This reverts commit f55039b194.
The GLES2 batching seems to require more testing and tweaking in order
to actually make the performance better on Android devices. It's been
proved with #21184 that the current implementation has it's drawbacks
therefore I suggest reverting the commit for now.
Adds GLES2 draw calls batching for the same render list item that uses
multiple rasterizer commands (e.g. Label node; a node with multiple
GDScript draw_* calls).
This commit unhacks some parts of the 3D rendering.
Most notably:
- possibility to use negative texture units
(no longer weird manual index allocation for user samplers)
- refactoring of light code, now sorts in a different way,
should yield better performance
- fixes a crash while saving (because of "Illegal instruction" execution)
when using a decent compiler (clang, it's clang. Thanks GCC for not telling me about UB).
Roughness is now set to 1 by default and albedo is now white,
even on meshes that do not have any materials defined.
This means there is no longer a visual difference between a
mesh with no materials defined and a mesh with a default
SpatialMaterial defined.
Shader compilation now keeps track of the discard key word.
Previously only variables were monitored. But discard, which needs
special treatment in some cases, went unnoticed by the compiler as
discard is not a variable but a flow control.
This commit adds monitoring for discard.
This commit makes operator[] on Vector const and adds a write proxy to it. From
now on writes to Vectors need to happen through the .write proxy. So for
instance:
Vector<int> vec;
vec.push_back(10);
std::cout << vec[0] << std::endl;
vec.write[0] = 20;
Failing to use the .write proxy will cause a compilation error.
In addition COWable datatypes can now embed a CowData pointer to their data.
This means that String, CharString, and VMap no longer use or derive from
Vector.
_ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug
builds. This is a lot faster for Vector in the editor and while running tests.
The reason why this difference used to exist is because force-inlined methods
used to give a bad debugging experience. After extensive testing with modern
compilers this is no longer the case.
Note that gl_InstanceID is not supported in OpenGL ES 2.0,
so in the gles2 backend we assign it to 0.
Also clean up some duplicates/commented out code.
Fixes#20088.
The rasterisers (both GLES3 and GLES2) were calculating their own frame delta time
This fix lets the rasterizers get the frame delta through the draw call
That way any regulations to the frame step from the main script will not cause particle systems to process at a different step than the rest of the Engine.
Remove unused rasterizer storage variable
frame.prev_tick variable were not used anywhere and has been removed
This commit adds a new rendering backend, GLES2, and adds a
project setting to enable it.
Currently this backend can only be used on the X11 platform,
but integrating into other platforms is planned.
I can show you the code
Pretty, with proper whitespace
Tell me, coder, now when did
You last write readable code?
I can open your eyes
Make you see your bad indent
Force you to respect the style
The core devs agreed upon
A whole new world
A new fantastic code format
A de facto standard
With some sugar
Enforced with clang-format
A whole new world
A dazzling style we all dreamed of
And when we read it through
It's crystal clear
That now we're in a whole new world of code
This fixes HashMap where a key or part of a key is a floating point
number. To fix this the following has been done:
* HashMap now takes an extra template argument Comparator. This class
gets used to compare keys. The default Comperator now works correctly
for common types and floating point numbets.
* Variant implements ::hash_compare() now. This function implements
nan-safe comparison for all types with components that contain floating
point numbers.
* Variant now has a VariantComparator which uses Variant::hash_compare()
safely compare floating point components of variant's types.
* The hash functions for floating point numbers will now normalize NaN
values so that all floating point numbers that are NaN hash to the same
value.
C++ module writers that want to use HashMap internally in their modules
can now also safeguard against this crash by defining their on
Comperator class that safely compares their types.
GDScript users, or writers of modules that don't use HashMap internally
in their modules don't need to do anything.
This fixes#7354 and fixes#6947.