRITICAL_SECTION mHandle;
std::atomic_uchar mState;
// Track locking thread for error checking.
#if STDMUTEX_RECURSION_CHECKS
friend class vista::condition_variable;
_OwnerThread mOwnerThread {};
#endif
public:
typedef PCRITICAL_SECTION native_handle_type;
constexpr mutex () noexcept : mHandle(), mState(2) { }
mutex (const mutex&) = delete;
mutex & operator= (const mutex&) = delete;
~mutex() noexcept
{
// Undefined behavior if the mutex is held (locked) by any thread.
// Undefined behavior if a thread terminates while holding ownership of the
// mutex.
DeleteCriticalSection(&mHandle);
}
void lock (void)
{
unsigned char state = mState.load(std::memory_order_acquire);
while (state) {
if ((state == 2) && mState.compare_exchange_weak(state, 1, std::memory_order_acquire))
{
InitializeCriticalSection(&mHandle);
mState.store(0, std::memory_order_release);
break;
}
if (state == 1)
{
Sleep(0);
state = mState.load(std::memory_order_acquire);
}
}
#if STDMUTEX_RECURSION_CHECKS
DWORD self = mOwnerThread.checkOwnerBeforeLock();
#endif
EnterCriticalSection(&mHandle);
#if STDMUTEX_RECURSION_CHECKS
mOwnerThread.setOwnerAfterLock(self);
#endif
}
void unlock (void)
{
#if STDMUTEX_RECURSION_CHECKS
mOwnerThread.checkSetOwnerBeforeUnlock();
#endif
LeaveCriticalSection(&mHandle);
}
bool try_lock (void)
{
unsigned char state = mState.load(std::memory_order_acquire);
if ((state == 2) && mState.compare_exchange_strong(state, 1, std::memory_order_acquire))
{
InitializeCriticalSection(&mHandle);
mState.store(0, std::memory_order_release);
}
if (state == 1)
return false;
#if STDMUTEX_RECURSION_CHECKS
DWORD self = mOwnerThread.checkOwnerBeforeLock();
#endif
BOOL ret = TryEnterCriticalSection(&mHandle);
#if STDMUTEX_RECURSION_CHECKS
if (ret)
mOwnerThread.setOwnerAfterLock(self);
#endif
return ret;
}
native_handle_type native_handle (void)
{
return &mHandle;
}
};
} // Namespace "xp"
#if (WINVER >= _WIN32_WINNT_WIN7)
using windows7::mutex;
#else
using xp::mutex;
#endif
class recursive_timed_mutex
{
static constexpr DWORD kWaitAbandoned = 0x00000080l;
static constexpr DWORD kWaitObject0 = 0x00000000l;
static constexpr DWORD kInfinite = 0xffffffffl;
inline bool try_lock_internal (DWORD ms) noexcept
{
DWORD ret = WaitForSingleObject(mHandle, ms);
#ifndef NDEBUG
if (ret == kWaitAbandoned)
{
using namespace std;
fprintf(stderr, "FATAL: Thread terminated while holding a mutex.");
terminate();
}
#endif
return (ret == kWaitObject0) || (ret == kWaitAbandoned);
}
protected:
HANDLE mHandle;
// Track locking thread for error checking of non-recursive timed_mutex. For
// standard compliance, this must be defined in same class and at the same
// access-control level as every other variable in the timed_mutex.
#if STDMUTEX_RECURSION_CHECKS
friend class vista::condition_variable;
_OwnerThread mOwnerThread {};
#endif
public:
typedef HANDLE native_handle_type;
native_handle_type native_handle() const {return mHandle;}
recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
recursive_timed_mutex(): mHandle(CreateMutex(NULL, FALSE, NULL)) {}
~recursive_timed_mutex()
{
CloseHandle(mHandle);
}
void lock()
{
DWORD ret = WaitForSingleObject(mHandle, kInfinite);
// If (ret == WAIT_ABANDONED), then the thread that held ownership was
// terminated. Behavior is undefined, but Windows will pass ownership to this
// thread.
#ifndef NDEBUG
if (ret == kWaitAbandoned)
{
using namespace std;
fprintf(stderr, "FATAL: Thread terminated while holding a mutex.");
terminate();
}
#endif
if ((ret != kWaitObject0) && (ret != kWaitAbandoned))
{
__builtin_trap();
}
}
void unlock()
{
if (!ReleaseMutex(mHandle))
__builtin_trap();
}
bool try_lock()
{
return try_lock_internal(0);
}
template <class Rep, class Period>
bool try_lock_for(const std::chrono::duration<Rep,Period>& dur)
{
using namespace std::chrono;
auto timeout = duration_cast<milliseconds>(dur).count();
while (timeout > 0)
{
constexpr auto kMaxStep = static_cast<decltype(timeout)>(kInfinite-1);
auto step = (timeout < kMaxStep) ? timeout : kMaxStep;
if (try_lock_internal(static_cast<DWORD>(step)))
return true;
timeout -= step;
}
return false;
}
template <class Clock, class Duration>
bool try_lock_until(const std::chrono::time_point<Clock,Duration>& timeout_time)
{
return try_lock_for(timeout_time - Clock::now());
}
};
// Override if, and only if, it is necessary for error-checking.
#if STDMUTEX_RECURSION_CHECKS
class timed_mutex: recursive_timed_mutex
{
public:
timed_mutex() = default;
timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;
void lock()
{
DWORD self = mOwnerThread.checkOwnerBeforeLock();
recursive_timed_mutex::lock();
mOwnerThread.setOwnerAfterLock(self);
}
void unlock()
{
mOwnerThread.checkSetOwnerBeforeUnlock();
recursive_timed_mutex::unlock();
}
template <class Rep, class Period>
bool try_lock_for(const std::chrono::duration<Rep,Period>& dur)
{
DWORD self = mOwnerThread.checkOwnerBeforeLock();
bool ret = recursive_timed_mutex::try_lock_for(dur);
if (ret)
mOwnerThread.setOwnerAfterLock(self);
return ret;
}
template <class Clock, class Duration>
bool try_lock_until(const std::chrono::time_point<Clock,Duration>& timeout_time)
{
return try_lock_for(timeout_time - Clock::now());
}
bool try_lock ()
{
return try_lock_for(std::chrono::milliseconds(0));
}
};
#else
typedef recursive_timed_mutex timed_mutex;
#endif
class once_flag
{
// When available, the SRW-based mutexes should be faster than the
// CriticalSection-based mutexes. Only try_lock will be unavailable in Vista,
// and try_lock is not used by once_flag.
#if (_WIN32_WINNT == _WIN32_WINNT_VISTA)
windows7::mutex mMutex;
#else
mutex mMutex;
#endif
std::atomic_bool mHasRun;
once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;
template<class Callable, class... Args>
friend void call_once(once_flag& once, Callable&& f, Args&&... args);
public:
constexpr once_flag() noexcept: mMutex(), mHasRun(false) {}
};
template<class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args)
{
if (flag.mHasRun.load(std::memory_order_acquire))
return;
lock_guard<decltype(flag.mMutex)> lock(flag.mMutex);
if (flag.mHasRun.load(std::memory_order_relaxed))
return;
detail::invoke(std::forward<Callable>(func),std::forward<Args>(args)...);
flag.mHasRun.store(true, std::memory_order_release);
}
} // Namespace mingw_stdthread
// Push objects into std, but only if they are not already there.
namespace std
{
// Because of quirks of the compiler, the common "using namespace std;"
// directive would flatten the namespaces and introduce ambiguity where there
// was none. Direct specification (std::), however, would be unaffected.
// Take the safe option, and include only in the presence of MinGW's win32
// implementation.
#if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS)
using mingw_stdthread::recursive_mutex;
using mingw_stdthread::mutex;
using mingw_stdthread::recursive_timed_mutex;
using mingw_stdthread::timed_mutex;
using mingw_stdthread::once_flag;
using mingw_stdthread::call_once;
#elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#pragma message "This version of MinGW seems to include a win32 port of\
pthreads, and probably already has C++11 std threading classes implemented,\
based on pthreads. These classes, found in namespace std, are not overridden\
by the mingw-std-thread library. If you would still like to use this\
implementation (as it is more lightweight), use the classes provided in\
namespace mingw_stdthread."
#endif
}
#endif // WIN32STDMUTEX_H

View File

@ -0,0 +1,503 @@
/// \file mingw.shared_mutex.h
/// \brief Standard-compliant shared_mutex for MinGW
///
/// (c) 2017 by Nathaniel J. McClatchey, Athens OH, United States
/// \author Nathaniel J. McClatchey
///
/// \copyright Simplified (2-clause) BSD License.
///
/// \note This file may become part of the mingw-w64 runtime package. If/when
/// this happens, the appropriate license will be added, i.e. this code will
/// become dual-licensed, and the current BSD 2-clause license will stay.
/// \note Target Windows version is determined by WINVER, which is determined in
/// <windows.h> from _WIN32_WINNT, which can itself be set by the user.
// Notes on the namespaces:
// - The implementation can be accessed directly in the namespace
// mingw_stdthread.
// - Objects will be brought into namespace std by a using directive. This
// will cause objects declared in std (such as MinGW's implementation) to
// hide this implementation's definitions.
// - To avoid poluting the namespace with implementation details, all objects
// to be pushed into std will be placed in mingw_stdthread::visible.
// The end result is that if MinGW supplies an object, it is automatically
// used. If MinGW does not supply an object, this implementation's version will
// instead be used.
#ifndef MINGW_SHARED_MUTEX_H_
#define MINGW_SHARED_MUTEX_H_
#if !defined(__cplusplus) || (__cplusplus < 201103L)
#error A C++11 compiler is required!
#endif
#include <cassert>
// For descriptive errors.
#include <system_error>
// Implementing a shared_mutex without OS support will require atomic read-
// modify-write capacity.
#include <atomic>
// For timing in shared_lock and shared_timed_mutex.
#include <chrono>
#include <limits>
// Use MinGW's shared_lock class template, if it's available. Requires C++14.
// If unavailable (eg. because this library is being used in C++11), then an
// implementation of shared_lock is provided by this header.
#if (__cplusplus >= 201402L)
#include <shared_mutex>
#endif
// For defer_lock_t, adopt_lock_t, and try_to_lock_t
#include "mingw.mutex.h"
// For this_thread::yield.
//#include "mingw.thread.h"
// Might be able to use native Slim Reader-Writer (SRW) locks.
#ifdef _WIN32
#include <sdkddkver.h> // Detect Windows version.
#if (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR))
#pragma message "The Windows API that MinGW-w32 provides is not fully compatible\
with Microsoft's API. We'll try to work around this, but we can make no\
guarantees. This problem does not exist in MinGW-w64."
#include <windows.h> // No further granularity can be expected.
#else
#include <synchapi.h>
#endif
#endif
namespace mingw_stdthread
{
// Define a portable atomics-based shared_mutex
namespace portable
{
class shared_mutex
{
typedef uint_fast16_t counter_type;
std::atomic<counter_type> mCounter {0};
static constexpr counter_type kWriteBit = 1 << (std::numeric_limits<counter_type>::digits - 1);
#if STDMUTEX_RECURSION_CHECKS
// Runtime checker for verifying owner threads. Note: Exclusive mode only.
_OwnerThread mOwnerThread {};
#endif
public:
typedef shared_mutex * native_handle_type;
shared_mutex () = default;
// No form of copying or moving should be allowed.
shared_mutex (const shared_mutex&) = delete;
shared_mutex & operator= (const shared_mutex&) = delete;
~shared_mutex ()
{
// Terminate if someone tries to destroy an owned mutex.
assert(mCounter.load(std::memory_order_relaxed) == 0);
}
void lock_shared (void)
{
counter_type expected = mCounter.load(std::memory_order_relaxed);
do
{
// Delay if writing or if too many readers are attempting to read.
if (expected >= kWriteBit - 1)
{
using namespace std;
expected = mCounter.load(std::memory_order_relaxed);
continue;
}
if (mCounter.compare_exchange_weak(expected,
static_cast<counter_type>(expected + 1),
std::memory_order_acquire,
std::memory_order_relaxed))
break;
}
while (true);
}
bool try_lock_shared (void)
{
counter_type expected = mCounter.load(std::memory_order_relaxed) & static_cast<counter_type>(~kWriteBit);
if (expected + 1 == kWriteBit)
return false;
else
return mCounter.compare_exchange_strong( expected,
static_cast<counter_type>(expected + 1),
std::memory_order_acquire,
std::memory_order_relaxed);
}
void unlock_shared (void)
{
using namespace std;
#ifndef NDEBUG
if (!(mCounter.fetch_sub(1, memory_order_release) & static_cast<counter_type>(~kWriteBit)))
__builtin_trap();
#else
mCounter.fetch_sub(1, memory_order_release);
#endif
}
// Behavior is undefined if a lock was previously acquired.
void lock (void)
{
#if STDMUTEX_RECURSION_CHECKS
DWORD self = mOwnerThread.checkOwnerBeforeLock();
#endif
using namespace std;
// Might be able to use relaxed memory order...
// Wait for the write-lock to be unlocked, then claim the write slot.
counter_type current;
while ((current = mCounter.fetch_or(kWriteBit, std::memory_order_acquire)) & kWriteBit);
//this_thread::yield();
// Wait for readers to finish up.
while (current != kWriteBit)
{
//this_thread::yield();
current = mCounter.load(std::memory_order_acquire);
}
#if STDMUTEX_RECURSION_CHECKS
mOwnerThread.setOwnerAfterLock(self);
#endif
}
bool try_lock (void)
{
#if STDMUTEX_RECURSION_CHECKS
DWORD self = mOwnerThread.checkOwnerBeforeLock();
#endif
counter_type expected = 0;
bool ret = mCounter.compare_exchange_strong(expected, kWriteBit,
std::memory_order_acquire,
std::memory_order_relaxed);
#if STDMUTEX_RECURSION_CHECKS
if (ret)
mOwnerThread.setOwnerAfterLock(self);
#endif
return ret;
}
void unlock (void)
{
#if STDMUTEX_RECURSION_CHECKS
mOwnerThread.checkSetOwnerBeforeUnlock();
#endif
using namespace std;
#ifndef NDEBUG
if (mCounter.load(memory_order_relaxed) != kWriteBit)
__builtin_trap();
#endif
mCounter.store(0, memory_order_release);
}
native_handle_type native_handle (void)
{
return this;
}
};
} // Namespace portable
// The native shared_mutex implementation primarily uses features of Windows
// Vista, but the features used for try_lock and try_lock_shared were not
// introduced until Windows 7. To allow limited use while compiling for Vista,
// I define the class without try_* functions in that case.
// Only fully-featured implementations will be placed into namespace std.
#if defined(_WIN32) && (WINVER >= _WIN32_WINNT_VISTA)
namespace vista
{
class condition_variable_any;
}
namespace windows7
{
// We already #include "mingw.mutex.h". May as well reduce redundancy.
class shared_mutex : windows7::mutex
{
// Allow condition_variable_any (and only condition_variable_any) to treat a
// shared_mutex as its base class.
friend class vista::condition_variable_any;
public:
using windows7::mutex::native_handle_type;
using windows7::mutex::lock;
using windows7::mutex::unlock;
using windows7::mutex::native_handle;
void lock_shared (void)
{
AcquireSRWLockShared(native_handle());
}
void unlock_shared (void)
{
ReleaseSRWLockShared(native_handle());
}
// TryAcquireSRW functions are a Windows 7 feature.
#if (WINVER >= _WIN32_WINNT_WIN7)
bool try_lock_shared (void)
{
return TryAcquireSRWLockShared(native_handle()) != 0;
}
using windows7::mutex::try_lock;
#endif
};
} // Namespace windows7
#endif // Compiling for Vista
#if (defined(_WIN32) && (WINVER >= _WIN32_WINNT_WIN7))
using windows7::shared_mutex;
#else
using portable::shared_mutex;
#endif
class shared_timed_mutex : shared_mutex
{
typedef shared_mutex Base;
public:
using Base::lock;
using Base::try_lock;
using Base::unlock;
using Base::lock_shared;
using Base::try_lock_shared;
using Base::unlock_shared;
template< class Clock, class Duration >
bool try_lock_until ( const std::chrono::time_point<Clock,Duration>& cutoff )
{
do
{
if (try_lock())
return true;
}
while (std::chrono::steady_clock::now() < cutoff);
return false;
}
template< class Rep, class Period >
bool try_lock_for (const std::chrono::duration<Rep,Period>& rel_time)
{
return try_lock_until(std::chrono::steady_clock::now() + rel_time);
}
template< class Clock, class Duration >
bool try_lock_shared_until ( const std::chrono::time_point<Clock,Duration>& cutoff )
{
do
{
if (try_lock_shared())
return true;
}
while (std::chrono::steady_clock::now() < cutoff);
return false;
}
template< class Rep, class Period >
bool try_lock_shared_for (const std::chrono::duration<Rep,Period>& rel_time)
{
return try_lock_shared_until(std::chrono::steady_clock::now() + rel_time);
}
};
#if __cplusplus >= 201402L
using std::shared_lock;
#else
// If not supplied by shared_mutex (eg. because C++14 is not supported), I
// supply the various helper classes that the header should have defined.
template<class Mutex>
class shared_lock
{
Mutex * mMutex;
bool mOwns;
// Reduce code redundancy
void verify_lockable (void)
{
using namespace std;
if (mMutex == nullptr)
__builtin_trap();
if (mOwns)
__builtin_trap();
}
public:
typedef Mutex mutex_type;
shared_lock (void) noexcept
: mMutex(nullptr), mOwns(false)
{
}
shared_lock (shared_lock<Mutex> && other) noexcept
: mMutex(other.mutex_), mOwns(other.owns_)
{
other.mMutex = nullptr;
other.mOwns = false;
}
explicit shared_lock (mutex_type & m)
: mMutex(&m), mOwns(true)
{
mMutex->lock_shared();
}
shared_lock (mutex_type & m, defer_lock_t) noexcept
: mMutex(&m), mOwns(false)
{
}
shared_lock (mutex_type & m, adopt_lock_t)
: mMutex(&m), mOwns(true)
{
}
shared_lock (mutex_type & m, try_to_lock_t)
: mMutex(&m), mOwns(m.try_lock_shared())
{
}
template< class Rep, class Period >
shared_lock( mutex_type& m, const std::chrono::duration<Rep,Period>& timeout_duration )
: mMutex(&m), mOwns(m.try_lock_shared_for(timeout_duration))
{
}
template< class Clock, class Duration >
shared_lock( mutex_type& m, const std::chrono::time_point<Clock,Duration>& timeout_time )
: mMutex(&m), mOwns(m.try_lock_shared_until(timeout_time))
{
}
shared_lock& operator= (shared_lock<Mutex> && other) noexcept
{
if (&other != this)
{
if (mOwns)
mMutex->unlock_shared();
mMutex = other.mMutex;
mOwns = other.mOwns;
other.mMutex = nullptr;
other.mOwns = false;
}
return *this;
}
~shared_lock (void)
{
if (mOwns)
mMutex->unlock_shared();
}
shared_lock (const shared_lock<Mutex> &) = delete;
shared_lock& operator= (const shared_lock<Mutex> &) = delete;
// Shared locking
void lock (void)
{
verify_lockable();
mMutex->lock_shared();
mOwns = true;
}
bool try_lock (void)
{
verify_lockable();
mOwns = mMutex->try_lock_shared();
return mOwns;
}
template< class Clock, class Duration >
bool try_lock_until( const std::chrono::time_point<Clock,Duration>& cutoff )
{
verify_lockable();
do
{
mOwns = mMutex->try_lock_shared();
if (mOwns)
return mOwns;
}
while (std::chrono::steady_clock::now() < cutoff);
return false;
}
template< class Rep, class Period >
bool try_lock_for (const std::chrono::duration<Rep,Period>& rel_time)
{
return try_lock_until(std::chrono::steady_clock::now() + rel_time);
}
void unlock (void)
{
using namespace std;
if (!mOwns)
__builtin_trap();
mMutex->unlock_shared();
mOwns = false;
}
// Modifiers
void swap (shared_lock<Mutex> & other) noexcept
{
using namespace std;
swap(mMutex, other.mMutex);
swap(mOwns, other.mOwns);
}
mutex_type * release (void) noexcept
{
mutex_type * ptr = mMutex;
mMutex = nullptr;
mOwns = false;
return ptr;
}
// Observers
mutex_type * mutex (void) const noexcept
{
return mMutex;
}
bool owns_lock (void) const noexcept
{
return mOwns;
}
explicit operator bool () const noexcept
{
return owns_lock();
}
};
template< class Mutex >
void swap( shared_lock<Mutex>& lhs, shared_lock<Mutex>& rhs ) noexcept
{
lhs.swap(rhs);
}
#endif // C++11
} // Namespace mingw_stdthread
namespace std
{
// Because of quirks of the compiler, the common "using namespace std;"
// directive would flatten the namespaces and introduce ambiguity where there
// was none. Direct specification (std::), however, would be unaffected.
// Take the safe option, and include only in the presence of MinGW's win32
// implementation.
#if (__cplusplus < 201703L) || (defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS))
using mingw_stdthread::shared_mutex;
#endif
#if (__cplusplus < 201402L) || (defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS))
using mingw_stdthread::shared_timed_mutex;
using mingw_stdthread::shared_lock;
#elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#pragma message "This version of MinGW seems to include a win32 port of\
pthreads, and probably already has C++ std threading classes implemented,\
based on pthreads. These classes, found in namespace std, are not overridden\
by the mingw-std-thread library. If you would still like to use this\
implementation (as it is more lightweight), use the classes provided in\
namespace mingw_stdthread."
#endif
} // Namespace std
#endif // MINGW_SHARED_MUTEX_H_

View File

@ -0,0 +1,360 @@
/**
* @file mingw.thread.h
* @brief std::thread implementation for MinGW
* (c) 2013-2016 by Mega Limited, Auckland, New Zealand
* @author Alexander Vassilev
*
* @copyright Simplified (2-clause) BSD License.
* You should have received a copy of the license along with this
* program.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* @note
* This file may become part of the mingw-w64 runtime package. If/when this happens,
* the appropriate license will be added, i.e. this code will become dual-licensed,
* and the current BSD 2-clause license will stay.
*/
#ifndef WIN32STDTHREAD_H
#define WIN32STDTHREAD_H
#if !defined(__cplusplus) || (__cplusplus < 201103L)
#error A C++11 compiler is required!
#endif
// Use the standard classes for std::, if available.
#include <thread>
#include <cstddef> // For std::size_t
#include <cerrno> // Detect error type.
#include <exception> // For std::terminate
#include <system_error> // For std::system_error
#include <functional> // For std::hash
#include <tuple> // For std::tuple
#include <chrono> // For sleep timing.
#include <memory> // For std::unique_ptr
#include <iosfwd> // Stream output for thread ids.
#include <utility> // For std::swap, std::forward
#include "mingw.invoke.h"
#if (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR))
#pragma message "The Windows API that MinGW-w32 provides is not fully compatible\
with Microsoft's API. We'll try to work around this, but we can make no\
guarantees. This problem does not exist in MinGW-w64."
#include <windows.h> // No further granularity can be expected.
#else
#include <synchapi.h> // For WaitForSingleObject
#include <handleapi.h> // For CloseHandle, etc.
#include <sysinfoapi.h> // For GetNativeSystemInfo
#include <processthreadsapi.h> // For GetCurrentThreadId
#endif
#include <process.h> // For _beginthreadex
#ifndef NDEBUG
#include <cstdio>
#endif
#if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0501)
#error To use the MinGW-std-threads library, you will need to define the macro _WIN32_WINNT to be 0x0501 (Windows XP) or higher.
#endif
// Instead of INVALID_HANDLE_VALUE, _beginthreadex returns 0.
namespace mingw_stdthread
{
namespace detail
{
template<std::size_t...>
struct IntSeq {};
template<std::size_t N, std::size_t... S>
struct GenIntSeq : GenIntSeq<N-1, N-1, S...> { };
template<std::size_t... S>
struct GenIntSeq<0, S...> { typedef IntSeq<S...> type; };
// Use a template specialization to avoid relying on compiler optimization
// when determining the parameter integer sequence.
template<class Func, class T, typename... Args>
class ThreadFuncCall;
// We can't define the Call struct in the function - the standard forbids template methods in that case
template<class Func, std::size_t... S, typename... Args>
class ThreadFuncCall<Func, detail::IntSeq<S...>, Args...>
{
static_assert(sizeof...(S) == sizeof...(Args), "Args must match.");
using Tuple = std::tuple<typename std::decay<Args>::type...>;
typename std::decay<Func>::type mFunc;
Tuple mArgs;
public:
ThreadFuncCall(Func&& aFunc, Args&&... aArgs)
: mFunc(std::forward<Func>(aFunc)),
mArgs(std::forward<Args>(aArgs)...)
{
}
void callFunc()
{
detail::invoke(std::move(mFunc), std::move(std::get<S>(mArgs)) ...);
}
};
// Allow construction of threads without exposing implementation.
class ThreadIdTool;
} // Namespace "detail"
class thread
{
public:
class id
{
DWORD mId = 0;
friend class thread;
friend class std::hash<id>;
friend class detail::ThreadIdTool;
explicit id(DWORD aId) noexcept : mId(aId){}
public:
id (void) noexcept = default;
friend bool operator==(id x, id y) noexcept {return x.mId == y.mId; }
friend bool operator!=(id x, id y) noexcept {return x.mId != y.mId; }
friend bool operator< (id x, id y) noexcept {return x.mId < y.mId; }
friend bool operator<=(id x, id y) noexcept {return x.mId <= y.mId; }
friend bool operator> (id x, id y) noexcept {return x.mId > y.mId; }
friend bool operator>=(id x, id y) noexcept {return x.mId >= y.mId; }
template<class _CharT, class _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __out, id __id)
{
if (__id.mId == 0)
{
return __out << "(invalid std::thread::id)";
}
else
{
return __out << __id.mId;
}
}
};
private:
static constexpr HANDLE kInvalidHandle = nullptr;
static constexpr DWORD kInfinite = 0xffffffffl;
HANDLE mHandle;
id mThreadId;
template <class Call>
static unsigned __stdcall threadfunc(void* arg)
{
std::unique_ptr<Call> call(static_cast<Call*>(arg));
call->callFunc();
return 0;
}
static unsigned int _hardware_concurrency_helper() noexcept
{
SYSTEM_INFO sysinfo;
// This is one of the few functions used by the library which has a nearly-
// equivalent function defined in earlier versions of Windows. Include the
// workaround, just as a reminder that it does exist.
#if defined(_WIN32_WINNT) && (_WIN32_WINNT >= 0x0501)
::GetNativeSystemInfo(&sysinfo);
#else
::GetSystemInfo(&sysinfo);
#endif
return sysinfo.dwNumberOfProcessors;
}
public:
typedef HANDLE native_handle_type;
id get_id() const noexcept {return mThreadId;}
native_handle_type native_handle() const {return mHandle;}
thread(): mHandle(kInvalidHandle), mThreadId(){}
thread(thread&& other)
:mHandle(other.mHandle), mThreadId(other.mThreadId)
{
other.mHandle = kInvalidHandle;
other.mThreadId = id{};
}
thread(const thread &other)=delete;
template<class Func, typename... Args>
explicit thread(Func&& func, Args&&... args) : mHandle(), mThreadId()
{
using ArgSequence = typename detail::GenIntSeq<sizeof...(Args)>::type;
using Call = detail::ThreadFuncCall<Func, ArgSequence, Args...>;
auto call = new Call(
std::forward<Func>(func), std::forward<Args>(args)...);
unsigned id_receiver;
auto int_handle = _beginthreadex(NULL, 0, threadfunc<Call>,
static_cast<LPVOID>(call), 0, &id_receiver);
if (int_handle == 0)
{
mHandle = kInvalidHandle;
int errnum = errno;
delete call;
// Note: Should only throw EINVAL, EAGAIN, EACCES
__builtin_trap();
} else {
mThreadId.mId = id_receiver;
mHandle = reinterpret_cast<HANDLE>(int_handle);
}
}
bool joinable() const {return mHandle != kInvalidHandle;}
// Note: Due to lack of synchronization, this function has a race condition
// if called concurrently, which leads to undefined behavior. The same applies
// to all other member functions of this class, but this one is mentioned
// explicitly.
void join()
{
using namespace std;
if (get_id() == id(GetCurrentThreadId()))
__builtin_trap();
if (mHandle == kInvalidHandle)
__builtin_trap();
if (!joinable())
__builtin_trap();
WaitForSingleObject(mHandle, kInfinite);
CloseHandle(mHandle);
mHandle = kInvalidHandle;
mThreadId = id{};
}
~thread()
{
if (joinable())
{
#ifndef NDEBUG
std::printf("Error: Must join() or detach() a thread before \
destroying it.\n");
#endif
std::terminate();
}
}
thread& operator=(const thread&) = delete;
thread& operator=(thread&& other) noexcept
{
if (joinable())
{
#ifndef NDEBUG
std::printf("Error: Must join() or detach() a thread before \
moving another thread to it.\n");
#endif
std::terminate();
}
swap(std::forward<thread>(other));
return *this;
}
void swap(thread&& other) noexcept
{
std::swap(mHandle, other.mHandle);
std::swap(mThreadId.mId, other.mThreadId.mId);
}
static unsigned int hardware_concurrency() noexcept
{
static unsigned int cached = _hardware_concurrency_helper();
return cached;
}
void detach()
{
if (!joinable())
{
using namespace std;
__builtin_trap();
}
if (mHandle != kInvalidHandle)
{
CloseHandle(mHandle);
mHandle = kInvalidHandle;
}
mThreadId = id{};
}
};
namespace detail
{
class ThreadIdTool
{
public:
static thread::id make_id (DWORD base_id) noexcept
{
return thread::id(base_id);
}
};
} // Namespace "detail"
namespace this_thread
{
inline thread::id get_id() noexcept
{
return detail::ThreadIdTool::make_id(GetCurrentThreadId());
}
inline void yield() noexcept {Sleep(0);}
template< class Rep, class Period >
void sleep_for( const std::chrono::duration<Rep,Period>& sleep_duration)
{
static constexpr DWORD kInfinite = 0xffffffffl;
using namespace std::chrono;
using rep = milliseconds::rep;
rep ms = duration_cast<milliseconds>(sleep_duration).count();
while (ms > 0)
{
constexpr rep kMaxRep = static_cast<rep>(kInfinite - 1);
auto sleepTime = (ms < kMaxRep) ? ms : kMaxRep;
Sleep(static_cast<DWORD>(sleepTime));
ms -= sleepTime;
}
}
template <class Clock, class Duration>
void sleep_until(const std::chrono::time_point<Clock,Duration>& sleep_time)
{
sleep_for(sleep_time-Clock::now());
}
}
} // Namespace mingw_stdthread
namespace std
{
// Because of quirks of the compiler, the common "using namespace std;"
// directive would flatten the namespaces and introduce ambiguity where there
// was none. Direct specification (std::), however, would be unaffected.
// Take the safe option, and include only in the presence of MinGW's win32
// implementation.
#if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS)
using mingw_stdthread::thread;
// Remove ambiguity immediately, to avoid problems arising from the above.
//using std::thread;
namespace this_thread
{
using namespace mingw_stdthread::this_thread;
}
#elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
#pragma message "This version of MinGW seems to include a win32 port of\
pthreads, and probably already has C++11 std threading classes implemented,\
based on pthreads. These classes, found in namespace std, are not overridden\
by the mingw-std-thread library. If you would still like to use this\
implementation (as it is more lightweight), use the classes provided in\
namespace mingw_stdthread."
#endif
// Specialize hash for this implementation's thread::id, even if the
// std::thread::id already has a hash.
template<>
struct hash<mingw_stdthread::thread::id>
{
typedef mingw_stdthread::thread::id argument_type;
typedef size_t result_type;
size_t operator() (const argument_type & i) const noexcept
{
return i.mId;
}
};
}
#endif // WIN32STDTHREAD_H

View File

@ -0,0 +1,137 @@
diff --git a/thirdparty/mingw-std-threads/mingw.condition_variable.h b/thirdparty/mingw-std-threads/mingw.condition_variable.h
index 50c5ebd6df..f9e248c154 100644
--- a/thirdparty/mingw-std-threads/mingw.condition_variable.h
+++ b/thirdparty/mingw-std-threads/mingw.condition_variable.h
@@ -87,12 +87,12 @@ public:
: mSemaphore(CreateSemaphoreA(NULL, 0, 0xFFFF, NULL))
{
if (mSemaphore == NULL)
- throw std::system_error(GetLastError(), std::generic_category());
+ __builtin_trap();
mWakeEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (mWakeEvent == NULL)
{
CloseHandle(mSemaphore);
- throw std::system_error(GetLastError(), std::generic_category());
+ __builtin_trap();
}
}
~condition_variable_any()
@@ -132,7 +132,7 @@ private:
else
{
using namespace std;
- throw system_error(make_error_code(errc::protocol_error));
+ __builtin_trap();
}
}
public:
diff --git a/thirdparty/mingw-std-threads/mingw.mutex.h b/thirdparty/mingw-std-threads/mingw.mutex.h
index 03efa13f8b..73698d13cb 100644
--- a/thirdparty/mingw-std-threads/mingw.mutex.h
+++ b/thirdparty/mingw-std-threads/mingw.mutex.h
@@ -132,7 +132,7 @@ struct _OwnerThread
fprintf(stderr, "FATAL: Recursive locking of non-recursive mutex\
detected. Throwing system exception\n");
fflush(stderr);
- throw system_error(make_error_code(errc::resource_deadlock_would_occur));
+ __builtin_trap();
}
DWORD checkOwnerBeforeLock() const
{
@@ -364,13 +364,13 @@ public:
#endif
if ((ret != kWaitObject0) && (ret != kWaitAbandoned))
{
- throw std::system_error(GetLastError(), std::system_category());
+ __builtin_trap();
}
}
void unlock()
{
if (!ReleaseMutex(mHandle))
- throw std::system_error(GetLastError(), std::system_category());
+ __builtin_trap();
}
bool try_lock()
{
diff --git a/thirdparty/mingw-std-threads/mingw.shared_mutex.h b/thirdparty/mingw-std-threads/mingw.shared_mutex.h
index ff1ac65135..5375b0fbd1 100644
--- a/thirdparty/mingw-std-threads/mingw.shared_mutex.h
+++ b/thirdparty/mingw-std-threads/mingw.shared_mutex.h
@@ -134,7 +134,7 @@ public:
using namespace std;
#ifndef NDEBUG
if (!(mCounter.fetch_sub(1, memory_order_release) & static_cast<counter_type>(~kWriteBit)))
- throw system_error(make_error_code(errc::operation_not_permitted));
+ __builtin_trap();
#else
mCounter.fetch_sub(1, memory_order_release);
#endif
@@ -187,7 +187,7 @@ public:
using namespace std;
#ifndef NDEBUG
if (mCounter.load(memory_order_relaxed) != kWriteBit)
- throw system_error(make_error_code(errc::operation_not_permitted));
+ __builtin_trap();
#endif
mCounter.store(0, memory_order_release);
}
@@ -317,9 +317,9 @@ class shared_lock
{
using namespace std;
if (mMutex == nullptr)
- throw system_error(make_error_code(errc::operation_not_permitted));
+ __builtin_trap();
if (mOwns)
- throw system_error(make_error_code(errc::resource_deadlock_would_occur));
+ __builtin_trap();
}
public:
typedef Mutex mutex_type;
@@ -432,7 +432,7 @@ public:
{
using namespace std;
if (!mOwns)
- throw system_error(make_error_code(errc::operation_not_permitted));
+ __builtin_trap();
mMutex->unlock_shared();
mOwns = false;
}
diff --git a/thirdparty/mingw-std-threads/mingw.thread.h b/thirdparty/mingw-std-threads/mingw.thread.h
index bcdd1a36a8..7ca09e25f5 100644
--- a/thirdparty/mingw-std-threads/mingw.thread.h
+++ b/thirdparty/mingw-std-threads/mingw.thread.h
@@ -196,7 +196,7 @@ public:
int errnum = errno;
delete call;
// Note: Should only throw EINVAL, EAGAIN, EACCES
- throw std::system_error(errnum, std::generic_category());
+ __builtin_trap();
} else {
mThreadId.mId = id_receiver;
mHandle = reinterpret_cast<HANDLE>(int_handle);
@@ -213,11 +213,11 @@ public:
{
using namespace std;
if (get_id() == id(GetCurrentThreadId()))
- throw system_error(make_error_code(errc::resource_deadlock_would_occur));
+ __builtin_trap();
if (mHandle == kInvalidHandle)
- throw system_error(make_error_code(errc::no_such_process));
+ __builtin_trap();
if (!joinable())
- throw system_error(make_error_code(errc::invalid_argument));
+ __builtin_trap();
WaitForSingleObject(mHandle, kInfinite);
CloseHandle(mHandle);
mHandle = kInvalidHandle;
@@ -266,7 +266,7 @@ moving another thread to it.\n");
if (!joinable())
{
using namespace std;
- throw system_error(make_error_code(errc::invalid_argument));
+ __builtin_trap();
}
if (mHandle != kInvalidHandle)
{