* Make sure shaders are named, to aid in debug in case of failure
* SceneRenderRD was being wrongly initialized (virtual functions being called when derivative class not initialized).
* Fixed some bugs resulting on the above being corrected.
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
* Shader compilation is now cached. Subsequent loads take less than a millisecond.
* Improved game, editor and project manager startup time.
* Editor uses .godot/shader_cache to store shaders.
* Game uses user://shader_cache
* Project manager uses $config_dir/shader_cache
* Options to tweak shader caching in project settings.
* Editor path configuration moved from EditorSettings to new class, EditorPaths, so it can be available early on (before shaders are compiled).
* Reworked ShaderCompilerRD to ensure deterministic shader code creation (else shader may change and cache will be invalidated).
* Added shader compression with SMOLV: https://github.com/aras-p/smol-v
* Particle shaders now have start() and process()
* Particle collision happens between them.
* The RESTART property is kept, so porting an old shader is still possible.
This fixes the problem of particle collisions not functioning on the first particle frame.
-Used a more consistent set of keywords for the shader
-Remove all harcoded entry points
-Re-wrote the GLSL shader parser, new system is more flexible. Allows any entry point organization.
-Entry point for sky shaders is now sky().
-Entry point for particle shaders is now process().
-Added more finegrained control in RenderingDevice API
-Optimized barriers (use less ones for thee same)
-General optimizations
-Shadows render all together unbarriered
-GI can render together with shadows.
-SDFGI can render together with depth-preoass.
-General fixes
-Added GPU detection
Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆