I couldn't find a tool that enforces it, so I went the manual route:
```
find -name "thirdparty" -prune \
-o -name "*.cpp" -o -name "*.h" -o -name "*.m" -o -name "*.mm" \
-o -name "*.glsl" > files
perl -0777 -pi -e 's/\n}\n([^#])/\n}\n\n\1/g' $(cat files)
misc/scripts/fix_style.sh -c
```
This adds a newline after all `}` on the first column, unless they
are followed by `#` (typically `#endif`). This leads to having lots
of places with two lines between function/class definitions, but
clang-format then fixes it as we enforce max one line of separation.
This doesn't fix potential occurrences of function definitions which
are indented (e.g. for a helper class defined in a .cpp), but it's
better than nothing. Also can't be made to run easily on CI/hooks so
we'll have to be careful with new code.
Part of #33027.
Which means that reduz' beloved style which we all became used to
will now be changed automatically to remove the first empty line.
This makes us lean closer to 1TBS (the one true brace style) instead
of hybridating it with some Allman-inspired spacing.
There's still the case of braces around single-statement blocks that
needs to be addressed (but clang-format can't help with that, but
clang-tidy may if we agree about it).
Part of #33027.
Part of #33027, also discussed in #29848.
Enforcing the use of brackets even on single line statements would be
preferred, but `clang-format` doesn't have this functionality yet.
Configured for a max line length of 120 characters.
psf/black is very opinionated and purposely doesn't leave much room for
configuration. The output is mostly OK so that should be fine for us,
but some things worth noting:
- Manually wrapped strings will be reflowed, so by using a line length
of 120 for the sake of preserving readability for our long command
calls, it also means that some manually wrapped strings are back on
the same line and should be manually merged again.
- Code generators using string concatenation extensively look awful,
since black puts each operand on a single line. We need to refactor
these generators to use more pythonic string formatting, for which
many options are available (`%`, `format` or f-strings).
- CI checks and a pre-commit hook will be added to ensure that future
buildsystem changes are well-formatted.
EngineDebugger is the new interface to access the debugger.
It tries to be as agnostic as possible on the data that various
subsystems can expose.
It allows 2 types of interactions:
- Profilers:
A subsystem can register a profiler, assigning it a unique name.
That name can be used to activate the profiler or add data to it.
The registered profiler can be composed of up to 3 functions:
- Toggle: called when the profiler is activated/deactivated.
- Add: called whenever data is added to the debugger
(via `EngineDebugger::profiler_add_frame_data`)
- Tick: called every frame (during idle), receives frame times.
- Captures: (Only relevant in remote debugger for now)
A subsystem can register a capture, assigning it a unique name.
When receiving a message, the remote debugger will check if it starts
with `[prefix]:` and call the associated capture with name `prefix`.
Port MultiplayerAPI, Servers, Scripts, Visual, Performance to the new
profiler system.
Port SceneDebugger and RemoteDebugger to the new capture system.
The LocalDebugger also uses the new profiler system for scripts
profiling.
- Removed platform-specific implementations.
- Now all semaphores are in-object, unless they need to be conditionally created.
- Similarly to `Mutex`, provided a dummy implementation for when `NO_THREADS` is defined.
- Similarly to `Mutex`, methods are made `const` for easy use in such contexts.
- Language bindings updated: `wait()` and `post()` are now `void`.
- Language bindings updated: `try_wait()` added.
Bonus:
- Rewritten the `#ifdef` in `mutex.h` to meet the code style.
Main:
- It's now implemented thanks to `<mutex>`. No more platform-specific implementations.
- `BinaryMutex` (non-recursive) is added, as an alternative for special cases.
- Doesn't need allocation/deallocation anymore. It can live in the stack and be part of other classes.
- Because of that, it's methods are now `const` and the inner mutex is `mutable` so it can be easily used in `const` contexts.
- A no-op implementation is provided if `NO_THREADS` is defined. No more need to add `#ifdef NO_THREADS` just for this.
- `MutexLock` now takes a reference. At this point the cases of null `Mutex`es are rare. If you ever need that, just don't use `MutexLock`.
- Thread-safe utilities are therefore simpler now.
Misc.:
- `ScopedMutexLock` is dropped and replaced by `MutexLock`, because they were pretty much the same.
- Every case of lock, do-something, unlock is replaced by `MutexLock` (complex cases where it's not straightfoward are kept as as explicit lock and unlock).
- `ShaderRD` contained an `std::mutex`, which has been replaced by `Mutex`.
- Renames PackedIntArray to PackedInt32Array.
- Renames PackedFloatArray to PackedFloat32Array.
- Adds PackedInt64Array and PackedFloat64Array.
- Renames Variant::REAL to Variant::FLOAT for consistency.
Packed arrays are for storing large amount of data and creating stuff like
meshes, buffers. textures, etc. Forcing them to be 64 is a huge waste of
memory. That said, many users requested the ability to have 64 bits packed
arrays for their games, so this is just an optional added type.
For Variant, the float datatype is always 64 bits, and exposed as `float`.
We still have `real_t` which is the datatype that can change from 32 to 64
bits depending on a compile flag (not entirely working right now, but that's
the idea). It affects math related datatypes and code only.
Neither Variant nor PackedArray make use of real_t, which is only intended
for math precision, so the term is removed from there to keep only float.
Happy new year to the wonderful Godot community!
We're starting a new decade with a well-established, non-profit, free
and open source game engine, and tons of further improvements in the
pipeline from hundreds of contributors.
Godot will keep getting better, and we're looking forward to all the
games that the community will keep developing and releasing with it.
For clarity, assign-to-release idiom for PoolVector::Read/Write
replaced with a function call.
Existing uses replaced (or removed if already handled by scope)
It's not necessary, but the vast majority of calls of error macros
do have an ending semicolon, so it's best to be consistent.
Most WARN_DEPRECATED calls did *not* have a semicolon, but there's
no reason for them to be treated differently.
Reasoning: ID is not an acronym, it is simply short for identification, so it logically should not be capitalized. But even if it was an acronym, other acronyms in Godot are not capitalized, like p_rid, p_ip, and p_json.
Adds the ability to directly add disabled shapes to a collision object. Before this commit a shape has always been assumed to be enabled and had to be disabled in an extra step.
It seems to stay compatible with formatting done by clang-format 6.0 and 7.0,
so contributors can keep using those versions for now (they will not undo those
changes).
Non-monitorable areas are never removed from the monitor query of other areas. This makes areas that turn not
monitorable while overlapping with other areas get stuck in the other areas' monitor query and trigger false
overlaps.
This is a fix for issue #9148.
Fixes the following GCC 5 warnings:
```
core/os/file_access.cpp:49:19: warning: the address of 'FileAccess::create_func' will always evaluate as 'true' [-Waddress]
servers/audio_server.cpp:192:70: warning: comparison with string literal results in unspecified behaviour [-Waddress]
drivers/gles2/rasterizer_storage_gles2.cpp:4095:90: warning: NULL used in arithmetic [-Wpointer-arith]
modules/gdnative/register_types.cpp:237:3: warning: deprecated conversion from string constant to 'char*' [-Wwrite-strings]
platform/android/export/export.cpp:207:1: warning: deprecated conversion from string constant to 'char*' [-Wwrite-strings]
modules/gdscript/gdscript.h:150:67: warning: returning reference to temporary [-Wreturn-local-addr]
servers/physics_2d/collision_object_2d_sw.h:119:56: warning: returning reference to temporary [-Wreturn-local-addr]
servers/physics_2d/collision_object_2d_sw.h:123:56: warning: returning reference to temporary [-Wreturn-local-addr]
servers/physics_2d/collision_object_2d_sw.h:127:50: warning: returning reference to temporary [-Wreturn-local-addr]
servers/physics_2d/collision_object_2d_sw.h:131:52: warning: returning reference to temporary [-Wreturn-local-addr]
editor/plugins/skeleton_editor_plugin.cpp:34:36: warning: extra tokens at end of #include directive
modules/bullet/bullet_types_converter.cpp:31:9: warning: #pragma once in main file
editor/import/editor_scene_importer_gltf.cpp:1996:51: warning: name lookup of 'i' changed
modules/visual_script/visual_script_property_selector.cpp:402:45: warning: name lookup of 'E' changed
scene/gui/tree.cpp:1268:25: warning: name lookup of 'i' changed
scene/resources/visual_shader.cpp:808:32: warning: name lookup of 'i' changed
```
This allows more consistency in the manner we include core headers,
where previously there would be a mix of absolute, relative and
include path-dependent includes.
New APIs in 2D physics allow intersection queries filtered by CanvasLayer object instance id. Viewport keep an inventory of its descendant CanvasLayers and takes advantage of all that to test picking with the mouse/touch position correctly transformed for each CanvasLayer.
This commit makes operator[] on Vector const and adds a write proxy to it. From
now on writes to Vectors need to happen through the .write proxy. So for
instance:
Vector<int> vec;
vec.push_back(10);
std::cout << vec[0] << std::endl;
vec.write[0] = 20;
Failing to use the .write proxy will cause a compilation error.
In addition COWable datatypes can now embed a CowData pointer to their data.
This means that String, CharString, and VMap no longer use or derive from
Vector.
_ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug
builds. This is a lot faster for Vector in the editor and while running tests.
The reason why this difference used to exist is because force-inlined methods
used to give a bad debugging experience. After extensive testing with modern
compilers this is no longer the case.
Physics2DDirectSpaceStateSW was applying the result limit to broadphase
collision detection instead of narrow. This is inconsistent with its 3D
variant, as well as the rest of the 2D direct space state functions.
Broadphase is now limited by INTERSECTION_QUERY_MAX like everything else,
and narrow phase is exited early when the result limit has been reached.
Fixes most current reports on Coverity Scan of uninitialized scalar
variable (CWE-457): https://cwe.mitre.org/data/definitions/457.html
These happen most of the time (in our code) when instanciating structs
without a constructor (or with an incomplete one), and later returning
the instance. This is sometimes intended though, as some parameters are
only used in some situations and should not be double-initialized for
performance reasons (e.g. `constant` in ShaderLanguage::Token).
Using `misc/scripts/fix_headers.py` on all Godot files.
Some missing header guards were added, and the header inclusion order
was fixed in the Bullet module.
The point is that `RayCast`s are checked against objects' `collision_layer`(s), but they themselves are considered no to _belong_ to any layer. Therefore, the correct name for their property is `collision_mask`, rather than `collision_layer`.
Only renaming is needed since the behavior was already the right one, only that it wasn't matching what users would expect from the name and description of the property.
Fixes#7589, where it's also discussed.
Rename user facing methods and variables as well as the corresponding
C++ methods according to the folloming changes:
* pos -> position
* rot -> rotation
* loc -> location
C++ variables are left as is.
Since joint resources are created by joint nodes and also they take care of freeing them, the physics server doesn't need to free bodies' joints explicitly.
The logic for clearing the constraints map/set is still relevant as there may be collision pairs and in their case its the server itself the one creating them and therefore releasing them.
Don't abort the loop when one is already released
Remove warning on already-released constraint
Clean up area's contraints as well
Clear the constraint data as well
Do the cleanup as soon as the space changes