Custom Visual Studio project generation logic that supports any platform that has a msvs.py
script, so Visual Studio can be used to run scons for any platform, with the right defines per target.
Invoked with `scons vsproj=yes`
To generate build configuration files for all platforms+targets+arch combinations, users should call
```
scons vsproj=yes platform=XXX target=YYY [other build flags]
```
for each combination of platform+target[+arch]. This will generate the relevant vs project files but
skip the build process, so that project files can be quickly generated without waiting for a command line
build. This lets project files be quickly generated even if there are build errors.
All possible combinations of platform+target are created in the solution file by default, but they
won't do anything until each one is set up with a scons vsproj=yes command for the respective platform
in the appropriate command line. This lets users only generate the combinations they need, and VS
won't have to parse settings for other combos.
Only platforms that opt in to vs proj generation by having a msvs.py file in the platform folder are included.
Platforms with a msvs.py file will be added to the solution, but only the current active platform+target+arch
will have a build configuration generated, because we only know what the right defines/includes/flags/etc are
on the active build target currently being processed by scons.
Platforms that don't support an editor target will have a dummy editor target that won't do anything on build,
but will have the files and configuration for the windows editor target.
To generate AND build from the command line, run
```
scons vsproj=yes vsproj_gen_only=no
```
This makes it much faster to get started with Direct3D 12 builds,
as you only need to run `python .\misc\scripts\install_d3d12_sdk_windows.py`
then run `scons d3d12=yes`.
This installs DirectX Shader Compiler, Mesa NIR, WinPixEventRuntime
and DirectX 12 Agility SDK.
- Define a default path that uses the locations from the script.
- Now the default path is in "%LOCALAPPDATA%\Godot\build_deps\"
- Updated CI to use this new python script.
Co-Authored-By: Hugo Locurcio <hugo.locurcio@hugo.pro>
First implementation with Linux display manager.
- Add single-threaded mode for EditorResourcePreview (needed for OpenGL).
Co-authored-by: clayjohn <claynjohn@gmail.com>
Co-authored-by: Fabio Alessandrelli <fabio.alessandrelli@gmail.com>
`debug_symbols=yes` will now behave like `debug_symbols=full` did
before. The difference in compressed file sizes is not that large,
which means there isn't much point in having two different values.
This helps make the buildsystem easier to understand.
Configured for a max line length of 120 characters.
psf/black is very opinionated and purposely doesn't leave much room for
configuration. The output is mostly OK so that should be fine for us,
but some things worth noting:
- Manually wrapped strings will be reflowed, so by using a line length
of 120 for the sake of preserving readability for our long command
calls, it also means that some manually wrapped strings are back on
the same line and should be manually merged again.
- Code generators using string concatenation extensively look awful,
since black puts each operand on a single line. We need to refactor
these generators to use more pythonic string formatting, for which
many options are available (`%`, `format` or f-strings).
- CI checks and a pre-commit hook will be added to ensure that future
buildsystem changes are well-formatted.
It was initially implemented in #5871 for Godot 3.0, but never really
completed or thoroughly tested for most platforms. It then stayed in
limbo and nobody seems really keen to finish it, so it's better to
remove it in 4.0, and re-add eventually (possibly with a different API)
if there's demand and an implementation confirmed working on all
platforms.
Closes#8770.
This is a new singleton where camera sources such as webcams or cameras on a mobile phone can register themselves with the Server.
Other parts of Godot can interact with this to obtain images from the camera as textures.
This work includes additions to the Visual Server to use this functionality to present the camera image in the background. This is specifically targetted at AR applications.
Also drop some unused files.
Renamed:
- `platform/iphone/sem_iphone.h` -> `semaphore_iphone.h`
(same for `osx`)
- `platform/uwp/gl_context_egl.h` -> `context_egl_uwp.h`
- in `platform/windows`: `context_gl_win.h`, `crash_handler_win.h`,
`godot_win.cpp`, `joypad.h` and `key_mapping_win.h` all renamed to
use `windows`. Some classes renamed accordingly too.
- `EditorExportAndroid` and `EditorExportUWP` renamed to
`EditorExportPlatformAndroid` and `EditorExportPlatformUWP`
- `power_android` and `power_osx` renamed to `PowerAndroid` and
`PowerOSX`
- `OSUWP` renamed to `OS_UWP`
Dropped:
- `platform/windows/ctxgl_procaddr.h`
- Refactored all builder (make_*) functions into separate Python modules along to the build tree
- Introduced utility function to wrap all invocations on Windows, but does not change it elsewhere
- Introduced stub to use the builders module as a stand alone script and invoke a selected function
There is a problem with file handles related to writing generated content (*.gen.h and *.gen.cpp)
on Windows, which randomly causes a SHARING VIOLATION error to the compiler resulting in flaky
builds. Running all such content generators in a new subprocess instead of directly inside the
build script works around the issue.
Yes, I tried the multiprocessing module. It did not work due to conflict with SCons on cPickle.
Suggested workaround did not fully work either.
Using the run_in_subprocess wrapper on osx and x11 platforms as well for consistency. In case of
running a cross-compilation on Windows they would still be used, but likely it will not happen
in practice. What counts is that the build itself is running on which platform, not the target
platform.
Some generated files are written directly in an SConstruct or SCsub file, before the parallel build starts. They don't need to be written in a subprocess, apparently, so I left them as is.
This adds a separate_debug_symbols option to the x11, windows, and osx
targets. This will default to adding normal debugging symbols to the
artifacts and only splits them when separate_debug_symbols=yes on the
Scons command line.
Previously logging logic was scattered over OS class implementations
with plenty of duplication. Major changes in this commit:
- Extracted logging logic into a separate Logger hierarchy. It allows
easy configuration of logging mechanism depending on compile-time or
run-time configuration.
- Implemented RotatedFileLogger which is usually used with StdLogger,
providing persistency of logs. It is often important to be able to
obtain logs of the game even in production to be able to understand
what happened prior to some problem. On mobile there previously was
no way to obtain the logs aside from having the device connected to
your machine.
- flush() is not performed in release mode for every logged line. It
is only performed for errors.
Now that we have a built-in stacktrace on a segfault it would be useful
to have debug information on debug_release builds so that bugreports can
include this information. Without this debug info we will still get
function names in the backtrace but not file location.
This commit will by default build all targets with minimal debug info
and then strip the information into separate files. On MacOS this is a
.dSYM file, on Linux/MingW this is a .debug file. MacOSX will
automatically load a dSYM file if it exists in its debugger. On
Linux/MingW we create a 'gnu debuglink' meaning that gdb and friends
will automatically find the debug symbols if they exist.
Existing workflow for developers does not change at all, except that we
now create two instead of one build artifact by default.
This commit also adds a 'debug_symbols' option to X11, MacOS, and MingW
targets. The default is 'yes' which corresponds to -g1. The alternatives
are 'no' (don't generate debug infos at all) or 'full' which runs with
-g2. A target=debug build will now build with -g3.
Done:
- X11, server (tested)
- Windows (developed, would be nice to retest)
- OSX (not tested)
Prepared (not developed):
- Android (code is here, but may not compile)
- iphone
- winrt
- bb10
- haiku
- javascript
add version_info and icon sections in "export to windows platform".
add version_info and icon to godot exe file (editor & template exe).
fix an problem in image class.
change all default icons to android export icon (a little more rounded).
create an python script for convert file to cpp byte array for use in
'splash.h'.