// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "default.h" #include "builder.h" #include "geometry.h" #include "ray.h" #include "hit.h" namespace embree { struct IntersectFunctionNArguments; struct OccludedFunctionNArguments; struct IntersectFunctionNArguments : public RTCIntersectFunctionNArguments { Geometry* geometry; RTCScene forward_scene; RTCIntersectArguments* args; }; struct OccludedFunctionNArguments : public RTCOccludedFunctionNArguments { Geometry* geometry; RTCScene forward_scene; RTCIntersectArguments* args; }; /*! Base class for set of acceleration structures. */ class AccelSet : public Geometry { public: typedef RTCIntersectFunctionN IntersectFuncN; typedef RTCOccludedFunctionN OccludedFuncN; typedef void (*ErrorFunc) (); struct IntersectorN { IntersectorN (ErrorFunc error = nullptr) ; IntersectorN (IntersectFuncN intersect, OccludedFuncN occluded, const char* name); operator bool() const { return name; } public: static const char* type; IntersectFuncN intersect; OccludedFuncN occluded; const char* name; }; public: /*! construction */ AccelSet (Device* device, Geometry::GType gtype, size_t items, size_t numTimeSteps); /*! makes the acceleration structure immutable */ virtual void immutable () {} /*! build accel */ virtual void build () = 0; /*! check if the i'th primitive is valid between the specified time range */ __forceinline bool valid(size_t i, const range& itime_range) const { for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) if (!isvalid_non_empty(bounds(i,itime))) return false; return true; } /*! Calculates the bounds of an item */ __forceinline BBox3fa bounds(size_t i, size_t itime = 0) const { BBox3fa box; assert(i < size()); RTCBoundsFunctionArguments args; args.geometryUserPtr = userPtr; args.primID = (unsigned int)i; args.timeStep = (unsigned int)itime; args.bounds_o = (RTCBounds*)&box; boundsFunc(&args); return box; } /*! calculates the linear bounds of the i'th item at the itime'th time segment */ __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const { BBox3fa box[2]; assert(i < size()); RTCBoundsFunctionArguments args; args.geometryUserPtr = userPtr; args.primID = (unsigned int)i; args.timeStep = (unsigned int)(itime+0); args.bounds_o = (RTCBounds*)&box[0]; boundsFunc(&args); args.timeStep = (unsigned int)(itime+1); args.bounds_o = (RTCBounds*)&box[1]; boundsFunc(&args); return LBBox3fa(box[0],box[1]); } /*! calculates the build bounds of the i'th item, if it's valid */ __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const { const BBox3fa b = bounds(i); if (bbox) *bbox = b; return isvalid_non_empty(b); } /*! calculates the build bounds of the i'th item at the itime'th time segment, if it's valid */ __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const { const LBBox3fa bounds = linearBounds(i,itime); bbox = bounds.bounds0; // use bounding box of first timestep to build BVH return isvalid_non_empty(bounds); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const { if (!valid(i, timeSegmentRange(time_range))) return false; bbox = linearBounds(i, time_range); return true; } /* gets version info of topology */ unsigned int getTopologyVersion() const { return numPrimitives; } /* returns true if topology changed */ bool topologyChanged(unsigned int otherVersion) const { return numPrimitives != otherVersion; } public: /*! Intersects a single ray with the scene. */ __forceinline bool intersect (RayHit& ray, unsigned int geomID, unsigned int primID, RayQueryContext* context) { assert(primID < size()); int mask = -1; IntersectFunctionNArguments args; args.valid = &mask; args.geometryUserPtr = userPtr; args.context = context->user; args.rayhit = (RTCRayHitN*)&ray; args.N = 1; args.geomID = geomID; args.primID = primID; args.geometry = this; args.forward_scene = nullptr; args.args = context->args; IntersectFuncN intersectFunc = nullptr; intersectFunc = intersectorN.intersect; if (context->getIntersectFunction()) intersectFunc = context->getIntersectFunction(); assert(intersectFunc); intersectFunc(&args); return mask != 0; } /*! Tests if single ray is occluded by the scene. */ __forceinline bool occluded (Ray& ray, unsigned int geomID, unsigned int primID, RayQueryContext* context) { assert(primID < size()); int mask = -1; OccludedFunctionNArguments args; args.valid = &mask; args.geometryUserPtr = userPtr; args.context = context->user; args.ray = (RTCRayN*)&ray; args.N = 1; args.geomID = geomID; args.primID = primID; args.geometry = this; args.forward_scene = nullptr; args.args = context->args; OccludedFuncN occludedFunc = nullptr; occludedFunc = intersectorN.occluded; if (context->getOccludedFunction()) occludedFunc = context->getOccludedFunction(); assert(occludedFunc); occludedFunc(&args); return mask != 0; } /*! Intersects a single ray with the scene. */ __forceinline bool intersect (RayHit& ray, unsigned int geomID, unsigned int primID, RayQueryContext* context, RTCScene& forward_scene) { assert(primID < size()); int mask = -1; IntersectFunctionNArguments args; args.valid = &mask; args.geometryUserPtr = userPtr; args.context = context->user; args.rayhit = (RTCRayHitN*)&ray; args.N = 1; args.geomID = geomID; args.primID = primID; args.geometry = this; args.forward_scene = nullptr; args.args = nullptr; typedef void (*RTCIntersectFunctionSYCL)(const void* args); RTCIntersectFunctionSYCL intersectFunc = nullptr; #if EMBREE_SYCL_GEOMETRY_CALLBACK if (context->args->feature_mask & RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_GEOMETRY) intersectFunc = (RTCIntersectFunctionSYCL) intersectorN.intersect; #endif if (context->args->feature_mask & RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS) if (context->getIntersectFunction()) intersectFunc = (RTCIntersectFunctionSYCL) context->getIntersectFunction(); if (intersectFunc) intersectFunc(&args); forward_scene = args.forward_scene; return mask != 0; } /*! Tests if single ray is occluded by the scene. */ __forceinline bool occluded (Ray& ray, unsigned int geomID, unsigned int primID, RayQueryContext* context, RTCScene& forward_scene) { assert(primID < size()); int mask = -1; OccludedFunctionNArguments args; args.valid = &mask; args.geometryUserPtr = userPtr; args.context = context->user; args.ray = (RTCRayN*)&ray; args.N = 1; args.geomID = geomID; args.primID = primID; args.geometry = this; args.forward_scene = nullptr; args.args = nullptr; typedef void (*RTCOccludedFunctionSYCL)(const void* args); RTCOccludedFunctionSYCL occludedFunc = nullptr; #if EMBREE_SYCL_GEOMETRY_CALLBACK if (context->args->feature_mask & RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_GEOMETRY) occludedFunc = (RTCOccludedFunctionSYCL) intersectorN.occluded; #endif if (context->args->feature_mask & RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS) if (context->getOccludedFunction()) occludedFunc = (RTCOccludedFunctionSYCL) context->getOccludedFunction(); if (occludedFunc) occludedFunc(&args); forward_scene = args.forward_scene; return mask != 0; } /*! Intersects a packet of K rays with the scene. */ template __forceinline void intersect (const vbool& valid, RayHitK& ray, unsigned int geomID, unsigned int primID, RayQueryContext* context) { assert(primID < size()); vint mask = valid.mask32(); IntersectFunctionNArguments args; args.valid = (int*)&mask; args.geometryUserPtr = userPtr; args.context = context->user; args.rayhit = (RTCRayHitN*)&ray; args.N = K; args.geomID = geomID; args.primID = primID; args.geometry = this; args.forward_scene = nullptr; args.args = context->args; IntersectFuncN intersectFunc = nullptr; intersectFunc = intersectorN.intersect; if (context->getIntersectFunction()) intersectFunc = context->getIntersectFunction(); assert(intersectFunc); intersectFunc(&args); } /*! Tests if a packet of K rays is occluded by the scene. */ template __forceinline void occluded (const vbool& valid, RayK& ray, unsigned int geomID, unsigned int primID, RayQueryContext* context) { assert(primID < size()); vint mask = valid.mask32(); OccludedFunctionNArguments args; args.valid = (int*)&mask; args.geometryUserPtr = userPtr; args.context = context->user; args.ray = (RTCRayN*)&ray; args.N = K; args.geomID = geomID; args.primID = primID; args.geometry = this; args.forward_scene = nullptr; args.args = context->args; OccludedFuncN occludedFunc = nullptr; occludedFunc = intersectorN.occluded; if (context->getOccludedFunction()) occludedFunc = context->getOccludedFunction(); assert(occludedFunc); occludedFunc(&args); } public: RTCBoundsFunction boundsFunc; IntersectorN intersectorN; }; #define DEFINE_SET_INTERSECTORN(symbol,intersector) \ AccelSet::IntersectorN symbol() { \ return AccelSet::IntersectorN(intersector::intersect, \ intersector::occluded, \ TOSTRING(isa) "::" TOSTRING(symbol)); \ } }