/**************************************************************************/ /* mesh_instance_3d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "mesh_instance_3d.h" #include "scene/3d/physics/collision_shape_3d.h" #include "scene/3d/physics/static_body_3d.h" #include "scene/3d/skeleton_3d.h" #include "scene/resources/3d/concave_polygon_shape_3d.h" #include "scene/resources/3d/convex_polygon_shape_3d.h" bool MeshInstance3D::_set(const StringName &p_name, const Variant &p_value) { //this is not _too_ bad performance wise, really. it only arrives here if the property was not set anywhere else. //add to it that it's probably found on first call to _set anyway. if (!get_instance().is_valid()) { return false; } HashMap::Iterator E = blend_shape_properties.find(p_name); if (E) { set_blend_shape_value(E->value, p_value); return true; } if (p_name.operator String().begins_with("surface_material_override/")) { int idx = p_name.operator String().get_slicec('/', 1).to_int(); if (idx >= surface_override_materials.size() || idx < 0) { return false; } set_surface_override_material(idx, p_value); return true; } return false; } bool MeshInstance3D::_get(const StringName &p_name, Variant &r_ret) const { if (!get_instance().is_valid()) { return false; } HashMap::ConstIterator E = blend_shape_properties.find(p_name); if (E) { r_ret = get_blend_shape_value(E->value); return true; } if (p_name.operator String().begins_with("surface_material_override/")) { int idx = p_name.operator String().get_slicec('/', 1).to_int(); if (idx >= surface_override_materials.size() || idx < 0) { return false; } r_ret = surface_override_materials[idx]; return true; } return false; } void MeshInstance3D::_get_property_list(List *p_list) const { List ls; for (const KeyValue &E : blend_shape_properties) { ls.push_back(E.key); } ls.sort(); for (const String &E : ls) { p_list->push_back(PropertyInfo(Variant::FLOAT, E, PROPERTY_HINT_RANGE, "-1,1,0.00001")); } if (mesh.is_valid()) { for (int i = 0; i < mesh->get_surface_count(); i++) { p_list->push_back(PropertyInfo(Variant::OBJECT, vformat("%s/%d", PNAME("surface_material_override"), i), PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial", PROPERTY_USAGE_DEFAULT)); } } } void MeshInstance3D::set_mesh(const Ref &p_mesh) { if (mesh == p_mesh) { return; } if (mesh.is_valid()) { mesh->disconnect_changed(callable_mp(this, &MeshInstance3D::_mesh_changed)); } mesh = p_mesh; if (mesh.is_valid()) { // If mesh is a PrimitiveMesh, calling get_rid on it can trigger a changed callback // so do this before connecting _mesh_changed. set_base(mesh->get_rid()); mesh->connect_changed(callable_mp(this, &MeshInstance3D::_mesh_changed)); _mesh_changed(); } else { blend_shape_tracks.clear(); blend_shape_properties.clear(); set_base(RID()); update_gizmos(); } notify_property_list_changed(); } Ref MeshInstance3D::get_mesh() const { return mesh; } int MeshInstance3D::get_blend_shape_count() const { if (mesh.is_null()) { return 0; } return mesh->get_blend_shape_count(); } int MeshInstance3D::find_blend_shape_by_name(const StringName &p_name) { if (mesh.is_null()) { return -1; } for (int i = 0; i < mesh->get_blend_shape_count(); i++) { if (mesh->get_blend_shape_name(i) == p_name) { return i; } } return -1; } float MeshInstance3D::get_blend_shape_value(int p_blend_shape) const { ERR_FAIL_COND_V(mesh.is_null(), 0.0); ERR_FAIL_INDEX_V(p_blend_shape, (int)blend_shape_tracks.size(), 0); return blend_shape_tracks[p_blend_shape]; } void MeshInstance3D::set_blend_shape_value(int p_blend_shape, float p_value) { ERR_FAIL_COND(mesh.is_null()); ERR_FAIL_INDEX(p_blend_shape, (int)blend_shape_tracks.size()); blend_shape_tracks[p_blend_shape] = p_value; RenderingServer::get_singleton()->instance_set_blend_shape_weight(get_instance(), p_blend_shape, p_value); } void MeshInstance3D::_resolve_skeleton_path() { Ref new_skin_reference; if (!skeleton_path.is_empty()) { Skeleton3D *skeleton = Object::cast_to(get_node(skeleton_path)); if (skeleton) { if (skin_internal.is_null()) { new_skin_reference = skeleton->register_skin(skeleton->create_skin_from_rest_transforms()); //a skin was created for us skin_internal = new_skin_reference->get_skin(); notify_property_list_changed(); } else { new_skin_reference = skeleton->register_skin(skin_internal); } } } skin_ref = new_skin_reference; if (skin_ref.is_valid()) { RenderingServer::get_singleton()->instance_attach_skeleton(get_instance(), skin_ref->get_skeleton()); } else { RenderingServer::get_singleton()->instance_attach_skeleton(get_instance(), RID()); } } void MeshInstance3D::set_skin(const Ref &p_skin) { skin_internal = p_skin; skin = p_skin; if (!is_inside_tree()) { return; } _resolve_skeleton_path(); } Ref MeshInstance3D::get_skin() const { return skin; } Ref MeshInstance3D::get_skin_reference() const { return skin_ref; } void MeshInstance3D::set_skeleton_path(const NodePath &p_skeleton) { skeleton_path = p_skeleton; if (!is_inside_tree()) { return; } _resolve_skeleton_path(); } NodePath MeshInstance3D::get_skeleton_path() { return skeleton_path; } AABB MeshInstance3D::get_aabb() const { if (!mesh.is_null()) { return mesh->get_aabb(); } return AABB(); } Node *MeshInstance3D::create_trimesh_collision_node() { if (mesh.is_null()) { return nullptr; } Ref shape = mesh->create_trimesh_shape(); if (shape.is_null()) { return nullptr; } StaticBody3D *static_body = memnew(StaticBody3D); CollisionShape3D *cshape = memnew(CollisionShape3D); cshape->set_shape(shape); static_body->add_child(cshape, true); return static_body; } void MeshInstance3D::create_trimesh_collision() { StaticBody3D *static_body = Object::cast_to(create_trimesh_collision_node()); ERR_FAIL_NULL(static_body); static_body->set_name(String(get_name()) + "_col"); add_child(static_body, true); if (get_owner()) { CollisionShape3D *cshape = Object::cast_to(static_body->get_child(0)); static_body->set_owner(get_owner()); cshape->set_owner(get_owner()); } } Node *MeshInstance3D::create_convex_collision_node(bool p_clean, bool p_simplify) { if (mesh.is_null()) { return nullptr; } Ref shape = mesh->create_convex_shape(p_clean, p_simplify); if (shape.is_null()) { return nullptr; } StaticBody3D *static_body = memnew(StaticBody3D); CollisionShape3D *cshape = memnew(CollisionShape3D); cshape->set_shape(shape); static_body->add_child(cshape, true); return static_body; } void MeshInstance3D::create_convex_collision(bool p_clean, bool p_simplify) { StaticBody3D *static_body = Object::cast_to(create_convex_collision_node(p_clean, p_simplify)); ERR_FAIL_NULL(static_body); static_body->set_name(String(get_name()) + "_col"); add_child(static_body, true); if (get_owner()) { CollisionShape3D *cshape = Object::cast_to(static_body->get_child(0)); static_body->set_owner(get_owner()); cshape->set_owner(get_owner()); } } Node *MeshInstance3D::create_multiple_convex_collisions_node(const Ref &p_settings) { if (mesh.is_null()) { return nullptr; } Ref settings; if (p_settings.is_valid()) { settings = p_settings; } else { settings.instantiate(); } Vector> shapes = mesh->convex_decompose(settings); if (!shapes.size()) { return nullptr; } StaticBody3D *static_body = memnew(StaticBody3D); for (int i = 0; i < shapes.size(); i++) { CollisionShape3D *cshape = memnew(CollisionShape3D); cshape->set_shape(shapes[i]); static_body->add_child(cshape, true); } return static_body; } void MeshInstance3D::create_multiple_convex_collisions(const Ref &p_settings) { StaticBody3D *static_body = Object::cast_to(create_multiple_convex_collisions_node(p_settings)); ERR_FAIL_NULL(static_body); static_body->set_name(String(get_name()) + "_col"); add_child(static_body, true); if (get_owner()) { static_body->set_owner(get_owner()); int count = static_body->get_child_count(); for (int i = 0; i < count; i++) { CollisionShape3D *cshape = Object::cast_to(static_body->get_child(i)); cshape->set_owner(get_owner()); } } } void MeshInstance3D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_READY: { callable_mp(this, &MeshInstance3D::_resolve_skeleton_path).call_deferred(); } break; case NOTIFICATION_TRANSLATION_CHANGED: { if (mesh.is_valid()) { mesh->notification(NOTIFICATION_TRANSLATION_CHANGED); } } break; } } int MeshInstance3D::get_surface_override_material_count() const { return surface_override_materials.size(); } void MeshInstance3D::set_surface_override_material(int p_surface, const Ref &p_material) { ERR_FAIL_INDEX(p_surface, surface_override_materials.size()); surface_override_materials.write[p_surface] = p_material; if (surface_override_materials[p_surface].is_valid()) { RS::get_singleton()->instance_set_surface_override_material(get_instance(), p_surface, surface_override_materials[p_surface]->get_rid()); } else { RS::get_singleton()->instance_set_surface_override_material(get_instance(), p_surface, RID()); } } Ref MeshInstance3D::get_surface_override_material(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surface_override_materials.size(), Ref()); return surface_override_materials[p_surface]; } Ref MeshInstance3D::get_active_material(int p_surface) const { Ref mat_override = get_material_override(); if (mat_override.is_valid()) { return mat_override; } Ref surface_material = get_surface_override_material(p_surface); if (surface_material.is_valid()) { return surface_material; } Ref m = get_mesh(); if (m.is_valid()) { return m->surface_get_material(p_surface); } return Ref(); } void MeshInstance3D::_mesh_changed() { ERR_FAIL_COND(mesh.is_null()); surface_override_materials.resize(mesh->get_surface_count()); uint32_t initialize_bs_from = blend_shape_tracks.size(); blend_shape_tracks.resize(mesh->get_blend_shape_count()); for (uint32_t i = 0; i < blend_shape_tracks.size(); i++) { blend_shape_properties["blend_shapes/" + String(mesh->get_blend_shape_name(i))] = i; if (i < initialize_bs_from) { set_blend_shape_value(i, blend_shape_tracks[i]); } else { set_blend_shape_value(i, 0); } } int surface_count = mesh->get_surface_count(); for (int surface_index = 0; surface_index < surface_count; ++surface_index) { if (surface_override_materials[surface_index].is_valid()) { RS::get_singleton()->instance_set_surface_override_material(get_instance(), surface_index, surface_override_materials[surface_index]->get_rid()); } } update_gizmos(); } MeshInstance3D *MeshInstance3D::create_debug_tangents_node() { Vector lines; Vector colors; Ref m = get_mesh(); if (!m.is_valid()) { return nullptr; } for (int i = 0; i < m->get_surface_count(); i++) { Array arrays = m->surface_get_arrays(i); ERR_CONTINUE(arrays.size() != Mesh::ARRAY_MAX); Vector verts = arrays[Mesh::ARRAY_VERTEX]; Vector norms = arrays[Mesh::ARRAY_NORMAL]; if (norms.size() == 0) { continue; } Vector tangents = arrays[Mesh::ARRAY_TANGENT]; if (tangents.size() == 0) { continue; } for (int j = 0; j < verts.size(); j++) { Vector3 v = verts[j]; Vector3 n = norms[j]; Vector3 t = Vector3(tangents[j * 4 + 0], tangents[j * 4 + 1], tangents[j * 4 + 2]); Vector3 b = (n.cross(t)).normalized() * tangents[j * 4 + 3]; lines.push_back(v); //normal colors.push_back(Color(0, 0, 1)); //color lines.push_back(v + n * 0.04); //normal colors.push_back(Color(0, 0, 1)); //color lines.push_back(v); //tangent colors.push_back(Color(1, 0, 0)); //color lines.push_back(v + t * 0.04); //tangent colors.push_back(Color(1, 0, 0)); //color lines.push_back(v); //binormal colors.push_back(Color(0, 1, 0)); //color lines.push_back(v + b * 0.04); //binormal colors.push_back(Color(0, 1, 0)); //color } } if (lines.size()) { Ref sm; sm.instantiate(); sm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED); sm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true); sm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); sm->set_flag(StandardMaterial3D::FLAG_DISABLE_FOG, true); Ref am; am.instantiate(); Array a; a.resize(Mesh::ARRAY_MAX); a[Mesh::ARRAY_VERTEX] = lines; a[Mesh::ARRAY_COLOR] = colors; am->add_surface_from_arrays(Mesh::PRIMITIVE_LINES, a); am->surface_set_material(0, sm); MeshInstance3D *mi = memnew(MeshInstance3D); mi->set_mesh(am); mi->set_name("DebugTangents"); return mi; } return nullptr; } void MeshInstance3D::create_debug_tangents() { MeshInstance3D *mi = create_debug_tangents_node(); if (!mi) { return; } add_child(mi, true); if (is_inside_tree() && this == get_tree()->get_edited_scene_root()) { mi->set_owner(this); } else { mi->set_owner(get_owner()); } } bool MeshInstance3D::_property_can_revert(const StringName &p_name) const { HashMap::ConstIterator E = blend_shape_properties.find(p_name); if (E) { return true; } return false; } bool MeshInstance3D::_property_get_revert(const StringName &p_name, Variant &r_property) const { HashMap::ConstIterator E = blend_shape_properties.find(p_name); if (E) { r_property = 0.0f; return true; } return false; } Ref MeshInstance3D::bake_mesh_from_current_blend_shape_mix(Ref p_existing) { Ref source_mesh = get_mesh(); ERR_FAIL_COND_V_MSG(source_mesh.is_null(), Ref(), "The source mesh must be a valid ArrayMesh."); Ref bake_mesh; if (p_existing.is_valid()) { ERR_FAIL_COND_V_MSG(p_existing.is_null(), Ref(), "The existing mesh must be a valid ArrayMesh."); ERR_FAIL_COND_V_MSG(source_mesh == p_existing, Ref(), "The source mesh can not be the same mesh as the existing mesh."); bake_mesh = p_existing; } else { bake_mesh.instantiate(); } Mesh::BlendShapeMode blend_shape_mode = source_mesh->get_blend_shape_mode(); int mesh_surface_count = source_mesh->get_surface_count(); bake_mesh->clear_surfaces(); bake_mesh->set_blend_shape_mode(blend_shape_mode); for (int surface_index = 0; surface_index < mesh_surface_count; surface_index++) { uint32_t surface_format = source_mesh->surface_get_format(surface_index); ERR_CONTINUE(0 == (surface_format & Mesh::ARRAY_FORMAT_VERTEX)); const Array &source_mesh_arrays = source_mesh->surface_get_arrays(surface_index); ERR_FAIL_COND_V(source_mesh_arrays.size() != RS::ARRAY_MAX, Ref()); const Vector &source_mesh_vertex_array = source_mesh_arrays[Mesh::ARRAY_VERTEX]; const Vector &source_mesh_normal_array = source_mesh_arrays[Mesh::ARRAY_NORMAL]; const Vector &source_mesh_tangent_array = source_mesh_arrays[Mesh::ARRAY_TANGENT]; Array new_mesh_arrays; new_mesh_arrays.resize(Mesh::ARRAY_MAX); for (int i = 0; i < source_mesh_arrays.size(); i++) { if (i == Mesh::ARRAY_VERTEX || i == Mesh::ARRAY_NORMAL || i == Mesh::ARRAY_TANGENT) { continue; } new_mesh_arrays[i] = source_mesh_arrays[i]; } bool use_normal_array = source_mesh_normal_array.size() == source_mesh_vertex_array.size(); bool use_tangent_array = source_mesh_tangent_array.size() / 4 == source_mesh_vertex_array.size(); Vector lerped_vertex_array = source_mesh_vertex_array; Vector lerped_normal_array = source_mesh_normal_array; Vector lerped_tangent_array = source_mesh_tangent_array; const Vector3 *source_vertices_ptr = source_mesh_vertex_array.ptr(); const Vector3 *source_normals_ptr = source_mesh_normal_array.ptr(); const float *source_tangents_ptr = source_mesh_tangent_array.ptr(); Vector3 *lerped_vertices_ptrw = lerped_vertex_array.ptrw(); Vector3 *lerped_normals_ptrw = lerped_normal_array.ptrw(); float *lerped_tangents_ptrw = lerped_tangent_array.ptrw(); const Array &blendshapes_mesh_arrays = source_mesh->surface_get_blend_shape_arrays(surface_index); int blend_shape_count = source_mesh->get_blend_shape_count(); ERR_FAIL_COND_V(blendshapes_mesh_arrays.size() != blend_shape_count, Ref()); for (int blendshape_index = 0; blendshape_index < blend_shape_count; blendshape_index++) { float blend_weight = get_blend_shape_value(blendshape_index); if (abs(blend_weight) <= 0.0001) { continue; } const Array &blendshape_mesh_arrays = blendshapes_mesh_arrays[blendshape_index]; const Vector &blendshape_vertex_array = blendshape_mesh_arrays[Mesh::ARRAY_VERTEX]; const Vector &blendshape_normal_array = blendshape_mesh_arrays[Mesh::ARRAY_NORMAL]; const Vector &blendshape_tangent_array = blendshape_mesh_arrays[Mesh::ARRAY_TANGENT]; ERR_FAIL_COND_V(source_mesh_vertex_array.size() != blendshape_vertex_array.size(), Ref()); ERR_FAIL_COND_V(source_mesh_normal_array.size() != blendshape_normal_array.size(), Ref()); ERR_FAIL_COND_V(source_mesh_tangent_array.size() != blendshape_tangent_array.size(), Ref()); const Vector3 *blendshape_vertices_ptr = blendshape_vertex_array.ptr(); const Vector3 *blendshape_normals_ptr = blendshape_normal_array.ptr(); const float *blendshape_tangents_ptr = blendshape_tangent_array.ptr(); if (blend_shape_mode == Mesh::BLEND_SHAPE_MODE_NORMALIZED) { for (int i = 0; i < source_mesh_vertex_array.size(); i++) { const Vector3 &source_vertex = source_vertices_ptr[i]; const Vector3 &blendshape_vertex = blendshape_vertices_ptr[i]; Vector3 lerped_vertex = source_vertex.lerp(blendshape_vertex, blend_weight) - source_vertex; lerped_vertices_ptrw[i] += lerped_vertex; if (use_normal_array) { const Vector3 &source_normal = source_normals_ptr[i]; const Vector3 &blendshape_normal = blendshape_normals_ptr[i]; Vector3 lerped_normal = source_normal.lerp(blendshape_normal, blend_weight) - source_normal; lerped_normals_ptrw[i] += lerped_normal; } if (use_tangent_array) { int tangent_index = i * 4; const Vector4 source_tangent = Vector4( source_tangents_ptr[tangent_index], source_tangents_ptr[tangent_index + 1], source_tangents_ptr[tangent_index + 2], source_tangents_ptr[tangent_index + 3]); const Vector4 blendshape_tangent = Vector4( blendshape_tangents_ptr[tangent_index], blendshape_tangents_ptr[tangent_index + 1], blendshape_tangents_ptr[tangent_index + 2], blendshape_tangents_ptr[tangent_index + 3]); Vector4 lerped_tangent = source_tangent.lerp(blendshape_tangent, blend_weight); lerped_tangents_ptrw[tangent_index] += lerped_tangent.x; lerped_tangents_ptrw[tangent_index + 1] += lerped_tangent.y; lerped_tangents_ptrw[tangent_index + 2] += lerped_tangent.z; lerped_tangents_ptrw[tangent_index + 3] += lerped_tangent.w; } } } else if (blend_shape_mode == Mesh::BLEND_SHAPE_MODE_RELATIVE) { for (int i = 0; i < source_mesh_vertex_array.size(); i++) { const Vector3 &blendshape_vertex = blendshape_vertices_ptr[i]; lerped_vertices_ptrw[i] += blendshape_vertex * blend_weight; if (use_normal_array) { const Vector3 &blendshape_normal = blendshape_normals_ptr[i]; lerped_normals_ptrw[i] += blendshape_normal * blend_weight; } if (use_tangent_array) { int tangent_index = i * 4; const Vector4 blendshape_tangent = Vector4( blendshape_tangents_ptr[tangent_index], blendshape_tangents_ptr[tangent_index + 1], blendshape_tangents_ptr[tangent_index + 2], blendshape_tangents_ptr[tangent_index + 3]); Vector4 lerped_tangent = blendshape_tangent * blend_weight; lerped_tangents_ptrw[tangent_index] += lerped_tangent.x; lerped_tangents_ptrw[tangent_index + 1] += lerped_tangent.y; lerped_tangents_ptrw[tangent_index + 2] += lerped_tangent.z; lerped_tangents_ptrw[tangent_index + 3] += lerped_tangent.w; } } } } new_mesh_arrays[Mesh::ARRAY_VERTEX] = lerped_vertex_array; if (use_normal_array) { new_mesh_arrays[Mesh::ARRAY_NORMAL] = lerped_normal_array; } if (use_tangent_array) { new_mesh_arrays[Mesh::ARRAY_TANGENT] = lerped_tangent_array; } bake_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, new_mesh_arrays, Array(), Dictionary(), surface_format); } return bake_mesh; } Ref MeshInstance3D::bake_mesh_from_current_skeleton_pose(Ref p_existing) { Ref source_mesh = get_mesh(); ERR_FAIL_COND_V_MSG(source_mesh.is_null(), Ref(), "The source mesh must be a valid ArrayMesh."); Ref bake_mesh; if (p_existing.is_valid()) { ERR_FAIL_COND_V_MSG(source_mesh == p_existing, Ref(), "The source mesh can not be the same mesh as the existing mesh."); bake_mesh = p_existing; } else { bake_mesh.instantiate(); } ERR_FAIL_COND_V_MSG(skin_ref.is_null(), Ref(), "The source mesh must have a valid skin."); ERR_FAIL_COND_V_MSG(skin_internal.is_null(), Ref(), "The source mesh must have a valid skin."); RID skeleton = skin_ref->get_skeleton(); ERR_FAIL_COND_V_MSG(!skeleton.is_valid(), Ref(), "The source mesh must have its skin registered with a valid skeleton."); const int bone_count = RenderingServer::get_singleton()->skeleton_get_bone_count(skeleton); ERR_FAIL_COND_V(bone_count <= 0, Ref()); ERR_FAIL_COND_V(bone_count < skin_internal->get_bind_count(), Ref()); LocalVector bone_transforms; bone_transforms.resize(bone_count); for (int bone_index = 0; bone_index < bone_count; bone_index++) { bone_transforms[bone_index] = RenderingServer::get_singleton()->skeleton_bone_get_transform(skeleton, bone_index); } bake_mesh->clear_surfaces(); int mesh_surface_count = source_mesh->get_surface_count(); for (int surface_index = 0; surface_index < mesh_surface_count; surface_index++) { ERR_CONTINUE(source_mesh->surface_get_primitive_type(surface_index) != Mesh::PRIMITIVE_TRIANGLES); uint32_t surface_format = source_mesh->surface_get_format(surface_index); ERR_CONTINUE(0 == (surface_format & Mesh::ARRAY_FORMAT_VERTEX)); ERR_CONTINUE(0 == (surface_format & Mesh::ARRAY_FORMAT_BONES)); ERR_CONTINUE(0 == (surface_format & Mesh::ARRAY_FORMAT_WEIGHTS)); unsigned int bones_per_vertex = surface_format & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS ? 8 : 4; surface_format &= ~Mesh::ARRAY_FORMAT_BONES; surface_format &= ~Mesh::ARRAY_FORMAT_WEIGHTS; const Array &source_mesh_arrays = source_mesh->surface_get_arrays(surface_index); ERR_FAIL_COND_V(source_mesh_arrays.size() != RS::ARRAY_MAX, Ref()); const Vector &source_mesh_vertex_array = source_mesh_arrays[Mesh::ARRAY_VERTEX]; const Vector &source_mesh_normal_array = source_mesh_arrays[Mesh::ARRAY_NORMAL]; const Vector &source_mesh_tangent_array = source_mesh_arrays[Mesh::ARRAY_TANGENT]; const Vector &source_mesh_bones_array = source_mesh_arrays[Mesh::ARRAY_BONES]; const Vector &source_mesh_weights_array = source_mesh_arrays[Mesh::ARRAY_WEIGHTS]; unsigned int vertex_count = source_mesh_vertex_array.size(); int expected_bone_array_size = vertex_count * bones_per_vertex; ERR_CONTINUE(source_mesh_bones_array.size() != expected_bone_array_size); ERR_CONTINUE(source_mesh_weights_array.size() != expected_bone_array_size); Array new_mesh_arrays; new_mesh_arrays.resize(Mesh::ARRAY_MAX); for (int i = 0; i < source_mesh_arrays.size(); i++) { if (i == Mesh::ARRAY_VERTEX || i == Mesh::ARRAY_NORMAL || i == Mesh::ARRAY_TANGENT || i == Mesh::ARRAY_BONES || i == Mesh::ARRAY_WEIGHTS) { continue; } new_mesh_arrays[i] = source_mesh_arrays[i]; } bool use_normal_array = source_mesh_normal_array.size() == source_mesh_vertex_array.size(); bool use_tangent_array = source_mesh_tangent_array.size() / 4 == source_mesh_vertex_array.size(); Vector lerped_vertex_array = source_mesh_vertex_array; Vector lerped_normal_array = source_mesh_normal_array; Vector lerped_tangent_array = source_mesh_tangent_array; const Vector3 *source_vertices_ptr = source_mesh_vertex_array.ptr(); const Vector3 *source_normals_ptr = source_mesh_normal_array.ptr(); const float *source_tangents_ptr = source_mesh_tangent_array.ptr(); const int *source_bones_ptr = source_mesh_bones_array.ptr(); const float *source_weights_ptr = source_mesh_weights_array.ptr(); Vector3 *lerped_vertices_ptrw = lerped_vertex_array.ptrw(); Vector3 *lerped_normals_ptrw = lerped_normal_array.ptrw(); float *lerped_tangents_ptrw = lerped_tangent_array.ptrw(); for (unsigned int vertex_index = 0; vertex_index < vertex_count; vertex_index++) { Vector3 lerped_vertex; Vector3 lerped_normal; Vector3 lerped_tangent; const Vector3 &source_vertex = source_vertices_ptr[vertex_index]; Vector3 source_normal; if (use_normal_array) { source_normal = source_normals_ptr[vertex_index]; } int tangent_index = vertex_index * 4; Vector4 source_tangent; Vector3 source_tangent_vec3; if (use_tangent_array) { source_tangent = Vector4( source_tangents_ptr[tangent_index], source_tangents_ptr[tangent_index + 1], source_tangents_ptr[tangent_index + 2], source_tangents_ptr[tangent_index + 3]); DEV_ASSERT(source_tangent.w == 1.0 || source_tangent.w == -1.0); source_tangent_vec3 = Vector3(source_tangent.x, source_tangent.y, source_tangent.z); } for (unsigned int weight_index = 0; weight_index < bones_per_vertex; weight_index++) { float bone_weight = source_weights_ptr[vertex_index * bones_per_vertex + weight_index]; if (bone_weight < FLT_EPSILON) { continue; } int vertex_bone_index = source_bones_ptr[vertex_index * bones_per_vertex + weight_index]; const Transform3D &bone_transform = bone_transforms[vertex_bone_index]; const Basis bone_basis = bone_transform.basis.orthonormalized(); ERR_FAIL_INDEX_V(vertex_bone_index, static_cast(bone_transforms.size()), Ref()); lerped_vertex += source_vertex.lerp(bone_transform.xform(source_vertex), bone_weight) - source_vertex; ; if (use_normal_array) { lerped_normal += source_normal.lerp(bone_basis.xform(source_normal), bone_weight) - source_normal; } if (use_tangent_array) { lerped_tangent += source_tangent_vec3.lerp(bone_basis.xform(source_tangent_vec3), bone_weight) - source_tangent_vec3; } } lerped_vertices_ptrw[vertex_index] += lerped_vertex; if (use_normal_array) { lerped_normals_ptrw[vertex_index] = (source_normal + lerped_normal).normalized(); } if (use_tangent_array) { lerped_tangent = (source_tangent_vec3 + lerped_tangent).normalized(); lerped_tangents_ptrw[tangent_index] = lerped_tangent.x; lerped_tangents_ptrw[tangent_index + 1] = lerped_tangent.y; lerped_tangents_ptrw[tangent_index + 2] = lerped_tangent.z; } } new_mesh_arrays[Mesh::ARRAY_VERTEX] = lerped_vertex_array; if (use_normal_array) { new_mesh_arrays[Mesh::ARRAY_NORMAL] = lerped_normal_array; } if (use_tangent_array) { new_mesh_arrays[Mesh::ARRAY_TANGENT] = lerped_tangent_array; } bake_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, new_mesh_arrays, Array(), Dictionary(), surface_format); } return bake_mesh; } void MeshInstance3D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &MeshInstance3D::set_mesh); ClassDB::bind_method(D_METHOD("get_mesh"), &MeshInstance3D::get_mesh); ClassDB::bind_method(D_METHOD("set_skeleton_path", "skeleton_path"), &MeshInstance3D::set_skeleton_path); ClassDB::bind_method(D_METHOD("get_skeleton_path"), &MeshInstance3D::get_skeleton_path); ClassDB::bind_method(D_METHOD("set_skin", "skin"), &MeshInstance3D::set_skin); ClassDB::bind_method(D_METHOD("get_skin"), &MeshInstance3D::get_skin); ClassDB::bind_method(D_METHOD("get_skin_reference"), &MeshInstance3D::get_skin_reference); ClassDB::bind_method(D_METHOD("get_surface_override_material_count"), &MeshInstance3D::get_surface_override_material_count); ClassDB::bind_method(D_METHOD("set_surface_override_material", "surface", "material"), &MeshInstance3D::set_surface_override_material); ClassDB::bind_method(D_METHOD("get_surface_override_material", "surface"), &MeshInstance3D::get_surface_override_material); ClassDB::bind_method(D_METHOD("get_active_material", "surface"), &MeshInstance3D::get_active_material); ClassDB::bind_method(D_METHOD("create_trimesh_collision"), &MeshInstance3D::create_trimesh_collision); ClassDB::set_method_flags("MeshInstance3D", "create_trimesh_collision", METHOD_FLAGS_DEFAULT); ClassDB::bind_method(D_METHOD("create_convex_collision", "clean", "simplify"), &MeshInstance3D::create_convex_collision, DEFVAL(true), DEFVAL(false)); ClassDB::set_method_flags("MeshInstance3D", "create_convex_collision", METHOD_FLAGS_DEFAULT); ClassDB::bind_method(D_METHOD("create_multiple_convex_collisions", "settings"), &MeshInstance3D::create_multiple_convex_collisions, DEFVAL(Ref())); ClassDB::set_method_flags("MeshInstance3D", "create_multiple_convex_collisions", METHOD_FLAGS_DEFAULT); ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &MeshInstance3D::get_blend_shape_count); ClassDB::bind_method(D_METHOD("find_blend_shape_by_name", "name"), &MeshInstance3D::find_blend_shape_by_name); ClassDB::bind_method(D_METHOD("get_blend_shape_value", "blend_shape_idx"), &MeshInstance3D::get_blend_shape_value); ClassDB::bind_method(D_METHOD("set_blend_shape_value", "blend_shape_idx", "value"), &MeshInstance3D::set_blend_shape_value); ClassDB::bind_method(D_METHOD("create_debug_tangents"), &MeshInstance3D::create_debug_tangents); ClassDB::bind_method(D_METHOD("bake_mesh_from_current_blend_shape_mix", "existing"), &MeshInstance3D::bake_mesh_from_current_blend_shape_mix, DEFVAL(Ref())); ClassDB::bind_method(D_METHOD("bake_mesh_from_current_skeleton_pose", "existing"), &MeshInstance3D::bake_mesh_from_current_skeleton_pose, DEFVAL(Ref())); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh"); ADD_GROUP("Skeleton", ""); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "skin", PROPERTY_HINT_RESOURCE_TYPE, "Skin"), "set_skin", "get_skin"); ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "skeleton", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Skeleton3D"), "set_skeleton_path", "get_skeleton_path"); ADD_GROUP("", ""); } MeshInstance3D::MeshInstance3D() { } MeshInstance3D::~MeshInstance3D() { }